RNAi CONJUGATES, PARTICLES AND FORMULATIONS THEREOF

Abstract
Particles, including nanoparticles and microparticles, and pharmaceutical formulations thereof, comprising conjugates of an RNAi agent attached to a targeting moiety via a linker have been designed which can provide improved temporospatial delivery of the RNAi agent and/or improved biodistribution. Methods of making the conjugates, the particles, and the formulations thereof are provided. Methods of administering the formulations to a subject in need thereof are provided, for example, to treat or prevent cancer or infectious diseases.
Description
FIELD OF THE INVENTION

This invention is generally in the field of RNAi conjugates, particles, formulations, and their methods of use in the gene therapy field.


BACKGROUND OF THE INVENTION

RNA interference (RNAi) is a post-transcriptional gene silencing mechanism used to down-regulate a specific mRNA or block its expression. RNAi mechanism involves several key agents such as small interfering RNA (siRNA), microRNA (miRNA), and piwi-interacting RNA (piRNA). The average sizes of these molecules are well below 10 nm. The polyanionic nature of RNA makes it hard for these molecules to penetrate cell membranes. Unformulated RNAi molecules are subject to renal filtration and have poor pharmacokinetics. Therefore, RNAi molecules have been complexed with other nucleic acids, proteins, polymers, lipids and/or liposomes to increase their size and stability. There remains a need for targeted RNAi delivery.


SUMMARY OF THE INVENTION

Applicants have created molecules that are conjugates of a targeting moiety and an RNAi agent including siRNA, miRNA, piRNA and saRNA. Furthermore, particles comprising the conjugates are provided. The conjugates can be encapsulated into particles, included in the particle/medium interface, or deposited on the surface of particles. The conjugates and particles are useful for improving the delivery of RNAi agents to target tissue and target cells via both passive and active targeting mechanism.







DETAILED DESCRIPTION OF THE INVENTION

Applicants have created particles to improve targeting a conjugate comprising an RNAi agent and a targeting moiety to a diseased tissue such as tumor tissues. Nanoparticles are known to extravasate and accumulate in the leaky vasculature of tumor tissues. This phenomenon is called “enhanced permeability and retention” (EPR) effect. Therefore, the RNAi agent is passively targeted to these tumor tissues. Furthermore, the targeting moiety binds to a surface receptor on target cells and actively takes the RNAi agent to target cells. Upon binding of the targeting moiety to the surface receptor, target cells can uptake the RNAi agent into cytoplasm. The active molecular targeting in combination with enhanced permeability and retention effect (EPR) and improved overall biodistribution of the nanoparticles provide greater efficacy and improved tolerability as compared to the administration of RNAi agents alone.


In addition, the toxicity of a conjugate containing a targeting moiety linked to an RNAi agent for cells that do not express the target of the targeting moiety is predicted to be decreased compared to the toxicity of the RNAi agent alone.


Furthermore, a conjugate comprising an RNAi agent may be degraded and/or compromised before it reaches target cells. For example, there may be specific enzymes such as nuclease in the plasma that may degrade the RNAi agent. The particles of the present invention may shield the conjugate from degradation and/or compromise before the conjugate reaches the target cells.


As used herein, “RNAi” refers to a biological process in which RNA molecules inhibit a target RNA transcript expression, typically by causing the destruction or sterically blocking the target RNA transcript, resulting in gene silencing or knockdown or gene activation. For example, the target RNA transcript may be an mRNA transcribed from a target gene, wherein the expressions of the mRNA and/or target gene are down-regulated by the RNAi agent. In another example, the target transcript may be a non-coding antisense RNA transcript overlapping with a region on a target gene and the expression of the target gene is upregulated by the RNAi agent.


As used herein, “an RNAi agent” refers to an agent in RNAi that comprises at least an oligonucleotide component (e.g., nucleic acid, either RNA or DNA or modifications thereof) and which is capable of functioning through binding, preferably via hybridization with a target RNA transcript. Examples of RNAi agents include but not limited to small interfering RNA (siRNA), microRNA (miRNA), piwi-interacting RNA (piRNA), antigene RNAs (agRNA) or small activating RNAs (saRNA). It is also understood that RNAi agents may act via binding but not trigger any cleavage event, but exert an effect on the function of the target RNA transcript by steric means.


siRNAs are typically short (usually 20-25 nucleotides long) double stranded RNA molecules comprising a sense strand and an antisense strand. Each strand may have a nucleotide overhang at the 3′-end. In the cytoplasm, the antisense strands of siRNAs are loaded into a protein complex named RNA induced silencing complex (RISC). Loaded RISC then scans all intracellular mRNA for a target mRNA with a complementary sequence to the loaded antisense siRNA strand. After loaded RISC finds the target mRNA, the target mRNA is cleaved and degraded, thereby inhibiting the expression of the target mRNA. siRNAs may be introduced as a pre-hybridized short double-stranded RNA, a long double-stranded RNA that may be processed into a short double-stranded RNA by an enzyme named Dicer, or a short hair-pin shaped RNA (shRNA). In some cases, siRNAs may be introduced as a single-stranded antisense strand. The term “siRNA”, as used herein, encompasses all forms of siRNAs and derivatives thereof.


miRNAs are a class of short non-coding RNAs (usually 21-24 nucleotides long), originating from endogenous genome DNA sequences. They are first transcribed in the nucleus as long primary miRNAs (pri-miRNA) with 5′ caps and 3′ poly A tails that contain the mature miRNA as one arm of an RNA stem-loop. This stem-loop is excised by the nuclear RNase III enzyme DROSHA to give an ˜65 nt RNA hairpin, bearing a 2 nt 3′ overhang, termed a precursor-miRNA (pre-miRNA). The pre-miRNAs generated in the nucleus are subsequently transported out of the nucleus to cytoplasm by a protein called Exportin-5 and are processed to mature miRNAs by Dicer. miRNAs may be introduced in their mature form, as pri-miRNAs, or as pre-miRNAs. The term “miRNA”, as used herein, encompasses all forms of miRNA, miRNA antagonist, miRNA agonist, miRNA mimics, miRNA mimetics, miRNA addback, and derivatives thereof.


piRNAs are another class of short non-coding RNAs (usually 26-31 nucleotides long). They form RNA-protein complexes through interaction with piwi proteins. These piRNA protein complexes have been associated with both epigenetic and post-transcriptional gene silencing, especially in the silencing of transposable elements (transposons). Repeat associated small interfering RNA (rasiRNA) is a subspecies of piRNA. The term “piRNA”, as used herein, encompasses all forms of piRNA and derivatives thereof.


Antigene RNA (agRNA) or small activating RNA (saRNA) are short RNA molecules typically less than 30 nt long that regulate gene expression at the transcriptional/epigenetic level. An RNAa agent may be designed according to the method disclosed in PCT Publications WO/2006/130201, WO/2007/086990, WO/2009/046397, WO/2009/149182, or WO/2009/086428, the contents of each of which are incorporated herein by reference in their entirety.


The conjugates comprising an RNAi agent and a targeting moiety described herein that are formulated with particles are released after administration of the particles. The conjugates may further comprise a cleavable linker moiety that releases the RNAi agent under the right condition. The local therapeutic concentration of the RNAi agent at target cells is greatly increased than administering RNAi agent alone.


It is an object of the invention to provide improved compounds, compositions, and formulations for temporospatial RNAi agent delivery.


It is further an object of the invention to provide methods of making improved compounds, compositions, and formulations for temporospatial RNAi agent delivery.


It is also an object of the invention to provide methods of administering the improved compounds, compositions, and formulations to individuals in need thereof.


I. Conjugates

Conjugates of the present invention include an RNAi agent attached to a targeting moiety by a linker. The conjugates can be a conjugate between a single RNAi agent and a single targeting moiety, e.g. a conjugate having the structure X—Y—Z where X is the targeting moiety, Y is the linker, and Z is the RNAi agent.


In some embodiments the conjugate contains more than one targeting moiety, more than one linker, more than one RNAi agent, or any combination thereof. The conjugate can have any number of targeting moieties, linkers, and RNAi agents. The conjugate can have the structure X—Y—Z—Y—X, (X—Y)n—Z, X—(Y—Z)n, X—Y—Zn, (X—Y—Z)n, (X—Y—Z—Y)n—Z, where X is a targeting moiety, Y is a linker, Z is an RNAi agent, and n is an integer between 1 and 50, between 2 and 20, for example, between 1 and 5. Each occurrence of X, Y, and Z can be the same or different, e.g. the conjugate can contain more than one type of targeting moiety, more than one type of linker, and/or more than one type of RNAi agent.


The conjugate can contain more than one targeting moiety attached to a single RNAi agent. For example, the conjugate can include an RNAi agent with multiple targeting moieties each attached via a different linker. The conjugate can have the structure X—Y—Z—Y—X where each X is a targeting moiety that may be the same or different, each Y is a linker that may be the same or different, and Z is the RNAi agent.


The conjugate can contain more than one RNAi agent attached to a single targeting moiety. For example the conjugate can include a targeting moiety with multiple RNAi agents each attached via a different linker. The conjugate can have the structure Z—Y—X—Y—Z where X is the targeting moiety, each Y is a linker that may be the same or different, and each Z is an RNAi agent that may be the same or different.


The conjugate may comprise pendent or terminal functional groups that allow further modification or conjugation. The pendent or terminal functional groups may be protected with any suitable protecting groups.


