1. Field of the Invention
The present invention is related to the field of pile anchor foundations and, more particularly, to a post-tensioned pile anchor foundation including a post-tensioned foundation cap and a plurality of post-tensioned pile anchors extending vertically downward therefrom and a method of constructing such a post-tensioned pile anchor foundation.
2. Description of the Related Art
In a normal pile foundation, the piles extend to or into the above concrete foundation and are only compression resisting foundation extensions. Such pile foundations are not post-tensioned.
When tall, heavy and/or large structures are constructed, a post-tensioned concrete foundation is desirable in order to provide improved rotational stiffness, minimized movement from dynamic forces, and increased foundation frequency to approach the frequency of a rigid body. Such concrete foundations are particularly useful for the support of tall, heavy and/or large towers which may be used to support wind turbines, power lines, street lighting and signals, bridge supports, commercial signs, freeway signs, ski lifts and the like.
Various different forms of concrete foundations utilizing post-tensioned reinforcement and operational features of the instant invention have heretofore been disclosed in my earlier U.S. Pat. Nos. 5,586,417, 5,826,387 and 6,672,032, the disclosures of which are expressly incorporated herein in this application by reference as if fully set forth in their entirety. However, the concrete foundations of my aforesaid patents do not relate to pile anchor foundations. Therefore, a need exists for a pile anchor foundation that allows for the pile anchors to be post-tensioned.
The foundation of the instant invention resists supported structure overturn by a multitude of circumferentially spaced post tensioned pile anchors driven, drilled or otherwise formed into the subsurface soil. The pile anchors are constructed below a foundation concrete cap which is used to support a tower or other structure that is attached to the upper surface of the concrete cap.
Each pile anchor includes a post-tensioning element, such as a tendon or bolt, that extends through a pile anchor base plate and the concrete cap, and then centrally into a pile hole. The pile hole can be formed in various ways known in the art, such as drilling, mandrel driving, etc. Each pile hole is filled with cementious material around the tendon or bolt to secure the pile anchors into the ground.
The embedded portion of the tendon or bolt includes a lower end and an upper end. The lower end of the bolt is bare, i.e., is in direct contact with the cementious material, for bonding with the cementious material in a bottom portion of the pile anchor. One or more end nuts may be provided on the bolt lower end to facilitate bonding of the bolt lower end with the cementious material. Preferably, one or more centralizers center the tendon or bolt in the drilled pile hole.
The upper end of the embedded portion of the bolt is encased, preferably in a plastic sleeve or the like, and most preferably in a polyvinyl chloride (PVC) tube, so that the upper end of the bolt does not bond to the cementious material in the upper portion of the drilled pile hole. The sleeve also extends upwardly through the cap so that the tendon or bolt is also prevented from bonding to the cementious material of the cap. Such encased bolts in post-tensioned concrete foundations are disclosed in my earlier aforesaid U.S. Pat. Nos. 5,586,417 and 5,826,387.
After the cementious material has been poured or pumped, such as through a hollow stemmed auger, into the drilled pile holes and allowed to cure to fix the pile anchor tendons or bolts in the ground, a void or space is created above the top of each filled pile hole or pile anchor and into the adjacent lower surface of the foundation cap or leveling course. One technique to form the requisite void or space is to insert a spacer or void forming element. The spacer or void forming element thus defines a hollow area between the top of each pile anchor and the adjacent bottom of the foundation cap. The spacer or void forming element is provided with an aperture, preferably generally cylindrical, through which the sleeved tendon or bolt extends before passing through the cap. A second technique would be to form a collapsible zone with a highly compressible material similar to Styrofoam or equivalent.
The uppermost end of the tendon or bolt which protrudes from the top of the cap is fitted with the pile anchor base plate and a post-tensioning nut threaded thereon to post-tension the pile anchor and the concrete cap after the cementious material of the cap has hardened. The compressible material, spacer or void forming element is compressed or crushed by the post-tensioning, allowing the pile anchor to pull upward until skin friction resistance with the surrounding soils equaling the required tendon tension is achieved. The required bolt or tendon tension should exceed the maximum structure uplift load determined for each pile anchor.
