The present invention relates to a relay device. In particular, it relates to a relay device that relays transmittance of information between a wire communication line and a wireless communication line.
Among known relay devices in a network system, there is known one that suitably modulates using a higher modulation multi-level number the better the propagation state of a wireless communication line, so as to be able to transmit data at the highest transmission rate.
For example, a known relay device provides a high transmission rate by modulating with a high multi-level number when the propagation path state is good. On the other hand, when the propagation path state is in a bad state, it modulates with a low multi-level number so as to be able to certainly propagate even if the transmission rate is low (for example, refer to Patent Documents 1 and 2).
Patent Document 3 discloses a modulation system control method in a transmitting/receiving device that uses an adaptive modulation method that transmits by switching between a plurality of modulation systems. In this modulation system control method, the transmitting/receiving device estimates the propagation path state based on the received signal, and decides as a first modulation system a modulation system that satisfies a transmission quality of a certain standard and that leads to the maximum transmission speed in that propagation path state. Also, this modulation system control method detects the traffic amount of transmission data, and determines as a second modulation system the transmission system that leads to the lowest transmission speed at which the traffic amount is transmittable. Then, this modulation system control method selects as the transmission modulation system either the first modulation system or the second modulation system whose transmission speed is lower.
[Patent Document 1] PCT International. Publication No. WO 2007/141878 pamphlet
[Patent Document 2] PCT International Publication No. WO 2006/075585 pamphlet
[Patent Document 3] Japanese Unexamined Patent Application, First Publication No. 2006-165939
However, the technology of Patent Documents 1 and 2 decides the modulation system based on the propagation state of the wireless communication line, and so performs wireless communication with the largest multi-level modulation, in the case of the propagation state being monitored as good even when the transmission data amount is small, or when there is no transmission data. For that reason, in the case of the propagation path state being monitored as good, due to outputting an output signal with the maximum transmission power that enables the largest multi-level modulation transmission, regardless of the presence of transmission data or the traffic being heavy or light, there is the problem of the power consumption of a wireless device being increased.
As for the technology disclosed in Patent Document 3, in the case of the line quality being bad when a large quantity of data is flowed from a wire LAN side, due to priority being given to control by line quality information, there is the risk of a delay in the data processing occurring.
In order to solve the aforementioned problems, a relay device relays transmittance of information between a wire communication line and a wireless communication line. The relay device includes: a modulation unit which modulates information to be transmitted into an electrical signal; and a control unit which controls an operation of the modulation unit. The control unit controls a modulation system of the modulation unit in accordance with traffic of the wire communication line.
The above disclosure does not list all of the necessary characteristics of the present invention. Sub-combinations of this group of characteristics may become inventions.
According to the present invention, it is possible to perform data transmission. with the minimum transmission power necessary, in the case of there being little traffic, and in the case of there being no traffic.
Hereinbelow, the present invention shall be described through exemplary embodiments of the present invention, but the following exemplary embodiments shall not limit the invention recited in claims. Also, not all of the combinations of the characteristics described in the exemplary embodiments may be necessary for the means for solving the problems of the present invention.
The relay device 100a includes a transport path monitoring unit 110a, a wireless signal transmission and reception circuit 120a, a wireless control unit 130a, a transmission signal amplification circuit 140a, a reception signal amplification circuit 150a, and an antenna 160a. Hereinbelow, the function and operation of each constituent element shall be described.
The relay device 100b includes the same constituent elements as the constituent elements that the relay device 100a includes. That is to say, the relay device 100b includes a transport path monitoring unit 110b, a wireless signal transmission and reception circuit 120b, a wireless control unit 130b, a transmission signal amplification circuit 140b, a reception signal amplification circuit 150b, and an antenna 160b.
Hereinbelow, when describing the constituent elements of the relay device 100a and the constituent elements of the relay device 100b with no distinction, the constituent elements are expressed without the symbols “a” or “b”. For example, when describing the transport path monitoring unit 110a and the transport path monitoring unit 110b without distinction, they are collectively referred to as transport path monitoring unit 110.
The transport path monitoring unit 110 monitors the traffic of transmission signals of the wire LAN that connects the relay device 100 and the backbone B or the base station BS, and transports the monitoring information to the wireless control unit 130. The wireless signal transmission and reception circuit 102 modulates/demodulates and encodes/decodes the transport data. The wireless control unit 130 performs control of the modulation/demodulation method and encoding/decoding rate, and amplification control of the transmission signal amplification circuit 140. The transmission signal amplification circuit 140 amplifies the transmission signal. The reception signal amplification circuit 150 amplifies the reception signal.