A. RNAi Agents


The conjugate contains at least one RNAi agent as a payload. The conjugate can contain more than one RNAi agent, that can be the same or different. The RNAi agent may be a small interfering RNAs (siRNA), double stranded RNAs (dsRNAs), inverted repeats, short hairpin RNAs (shRNAs), small temporally regulated RNAs (stRNA), clustered inhibitory RNAs (cRNAs), including radial clustered inhibitory RNA, asymmetric clustered inhibitory RNA, linear clustered inhibitory RNA, and complex or compound clustered inhibitory RNA, dicer substrates, DNA-directed RNAi (ddRNAi), single-stranded RNAi (ssRNAi), microRNA (miRNA) antagonists, microRNA mimics, microRNA agonists, blockmirs (a.k.a. Xmirs), microRNA mimetics, microRNA addbacks, supermiRs, the oligomeric constructs disclosed in PCT Publication WO/2005/013901 the contents of which are incorporated herein in its entirety, tripartite RNAi constructs such as those disclosed in US Publication 20090131360, the contents of which are incorporated herein in its entirety, the solo-rxRNA constructs disclosed in PCT Publication WO/2010/011346, the contents of which are incorporated herein by reference in its entirety; the sd-rxRNA constructs disclosed in PCT Publication WO/2010/033247 the contents of which are incorporated herein by reference in its entirety, dual acting RNAi constructs which reduce RNA levels and also modulate the immune response as disclosed in PCT Publications WO/2010/002851 and WO/2009/141146 the contents of which are incorporated herein by reference in their entirety and antigene RNAs (agRNA) or small activating RNAs (saRNAs) which increase expression of the target to which they are designed disclosed in PCT Publications WO/2006/130201, WO/2007/086990, WO/2009/046397, WO/2009/149182, WO/2009/086428, the contents of each of which are incorporated herein by reference in their entirety. A variety of RNAi agents are known in the art and may be used in the conjugates described herein.


In one aspect, an RNAi agent includes a single stranded RNA that interacts with a target RNA transcript to direct the cleavage of the target RNA transcript or sterically block the target RNA transcript. Thus, in one aspect the RNAi agent of the conjugates of the present invention is a single stranded RNA that promotes the formation of a RISC complex to effect silencing or activation of a target gene, i.e., ssRNA or ssRNAi.


A “single strand RNA” or “single strand RNAi agent”, as used herein, is an RNAi agent which is made up of a single molecule. It may include a duplexed region, formed by intra-strand pairing, e.g., it may be, or include, a hairpin or pan-handle structure. Single strand RNAi agents are preferably antisense with regard to the target RNA transcript. In preferred embodiments, single strand RNAi agents are 5′ phosphorylated or include a phosphoryl analog at the 5′ prime terminus.


A single strand RNAi agent should be sufficiently long that it can enter the RISC and participate in RISC mediated cleavage of a target RNA transcript. A single strand RNAi agent is at least 14, and more preferably at least 15, 20, 25, 29, 35, 40, or 50 nucleotides in length. It is preferably less than 200, 100, or 60 nucleotides in length.


In another aspect, an RNAi agent includes a double-stranded RNA (dsRNA or dsRNAi) comprising a sense strand and an antisense strand that interacts with a target RNA transcript to direct the cleavage of the target RNA transcript or sterically block the target RNA transcript. The term “double-stranded RNA” or “dsRNA,” as used herein, refers to an RNA molecule or complex of molecules having a hybridized duplex region that comprises two anti-parallel and substantially complementary nucleic acid strands, which will be referred to as having “sense” and “antisense” orientations with respect to a target RNA transcript. The duplex region can be of any length that permits specific degradation of a desired target RNA transcript through a RISC pathway, but will typically range from 9 to 50 base pairs in length, e.g., 15-30 base pairs in length. Considering a duplex between 9 and 50 base pairs, the duplex can be any length in this range, for example, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19, 20, 21, 22, 23, 24, 25, 26, 27, 28, 29, 30, 31, 32, 33, 34, 35, 36, 37, 38, 39, 40, 41, 42, 43, 44, 45, 45, 46, 47, 48, 49 or 50 and any sub-range therein between, including, but not limited to 15-30 base pairs, 15-26 base pairs, 15-23 base pairs, 15-22 base pairs, 15-21 base pairs, 15-20 base pairs, 15-19 base pairs, 15-18 base pairs, 15-17 base pairs, 18-30 base pairs, 18-26 base pairs, 18-23 base pairs, 18-22 base pairs, 18-21 base pairs, 18-20 base pairs, 19-30 base pairs, 19-26 base pairs, 19-23 base pairs, 19-22 base pairs, 19-21 base pairs, 19-20 base pairs, 20-30 base pairs, 20-26 base pairs, 20-25 base pairs, 20-24 base pairs, 20-23 base pairs, 20-22 base pairs, 20-21 base pairs, 21-30 base pairs, 21-26 base pairs, 21-25 base pairs, 21-24 base pairs, 21-23 base pairs, or 21-22 base pairs. dsRNAs generated in the cell by processing with Dicer and similar enzymes are generally in the range of 19-22 base pairs in length. One strand of the duplex region of a dsRNA comprises a sequence that is substantially complementary to a region of a target RNA transcript. The two strands forming the duplex structure can be from a single RNA molecule having at least one self-complementary region, or can be formed from two or more separate RNA molecules. Where the duplex region is formed from two strands of a single molecule, the molecule can have a duplex region separated by a single stranded chain of nucleotides (herein referred to as a “hairpin loop”) between the 3′-end of one strand and the 5′-end of the respective other strand forming the duplex structure. The hairpin loop can comprise at least one unpaired nucleotide; in some embodiments the hairpin loop can comprise at least 3, at least 4, at least 5, at least 6, at least 7, at least 8, at least 9, at least 10, at least 20, at least 23 or more unpaired nucleotides. Where the two substantially complementary strands of a dsRNA are comprised by separate RNA molecules, those molecules need not, but can be covalently connected.


In one embodiment, the antisense strand of a dsRNA has a 1-10 nucleotide overhang at the 3′ end and/or the 5′ end. In another embodiment, the sense strand of a dsRNA has a 1-10 nucleotide overhang at the 3′ end and/or the 5′ end. In yet another embodiment, one or more of the nucleotides in the overhang is replaced with a nucleoside thiophosphate.


As used herein, the term “nucleotide overhang” refers to at least one unpaired nucleotide that protrudes from the duplex structure of a dsRNAi. For example, when a 3′-end of one strand of a dsRNA extends beyond the 5′-end of the other strand, or vice versa, there is a nucleotide overhang. A dsRNA can comprise an overhang of at least one nucleotide; alternatively the overhang can comprise at least two nucleotides, at least three nucleotides, at least four nucleotides, at least five nucleotides or more. A nucleotide overhang can comprise or consist of a nucleotide/nucleoside analog, including a deoxynucleotide/nucleoside. The overhang(s) may be on the sense strand, the antisense strand or any combination thereof. Furthermore, the nucleotide(s) of an overhang can be present on the 5′ end, 3′ end or both ends of either an antisense or sense strand of a dsRNA.


In one embodiment, the RNAi agent is siRNA selected from any known siRNA in Stockholm Bioinformatics Center (SBC) database, siRNA selected from any known siRNA in the MIT/ICBP siRNA database, RNAi database (see Gunsalus et al., Nucleic Acid Research, vol. 32(1):D406-410 (2004), the contents of which are incorporated herein by reference in their entirety), shRNA selected from any known shRNA in RNAi Consortium (TRC) shRNA library (Broad Institute), miRNA selected from any miRNA in miRBase database (The Wellcome Trust Sanger Institute), miRNA selected from Memorial Sloan-Kettering Cancer Center's miRNA database, an RNAi product provided by Sigma-Aldrich, an siRNA, shRNA, or miRNA product provided by GE Life Sciences Dharmacon RNAi products.


Chemical Modifications of RNAi Agents

The skilled artisan will recognize that the term “RNA” or “ribonucleic acid” encompasses not only RNA molecules as expressed or found in nature, but also analogs and derivatives of RNA comprising one or more ribonucleotide/ribonucleoside analogs or derivatives as described herein or as known in the art. Strictly speaking, a “ribonucleoside” includes a nucleoside base and a ribose sugar, and a “ribonucleotide” is a ribonucleoside with one, two or three phosphate moieties. However, the terms “ribonucleoside” and “ribonucleotide” can be considered to be equivalent as used herein. The RNA can be modified in the nucleobase structure or in the ribose-phosphate backbone structure, e.g., as described herein below. However, the molecules comprising ribonucleoside analogs or derivatives must retain the ability to form a duplex. As non-limiting examples, an RNA molecule can also include at least one modified ribonucleoside including but not limited to a 2′-O-methyl modified nucleoside, a nucleoside comprising a 5′ phosphorothioate group, 5′ phosphate group, 5′ triphosate group, 5′ phosphorodithioate group, a terminal nucleoside linked to a cholesteryl derivative or dodecanoic acid bisdecylamide group, a locked nucleoside, an abasic nucleoside, a 2′-deoxy-2′-fluoro modified nucleoside, a 2′-amino-modified nucleoside, 2′-alkyl-modified nucleoside, 2′-alkoxyalkyl-modified nucleoside e.g., (2′-O-methoxyethyl) nucleoside, morpholino nucleoside, an LNA nucleoside, a BNA nucleoside, a FHNA nucleoside, a phosphoramidate or a non-natural base comprising nucleoside, or any combination thereof. Alternatively, an RNA molecule can comprise at least two modified ribonucleosides, at least 3, at least 4, at least 5, at least 6, at least 7, at least 8, at least 9, at least 10, at least 15, at least 20 or more, up to the entire length of the molecule. The modifications need not be the same for each of such a plurality of modified ribonucleosides in an RNA molecule. In one embodiment, modified RNAs contemplated for use in methods and compositions described herein are peptide nucleic acids (PNAs) that have the ability to form the required duplex structure and that permit or mediate the specific degradation of a target RNA via a RISC pathway or inhibit the function by steric effects such as translation arrest or modulation.