In view of the foregoing, it is an object of the present invention to provide a concrete foundation for tall, heavy and large structures, such as support towers, which foundation is secured with post-tensioned pile anchors.
Another object of the present invention is to provide a pile anchor foundation in accordance with the preceding object which includes a concrete cap positioned above the pile anchors and which allows the pile anchors to be pulled upwardly and the foundation cap pulled downwardly to develop soil resistance for both of the post-tensioned elements.
Still another object of the present invention is to provide a pile anchor foundation in accordance with the preceding objects which includes a plurality of tendons or bolts that extend into each of the pile anchors with their lower end bonded to the pile anchor cementious material and the upper end extending through to above the top of the foundation cap, which upper end is free to move within the upper portion of the pile anchor and the foundation cap for post-tensioning.
A further object of the present invention is to provide a post-tensioned pile anchor foundation in accordance with the preceding objects which includes a void or spacing defining a hollow area between the top of each pile anchor and the adjacent bottom of the foundation cap so that the top of the pile anchor is pulled upwardly toward the adjacent cap bottom and the cap is pulled downwardly against the surrounding soil during the post-tensioning of each anchor tendon or bolt.
A still further object of the present invention is to provide a post-tensioned pile anchor foundation in accordance with the preceding object in which the void or spacing is preferably formed by a compressible (including crushable) spacer or void forming element.
Still yet another object of the present invention is to provide a pile anchor foundation in accordance with the preceding objects which can be completely tested for performance and creep before installing the supported tower or other structure thereon.
Yet a further object of the present invention is to provide a post-tensioned pile anchor foundation in accordance with the preceding objects in which the foundation may be easily and quickly re-leveled if partially upset by extremely high loads, above design loads, as a result of “Acts of God”, such as earthquakes, tornados or hurricanes.
Still yet another object of the present invention is to provide a pile anchor foundation which has greater flexibility to design for supporting a wide range of towers or other structures, including the addition of further weight components. The number of pile anchors can be easily increased or decreased for any particular design depending upon the design capacity of the foundation, including the addition of an inner circle of separate post-tensioned pile anchors, if desired.
A further object of the present invention is to provide a post-tensioned pile anchor foundation in accordance with the preceding objects, which can be constructed and effective in soils with long-term compressibility, where other foundations are inadequate, because long-term settlement can be addressed in the foundation of the present invention by simply re-tensioning the anchor bolts periodically.
A further object of the present invention is to provide a post-tensioned pile anchor foundation in accordance with the preceding objects which can be constructed and operate effectively in storm surge, flood, scour, erosion, and seismic zones inasmuch as the foundation of the present invention is anchored and supported deep below the surface and is able to be re-tensioned.
Yet another object of the present invention is to provide a method for forming the post-tensioned pile anchor foundations recited in the preceding objects.
A final object of the present invention to be set forth herein is to provide a post-tensioned pile anchor foundation and method for construction which may be utilized in a wide range of soils from water-laden sand or clay formations to solid rock, may be formed in situ in remote locations, and will incorporate a minimum amount of concrete or other cementious materials, while providing at the same time a concrete foundation which can be maintained under heavy post-tension forces.
These together with other objects and advantages which will become subsequently apparent reside in the details of construction and operation as more fully hereinafter described and claimed, reference being had to the accompanying drawings forming a part hereof, wherein like numerals refer to like parts throughout. While intending to illustrate the invention, the drawings are not to scale.
In describing a preferred embodiment of the invention illustrated in the drawings, specific terminology will be resorted to for the sake of clarity. However, the invention is not intended to be limited to the specific terms so selected, and it is to be understood that each specific term includes all technical equivalents which operate in a similar manner to accomplish a similar purpose.
One embodiment of a pile anchor foundation according to the present invention is shown in the '281 application using corrugated metal pipes to define the perimeter wall of the anchor piles. It has been found that the pile anchors can be formed in various other ways known to those skilled in the art in order to form a post-tensioned foundation according to the present invention. Such further embodiments are illustrated and described herein.
