Polygonal braid and braiding machine

Information

  • Patent Grant
  • 6598510
  • Patent Number
    6,598,510
  • Date Filed
    Thursday, June 7, 2001
    24 years ago
  • Date Issued
    Tuesday, July 29, 2003
    22 years ago
  • Inventors
  • Examiners
    • Calvert; John J.
    • Hurley; Shaun R
Abstract
The present invention relates to a braider comprising a guiding plate, of which a plurality of the paths are intersected with one another; and a corresponding conveying gear.With combination of the guiding plate and the conveying gear, it is possible to produce polygonal braids, such as rectangular braids or triangle braids, and to provide various colors on the braids as different braided yarns are braided on the corresponding surfaces respectively.Furthermore, with the rectangular braids or triangle braids, the banding force is enhanced as the frictione is increased when they are united. Therefore, the braids are not easy to loosen if they are used as banding braids for footwear or clothes.
Description




TECHNICAL FIELD




The present invention relates to a braid and a braiding machine, and more particularly, to a polygonal braid and a braiding machine therefor, in which a guide plate having a track capable of braiding a polygonal braid and a feed gear corresponding thereto are provided. The polygonal braid braided in a square or triangular shape can be utilized as a binding string for shoes or clothes etc because of increased binding force by a polygonal. Braids of various quality and colors may be created by using different qualities or colors of strands.




BACKGROUND ART




Braids are utilized in several fields, for example, as part of an electric wire or hose, as a binding string etc. A specific braid is formed on the outer circumference of the electric wire or the string and provides an elastic and relaxed covering for an interior electrc wire or a string etc. and protects the interior electric wire from being contaminated or damaged by impact, braids are often used in place of string for daily use in shoes or clothes etc., in addition to specialized uses.




A general braider is composed of a guide plate having a track on which a spool is moved, a feed gear for moving an electric spool along the track the guide plate, a driving gear for driving a plurality of feed gears and a plural number of rollers on which a braided wire is wound, etc.





FIG. 6



a


shows a guide plate for manufacturing a general cylindric braid and its braid. On this guide plate


100


, two tracks


101


,


101


′ on a gentle circular curve line of a jig jag shape are formed, intersected with each other. As shown in

FIG. 6



b


, on its lower part, a plurality of feed gears


102


,


102


′ are positioned beneath and aligned within the intersected curves of tracks


101


,


101


′. In such construction, the plurality of feed gears


102


,


102


′ are simultaneously rotated by a rotation of the driving gear


103


, yarn from separate spools are combined within feed gears


102


,


102


′ onto the guid plate


100


which is rotated.




Therefore, a plural number of spools of yarn are rotated, repeatedly performing a rotation and a revolution centering around a center point of the guide plate


100


, feeding out yarn, which are intersected with one another, rotating along the track


101


,


101


′.




On an outer circumference of the central yarn, thus, a braid based on a cylindric shape is produced by the rotation of the spool as shown in

FIG. 6



c.






DISCLOSURE OF INVENTION




The ordinary cylindrical braid as described above, when used as a binding of shoes, has a low frictional force due to the cylindrical shape which can result in the shoe lace coming loose.




Whan a braid is made using a single color, by prior art methods, the brain color is monotonous; when using a single color, by prior art methods, the braid color is monotonous; when using various colored braid, the braid color may appear untidy.




In order to overcome the problems presented in prior art braiding methods, the present invention teaches a braid formed in a polygonal shape such as a triangle or a square shape with each edge of each face the polygon intersecting with an edge of the adjoining face of the polygon.











BRIEF DESCRIPTION OF DRAWINGS




The accompanying drawings, which are included to provide a further understanding of the invention and are incorporated in and constitute a part of the specification, illustrate embodiments of the invention and together with the description serve to explain the principles of the invention.




In the drawings:





FIG. 1

indicates an overall perspective view of a braiding machine;





FIG. 2

represents a separated perspective view for a part of a braiding machine in accordance with the present invention;





FIG. 3

is an enlarged sectional view for a part of the inventive braiding machine;





FIGS. 4



a


through


4




d


set forth main schematic views of main parts showing a braiding of a square braid, wherein

FIG. 4



a


is a plan explanatory view of a guide plate,

FIG. 4



b


is an installment state view of a feed gear.

FIG. 4



c


is a perspective view showing a square braid provided under a braiding state, and

FIG. 4



d


is a plan view showing a square braid under a braiding state;





FIGS. 5



a


to


5




d


depict schematic views of main parts showing a braiding of a triangular braid, wherein

FIG. 5



a


is a plan explanatory view of a guide plate.