The RNAi agents may be modified to increase stability, prevent nuclease degradation, and reduce off-target effects for in vivo applications. Chemical modifications may be introduced to the 5′- or 3′-terminus, backbone, sugar, nucleobase, or the internucleoside linkage (e.g. to a linking phosphate/to a phosphodiester linkage/to the phosphodiester backbone) of the RNAi agents. Any suitable chemical modification that retains gene silencing activity of an RNAi agent may be used. Backbone modifications include but not limited to phosphorothioate (P═S) modification or boranophosphonate (P═B) modification. Sugar modifications include but not limited to 2′-fluoro (2′-F), 2′-O-methyl (2′-OMe), 2′-amine, 2′-deoxy and locked nucleic acid (LNA, linking 2′- and 4′-positions of the sugar with an —O—CH2— bridge) modifications. Nucleobase modifications include but not limited to 2/4-difluorotoluyl residue, 5-bromouridine residue, 5-iodoouridine residue, 4-thiouridine residue, N-3-Me-uridine residue, 5-(3-aminoally)-uridine residue, inosine residue and 2,6-diaminopurine residue. For siRNA duplexes, a 5′ phosphate group on the antisense strand is critical for the gene silencing activity of the RNAi agent and may be introduced by chemical synthesis or by phosphorylation through endogenous kinases. Therefore, modifications at the 5′ end may not remove the 5′ phosphate group. A chemical synthesized siRNA duplex often comprises dTdT overhangs at the 3′ ends of the two strands to mimic the 3′-overhang of siRNA duplexes produced by Dicer and to increase stability of siRNA duplexes.


In one embodiment, the RNAi agent in the conjugates of the present invention may comprise at least one modification described herein.


In one example, one or more atoms of a pyrimidine nucleobase in the RNAi agent may be replaced or substituted with optionally substituted amino, optionally substituted thiol, optionally substituted alkyl (e.g., methyl or ethyl), or halo (e.g., chloro or fluoro). In certain embodiments, modifications (e.g., one or more modifications) are present in each of the sugar and the internucleoside linkage. Modifications according to the present invention may be modifications of ribonucleic acids (RNAs) to deoxyribonucleic acids (DNAs), threose nucleic acids (TNAs), glycol nucleic acids (GNAs), peptide nucleic acids (PNAs), locked nucleic acids (LNAs) or hybrids thereof. In a non-limiting example, the 2′-OH of U is substituted with 2′-OMe.


In another embodiment, the RNAi agent is a siRNA duplex and the sense strand and antisense sequence may independently comprise at least one modification. As a non-limiting example, the sense sequence may comprise a modification and the antisense strand may be unmodified. As another non-limiting example, the antisense sequence may comprise a modification and the sense strand may be unmodified. As yet another non-limiting example, the sense sequence may comprise more than one modification and the antisense strand may comprise one modification. As a non-limiting example, the antisense sequence may comprise more than one modification and the sense strand may comprise one modification.


The RNAi agent in the conjugates of the present invention can include a combination of modifications to the sugar, the nucleobase, and/or the internucleoside linkage. These combinations can include any one or more modifications described herein or in International Application Publication WO2013/052523 filed Oct. 3, 2012, in particular Formulas (Ia)-(Ia-5), (Ib)-(If), (IIa)-(IIp), (IIb-1), (IIb-2), (IIc-1)-(IIc-2), (IIn-1), (IIn-2), (IVa)-(IVl), and (IXa)-(IXr)), the contents of which are incorporated herein by reference in their entirety.


The RNAi of the present invention may or may not be uniformly modified along the entire length of the molecule. For example, one or more or all types of nucleotide (e.g., purine or pyrimidine, or any one or more or all of A, G, U, C) may or may not be uniformly modified in the RNAi agent. In some embodiments, all nucleotides X in an RNAi agent are modified, wherein X may be any one of nucleotides A, G, U, C, or any one of the combinations A+G, A+U, A+C, G+U, G+C, U+C, A+G+U, A+G+C, G+U+C or A+G+C.


Different sugar modifications, nucleotide modifications, and/or internucleoside linkages (e.g., backbone structures) may exist at various positions in an RNAi agent. One of ordinary skill in the art will appreciate that the nucleotide analogs or other modification(s) may be located at any position(s) of an RNAi agent such that the function of RNAi agent is not substantially decreased. The RNAi agent of the present invention may contain from about 1% to about 100% modified nucleotides (either in relation to overall nucleotide content, or in relation to one or more types of nucleotide, i.e. any one or more of A, G, U or C) or any intervening percentage (e.g., from 1% to 20%, from 1% to 25%, from 1% to 50%, from 1% to 60%, from 1% to 70%, from 1% to 80%, from 1% to 90%, from 1% to 95%, from 10% to 20%, from 10% to 25%, from 10% to 50%, from 10% to 60%, from 10% to 70%, from 10% to 80%, from 10% to 90%, from 10% to 95%, from 10% to 100%, from 20% to 25%, from 20% to 50%, from 20% to 60%, from 20% to 70%, from 20% to 80%, from 20% to 90%, from 20% to 95%, from 20% to 100%, from 50% to 60%, from 50% to 70%, from 50% to 80%, from 50% to 90%, from 50% to 95%, from 50% to 100%, from 70% to 80%, from 70% to 90%, from 70% to 95%, from 70% to 100%, from 80% to 90%, from 80% to 95%, from 80% to 100%, from 90% to 95%, from 90% to 100%, and from 95% to 100%).


In some embodiments, the RNAi agent in the conjugates of the present invention may comprise inverted deoxy abasic modifications on the sense strand. The at least one inverted deoxy abasic modification may be on 5′ end, or 3′ end, or both ends of the sense strand. The inverted deoxy basic modification may encourage preferential loading of the antisense strand.


In some embodiments, the RNAi agent in the conjugates of the present invention may comprise a deoxyribonucleoside. In such an instance, the RNAi agent can comprise one or more deoxynucleosides, including, for example, a deoxynucleoside overhang(s), or one or more deoxynucleosides within the double stranded portion of a dsRNA. However, it is self-evident that under no circumstances is a double stranded DNA molecule encompassed by the term “RNAi”.


The RNAi agent in the conjugates of the present invention may be modified with any modifications of an oligonucleotide or polynucleotide disclosed in pages 136 to 247 of PCT Publication WO2013/151666 published Oct. 10, 2013, the contents of which are incorporated herein by reference in their entirety.


If the RNAi agent is a single strand RNAi agent, it is particularly preferred that it include a 5′ modification which includes one or more phosphate groups or one or more analogs of a phosphate group. 5′-phosphate modifications include those which are compatible with RISC mediated gene silencing. Suitable modifications include: 5′-monophosphate ((HO)2(O)P—O-5′); 5′-diphosphate ((HO)2(O)P—O—P(HO)(O)—O-5′); 5′-triphosphate ((HO)2(O)P—O—(HO)(O)P—O—P(HO)(O)—O-5′); 5′-guanosine cap (7-methylated or non-methylated) (7m-G-O-5′-(HO)(O)P—O—(HO)(O)P—O—P(HO)(O)—O-5′); 5′-adenosine cap (Appp), and any modified or unmodified nucleotide cap structure (N—O-5′-(HO)(O)P—O—(HO)(O)P—O—P(HO)(O)—O-5′); 5′-monothiophosphate (phosphorothioate; (HO)2(S)P—O-5′); 5′-monodithiophosphate (phosphorodithioate; (HO)(HS)(S)P—O-5′), 5′-phosphorothiolate ((HO)2(O)P—S-5′); any additional combination of oxygen/sulfur replaced monophosphate, diphosphate and triphosphates (e.g. 5′-alpha-thiotriphosphate, 5′-gamma-thiotriphosphate, etc.), 5′-phosphoramidates ((HO)2(O)P—NH-5′, (HO)(NH2)(O)P—O-5′), 5′-alkylphosphonates (R=alkyl=methyl, ethyl, isopropyl, propyl, etc., e.g. RP(OH)(O)—O-5′-, (OH)2(O)P-5′-CH2-), 5′-alkyletherphosphonates (R=alkylether=methoxymethyl (MeOCH2-), ethoxymethyl, etc., e.g. RP(OH)(O)—O-5′-). These modifications can also be used with the antisense strand of a double stranded RNAi agent.


In some embodiments, the RNAi agent comprises masked nucleotide derivatives called pro-nucleotides, which were converted in the living cells into biologically active nucleotides. In one non-limiting example, the masked nucleotide may comprise 3′-azido-3′-deoxythymidine (AZT), 2′,3′-dideoxyuridine (ddU), 2′,3′-dideoxyadenosine (ddA), 2′,3′-dideoxyinosine (ddI), 2′,3′-dideoxy-2′,3′-didehydrothymidine (d4T), 9-[9(1,3-dihydroxy-2-propoxy)methyl]guanine, acyclovir (ACV), 2′,3′-dideoxycytidine (ddC), 2′,3′-dideoxy-3′-thiacytidine (3TC). In another non-limiting example, the masked nucleotide may comprise any pro-nucleotide disclosed in US20130316970 to Kraszewski et al., the contents of which are incorporated herein by reference in their entirety, such as any of formulas (I)-(XVI). In yet another non-limiting example, the masked nucleotide may comprise any nucleotide mimic prodrugs disclosed in WO 2003072757 to Ariza et al., the contents of which are incorporated herein by reference in their entirety, such as lipid-masked nucleotide mimics, in which a lipid is attached to the terminal phosphorus of a nucleotide mimic directly or through a biologically-cleavable linker.