As shown in
The foundation cap 10 includes a series of tower anchor bolts 14 spaced circumferentially about the central vertical axis of the foundation cap. The tower anchor bolts 14 are preferably positioned in radial pairs forming two anchor bolt circles, generally designated by the reference numerals 16 and 18. The inner tower anchor bolt circle 16 has a slightly shorter diameter than the outer tower anchor bolt circle 18. For example, the outer tower anchor bolt circle diameter may be about fourteen feet and the inner tower anchor bolt circle diameter may be about thirteen feet. A tower or other supported structure (not shown) can be attached to the concrete cap 10 by the tower anchor bolts 14. Structures which can be supported on the post-tension pile anchor foundation of the present invention include, but are not limited to, transmission towers, electrical towers, communication towers, lighting standards, bridge supports, commercial signs, freeway signs, ski lift supports, solar energy towers, wind turbine towers, large stacks or chimneys, silos, tank structures, airport towers, guard towers, etc.
The tower anchor bolts 14 extend through and are nutted atop a typical circular tower base flange at the bottom of the tower or other supported structure positioned and grouted in grout trough 23 in the cap upper surface. The other or bottom end of the bolts 14 extends to an embedment ring 22 near the bottom of the concrete cap. The tower anchor bolts 14 are sleeved in elongated hollow tubes 15, preferably PVC tubes, which cover the anchor bolts except for threaded portions at the top and bottom of the bolts. The anchor bolt sleeves prevent bonding of the bolts to the concrete and grout. This structure allows the tower anchor bolts to be elongated and post-stressed between the tower base flange and the embedment ring to alleviate bolt cycling and fatigue.
The lower ends of the tower anchor bolts 14 are anchored near the bottom of the concrete cap foundation with the embedment ring 22 with suitable nuts 102 or the like. The embedment ring 22 is preferably constructed of several circumferential segments lap jointed together. The embedment ring 22 is approximately the same size as and is complementary to the tower base flange 21. The ring 22 contains bolt holes for each of the tower anchor bolts. As best shown in
Reinforcing steel rebar 24 is positioned radially between the pairs of tower anchor bolts 14 and pile anchor bolts 26. The radial steel rebar is preferably in the shape of rebar hoops extending both near the top and the bottom of the concrete cap foundation 10. The rebar hoops are lapped vertically and wire tied near and parallel to the cap perimeter. The rebar reinforcement, which can also include welded wire mesh 28, is intended to resist bending forces in the concrete cap 10. Other types of reinforcing steel as known by those skilled in the art can be used for the reinforcing steel rebar 24 of the concrete cap 10, such as bent rebar, headed rebar, bolts and nuts, bolts with forged bell ends, etc.
As shown in
The embedded portion of the tendon or bolt 26 includes a lower end 38 and an upper end, generally designated by the reference numeral 40. The lower end 38 of the bolt is bare, i.e., is in direct contact with the cementious material 36, for bonding thereto when the material 36 is poured or pumped to fill the interior of the drilled pile holes 34. The cementious material 36 preferably fills the pile holes 34 to the bottom 82 of the excavation area. An end nut 42 may be provided on the lower end of the bolt 26 (see, for example,
The upper end 40 of the embedded portion of the bolt 26 is encased in an elongated hollow tube, preferably in a plastic sleeve 44 or the like, and most preferably by PVC tubing, along a major upper portion of its length, to prevent bonding with the cementious material 46 of the concrete foundation cap 10 and the pile anchor cementious material 36 and to allow for post-tension stretching. A centralizer 84 is preferably mounted around the lower portion 38 of the anchors 26 so as to position the pile anchor bolt 26 centrally within the pile hole 34.