A port 111 is an interface for performing input and output of data between the wire LAN and the relay device. A physical layer processing unit 112 modulates/demodulates the analog signal that is transmitted to/received from the wire LAN. The MAC processing unit 113 monitors control information such as addresses and performs control of the frame signal. A buffer 114 temporarily holds the data that has been transported and then transports it. The buffer 114 has known technology that transmits a pause signal to the wire LAN side to temporarily lower the transmission rate of the wire LAN side in the case of the amount of data that has been transported being large, and the amount of free memory running low. A header check unit 115 monitors traffic by reading the data length portion of the header within the unit time from the MAC processing unit 113.
Referring to the time chart shown in
The transport path monitoring unit 110 continuously monitors the traffic of transmission signals of the wire LAN (S101), and continues to send the monitoring information to the wireless control unit 130 (S102: Transmit monitoring information at anytime).
In the case of the traffic of transmission signals being low, the wireless control unit 130 judges the traffic of transmission signals as being low based on the monitoring information sent from the transport path monitoring unit 110 (S103), and selects the QPSK, which has the minimum necessary modulation multi-level number, for allowing data transmission from the relay device 100a (or 100b) to the relay device 100b (or 100a).
When the wireless control unit 130 judges the traffic of transmission signals to be low and determines the modulation multi-level number, it judges the traffic based on multiple instances of the monitoring information from the monitoring information so that there is no main signal phase fluctuation.
The wireless control unit 130 transmits the modulation multi-level number information to the wireless signal transmission and reception circuit 120 as the QPSK (S104: Control information by QPSK).
Also, the wireless control unit 130 transmits transmission power control information to the transmission signal amplification circuit 140 so that data transmission is possible from the relay device 100a (or 100b) to the relay device 100b (or 100a) by the QPSK, in which the modulation multi-level number is low, and so that the data is to be transmitted with the minimum necessary power (S105: Transmission power control information).
Next, referring to the time chart shown in
The transport path monitoring unit 110 continuously monitors traffic of wire LAN transmission signals (S201), and continues to send the monitoring information to the wireless control unit 130 (S202: Transmit monitoring information at anytime).
In the case of the transmission signal traffic increasing from low to high, the wireless control unit 130, based on the monitoring information sent from the transport path monitoring unit 110, judges the transmission signal traffic to have increased to high (S203), and selects the 256-QAM, which has the minimum necessary modulation multi-level number, for allowing data transmission from the relay device 100a (or 100b) to the relay device 100b (or 100a). In the case of the transmission signal traffic having increased, the wireless control unit 130 immediately determines the modulation multi-level number from the monitoring information so that there is no main signal phase fluctuation.
The wireless control unit 130 transmits as the 256-QAM the modulation multi-level number information to the wireless signal transmission and reception circuit 120 (S204: Control information by 256-QAM).
Also, the wireless control unit 130 transmits transmission power control information to the transmission signal amplification circuit 140 so that data transmission is possible from the relay device 100a (or 100b) to the relay device 100b (or 100a) by the 256-QAM, which has a high modulation multi-level number, and so that the data is to be transmitted with the minimum necessary power (S205: Transmission power control information).
In the case of the wire LAN transmission signal traffic being too high, the transport path monitoring unit 110 transmits a pause signal to the wire LAN side to temporarily stop the wire LAN transmission signals, and thereby temporarily lower the transmission rate of transmission signals (S206).
In the case of the pause signal having been transmitted, due to the transmission rate of wire LAN transmission signals temporarily falling, the wireless control unit 130 judges the traffic based on multiple instances of the monitoring information from the monitoring information so that there is no main signal phase fluctuation (S207).
Next, referring to the time chart shown in
The transport path monitoring unit 110 continuously monitors traffic of wire LAN transmission signals (S301), and continues to send the monitoring information to the wireless control unit 130 (S302: Transmit monitoring information at anytime).
In the case of the transmission signal traffic decreasing from high to intermediate, the wireless control unit 130, based on the monitoring information sent from the transport path monitoring unit 110, judges the transmission signal traffic to have decreased to intermediate (S503), and selects the 64-QAM, which has the minimum necessary modulation multi-level number, for allowing data transmission from the relay device 100a (or 100b) to the relay device 100b (or 100a). In the case of the traffic decreasing and the wireless control unit 130 selecting a modulation system with a small multi-level number, the wireless control unit 130 judges the traffic based on multiple instances of monitoring information from the monitoring information so that there is no main signal phase fluctuation.
The wireless control unit 130 transmits as the 64-QAM the modulation multi-level number information to the wireless signal transmission and reception circuit 120 (S304).
The wireless control unit 130 transmits transmission power control information to the transmission signal amplification circuit 140 so that data transmission is possible from the relay device 100a (or 100b) to the relay device 100b (or 100a) by the 64-QAM, which has an intermediate modulation multi-level number, and so that the data is to be transmitted with the minimum necessary power (S305: Transmission power control information).