The nucleic acids featured in the invention may be synthesized and/or modified by methods well established in the art, such as those described in “Current protocols in nucleic acid chemistry,” Beaucage, S. L. et al. (Eds.), John Wiley & Sons, Inc., New York, N.Y., USA; Trufert et al., Tetrahedron, 52:3005, 1996; and Manoharan, “Oligonucleotide Conjugates in Antisense Technology,” in Antisense Drug Technology, ed. S. T. Crooke, Marcel Dekker, Inc., 2001, the contents of each of which are incorporated herein by reference in their entirety.


B. Targeting Moieties


The conjugates contain one or more targeting moieties and/or targeting ligands. Targeting ligands or moieties can be peptides, antibody mimetics, nucleic acids (e.g., aptamers), polypeptides (e.g., antibodies), glycoproteins, small molecules, carbohydrates, or lipids. The targeting moiety, X, can be a peptide such as somatostatin, octreotide, LHRH, an EGFR-binding peptide, RGD-containing peptides, a protein scaffold such as a fibronectin domain, an aptide or bipodal peptide, a single domain antibody, a stable scFv, or a bispecific T-cell engagers, nucleic acid (e.g., aptamer), polypeptide (e.g., antibody or its fragment), glycoprotein, small molecule, carbohydrate, or lipid. The targeting moiety, X can be an aptamer being either RNA or DNA or an artificial nucleic acid; small molecules; carbohydrates such as mannose, galactose and arabinose; vitamins such as ascorbic acid, niacin, pantothenic acid, carnitine, inositol, pyridoxal, lipoic acid, folic acid (folate), riboflavin, biotin, vitamin B12, vitamin A, E, and K; a protein or peptide that binds to a cell-surface receptor such as a receptor for thrombospondin, tumor necrosis factors (TNF), annexin V, interferons, cytokines, transferrin, GM-CSF (granulocyte-macrophage colony-stimulating factor), or growth factors such as vascular endothelial growth factor (VEGF), hepatocyte growth factor (HGF), (platelet-derived growth factor (PDGF), basic fibroblast growth factor (bFGF), and epidermal growth factor (EGF).


In some embodiments, the targeting moiety is a protein scaffold. The protein scaffold may be an antibody-derived protein scaffold. Non-limiting examples include single domain antibody (dAbs), nanobody, single-chain variable fragment (scFv), antigen-binding fragment (Fab), Avibody, minibody, CH2D domain, Fcab, and bispecific T-cell engager (BiTE) molecules. In some embodiments, scFv is a stable scFv, wherein the scFv has hyperstable properties. In some embodiments, the nanobody may be derived from the single variable domain (VHH) of camelidae antibody.


In some embodiments, the protein scaffold may be a nonantibody-derived protein scaffold, wherein the protein scaffold is based on nonantibody binding proteins. The protein scaffold may be based on enginnered Kunitz domains of human serine protease inhibitors (e.g., LAC1-D1), DARPins (designed ankyrin repeat domains), avimers created from multimerized low-density lipoprotein receptor class A (LDLR-A), anticalins derived from lipocalins, knottins constructed from cysteine-rich knottin peptides, affibodies that are based on the Z-domain of staphylococcal protein A, adnectins or monobodies and pronectins based on the 10th or 14th extracellular domain of human fibronectin III, Fynomers derived from SH3 domains of human Fyn tyrosine kinase, or nanofitins (formerly Affitins) derived from the DNA bindig protein Sac7d.


In some embodiments, the protein scaffold may be any protein scaffold disclosed in Mintz and Crea, BioProcess, vol. 11(2):40-48 (2013), the contents of which are incorporated herein by reference in their entirety. Any of the protein scaffolds disclosed in Tables 2-4 of Mintz and Crea may be used as a targeting moiety of the conjugate of the invention.


In some embodiments, the protein scaffold may be based on a fibronectin domain. In some embodiments, the protein scaffold may be based on fibronectin type III (FN3) repeat protein. In some embodiments, the protein scaffold may be based on a consensus sequence of multiple FN3 domains from human Tenascin-C (hereinafter “Tenascin”). Any protein scaffold based on a fibronectin domain disclosed in U.S. Pat. No. 8,569,227 to Jacobs et al., the contents of which are incorporated herein by reference in their entirety, may be used as a targeting moiety of the conjugate of the invention.


In some embodiments, the targeting moiety or targeting ligand may be any molecule that can bind to luteinizing-hormone-releasing hormone receptor (LHRHR). Such targeting ligands can be peptides, antibody mimetics, nucleic acids (e.g., aptamers), polypeptides (e.g., antibodies), glycoproteins, small molecules, carbohydrates, or lipids. In some embodiments, the targeting moiety is LHRH or a LHRH analog.


Luteinizing-hormone-releasing hormone (LHRH), also known as gonadotropin-releasing hormone (GnRH) controls the pituitary release of gonadotropins (LH and FSH) that stimulate the synthesis of sex steroids in the gonads. LHRH is a 10-amino acid peptide that belongs to the gonadotropin-releasing hormone class. Signaling by LHRH is involved in the first step of the hypothalamic-pituitary-gonadal axis. An approach in the treatment of hormone-sensitive tumors directed to the use of agonists and antagonists of LHRH (A. V. Schally and A. M. Comaru-Schally. Sem. Endocrinol., 5 389-398, 1987) has been reported. Some LHRH agonists, when substituted in position 6, 10, or both are much more active than LHRH and also possess prolonged activity. Some LHRH agonists are approved for clinical use, e.g., Leuprolide, triptorelin, nafarelin and goserelin.


The conjugates of the invention can employ any of the large number of known molecules that recognize the LHRH receptor, such as known LHRH receptor agonists and antagonists. In some embodiments, the LHRH analog portion of the conjugate contains between 8 and 18 amino acids.


Examples of LHRH binding molecules useful in the present invention are described herein. Further non-limiting examples are analogs of pyroGlu-His-Trp-Ser-Tyr-Gly-Leu-Arg-Pro-Gly-NH2, leuprolide, triptorelin, nafarelin, buserelin, goserelin, cetrorelix, ganirelix, azaline-B, degarelix and abarelix.


In some embodiments, the targeting moiety is an antibody mimetic such as a monobody, e.g., an ADNECTIN™ (Bristol-Myers Squibb, New York, N.Y.), an Affibody® (Affibody AB, Stockholm, Sweden), Affilin, nanofitin (affitin, such as those described in WO 2012/085861, an Anticalin™, an avimers (avidity multimers), a DARPin™, a Fynomer™, Centyrin™, and a Kunitz domain peptide. In certain cases, such mimetics are artificial peptides or proteins with a molar mass of about 3 to 20 kDa. Nucleic acids and small molecules may be antibody mimetic.


In another example, a targeting moiety can be an aptamer, which is generally an oligonucleotide (e.g., DNA, RNA, or an analog or derivative thereof) that binds to a particular target, such as a polypeptide. In some embodiments, the targeting moiety is a polypeptide (e.g., an antibody that can specifically bind a tumor marker). In certain embodiments, the targeting moiety is an antibody or a fragment thereof. In certain embodiments, the targeting moiety is an Fc fragment of an antibody.


In another example, a targeting moiety may be a non-immunoreactive ligand. For example, the non-immunoreactive ligand may be insulin, insulin-like growth factors I and II, lectins, apoprotein from low density lipoprotein, etc. as disclosed in US 20140031535 to Jeffrey, the contents of which are incorporated herein by reference in their entirety. Any protein or peptide comprising a lectin disclosed in WO2013181454 to Radin, the contents of which are incorporated herein by reference in their entirety, may be used as a targeting moiety.


In another example, the conjugate of the invention may target a hepatocyte intracellularly and a hepatic ligand may be used as a targeting moiety. Any hepatic ligand disclosed in US 20030119724 to Ts'o et al., the contents of which are incorporated herein by reference in their entirety, such as the ligands in FIG. 1, may be used. The hepatic ligand specifically binds to a hepatic receptor, thereby directing the conjugate into cells having the hepatic receptor.


In another example, a targeting moiety may interact with a protein that is overexpressed in tumor cells compared to normal cells. The targeting moiety may bind to a chaperonin protein, such as Hsp90, as disclosed in US 20140079636 to Chimmanamada et al., the contents of which are incorporated herein by reference in their entirety. The targeting moiety may be an Hsp90 inhibitor, such as geldanamycins, macbecins, tripterins, tanespimycins, and radicicols.


In another example, the conjugate may have a terminal half-life of longer than about 72 hours and a targeting moiety may be selected from Table 1 or 2 of US 20130165389 to Schellenberger et al., the contents of which are incorporated herein by reference in their entirety. The targeting moiety may be an antibody targeting delta-like protein 3 (DLL3) in disease tissues such as lung cancer, pancreatic cancer, skin cancer, etc., as disclosed in WO2014125273 to Hudson, the contents of which are incorporated herein by reference in their entirety. The targeting moiety may also any targeting moiety in WO2007137170 to Smith, the contents of which are incorporated herein by reference in their entirety. The targeting moiety binds to glypican-3 (GPC-3) and directs the conjugate to cells expressing GPC-3, such as hepatocellular carcinoma cells.


In some embodiments, a target of the targeting moiety may be a marker that is exclusively or primarily associated with a target cell, or one or more tissue types, with one or more cell types, with one or more diseases, and/or with one or more developmental stages. In some embodiments, a target can comprise a protein (e.g., a cell surface receptor, transmembrane protein, glycoprotein, etc.), a carbohydrate (e.g., a glycan moiety, glycocalyx, etc.), a lipid (e.g., steroid, phospholipid, etc.), and/or a nucleic acid (e.g., a DNA, RNA, etc.).


