Iwamoto et al., “An Extended Doherty Amplifier with High Efficiency Over a Wide Power Range,” 2001 IEEE MTT-S Digest, pp. 931-934. |
Yang et al., “Experimental Investigation on Efficiency amnd Linearity of Microwave Doherty Amplifier,” 2001 IEEE MTT-S Digest, pp. 1367-1370. |
Danny R. Webster, “Low-Distortion MMIC Power Amplifier Using a New Form of Derivative Superposition,” IEEE Transactions on Microwave Theory and vol. 49, No. 2, Feb. 2001, pp. 328-332. |
Van der Heijden et al., “Ultra-Linear Distributed Class-AB LDMOS RF Power Amplifier for Base Stations,” 2001 IEEE MTT-S Digest, pp. 1363-1366. |
Cao et al., “A 3.2V, 45% Efficient, Novel Class AB+C CDMA MMIC Power Amplifier Using Quasi Enhancement Mode Phemts,” 2000 IEEE Radio Frequency Integrated Circuits Symposium, pp. 93-96. |
Bahl et al., “Class-B Power MMIC Amplifiers with 70 Percent Power-Added Efficiency,” IEEE Transactions on Microwave Theory and Techniques, vol. 37, No. 9, Sep. 1989, pp. 1315-1320. |
Maeda et al., “Source Second-Harmonic Control for High Efficiency Power Amplifiers,” IEEE Transactions on Microwave Theory and Techniques, vol. 43, No. 12, Dec. 1995, pp. 2952-2958. |
Kim et al., “A New Linearization Technique for MOSFET RF Amplifier Using Multiple Gated Transistors,” IEEE Microwave and Guided Wave Letters, vol. 10, No. 9, Sep. 2000, pp. 317-373. |
Kim et al., “An FET-Level Linearization Method Using a Predistortion Branch FET,” IEEE Microwave and Guided Wave Letters, vol. 9, No. 6, Jun. 1999, pp. 233-235. |
Hanington et al., “High-Efficiency Power Amplifier Using Dynamic Power-Supply Voltage for CDMA Applications,” IEEE Transactions on Microwave Theory and Techniques, vol. 47, No. 8, Aug. 1999, pp. 1471-1776. |
Sevic, “Introduction to Doherty Power Amplifiers,” IEEE MTT Workshop WSB, Efficiency and Linearity and Enhancement Methods for Portable RF/MW Wireless PA's, Jun. 11, 2000. |