Claims
- 1. A process of continuously producing a uniform fiber dispersion for wet papermaking operations from bundles of long fibers comprising the steps of: (1) providing an initial fiber slurry consisting essentially of a dispersing liquid having a viscosity of at least about 2 cps and long fibers in the form of at least partially unopened fiber bundles, the fibers in said bundles having a fiber length of about 1/4 inch and more and a length to diameter ratio of about 400:1 to 3000:1; (2) continuously flowing said fiber slurry through an in-line dispersing chamber provided with a plurality of nonstapling impellers having an impeller blade diameter size relative to the capacity of the chamber of at least 0.1 in./gal., said impellers being adapted for generating trailing regions of reduced pressure and flow disruptive turbulence of high intensity, said slurry being fed continuously through said chamber at a throughput rate sufficiently faster than conventional papermaking fiber dispersing chambers to provide a chamber dwell time of only about ten minutes and less and a dispersion factor greater than 0.005, said factor being the quotient of said relative impeller size and the throughput rate of said slurry in tons per day; (3) subjecting said slurry to said regions with said turbulence being of sufficient intensity to rapidly open the fiber bundles and disperse the individual fibers during said dwell time within said chamber; and (4) removing the dispersed fibers and liquid from the chamber as a substantially uniform and homogeneous fiber dispersion for subsequent sheet formation in a wet papermaking operation.
- 2. The process of claim 1 wherein said relative impeller size is greater than 0.2 in./gal., and said dispersion factor is about 0.05-1.0.
- 3. The process of claim 1 wherein the dispersing liquid has a viscosity of at least 5 cps, said fibers having a length to diameter ratio of 700:1 to 2000:1 and said process includes the step of feeding dry fibers and said dispersing liquid to said disperser at a controlled rate, said fibers including inorganic and man-made synthetic organic fibers.
- 4. The process of claim 1 including the step of cutting dry fibers from strands of continuous filaments and feeding said dry cut fibers and said dispersing liquid to said disperser at a controlled rate.
- 5. The process of claim 1 including the steps of cutting and feeding dry fibers and said dispersing liquid to said disperser, said relative impeller size being greater than 0.2 in./gal., said dwell time being about 2-6 minutes and said dispersion factor being 0.05-1.0.
- 6. The process of claim 1 further including the steps of conveying the dispersion from the disperser to a sheet-forming area where the fibers in said dispersion are separated from the dispersing medium and collected as a continuous fibrous web, said dispersion being diluted prior to reaching said forming area.
- 7. The process of claim 1 wherein the dispersing liquid has a viscosity of at least 5 cps and said fibers have a length to diameter ratio of 1000:1 to 1600:1, said relative impeller size being about 0.2-1.0 in./gal., said dwell time being about 2-6 minutes and said dispersion factor being 0.1-0.5, said process further including the steps of conveying the dispersion from the disperser to a sheet-forming area where the fibers in said dispersion are separated from the dispersing medium and collected as a continuous fibrous web, said dispersion being diluted prior to reaching said forming area.
- 8. A continuous water-laid machine-made light weight inorganic fibrous web of uniform fiber formation comprising inorganic fibers having a fiber length of about 1/4 inch or more and up to about 15% by weight of a binder for the inorganic fibers; said web having a basis weight of about 5-30 grams per square meter, a microvariation in basis weight of less than 10%, a macrovariation in basis weight of less than 5%, an isolated fiber bundle defect count of less than 10 per 100 square feet wherein each multi-fiber defect is an agglomeration of fibers causing a local difference in web thickness of 0.5 mils and more, and a visually perceptible uniform fiber distribution essentially devoid of "cloud effect" fiber density variations.
- 9. The fibrous web of claim 8 wherein the inorganic fibers are glass fibers.
- 10. The fibrous web of claim 8 wherein the inorganic fiber content is about 85 percent by weight or more.
- 11. The fibrous web of claim 8 wherein the web has a basis weight of about 10-25 grams/square meter.
- 12. The fibrous web of claim 8 wherein the inorganic fibers are glass fibers having a diameter in the range of 5-15 microns and a length in the range of 1/4-1 inch.
- 13. The fibrous web of claim 8 wherein the inorganic fibers include a mixture of glass fibers of different micron diameter size.
- 14. The fibrous web of claim 8 wherein the inorganic fibers constitute about 90 percent by weight of the web and are glass fibers having a fiber diameter in the range of 5-15 microns, said web exhibiting a major defect count of less than 10 per 100 square feet.
- 15. The fibrous web of claim 8 having a major defect count of about 5 or less per 100 square feet.
- 16. The fibrous web of claim 8 wherein the binder is initially incorporated into the web in fiber form.
- 17. The fibrous web of claim 8 wherein the inorganic fibers are glass fibers having a diameter of less than 15 microns and a length of about one inch or less, said glass fibers constituting at least about 90 percent by weight of the web, the binder being of a thermoplastic material initially incorporated into the web in fiber form, said web having a basis weight of about 25 grams per square meter or less and exhibiting a major defect count of about 5 or less per 100 square feet.
RELATED APPLICATION
This application is a continuation-in-part of our copending application Ser. No. 762,492 filed Jan. 26, 1977 now abandoned.
US Referenced Citations (5)
Continuation in Parts (1)
|
Number |
Date |
Country |
| Parent |
762492 |
Jan 1977 |
|