In another embodiment, targeting moieties may be peptides for regulating cellular activity. For example, the targeting moiety may bind to Toll Like Receptor (TLR). It may be a peptide derived from vaccinia virus A52R protein such as a peptide comprising SEQ ID No. 13 as disclosed in U.S. Pat. No. 7,557,086, a peptide comprising SEQ ID No. 7 as disclosed in U.S. Pat. No. 8,071,553 to Hefeneider, et al., or any TLR binding peptide disclosed in WO 2010141845 to McCoy, et al., the contents of each of which are incorporated herein by reference in their entirety. The A52R derived synthetic peptide may significantly inhibit cytokine production in response to both bacterial and viral pathogen associated molecular patterns, and may have application in the treatment of inflammatory conditions that result from ongoing toll-like receptor activation,


In another embodiment, targeting moieties many be amino acid sequences or single domain antibody fragments for the treatment of cancers and/or tumors. For example, targeting moieties may be an amino acid sequence that binds to Epidermal Growth Factor Receptor 2 (HER2). Targeting moieties may be any HER2-binding amino acid sequence described in US 20110059090, U.S. Pat. Nos. 8,217,140, and 8,975,382 to Revets, et al., the contents of each of which are incorporated herein by reference in their entirety. The targeting moiety may be a domain antibody, a single domain antibody, a VHH, a humanized VHH or a camelized VH.


In another embodiment, targeting moieties may be peptidomimetic macrocycles for the treatment of disease. For example, targeting moieties may be peptidomimetic macrocycles that bind to the growth hormone-releasing hormone (GHRH) receptor, such as a peptidomimetic macrocycle comprising an amino acid sequence which is at least about 60% identical to GHRH 1-29 and at least two macrocycle-forming linkers as described in US20130123169 to Kawahata et al., the contents of which are incorporated herein by reference in their entirety. In another embodiment, the peptidomimetic macrocycle targeting moiety may be prepared by introducing a cross-linker between two amino acid residues of a polypeptide as described in US 20120149648 and US 20130072439 to Nash et al., the contents of each of which are incorporated herein by reference in their entirety. Nash et al. teaches that the peptidomimetic macrocycle may comprise a peptide sequence that is derived from the BCL-2 family of proteins such as a BH3 domain. The peptidomimetic macrocycle may comprise a BID, BAD, BIM, BIK, NOXA, PUMA peptides.


In another embodiment, targeting moieties may be polypeptide analogues for transport to cells. For example, the polypeptide may be an Angiopep-2 polypeptide analog. It may comprise a polypeptide comprising an amino acid sequence at least 80% identical to SEQ ID No. 97 as described in US 20120122798 to Castaigne et al., the contents of which are incorporated herein by reference in their entirety. Additionally, polypeptides may transport to cells, such as liver, lung, kidney, spleen, and muscle, such as Angiopep-4b, Angiopep-5, Angiopep-6, and Angiopep-7 polypeptide as described in EP 2789628 to Beliveau et al., the contents of each of which are incorporated herein by reference in their entirety.


In another embodiment, targeting moieties may be homing peptides to target liver cells in vivo. For example, the melittin delivery peptides that are administered with RNAi polynucleotides as described in U.S. Pat. No. 8,501,930 Rozema, et al., the contents of which are incorporated herein by reference in their entirety, may be used as targeting moieties. In addition, delivery polymers provide membrane penetration function for movement of the RNAi polynucleotides from the outside the cell to inside the cell as described in U.S. Pat. No. 8,313,772 to Rozema et al., the contents of each of which are incorporated herein by reference in their entirety. Any delivery peptide disclosed by Rozema et al. may be used as targeting moeities.


In another embodiment, targeting moieties may be structured polypeptides to target and bind proteins. For example, polypeptides with sarcosine polymer linkers that increase the solubility of structured polypeptides, as described in WO 2013050617 to Tite, et al., the contents of which are incorporated herein by reference in their entirety, may be used as targeting moieties. Additionally, polypeptide with variable binding activity produced by the methods described in WO 2014140342 to Stace, et al., the contents of which are incorporated herein by reference in their entirety. The polypeptides may be evaluated for the desired binding activity.


In another embodiment, modifications of the targeting moieties affect a compound's ability to distribute into tissues. For example, a structure activity relationship analysis was completed on a low orally bioavailable cyclic peptide and the permeability and clearance was determined as described in Rand, A C., et al., Medchemcomm. 2012, 3(10): 1282-1289, the contents of which are incorporated herein by reference in their entirety. Any of the cyclic peptide disclosed by Rand et al., such as N-methylated cyclic hexapeptides, may be used as targeting moieties.


In another embodiment, targeting moieties may be a polypeptide which is capable of internalization into a cell. For example, targeting moieties may be an Alphabody capable of internalization into a cell and specifically binding to an intracellular target molecule as described in US 20140363434 to Lasters, et al., the contents of which are incorporated herein by reference in their entirety. As taught by Lasters et al., an ‘Alphabody’ or an ‘Alphabody structure’ is a self-folded, single-chain, triple-stranded, predominantly alpha-helical, coiled coil amino acid sequence, polypeptide or protein. The Alphabody may be a parallel Alphabody or an anti-parallel Alphabody. Moreover, targeting moieties may be any Alphabody in the single-chain Alphabody library used for the screening for and/or selection of one or more Alphabodies that specifically bind to a target molecule of interest as described in WO 2012092970 to Desmet et al., the contents of which are incorporated herein by reference in their entirety.


In another embodiment, targeting moieties may consist of an affinity-matured heavy chain-only antibody. For example, targeting moieties may be any VH heavy chain-only antibodies produced in a transgenic non-human mammal as described in US 20090307787 to Grosveld et al., the contents of which are incorporated herein by reference in their entirety.


In another embodiment, targeting moieties may bind to the hepatocyte growth factor receptor “HGFr” or “cMet”. For example, targeting moieties may be a polypeptide moiety that is conjugated to a detectable label for diagnostic detection of cMet as described in U.S. Pat. No. 9,000,124 to Dransfield et al., the contents of which are incorporated herein by reference in their entirety. Additionally, targeting moieties may bind to human plasma kallikrein and may comprise BPTI-homologous Kunitz domains, especially LACI homologues, to bind to one or more plasma (and/or tissue) kallikreins as described in WO 1995021601 to Markland et al., the contents of which are incorporated herein by reference in their entirety.


In another embodiment, targeting moieties are evolved from weak binders and anchor-scaffold conjugates having improved target binding and other desired pharmaceutical properties through control of both synthetic input and selection criteria. Any target binding element identified in US 20090163371 to Stern et al., the contents of which are incorporated herein by reference in their entirety, may be used as a targeting moiety. Moreover, targeting moieties may be macrocyclic compounds that bind to inhibitors of apoptosis as described in WO 2014074665 to Borzilleri et al., the contents of which are incorporated herein by reference in their entirety.


In another embodiment, targeting moieties may comprise pre-peptides that encode a chimeric or mutant lantibiotic. For example, targeting moieties may be pre-tide that encode a chimera that was accurately and efficiently converted to the mature lantibiotic, as demonstrated by a variety of physical and biological activity assays as described in U.S. Pat. No. 5,861,275 to Hansen, the contents of which are incorporated herein by reference in their entirety. The mixture did contain an active minor component with a biological activity.


In another embodiment, targeting moieties may comprise a leader peptide of a recombinant manganese superoxide dismutase (rMnSOD-Lp). For example, rMnSOD-Lp which delivers cisplatin directly into tumor cells as described in Borrelli, A., et al., Chem Biol Drug Des. 2012, 80(1):9-16, the contents of which are incorporated herein by reference in their entirety, may be used a targeting moiety.


In another embodiment, the targeting moiety may be an antibody for the treatment of glioma. For example, an antibody or antigen binding fragment which specifically binds to JAMM-B or JAM-C as described in U.S. Pat. No. 8,007,797 to Dietrich et al., the contents of which are incorporated herein by reference in their entirety, may be used as a targeting moiety. JAMs are a family of proteins belonging to a class of adhesion molecules generally localized at sites of cell-cell contacts in tight junctions, the specialized cellular structures that keep cell polarity and serve as barriers to prevent the diffusion of molecules across intercellular spaces and along the basolateral-apical regions of the plasma membrane.


In another embodiment, the targeting moiety may be a target interacting modulator. For example, nucleic acid molecules capable of interacting with proteins associated with the Human Hepatitis C virus or corresponding peptides or mimetics capable of interfering with the interaction of the native protein with the HIV accessory protein as described in WO 2011015379 and U.S. Pat. No. 8,685,652, the contents of each of which are incorporated herein by reference in their entirety, may be used as a targeting moiety.


In another embodiment, the targeting moiety may bind with biomolecules. For example, any cystine-knot family small molecule polycyclic molecular scaffolds were designed as peptidomimetics of FSH and used as peptide-vaccine as described in U.S. Pat. No. 7,863,239 to Timmerman, the contents the contents of which are incorporated herein by reference in their entirety, may be used as targeting moieties.


In another embodiment, the targeting moiety may bind to integrin and thereby block or inhibit integrin binding. For example, any highly selective disulfide-rich dimer molecules which inhibit binding of a4B7 to the mucosal addressin cell adhesion molecule (MAdCAM) as described in WO 2014059213 to Bhandari, the contents of which are incorporated herein by reference in their entirety, may be used as a targeting moiety. Any inhibitor of specific integrins-ligand interactions may be used as a targeting moiety. The conjugates comprising such target moieties may be effective as anti-inflammatory agents for the treatment of various autoimmune diseases.


In another embodiment, the targeting moiety may comprise novel peptides. For example, any cyclic peptide or mimetic that is a serine protease inhibitor as described in WO 2013172954 to Wang et al., the contents of which are incorporated herein by reference in their entirety, may be used as a targeting moiety. Additionally, targeting moieties may comprise a targeting peptide that is used in the reduction of cell proliferation and the treatment of cancer. For example, a peptide composition inhibiting the trpv6 calcium channel as described in US 20120316119 to Stewart, the contents of which are incorporated herein by reference in their entirety, may be used as a targeting moiety.


