The present disclosure is related to atomic layer deposition techniques, wherein a substrate is positioned within an atomic layer deposition chamber and exposed to a series of precursors to form microscopically thin layers of deposited material.
This Summary is provided to introduce a selection of concepts in a simplified form that are further described below in the detailed description. This summary is not intended to be an extensive overview of the claimed subject matter, identify key factors or essential features of the claimed subject matter, nor is it intended to be used to limit the scope of the claimed subject matter.
Atomic layer deposition is typically performed under a vacuum in order to reduce contamination of formed layers by deposited oxygen. The vacuum within the atomic layer deposition chamber is typically held at a vacuum level of 10e−06 torr-liters/second, which is a conventionally accepted vacuum level for the related field of chemical vapor deposition.
However, atomic layer deposition can be demonstrably more sensitive to oxygen contamination than chemical vapor deposition, due to the deposition of a series of layers, each of which is exposed to oxygen. Due to this sensitivity, the performance of atomic layer deposition at an increased vacuum level not exceeding approximately 10e−08 torr-liters/second, thus providing a higher level of vacuum that enables a significant reduction of oxygen contamination, resulting in tighter process control. Additional reduction of oxygen and reduction of oxygen contamination is achievably by applying still higher vacuum levels, such as 10e−10 torr-liters/second.
The following description and annexed drawings set forth certain illustrative aspects and implementations. These are indicative of but a few of the various ways of embodying one or more aspects of the presented techniques. Other aspects, advantages, and novel features of the disclosure will become apparent from the following detailed description when considered in conjunction with the annexed drawings.
Aspects of the disclosure are understood from the following detailed description when read with the accompanying drawings. It will be appreciated that elements and/or structures of the drawings are not necessarily be drawn to scale. Accordingly, the dimensions of the various features is arbitrarily increased and/or reduced for clarity of discussion.
Embodiments or examples, illustrated in the drawings, are disclosed below using specific language. It will nevertheless be understood that the embodiments or examples are not intended to be limiting. Any alterations and modifications in the disclosed embodiments, and any further applications of the principles disclosed in this document are contemplated as would normally occur to one of ordinary skill in the pertinent art.
As illustrated in the exemplary scenario of
In view of this observation, alternative atomic layer deposition techniques are disclosed that are capable of performing deposition within an atomic layer deposition chamber 102 that has been evacuated to a higher vacuum level 124, such as approximately 1.0e−08 torr-liters/second. Increasing the vacuum level 124 during atomic layer deposition reduces the exposure of the individually formed layers to oxygen 108, resulting in tighter process control and higher reliability of resulting components. Further increasing the vacuum level, such as at 1.0e−10 torr-liters/second, enables further evacuation of oxygen and further reduction of oxygen contamination.
Still another embodiment involves a computer-readable medium comprising processor-executable instructions configured to implement one or more of the techniques presented herein. An example embodiment of a computer-readable medium or a computer-readable device that is devised in these ways is illustrated in
Some variations of respective aspects of the techniques presented herein enable additional advantages and/or reduce disadvantages as compared with other variations of the techniques presented herein and/or other techniques.
A first variable aspect involves the types of layers and devices formable according to the techniques presented herein. For example, high-k metal gate materials and source/drain region contact material are capable of being formed from layers formed on the surface of the substrate 104 according to the techniques presented herein, and thus provide tighter, more predictable behaviors or characteristics due to decreased oxygen contamination.
A second variable aspect involves the vacuum pump 106 provided to achieve and maintain the vacuum level 124. The vacuum pump is configured to achieve a vacuum level 124 not exceeding approximately 10e−08 torr-liters/second within the atomic layer deposition chamber 102. Additionally, integrating a pressure detector with the atomic layer deposition chamber 102 that is configured to detect the vacuum level within the atomic layer deposition chamber enables a vacuum pump 106 to adjust the vacuum power to maintain the vacuum level 124 not exceeding approximately 10e−08 torr-liters/second within the atomic layer deposition chamber 102.
A third variable aspect involves the seals applied to the valves, hoses, housing, etc. of the atomic layer deposition chamber 102. Selecting such seals to resist air leaks during the vacuum level 124 not exceeding approximately 1.0e−08 torr-liters/second within the atomic layer deposition chamber facilitates the maintenance of the vacuum level 124.
A fourth variable aspect involves the further operation of the vacuum pump 106 during the atomic layer deposition. As a first example, atomic layer deposition often involves removing undeposited precursor from the atomic layer deposition chamber 102. The vacuum pump 106 enables a restoration of the vacuum level 124 not exceeding approximately 1.0e−08 torr-liters/second within the atomic layer deposition chamber 102 after removing the undeposited precursor. To this end, some atomic layer deposition devices include a purge gas source storing a purge gas and controllably connected with the atomic layer deposition chamber 102 through a purge gas inlet. Purging the atomic layer deposition chamber 102 by injecting the purge gas, and then evacuating the atomic layer deposition chamber 102 by activating the vacuum pump 106 to restore the vacuum level 124 not exceeding approximately 1.0e−08 torr-liters/second, prepares the atomic layer deposition chamber 102 for the injection of a second precursor 114 stored by a second precursor source in order to deposit another layer or to perform surface chemistry on the surface of the substrate 104.
