POLYAMINE METABOLISM OF CRYPTOSPORIDIA:RATIONAL THERAPY

Information

  • Research Project
  • 6649698
  • ApplicationId
    6649698
  • Core Project Number
    R01AI049785
  • Full Project Number
    5R01AI049785-03
  • Serial Number
    49785
  • FOA Number
  • Sub Project Id
  • Project Start Date
    9/30/2001 - 23 years ago
  • Project End Date
    5/31/2005 - 19 years ago
  • Program Officer Name
    BROBST, SUSAN W.
  • Budget Start Date
    6/1/2003 - 21 years ago
  • Budget End Date
    5/31/2004 - 20 years ago
  • Fiscal Year
    2003
  • Support Year
    3
  • Suffix
  • Award Notice Date
    6/3/2003 - 21 years ago
Organizations

POLYAMINE METABOLISM OF CRYPTOSPORIDIA:RATIONAL THERAPY

DESCRIPTION (Provided by the applicant): Cryptosporidium parvum is an enteric pathogen causing diarrheal disease of humans. The disease causes chronic illness in children, the elderly, and immunocompromised individuals. The number of cases have soared since the emergence of the Acquired Immune Deficiency Syndrome (AIDS) pandemic, and cryptosporidiosis is now recognized as one of the most common human enteric infections. Since the infamous outbreak in Milwaukee, WI, of water borne cryptosporidiosis affecting over 400,000 people, there have been at least 20 other smaller outbreaks associated with this parasite in the USA. A major issue is the unusual degree of resistance that Cryptosporidium has shown to antiprotozoan and antimicrobial agents. We have demonstrated the presence of a plant- like polyamine biosynthetic pathway in C. parvum that is inhibited by difluoromethylarginine, a specific irreversible inhibitor of arginine decarboxylase. We have also shown that C. parvum transports polyamines avidly and has the ability to back-convert spermine to spermidine and putrescine via a coupled spermidine:spermine N about-acetyltransferase (SSAT)/polyamine oxidase (PAO) pathway. We have tested a number of bis ethyl conformationally restricted and unrestricted polyamine analogues as potential regulators of the polyamine backconversion pathway. Our results demonstrate that certain conformationally restricted polyamine analogues are very effective uncompetitive inhibitors of the C. parvum SSAT. Members of this class of inhibitor were also found to be effective at curing an immunosuppressed mouse model infection. We propose to extend these studies to examine the structural requirements of the polyamine analogues that will result in the most effective inhibition of SSAT activity.

IC Name
NATIONAL INSTITUTE OF ALLERGY AND INFECTIOUS DISEASES
  • Activity
    R01
  • Administering IC
    AI
  • Application Type
    5
  • Direct Cost Amount
  • Indirect Cost Amount
  • Total Cost
    360619
  • Sub Project Total Cost
  • ARRA Funded
  • CFDA Code
    856
  • Ed Inst. Type
    ORGANIZED RESEARCH UNITS
  • Funding ICs
    NIAID:360619\
  • Funding Mechanism
  • Study Section
    ZRG1
  • Study Section Name
    Special Emphasis Panel
  • Organization Name
    PACE UNIVERSITY NEW YORK
  • Organization Department
    NONE
  • Organization DUNS
    064961022
  • Organization City
    NEW YORK
  • Organization State
    NY
  • Organization Country
    UNITED STATES
  • Organization Zip Code
    10038
  • Organization District
    UNITED STATES