FIG. 5



b


is an installment state view of a feed gear,

FIG. 5



c


is a perspective view showing a triangular braid under a braiding state, and

FIG. 5



d


is a plan view showing a triangular braid under a braiding state;





FIGS. 6



a


to


6




c


provide schematic views of a braiding mechanism of the prior art wherein,

FIG. 6



a


is a plan view of guide plate,

FIG. 6



b


is a view of a feed gear installed,

FIG. 6



c


is a perspective view showing a cylindrical braid produced thereby.











BEST MODE FOR CARRYING OUT THE INVENTION




Reference will now be made in detail to the preferred embodiments of the present invention, examples of which are illustrated in the accompanying drawings.





FIG. 1

is an overall perspective view of a braiding machine,

FIG. 2

is an enlarged separate perspective view partially showing a braiding machine in accordance with the present invention, and

FIG. 3

represents its sectional explanatory view.




As shown in

FIG. 4

, braid


22


is created be weaving numerous braiding yarns


21


,


21


′ on an outer circumference of a central yarn


20


, the braid


22


is formed in a polygonal shape by sections where respective faces


23


,


23


′ are formed by braiding numerous braiding yarns


21


,


21


′. On a boundary part which each face


23


meets with each face


23


′, the braiding yarns


21


,


21


′ formed on both side faces are cross-braided so that the respective faces


23


,


23


′ are combined with each other.




A braiding machine for creating such a braid is provided with a plurality of spools


2


,


2


′ positioned on an upper part of a guide plate


1


, a plural number of feed gears


3


,


3


′ attached to the carriers


2


,


2


′ are rotatably combined with each other in a lower part of the guide plate


1


, a driving gear


5


for driving these feed gears is combined therewith. In order to get the inventive braiding machine from such general braiding machine, that is, onto the guide plate


1


, “∞” shape tracks


10


,


10


′ having an intersection C


1


are formed. The number of C


1


intersections are determined by the number of faces of the braid to be made in a polygonal type. One loop of one “∞” shape track


10


is intersected with one loop of another “∞” shape track


10


′, to so form another intersection C


2


, and the feed gears


3


,


3


′ positioned in the lower part thereof are installed so that they are centered within each loop of the “∞” shape tracks


10


,


10


′.




The guide plate


1


having such “∞” shape tracks


10


,


10


′ is connected to the feed gears


3


,


3


′, and in such construction, a square braid


22


or a triangular braid


22


can be obtained. That is, the square braid


22


is obtained by forming four “∞”′ shape tracks


10


,


10


′ in such a way that both loops of the four tracks are intersected as shown in

FIG. 4



a


. The triangular braid


22


is obtained by forming three “∞” shape tracks


10


,


10


′ in such a way that both loops of the respective tracks are intersected as shown in

FIG. 5



a.






A plurality of C


1


of such “∞” shape tracks


10


,


10


′ may be constructed.




The inventive operations with such construction are described more in detail, referring to the drawings.




Describing a schematic operating state of the inventive braider, the plurality of feed gears


3


,


3


′ are interlocked by a rotation of the driving gear


5


, and as shown in

FIG. 3

, the feed gears


3


,


3


′ and the spools


2


,


2


′ inserted and supported by the feed gears


3


,


3


′ are moved according to the rotation of the feed gears


3


,


3


′. The spools


2


,


2


′ move from one feed gear


3


along tracks


10


,


10


′ of the guide plate


1


, to be then moved to another feed gear


3


′ and so as to be moved along the tracks


10


,


10


′.




Such tracks are provided so that spools


2


,


2


′ do not collide with one another but the paths of each other are intersected and the braiding yarns


21


,


21


′ fed from the respective spools


2


,


2


′ are braided, wrapping around the outer circumference face of a central yarn


20


.




Such central yarn is wound by a specific roller in a constant speed, to thus get a completed braid product.




In this braid, as shown in

FIG. 4



a


, the square braid


22


is formed by four intersected “∞” shape tracks


10


,


10


′. That is, in the intersection C


1


of the individual “∞” shape tracks


10


,


10


′, the braid is formed in a center part of each face, and the intersection C


2


of both sides of the individual tracks, the braiding yarns


21


,


21


′ from the two faces


23


,


23


′ are braided so as to be intersected with one another, therefore, four faces respectively distinguished from each other and braided are connected with one another, to be thus braided.




In other words, in the square face sectionally, each track


10


,


10


′ forms one face. In the separate intersection C


1


provided within that track


10


,


10


′, a central part of the faces


23


,


23


′ is formed by a cross movement of the spools


2


,


2


′, and in the intersection C


2


on which both sides of the respective tracks


10


,


10


′ are intersected, the respective faces are intersected with each other, to obtain the braiding. A completed square braid


22


is shown in

FIGS. 4



c


and


4




d.