As stated previously, the hollow tubes 15 and plastic sleeve 44 for encircling or encasing the anchor bolts 14 and the elongated pile anchor bolts 26, respectively, are preferably made of PVC tubing. The plastic sleeves or tubing shield the bolts and prevent them from adhering to the cementious material. As such, the bolts can be tensioned after the cementious material has hardened and cured in order to post-tension the pile anchors and the foundation cap of the present invention. Alternately, the bolts can be wrapped in plastic tape, or otherwise sheathed, to prevent the bolts from adhering to the cementious material during curing and allow the bolts to stretch freely under tension over the entire sheathed length of the bolts.
After the cementious material 36 has been poured into the drilled pile holes 34 to fix the pile anchor tendons or bolts 26 in the ground 100, a void or highly compressible area 54 is formed between the top of the pile anchor cementious material 36 and the adjacent lower surface 52 of the cementious material 46 of the concrete foundation cap 10. The void 54 is preferably formed using a compressible (including crushable) spacer or void forming element generally designated by the reference numeral 50, which is inserted between the top of each filled pile hole 34 and the adjacent lower surface 52 of the cap 10 to be formed. One embodiment of the void forming element 50 is representatively shown in
As shown in
The void forming element 50 may also be constructed as an inflatable or pressurized bladder which will allow the pile anchor 12 to be pulled upwardly and the foundation cap 10 be pulled downwardly by tensioning the anchor bolts 26. As a further construction, the void forming element 50 can be made of a material that will develop great compressive strength when contacted with a catalyst after tensioning the anchor bolt or tendon. This embodiment includes materials in which the development of such compressive strength can be retarded for days.
As further shown in
According to the embodiment shown in
The uppermost end of the tendon or bolt 26 which protrudes from the top of the cap 10 is fitted with a pile anchor base plate 32 and a post-tensioning nut 70 is threaded onto the tendon or bolt to post-tension the pile anchor 12 and the concrete cap 10 after the cementious material 46 of the cap has hardened. The void created by the void forming element 50 is compressed and element 50 is crushed by the post-tensioning, allowing the pile anchor 12 to pull upwardly until skin friction resistance with the surrounding soils equaling the required tendon tension is achieved. The required bolt or tendon tension exceeds the maximum structure uplift load determined for each pile anchor.
The steps undertaken to form the completed foundation of
The next step in forming the foundation is illustrated in
As shown in
Finally, if a void forming element 50 with the tube coupler 66 and grout tube 68 construction has been used, pressurized grout can be forced through the inlet grout tube 68 and into any remaining void areas, as at 112 in
Turning now to the embodiment of the present invention illustrated in
Second, it has been found that the central portion of the foundation cap 210 does not have to be the full cap thickness as shown at 219. Hence, the excavation for the foundation cap need only be annular at 221, leaving soil 223 in the central portion 219. Third, it may be desirable to position a corrugated metal pipe 252 in the top of each pile anchor 212, which pipe 252 extends into the bottom of the foundation cap 210. The pipe 252 provides circumferential steel and reduces possible bursting of the concrete at the top of the pile anchor 212.
Advantageously, according to the present invention the pile anchors 12 and 212 of the pile anchor foundation are tension members only. The pile anchors pull the concrete foundation cap 10 and 210 downwardly compressing the underlying bearing soils with such a compression force that the concrete foundation cap is always bearing on the underlying soils even under the greatest overturning and uplift forces transferred to the concrete foundation cap from the tower structure by the tower anchor bolts atop the foundation cap.
As another advantage of the present invention, the pile anchor bolts or tendons 26 and 226 are sleeved as by PVC tubing 44 and 244 to eliminate stress reversals and fatigue while the bolts are stretched by jacking or torquing (post-tensioning). In addition, the post-tensioned pile anchor bolts are shielded from bonding with the reinforced concrete of the concrete foundation cap, allowing the bolts or tendons to elongate when pulled upwardly by jacks or torquing to the required post-tension. The post-tensioned bolts or tendons are secured in tension by a nut 70 and 270 thereon threaded atop the pile anchor base plate 32 and 232 preferably grouted into the top of the concrete foundation cap 10 and 210, thus pulling the cap downwardly with great compression against the underlying soils. Pile anchor bolts or tendons 26 may be re-tensioned periodically as necessary to eliminate long term consolidation and creep.