In order to simplify the description in the operations of the present exemplary embodiment, the traffic states are divided into the three cases of low, intermediate and high. Also, the case of low traffic is made to correspond with the QPSK having a low modulation multi-level number. The case of intermediate traffic is made to correspond with the 64-QAM having an intermediate modulation multi-level number. The case of high traffic is made to correspond with the 256-QAM having a high modulation multi-level number. In reality, since there are general modulation multi-level numbers (QPSK, 16-QAM, 64-QAM, 128-QAM, 256-QAM, 516-QAM and the like) and various code rates, settings for further segmented traffic are possible.
An operation of monitoring wire LAN traffic and performing wireless bandwidth control in
The port 111 takes in wire LAN transmission signals to the transport path monitoring unit 110, and transmits the transmission signals to the physical layer processing unit 112.
The physical layer processing unit 112 demodulates the analog signal that is transmitted from the wire LAN side, and transmits the demodulated signal to the MAC processing unit 113.
The MAC processing unit 113 monitors control information such as the address of the demodulated signal and the like, and transmits the frame signal to the buffer 114. After temporarily holding the data of the frame signal, the buffer 114 transmits it to the wireless signal transmission and reception circuit 120. Also, the buffer 114 has a known bandwidth control technology that, in the case of the data mount of the frame signal being high, leading to the amount of free space running low, transmits a pause signal to the wire LAN side to temporarily stop the transmission signal of the wire LAN, and thereby temporarily lower the transmission rate of transmission signals.
The header check unit 115 judges the transmission rate by reading the data length portion of the header within a unit time from the MAC processing unit 113, and transmits the traffic monitoring information (S102) to the wireless control unit 130.
The wireless control unit 130 that has received the monitoring information (S102) judges the minimum necessary modulation multi-level number for data transmission.
By the aforementioned steps, the transport path monitoring unit 110 monitors the wire LAN traffic, and based on the monitored traffic can secure the minimum necessary wireless band
The transport path monitoring unit 210 continuously continues to monitor the traffic of the wire LAN that connects the relay device 200 and the backbone B or the base station BS, and transmits the monitoring information to the wireless control unit 230. The wireless control unit 230 transmits the transmission system information to a MUX (multiplexer)/DMUX (demultiplexer) 220 and wireless signal transmission and reception circuits 240 and 250. The MUX/DMUX 220 multiplexes/demultiplexes the transmission and reception signals by the selected transmission system (2 transmissions or 1 transmission). The wireless signal transmission and reception circuit 240 and the wireless signal transmission and reception circuit 250 perform modulation/demodulation and encoding/decoding of signals by the selected transmission system (active/inactive). An OMT (orthogonal mode transducer) 270 orthogonally couples/separates the transmission and reception signals that is transmitted and received via an antenna 260.
An operation in the constitution of
The wireless control unit 230 judges the traffic of transmission signals based on the monitoring information (S403), and selects the minimum necessary transmission system information in which transmission is possible to the relay device 200b. The wireless control unit 230 sends to the MUX/DMUX 220 transmission system information that shows whether to perform both sides 2 transmission or single side 1 transmission of the signal to be transmitted to the wireless signal transmission and reception circuit 240 and the wireless signal transmission and reception circuit 250 (S404: Transmit transmission system information).
The wireless control unit 230 transmits to the wireless signal transmission and reception circuit 240 and the wireless signal transmission and reception circuit 250 the minimum necessary modulation multi-level number information for allowing notification of the transmission system information relating to active/inactive and data transmission (S405: Transmit transmission system information (active/inactive)+modulation multi-level number information).
As described above, based on the monitoring information in which the transmission path monitoring unit 210 has monitored wire LAN traffic, the wireless control unit 230 carries out XPIC control, whereby compared with the basic constitution shown in
As described above, according to the exemplary embodiments of the present invention, it is possible to perform data transmission with the minimum necessary transmission power in the case of there being little traffic or no traffic.
Also, according to the exemplary embodiments of the present invention, since it is possible to independently control an adaptive multi-level number in the incoming direction or outgoing direction in which data is transmitted, it is possible to set the transmission power of the incoming relay device and the outgoing relay device to a minimum, and therefore possible to lower the power consumption of the entire system.
Hereinabove, while the invention has been described with reference to the exemplary embodiments thereof, the invention is not limited to these exemplary embodiments. It is possible to make various changes to the constitutions and details of the present invention that can be understood by a person skilled in the art within the scope of the present invention.
This application is based upon and claims the benefit of priority from Japanese patent application No. 2011-107046, filed May 12, 2011, the disclosure of which is incorporated herein in its entirety by reference.
The present invention may be applied to a relay device. According to the relay device that has applied the present invention, it is possible to perform data transmission with the minimum necessary transmission power in the case of there being little traffic or no traffic.
| Number | Date | Country | Kind |
|---|---|---|---|
| 2011-107046 | May 2011 | JP | national |
| Filing Document | Filing Date | Country | Kind | 371c Date |
|---|---|---|---|---|
| PCT/JP2012/062320 | 5/14/2012 | WO | 00 | 11/12/2013 |