A plurality of such intersections C


1


are formed, to obtain the braid. Thus, the braid can be used in place of a rather thick string.




The intersection movement of the spools


2


,


2


′ is provided by the rotation of the plurality of feed gears


3


,


3


′ as shown in

FIG. 4



b


, and this rotation force is produced by the interlocking operation caused by the rotation of the driving gear


5


.




That is to say, all the respective feed gears


3


,


3


′ are rotatably installed in the lower part attached to both loops of the “∞” shape tracks


10


,


10


′, whereby the spools


2


,


2


′ on te upper part are moved along the tracks


10


,


10


′ by the rotation of the feed gears


3


,


3


′.




As shown in

FIG. 5



a


, three “∞” shape tracks


10


,


10


′ are formed on the guide plate


1


, and as shown in

FIG. 5



b


, a plurality of feed gears


3


,


3


′ are connected therewith. Therefore, in the intersection C


1


of the individual “∞” shape tracks


10


,


10


′ itself, each face of the braid is formed, and in the intersection C


2


of both sides of the individual “∞” shape tracks


10


,


10


′, mutually different faces are intersected and then are braided, to form the triangular braid


22


as shown in

FIGS. 5



c


and


5




d.






Accordingly, in the invention, since the spools


2


,


2


′ are moved within only a separate section of a polygonal face, in contrast to the prior art in which braiding yarns are rotated around an overall outer circumference face of the central yarn


20


to perform a mixed braiding, the mixed color is not produced as in the prior art even though various colors are used. Colors of the braid formed on individual faces can be formed separately. In addition, in binding objects through a use of inventive braid, namely, in case that the braid is utilized as a string for a binding usage such as in shoes or clothes etc., the frictional force on a sectional face is increased, thus solving problems caused by weak binding force, such as a loosening of shoe laces.




INDUSTRIAL APPLICABILITY




As afore-mentioned, in accordance with the present invention, there is provided a polygonal braid and a braiding machine therefor, in which a square-braid as well as a triangular braid can be obtained. A polygonal braid can be produced having different colors on each face. The braid produced by this apparatus has an improved binding force for use in shoes and clothing.



Claims
  • 1. A polygonal braid having a plurality of faces is woven around an outer circumference of an internal central yarn wherein each face has two edges and each edge of each face is woven to the edge of adjoining face.
  • 2. The polygonal braid of claim 1, wherein said braid is formed in a square shape.
  • 3. The polygonal braid of claim 1, wherein said braid is formed in a triangular shape.
  • 4. A braiding machine of a polygonal braid comprising a plurality of spools positioned on an upper part of a guide plate, a plural number of feed gears connected to the spools rotatably combined with each other in a lower part of the guide plate, and a driving gear for driving the feed gears connected therewith, said machine characterized in that,the guide plate has a number of “∞” shape tracks, wherein the number of tracks defines the number of sides of the polygonal braid, and wherein each loop of each “∞” shape track is intersected with another loop of a different “∞” shape track, so to form an intersection of tracks, and the feed gears are installed so that each one is centered within the center of a loop of one “∞” shape tracks and can mesh together.
  • 5. The machine of claim 4, wherein said braid is obtained by forming four “∞” shape tracks on an upper part of the guide plate, in such a way that both loops of each track intersect with one loop of another track.
  • 6. The machine of claim 4, wherein said braid is obtained by forming three “∞” shape tracks on the upper part of the guide plate, in such a way that both loops of each track intersect with one loop of another track.
  • 7. The machine of claims 4, 5 or 6, wherein said intersection of the “∞” shape tracks is constructed as a plural number of sections.
Priority Claims (1)
Number Date Country Kind
00-181 Jan 2000 KR
PCT Information
Filing Document Filing Date Country Kind
PCT/KR00/00510 WO 00
Publishing Document Publishing Date Country Kind
WO01/49911 7/12/2001 WO A
US Referenced Citations (7)
Number Name Date Kind
2469178 Salvans May 1949 A
4096781 Bock et al. Jun 1978 A
4333380 Kozlowski Jun 1982 A
4803909 Smith Feb 1989 A
5146836 DeYoung Sep 1992 A
5910204 Carrara Jun 1999 A
5931077 De Young Aug 1999 A
Foreign Referenced Citations (4)
Number Date Country
52152556 Dec 1977 JP
52-152556 Dec 1977 JP
55-128057 Oct 1980 JP
2000178855 Jun 2000 JP