A further advantage of the present invention is that the pull down/hold down force of the pile anchors 12 and 212 results from post-tensioning of the pile anchor bolts 26 and 226 against the pile anchor base plate 32 and 232 atop or preferably grouted into the concrete foundation cap 10 and 210. The pile anchor 12 and 212 is pulled upwardly toward the adjacent bottom 52 and 252 of the concrete foundation cap until the resisting skin friction against the soil equals the post-tension of the tension bolt centered in the pile hole and restrained by the grout. The post-tension downward force atop the concrete foundation cap should exceed the determined maximum uplift by a factor of 1.5 or greater.
As a result of the foregoing, the post-tensioned pile anchor foundation of the present invention achieves greater rotational stiffness when compared to prior known foundations. The foundation of the present invention also minimizes movement from dynamic forces and increases the foundation frequency to more closely approach that of a rigid body.
As stated previously, the pile anchor base plate 32 and 232 are preferably grouted into the top surface of the concrete foundation cap 10 and 210. This can be readily accomplished by blocking out an indentation slightly larger than the dimensions of the base plate, such as by using a Styrofoam or other easily removable form, similar to making the tower flange grout trough 23. The pile anchor base plate should be grouted into the top surface of the foundation cap so that the upper surface of the base plate coincides with the upper surface of the foundation cap. Having the top surface of the base plate at the same level as the top surface of the foundation cap facilitates using the jacking mechanism when post-tensioning the pile anchor bolts.
The post-tensioned pile anchor foundation of the present invention provides significant flexibility in designing a foundation for a wide range of applications, including variation in the height, weight and overturning moment of the supported tower or other structure, including additional equipment to be supported thereon. This greater flexibility arises from the fact that the number and size of pile anchors can be varied over a wide range, and can even include an inner circle of separate post-tensioned pile anchors if a greater rotational stiffness is required.
The pile holes 34 and 234 and pile anchors 12 and 212 for the concrete foundation 8 and 208 of the present invention can be formed in the soil below the excavation 80 and 280 in a variety of ways and using differing equipment, depending upon the condition of the soil, as known to those skilled in the art. For example, the pile hole 34 may be simply formed by a driven mandrel or formed by a screw auger in generally stable soils, by driven pile pipes or pipes drilled, jetted or vibrated in place in unstable soils, such as in the '281 application, and/or by percussion drilling in rock, or combinations of the foregoing, before positioning the tendon or bolt 26 therein, followed by the addition of the cementious material 36. Alternately, the pile holes may be drilled and the concrete pressure cast with hollow stemmed augers in wet sands and clays or the hole filled with the cementious material through a tube which then serves as the anchor bolt. Other methods and equipment to form the pile anchors known to those skilled in the art can be used without departing from the present invention.
While the utilization of a void or hollow area between the top of each pile anchor cementious material and the adjacent lower surface of the foundation cap, and the utilization of a compressible spacer or void-forming element therefor as described, is clearly preferred for all soil conditions, there may be some circumstances in which the void or hollow area 54 is not absolutely necessary. For example, if the concrete foundation of the present invention has the foundation cap set directly into a rock formation, it may not be necessary to utilize the void or hollow area; the post-tensioning of the pile anchors and foundation cap may be sufficient to achieve the requisite stiffness for the foundation.
Furthermore, while it is clearly preferred to use tower anchor bolts, separate and apart from pile anchor bolts, to attach and support the tower or other supported structure, it may be possible in some circumstances to attach the base flange of the supported tower or other structure directly to the top of the pile anchor bolt.
It should be understood by those skilled in the art that the foregoing description utilizes the terms “concrete” and “cementious material” interchangeably. It will be further understood that various cementious and cementious-type materials can be utilized in constructing the post-tensioned pile anchor foundation of the present invention as would be utilized by those skilled in the art. These materials include, but are not limited to, sand, cement slurrys, grouts, and epoxys.