In another embodiment, the targeting moiety may comprise a cyclic peptide. For example, any cyclic peptides exhibit various types of action in vivo, as described in US20100168380 and WO 2008117833 to Suga et al., and WO 2012074129 to Higuchi et al., the contents of each of which are incorporated herein by reference, may be used as targeting moieties. Such cyclic peptide targeting moieties have a stabilized secondary structure and may inhibit biological molecule interactions, increase cell membrane permeability and the peptide's half-life in blood serum.


In another embodiment, the targeting moiety may consist of a therapeutic peptide. For example, peptide targeting moieties may be an AP-1 signaling inhibitor, such as a peptide analog comprising SEQ ID No. 104 of U.S. Pat. No. 8,946,381B2 to Fear that is used for the treatment of wounds, a peptide comprising SEQ ID No. 108 in U.S. Pat. No. 8,822,409B2 to Milech, et al. that is used to treat acute respiratory distress syndrome (ARDS), or a neuroprotective AP-1 signaling inhibitory peptide that is a fusion peptide comprising a protein transduction domain having the amino acid sequence of SEQ ID NO: 1 and a peptide having the sequence of SEQ ID NO:54 as described in U.S. Pat. No. 8,063,012 to Watt, the contents of each of which are incorporated herein by reference in their entirety. In another example, the targeting moiety may be any biological modulator isolated from biodiverse gene fragment libraries as described in U.S. Pat. No. 7,803,765 and EP1754052 to Watt, any inhibitor of c-Jun dimerization as described in EP1601766 and EP1793841 to Watt, any peptide inhibitors of CD40L signaling as described in U.S. Pat. No. 8,802,634 and US20130266605 to Watt, or any peptide modulators of cellular phenotype as described in US20110218118 to Watt, the contents of each of which are incorporated herein by reference in their entirety.


In another embodiment, the targeting moiety may consist of a characterized peptide. For example, any member of the screening libraries created from bioinformatic source data to theoretically predict the secondary structure of a peptide as described in EP1987178 to Watt et al., any peptide identified from peptide libraries that are screened for antagonism or inhibition of other biological interactions by a reverse hybrid screening method as described by EP1268842 to Hopkins, et al., the contents of each of which are incorporated herein by reference in their entirety, may be used as a targeting moiety. Additionally, targeting moieties may be cell-penetrating peptides. For example, any cell-penetrating peptides linked to a cargo that are capable of passing through the blood brain barrier as described by US20140141452A1 to Watt, et al., the contents of which are incorporated herein by reference, may be used a targeting moiety.


In another embodiment, the targeting moiety may comprise a LHRH antagonist, agonist, or analog. For example, the targeting moiety may be Cetrorelix, a decapeptide with a terminal acid amide group (AC-D-Nal(2)-D-pCl-Phe-D-Pal(3)-Ser-Tyr-D-Cit-Leu-Arg-Pro-D-Ala-NH2) as described in U.S. Pat. Nos. 4,800,191, 6,716,817, 6,828,415, 6,867,191, 7,605,121, 7,718,599, 7,696,149 (Zentaris Ag), or pharmaceutically active decapeptides such as SB-030, SB-075 (cetrorelix) and SB-088 disclosed in EP 0 299 402 (Asta Pharma), the contents of each of which are incorporated herein by reference in their entirety. In another example, the targeting moiety may be LHRH analogues such as D-/L-MeI (4-[bis(2-chloroethyl)amino]-D/L-phenylalanine), cyclopropanealkanoyl, aziridine-2-carbonyl, epoxyalkyl, 1,4-naphthoquinone-5-oxycarbonyl-ethyl, doxorubicinyl (Doxorubicin, DOX), mitomicinyl (Mitomycin C), esperamycinyl or methotrexoyl, as disclosed in U.S. Pat. No. 6,214,969 to Janaky et al., the contents of which are incorporated herein by reference in their entirety.


In another embodiment, the targeting moiety may be any cell-binding molecule disclosed in U.S. Pat. No. 7,741,277 or 7,741,277 to Guenther et al. (Aeterna Zentaris), the contents of which are incorporated herein by reference in their entirety, such as octamer peptide, nonamer peptide, decamer peptide, luteinizing hormone releasing hormone (LHRH), [D-Lys6]-LHRH, LHRH analogue, LHRH agonist, Triptorelin ([D-Trp6]-LHRH), LHRH antagonist, bombesin, bombesin analogue, bombesin antagonist, somatostatin, somatostatin analogue, serum albumin, human serum albumin (HSA). These cell-binding molecules may be conjugated with disorazoles.


In another embodiment, targeting moieties may bind to growth hormone secretagogue (GHS) receptors, including ghrelin analogue ligands of GHS receptors. For example, targeting moieties may be any triazole derivatives with improved receptor activity and bioavailability properties as ghrelin analogue ligands of growth hormone secretagogue receptors as describe by U.S. Pat. No. 8,546,435 to Aicher, at al. (Aeterna Zentaris), the contents of which are incorporated herein by reference in their entirety.


In another embodiment, the targeting moiety X binds to a asialoglycoprotein receptor (ASGP-R). ASGP-R binds a variety of carbohydrates and is predominantly and highly expressed on liver cells. For example, the targeting moiety X may comprise galactose, a lactosylated group, or carbohydrate N-acetylgalactosamine (GaNac), galactosamine, N-formyl-galactosamine, -propionyl-galactosamine, N-n-butanoyl-galactosamine, N-iso-butanoylgalactos-amine, galactose cluster, and N-acetylgalactosamine trimer.


In another embodiment, the targeting moiety X binds to folate receptors. Folate receptors are over-expressed on the surface of several types of tumor cells and diseased cells, such as breast, ovarian, cervical, colorectal, renal and nasopharyngeal tumor cells. The targeting moiety X may comprise a folate group and may be attached to an RNAi agent with the method disclosed by Guo et al. in Gene Therapy, vol. 13:814-820 (2006), the contents of which are incorporated herein by reference in their entirety.


In another embodiment, the targeting moiety X is cholesterol or a cholesterol analog, which may be endocytosed by the cholesterol receptors on hepatocytes.


In another embodiment, the targeting moiety X is transferrin (Tf). The Tf receptor (TfR) has long been known to be up-regulated in malignant cells such as breast cancer cells, leukemia cells, pancreas cancer cells, melanoma cells, bladder cancer cells, rectum cancer cells, etc (see Gatter et al., J. Clin. Pathol., vol. 36:539-545 (1983)).


In some embodiments, the targeting moiety may be any targeting moiety disclosed in U.S. Pat. No. 8,772,471 to Shankar et al., the contents of which are incorporated herein by reference in their entirety, wherein these targeting moieties bind to a cell-surface receptor that is internalized on binding of the targeting moiety. In one example, the cell-surface receptor is a receptor on T cells such as CD7, LAM-1, CD28 and T cell receptor (TCR), CD3 and ζ-chains, CD4 and CD8. In another example, the cell-surface receptor is a surface antigen on tumor cells, such as tumor-associated antigens (TAAs), the HLA-DR antigen, c-erbB-2 proto-oncogene, MUC1, MAGI, VEGFR2, pro-vasopressin (pro-VP), TAG-72 (sialyl Tn or STn), STn-KLH, GD3, cancer antigen 125 (CA 125), human ovarian cancer cell surface antigen (OCCSA), or alpha fetoprotein (AFP) molecule disclosed in US 20030143237 to Economou et al., the contents of which are incorporated herein by reference in their entirety.


In some embodiments, the targeting moiety X binds to viral-infected cells, such as HIV-infected cells. In one embodiment, the targeting moiety X binds to gp120 glycoproteins expressed on HIV-infected cells. The target moiety X may be any anti-gp120 aptamer disclosed in Zhou et al., Molecular Therapy, vol. 16:1481-1489 (2008), the contents of which are incorporated herein by reference in their entirety.


In some embodiments, the targeting moiety X is an aptide or bipodal peptide. X may be any D-Aptamer-Like Peptide (D-Aptide) or retro-inverso Aptide which specifically binds to a target comprising: (a) a structure stabilizing region comprising parallel, antiparallel or parallel and antiparallel D-amino acid strands with interstrand noncovalent bonds; and (b) a target binding region I and a target binding region II comprising randomly selected n and m D-amino acids, respectively, and coupled to both ends of the structure stabilizing region, as disclosed in US Pat. Application No. 20140296479 to Jon et al., the contents of which are incorporated herein by reference in their entirety. X may be any bipodal peptide binder (BPB) comprising a structure stabilizing region of parallel or antiparallel amino acid strands or a combination of these strands to induce interstrand non-covalent bonds, and target binding regions I and II, each binding to each of both termini of the structure stabilizing region, as disclosed in US Pat. Application No. 20120321697 to Jon et al., the contents of which are incorporated herein by reference in their entirety. X may be an intracellular targeting bipodal-peptide binder specifically binding to an intracellular target molecule, comprising: (a) a structure-stabilizing region comprising a parallel amino acid strand, an antiparallel amino acid strand or parallel and antiparallel amino acid strands to induce interstrand non-covalent bonds; (b) target binding regions I and II each binding to each of both termini of the structure-stabilizing region, wherein the number of amino acid residues of the target binding region I is n and the number of amino acid residues of the target binding region II is m; and (c) a cell-penetrating peptide (CPP) linked to the structure-stabilizing region, the target binding region I or the target binding region II, as disclosed in US Pat. Application No. 20120309934 to Jon et al., the contents of which are incorporated herein by reference in their entirety. X may be any bipodal peptide binder comprising a β-hairpin motif or a leucine-zipper motif as a structure stabilizing region comprising two parallel amino acid strands or two antiparallel amino acid strands, and a target binding region I linked to one terminus of the first of the strands of the structure stabilizing region, and a target binding region II linked to the terminus of the second of the strands of the structure stabilizing region, as disclosed in US Pat. Application No. 20110152500 to Jon et al., the contents of which are incorporated herein by reference in their entirety. X may be any bipodal peptide binder targeting KPI as disclosed in WO2014017743 to Jon et al, any bipodal peptide binder targeting cytokine as disclosed in WO2011132939 to Jon et al., any bipodal peptide binder targeting transcription factor as disclosed in WO201132941 to Jon et al., any bipodal peptide binder targeting G protein-coupled receptor as disclosed in WO2011132938 to Jon et al., any bipodal peptide binder targeting receptor tyrosine kinase as disclosed in WO2011132940 to Jon et al., the contents of each of which are incorporated herein by reference in their entireties. X may also be bipodal peptide binders targeting cluster differentiation (CD7) or an ion channel.