As an exemplary embodiment of these techniques, an atomic layer deposition controller integrated with the atomic layer deposition device is configured to operate the vacuum pump 106 to achieve a vacuum level 124 not exceeding approximately 1.0e−08 torr-liters/second within the atomic layer deposition chamber 102; while maintaining the vacuum level 124, operate the precursor source 112 to inject the precursor 114 into the atomic layer deposition chamber 102 to deposit a layer on the surface of the substrate 104; after depositing the layer on the surface of the substrate 104, operate the purge gas source to purge undeposited precursor from the atomic layer deposition chamber 102; and after purging the undeposited precursor, operate the vacuum pump 106 to maintain the vacuum level 124 not exceeding approximately 1.0e−08 torr-liters/second within the atomic layer deposition chamber 102. Successive cycles of this process enable the formation of a stack of layers on the substrate 104 that are further processed to create one or more semiconductor components.
In view of these observations, an embodiment of the techniques provided herein comprises an atomic layer deposition device that is capable of depositing a layer on a surface of a substrate. The atomic layer deposition device comprises an atomic layer deposition chamber. The atomic layer deposition device also comprises a precursor source storing a precursor and controllably connected with the atomic layer deposition chamber through a precursor inlet. The atomic layer deposition device also comprises a vacuum pump that is controllably connected with the atomic layer deposition chamber through a vacuum outlet, and configured to achieve a vacuum level not exceeding approximately 1.0e−08 torr-liters/second within the atomic layer deposition chamber. An atomic layer deposition device configured in this manner is capable of depositing a layer on the surface of the substrate 104 in accordance with the techniques presented herein. Another embodiment of the techniques provided herein comprises a semiconductor device comprising at least one component formed from the layer deposited by the atomic layer deposition device provided herein.
A second embodiment of the techniques provided herein comprises a method of depositing a layer on a surface of a substrate in accordance with the techniques presented herein. The method involves positioning the substrate within an atomic layer deposition chamber. The exemplary method also involves applying a vacuum achieving a vacuum level not exceeding approximately 1.0e−08 torr-liters/second within the atomic layer deposition chamber. The method also involves, while maintaining the vacuum level, injecting at least one precursor into the atomic layer deposition chamber to deposit the layer on the surface of the substrate. Still another embodiment of the techniques provided herein comprises a semiconductor device comprising at least one component formed from the layer deposited according to this method.
Although the subject matter has been described in language specific to structural features and/or methodological acts, it is to be understood that the subject matter of the appended claims is not necessarily limited to the specific features or acts described above. Rather, the specific features and acts described above are disclosed as example forms of implementing the claims.
Various operations of embodiments are provided herein. The order in which some or all of the operations are described should not be construed as to imply that these operations are necessarily order dependent. Alternative ordering will be appreciated by one skilled in the art having the benefit of this description. Further, it will be understood that not all operations are necessarily present in each embodiment provided herein.
It will be appreciated that layers, features, elements, etc. depicted herein are illustrated with particular dimensions relative to one another, such as structural dimensions and/or orientations, for example, for purposes of simplicity and ease of understanding and that actual dimensions of the same differ substantially from that illustrated herein, in some embodiments. Additionally, a variety of techniques exist for forming the layers, features, elements, etc. mentioned herein, such as implanting techniques, doping techniques, spin-on techniques, sputtering techniques such as magnetron or ion beam sputtering, growth techniques, such as thermal growth and/or deposition techniques such as chemical vapor deposition (CVD), for example.
Moreover, “exemplary” is used herein to mean serving as an example, instance, illustration, etc., and not necessarily as advantageous. As used in this application, “or” is intended to mean an inclusive “or” rather than an exclusive “or”. In addition, “a” and “an” as used in this application are generally be construed to mean “one or more” unless specified otherwise or clear from context to be directed to a singular form. Also, at least one of A and B and/or the like generally means A or B or both A and B. Furthermore, to the extent that “includes”, “having”, “has”, “with”, or variants thereof are used in either the detailed description or the claims, such terms are intended to be inclusive in a manner similar to the term “comprising”.
Also, although the disclosure has been shown and described with respect to one or more implementations, equivalent alterations and modifications will occur to others skilled in the art based upon a reading and understanding of this specification and the annexed drawings. The disclosure includes all such modifications and alterations and is limited only by the scope of the following claims.