Further, while the post-tensioning elements and of the present invention have been described as anchor bolts or tendons, those skilled in the art will appreciate that other forms of tension elements, such as cables, rods, pipes, or the like, could be used in accordance with the present invention.
The foregoing descriptions and drawings should be considered as illustrative only of the principles of the invention. The invention may be configured in a variety of shapes and sizes and is not limited by the dimensions of the preferred embodiment. Numerous applications of the present invention will readily occur to those skilled in the art. Therefore, it is not desired to limit the invention to the specific examples disclosed or the exact construction and operation shown and described. Rather, all suitable modifications and equivalents may be resorted to, falling within the scope of the invention.
This application claims the benefit of priority to U.S. Provisional Patent Application No. 60/797,746 filed May 5, 2006, and is a continuation-in-part of copending U.S. application Ser. No. 10/734,281, filed Dec. 15, 2003, the subject matter of which is expressly incorporated herein by reference as if fully set forth in its entirety (hereinafter referred to as the '281 application”).
Number | Name | Date | Kind |
---|---|---|---|
1048993 | Meriwether | Dec 1912 | A |
2162108 | Newman | Jun 1939 | A |
2374624 | Schwendt | Apr 1945 | A |
2706498 | Upson | Apr 1955 | A |
2724261 | Rensaa | Nov 1955 | A |
3186181 | Snow et al. | Jun 1965 | A |
3382680 | Takano | May 1968 | A |
3559412 | Fuller | Feb 1971 | A |
3600865 | Vanich | Aug 1971 | A |
3793794 | Archer et al. | Feb 1974 | A |
3839874 | Wyant | Oct 1974 | A |
3842608 | Turzillo | Oct 1974 | A |
3916635 | Lynch et al. | Nov 1975 | A |
3963056 | Shibuya et al. | Jun 1976 | A |
3963065 | Dauwalder | Jun 1976 | A |
4038827 | Pryke | Aug 1977 | A |
4060994 | Chitis | Dec 1977 | A |
4217738 | Smith | Aug 1980 | A |
4228627 | O'Neill | Oct 1980 | A |
4232846 | Bressani | Nov 1980 | A |
4287691 | Guenther | Sep 1981 | A |
4618287 | Kinnan | Oct 1986 | A |
4842447 | Lin | Jun 1989 | A |
4910940 | Grady, II | Mar 1990 | A |
5131790 | Simpson | Jul 1992 | A |
5228806 | De Medieros, Jr. et al. | Jul 1993 | A |
5231808 | Angelette | Aug 1993 | A |
5289626 | Mochida et al. | Mar 1994 | A |
5379563 | Tinsley | Jan 1995 | A |
5474399 | Chia-Hsiung | Dec 1995 | A |
5586417 | Henderson et al. | Dec 1996 | A |
5625988 | Killick | May 1997 | A |
5678382 | Naito | Oct 1997 | A |
5761875 | Oliphant et al. | Jun 1998 | A |
5826387 | Henderson et al. | Oct 1998 | A |
5878540 | Morstein | Mar 1999 | A |
5960597 | Schwager | Oct 1999 | A |
6119425 | Shimonohara | Sep 2000 | A |
6216414 | Feldberg | Apr 2001 | B1 |
6270308 | Groppel | Aug 2001 | B1 |
6665990 | Cody et al. | Dec 2003 | B1 |
6672023 | Henderson | Jan 2004 | B2 |
Number | Date | Country |
---|---|---|
27 58 489 | Nov 1978 | DE |
1463696 | Mar 1967 | FR |
2030478 | Nov 1970 | FR |
55 122916 | Sep 1980 | JP |
58 166195 | Oct 1983 | JP |
59 150830 | Aug 1984 | JP |
61 233131 | Oct 1986 | JP |
6 316942 | Nov 1994 | JP |
Number | Date | Country | |
---|---|---|---|
20070269273 A1 | Nov 2007 | US |
Number | Date | Country | |
---|---|---|---|
60797746 | May 2006 | US |
Number | Date | Country | |
---|---|---|---|
Parent | 10734281 | Dec 2003 | US |
Child | 11797772 | US |