In some embodiments, the target, target cell or marker is a molecule that is present exclusively or predominantly on the surface of malignant cells, e.g., a tumor antigen. In some embodiments, a marker is a prostate cancer marker. In some embodiments the target can be an intra-cellular protein.


In some embodiments, a marker is a breast cancer marker, a colon cancer marker, a rectal cancer marker, a lung cancer marker, a pancreatic cancer marker, a ovarian cancer marker, a bone cancer marker, a renal cancer marker, a liver cancer marker, a neurological cancer marker, a gastric cancer marker, a testicular cancer marker, a head and neck cancer marker, an esophageal cancer marker, or a cervical cancer marker.


The targeting moiety directs the conjugates to specific tissues, cells, or locations in a cell. The target can direct the conjugate in culture or in a whole organism, or both. In each case, the targeting moiety binds to a receptor that is present on the surface of or within the targeted cell(s), wherein the targeting moiety binds to the receptor with an effective specificity, affinity and avidity. In other embodiments the targeting moiety targets the conjugate to a specific tissue such as the liver, kidney, lung or pancreas. The targeting moiety can target the conjugate to a target cell such as a cancer cell, such as a receptor expressed on a cell such as a cancer cell, a matrix tissue, or a protein associated with cancer such as tumor antigen. Alternatively, cells comprising the tumor vasculature may be targeted. Targeting moieties can direct the conjugate to specific types of cells such as specific targeting to hepatocytes in the liver as opposed to Kupffer cells. In other cases, targeting moieties can direct the conjugate to cells of the reticular endothelial or lymphatic system, or to professional phagocytic cells such as macrophages or eosinophils.


In some embodiments the target is member of a class of proteins such as receptor tyrosine kinases (RTK) including the following RTK classes: RTK class I (EGF receptor family) (ErbB family), RTK class II (Insulin receptor family), RTK class III (PDGF receptor family), RTK class IV (FGF receptor family), RTK class V (VEGF receptors family), RTK class VI (HGF receptor family), RTK class VII (Trk receptor family), RTK class VIII (Eph receptor family), RTK class IX (AXL receptor family), RTK class X (LTK receptor family), RTK class XI (TIE receptor family), RTK class XII (ROR receptor family), RTK class XIII (DDR receptor family), RTK class XIV (RET receptor family), RTK class XV (KLG receptor family), RTK class XVI (RYK receptor family) and RTK class XVII (MuSK receptor family).


In some embodiments the target is a serine or threonine kinase, G-protein coupled receptor, methyl CpG binding protein, cell surface glycoprotein, cancer stem cell antigen or marker, carbonic anhydrase, cytolytic T lymphocyte antigen, DNA methyltransferase, an ectoenzyme, a glycosylphosphatidylinositol-anchored co-receptor, a glypican-related integral membrane proteoglycan, a heat shock protein, a hypoxia induced protein, a multi drug resistant transporter, a Tumor-associated macrophage marker, a tumor associated carbohydrate antigen, a TNF receptor family member, a transmembrane protein, a tumor necrosis factor receptor superfamily member, a tumour differentiation antigen, a zinc dependent metallo-exopeptidase, a zinc transporter, a sodium-dependent transmembrane transport protein, a member of the SIGLEC family of lectins, or a matrix metalloproteinase.


Other cell surface markers are useful as potential targets for tumor-homing therapeutics, including, for example HER-2, HER-3, EGFR, and the folate receptor.


In other embodiments, the targeting moiety binds a target such as CD19, CD70, CD56, PSMA, alpha integrin, CD22, CD138, EphA2, AGS-5, Nectin-4, HER2, GPMNB, CD74 and Le.


In some embodiments, the target is a protein listed in Table 1.









TABLE 1





Non-limiting examples of proteins that may be targeted


















5T4
CD64
GPIIb/IIIa
PDGFRbeta




receptors



A20/TNFAIP3
CD68
GPR161/RE2
P-glycoprotein


ABCB5
CD70
Guanylyl cyclase
Podoplanin




receptor C



ABCG2
CD80
HA-CD44v3
PON1


AFP
CD86
HER2/ERBB2
PRAME


ALCAM/CD166
CD90
HIFlalpha
PSAM


ALDH1A1
CD96
HIF-2
PTEN


Apelin J Receptor
CEACAM-5/cd66e
HLA-DR
RAAG12


APN/CD13
CEACAM-6
Hsp90
RON


AXL
c-KIT
IGE receptor
sialyl-Le(x)


B7H4
c-Maf
IGF-1R
sialyl-Le(x)


BCMA
c-Met
IL-1 alpha
sialyl-Tn


B CRP/ABCG2
Cripto/TDGF-1
IL-11R
Sigma





Receptor/





Pgrmcl


BMI-1
CSFR
IL-1R
SLC34A2


CA9
CXCR1
IL-23R
SLC44A4


CAIX
CXCR1
IL-2R
SLITRK6


mmp
CXCR4
IL-3 R
SOX2


CanAg
disialylgalacto-
IL-4R
STAT-3



sylgloboside




CD117
DLL4
IL-6 R
STEAP-1


CD11a
DNMT1
Indegrin alpha 6
STRO-1


CD11b
DNMT3A
iNOS
Tenasin-C


CD136
DNMT3B
Insulin receptor
TF antigen


CD138
DNMT3L
L1CAM
TIM-3


CD14
EDB (Fibronectin
LGR5
Tissue Factor



extra domain B)

(CD142)


CD15
EGFR VIII
LIV-1
Tn antigen




(SLC39A6), Zip6



CD152 (CTLA-4)
E-NPP3/CD203c
LRP
TNFR


CD172A
Epcam/TROP1
MAGE-A3
TRAIL-R1


CD19
EphAl
MBD1
TRAIL-R2


CD20
EphA2
MBD2
Transferrin





receptor


CD204
ERBB3
MBD4
TRK-A


CD206
FAP
Mesothelin
TRK-B


CD22
FGFR1
Metadherin/
Trop-2/EGP-1




MTDH/AEG1



CD24
FGFR2
MICL
UHRF1


CD25
FGFR3
MMP-2
UHRF2


CD26
FGFR4
MMP-9
VEGFR1


CD27 (CD70L)
Fibronectin
MRP1
VEGFR2


CD28
Folate receptor
Muc-1
VEGFR3


CD3
FRb
MUC16/CA-125
ZBTB33


CD30
Galbg4
Mushai-1
ZBTB4


CD33
GD2 ganglioside
NaPi2b
EphA3


CD34
GD3 ganglioside
Nectin-4
EphA4


CD38
GLI-1
Nestin
EphA5


CD40
GLI-2
Neurotensin
EphA6




receptor 1



CD41
globo-H
NF2
EphA7


CD44
GLUT1
Notchl
EphA8


CD45
Glycoprotein NMB
Notch2
EphB1


CD45.1
glycosphingolipid P1
Notch3
EphB2


CD45.2
GM2 ganglioside
Notch4
EphB3


CD47/IAP
GP130
Ovastacin
EphB4


CD52
GPC3 Glypican-3
PDGFRalpha
EphB5


EphB6
GRP78









In certain embodiments, the targeting moiety or moieties of the conjugate are present at a predetermined molar weight percentage from about 1% to about 10%, or about 10% to about 20%, or about 20% to about 30%, or about 30% to about 40%, or about 40% to about 50%, or about 50% to about 60%, or about 60% to about 70%, or about 70% to about 80%, or about 80% to about 90%, or about 90% to about 99% such that the sum of the molar weight percentages of the components of the conjugate is 100%. The amount of targeting moieties of the conjugate may also be expressed in terms of proportion to the RNAi agent(s), for example, in a ratio of targeting moiety to RNAi agent of about 10:1, 9:1, 8:1, 7:1, 6:1, 5:1, 4:1, 3:1, 2:1, 1:1, 1:2, 1:3, 1:4; 1:5, 1:6, 1:7, 1:8, 1:9, or 1:10.


C. Linkers


The conjugates contain one or more linkers attaching the RNAi agents and targeting moieties. The linker, Y, is bound to one or more RNAi agents and one or more targeting moieties to form a conjugate. The interaction between the linker Y with the RNAi agent or the targeting moiety may be chemical or physical interactions such as covalent interactions, non-covalent interactions, hydrophobic/hydrophilic interactions, ionic (e.g., electrostatic, coulombic attraction, ion-dipole, charge-transfer), Van der Waals attraction, hydrogen bonding, etc.


When the RNAi is a ssRNAi, the linker Y is attached to the 3′ or 5′ end of the ssRNAi. Preferably, the linker Y is attached to the 3′ end of the ssRNAi.


When the RNAi is a dsRNAi, the linker Y is attached to the 3′ or 5′ end of the sense or antisense strand of the dsRNAi. Preferably, the linker Y is attached to the 3′ or 5′ end of the sense strand of the dsRNAi.


In some embodiments, the linker Y is attached to the targeting moiety X or the RNAi agent Z by functional groups independently selected from an ester bond, disulfide, amide, acylhydrazone, ether, carbamate, carbonate, and urea. Alternatively the linker can be attached to either the targeting ligand or the active drug by a non-cleavable group such as provided by the conjugation between a thiol and a maleimide, an azide and an alkyne. The linker is independently selected from the group consisting alkyl, cycloalkyl, heterocyclyl, aryl, and heteroaryl, wherein each of the alkyl, alkenyl, cycloalkyl, heterocyclyl, aryl, and heteroaryl groups optionally is substituted with one or more groups, each independently selected from halogen, cyano, nitro, hydroxyl, carboxyl, carbamoyl, ether, alkoxy, aryloxy, amino, amide, carbamate, alkyl, alkenyl, alkynyl, aryl, arylalkyl, cycloalkyl, heteroaryl, heterocyclyl, wherein each of the carboxyl, carbamoyl, ether, alkoxy, aryloxy, amino, amide, carbamate, alkyl, alkenyl, alkynyl, aryl, arylalkyl, cycloalkyl, heteroaryl, or heterocyclyl.


In some embodiments, the linker comprises a cleavable functionality that is cleavable. The cleavable functionality may be hydrolyzed in vivo or may be designed to be hydrolyzed enzymatically, for example by Cathepsin B. A “cleavable” linker, as used herein, refers to any linker which can be cleaved physically or chemically. Examples for physical cleavage may be cleavage by light, radioactive emission or heat, while examples for chemical cleavage include cleavage by re-dox-reactions, hydrolysis, pH-dependent cleavage or cleavage by enzymes.


In some embodiments the alkyl chain of the linker may optionally be interrupted by one or more atoms or groups selected from —O—, —C(═O)—, —NR, —O—C(═O)—NR—, —S—, —S—S—. The linker may be selected from dicarboxylate derivatives of succinic acid, glutaric acid or diglycolic acid. In a particular embodiment, the linker comprises a disulfide bond which is cleaved in cytoplasm.


In some embodiments, the linker Y may be X′—R1—Y′—R2—Z′ and the conjugate can be a compound according to Formula Ia:




embedded image


wherein X is a targeting moiety defined above; Z is an RNAi agent; X′, R1, Y′, R2 and Z′ are as defined herein.


X′ is either absent or independently selected from carbonyl, amide, urea, amino, ester, aryl, arylcarbonyl, aryloxy, arylamino, one or more natural or unnatural amino acids, thio or succinimido; R1 and R2 are either absent or comprised of alkyl, substituted alkyl, aryl, substituted aryl, polyethylene glycol (2-30 units); Y′ is absent, substituted or unsubstituted 1,2-diaminoethane, polyethylene glycol (2-30 units) or an amide; Z′ is either absent or independently selected from carbonyl, amide, urea, amino, ester, aryl, arylcarbonyl, aryloxy, arylamino, thio or succinimido. In some embodiments, the linker can allow one RNAi agent molecule to be linked to two or more ligands, or one ligand to be linked to two or more RNAi agent molecule.


In some embodiments, the linker Y may be Am and the conjugate can be a compound according to Formula Ib:




embedded image


wherein A is defined herein, m=0-20.


A in Formula Ia is a spacer unit, either absent or independently selected from the following substituents. For each substituent, the dashed lines represent substitution sites with X, Z or another independently selected unit of A wherein the X, Z, or A can be attached on either side of the substituent:




embedded image


embedded image


wherein z=0-40, R is H or an optionally substituted alkyl group, and R′ is any side chain found in either natural or unnatural amino acids.


In some embodiments, the conjugate maybe a compound according to Formula Ic:




embedded image


wherein A is defined above, m=0-40, n=0-40, x=1-5, y=1-5, and C is a branching element defined herein.


C in Formula Ic is a branched unit containing three to six functionalities for covalently attaching spacer units, ligands, or active drugs, selected from amines, carboxylic acids, thiols, or succinimides, including amino acids such as lysine, 2,3-diaminopropanoic acid, 2,4-diaminobutyric acid, glutamic acid, aspartic acid, and cysteine.


In some embodiments, the linker Y maybe by a crosslinking agent between the targeting moiety and RNAi agent. Examples of crosslinking agent include glutaraldehyde (GAD), bifunctional oxirane (OXR), ethylene glycol diglycidyl ether (EGDE), N-hydroxysuccinimide (NHS), and a water soluble carbodiimide such as 1-ethyl-3-(3-dimethylaminopropyl) carbodiimide (EDC).


In some embodiments, the linker maybe cleavable and is cleaved to release the RNAi agent. In one embodiment, the linker may be cleaved by an enzyme. Enzyme cleavable bonds may be cleaved when exposed to enzymes such as those present in an endosome or lysosome or in the cytoplasm. As a non-limiting example, the linker may be a polypeptide moiety, e.g. AA in WO2010093395 to Govindan, the contents of which are incorporated herein by reference in their entirety, that is cleavable by intracellular peptidase. Govindan teaches AA in the linker may be a di, tri, or tetrapeptide such as Ala-Leu, Leu-Ala-Leu, and Ala-Leu-Ala-Leu. In another example, the cleavable linker may be a branched peptide. The branched peptide linker may comprise two or more amino acid moieties that provide an enzyme cleavage site. Any branched peptide linker disclosed in WO1998019705 to Dubowchik, the contents of which are incorporated herein by reference in their entirety, may be used as a linker in the conjugate of the present invention. As another example, the linker may comprise a lysosomally cleavable polypeptide disclosed in U.S. Pat. No. 8,877,901 to Govindan et al., the contents of which are incorporated herein by reference in their entirety. As another example, the linker may comprise a protein peptide sequence which is selectively enzymatically cleavable by tumor associated proteases, such as any Y and Z structures disclosed in U.S. Pat. No. 6,214,345 to Firestone et al., the contents of which are incorporated herein by reference in their entirety.


In one embodiment, the cleaving of the linker is non-enzymatic. Any linker disclosed in US 20110053848 to Cleemann et al., the contents of which are incorporated herein by reference in their entirety, may be used. For example, the linker may be a non-biologically active linker represented by formula (I).


In one embodiment, the linker comprises a pH-labile bond that is cleaved under acidic conditions (pH<7). Since cell emdosomes and lysosomes have a pH less than 7, such a bond is considered endosomally cleavable or lysosomally cleavable. Any linker comprises a pH-labile bond cleavable under acidic conditions may be used. Non-limiting examples of linker include an amide acid, wherein the amide bond will be cleaved under acidic conditions to form a amine and a cyclic anhydride, or a disubstituted cyclic anhydride group such as disubstituted maleic anhydride group




embedded image


as disclosed in US 2012/0157509 to Hadwiger et al., the contents of which are incorporated herein by reference in their entirety. In another example,


In one embodiment, the linker maybe a beta-glucuronide linker disclosed in US 20140031535 to Jeffrey, the contents of which are incorporated herein by reference in their entirety. In another embodiment, the linker may be a self-stabilizing linker such as a succinimide ring, a maleimide ring, a hydrolyzed succinimide ring or a hydrolyzed maleimide ring, disclosed in US20130309256 to Lyon et al., the contents of which are incorporated herein by reference in their entirety. In another embodiment, the linker may be a human serum albumin (HAS) linker disclosed in US 20120003221 to McDonagh et al., the contents of which are incorporated herein by reference in their entirety. In another embodiment, the linker may comprise a fullerene, e.g., C60, as disclosed in US 20040241173 to Wilson et al., the contents of which are incorporated herein by reference in their entirety. In another embodiment, the linker may be a recombinant albumin fused with polycysteine peptide as disclosed in U.S. Pat. No. 8,541,378 to Ahn et al., the contents of which are incorporated herein by reference in their entirety. In another embodiment, the linker comprises a heterocycle ring. For example, the linker may be any heterocyclic 1,3-substituted five- or six-member ring, such as thiazolidine, disclosed in US 20130309257 to Giulio, the contents of which are incorporated herein by reference in their entirety.


In some embodiments, the linker Y maybe a Linker Unit (LU) as described in US2011/0070248, the contents of which are incorporated herein by reference in their entirety. In formula (I) where the Ligand Drug Conjugate has formula L-(LU-D)p the targeting moiety X corresponds to L (the Ligand unit) and the RNAi agent Z corresponds to D (the drug unit).


The conjugate X Y Z can be a conjugate as described in WO2014/134486, the contents of which are incorporated herein by reference in their entirety. The targeting moiety X, corresponds to the cell binding agent, CBA in formula (I′) or (I) as reproduced here, wherein the linker Y and the RNAi agent Z together correspond to the remainder of the formula (in parentheses).




text missing or illegible when filed


The conjugate X Y Z can be a conjugate as described in U.S. Pat. No. 7,601,332, the contents of which are incorporated herein by reference in their entirety, wherein conjugates are described as follows, and the targeting moiety X corresponds to V (the vitamin receptor binding moiety) and the linker Y corresponds to the bivalent linker (L) which can comprise one or more components selected from spacer linkers (s), releasable linkers (lr), and heteroatom linkers (lH), and combinations thereof, in any order:


V-L-D


V-(lr)c-D


V-(ls)a-D


V-(ls)a-(lr)c-D


V-(lr)c-(ls)a-D


V-(lH)b-(lr)c-D


V-(lr)c-(lH)b-D


V-(lH)d-(lr)c-(lH)e-D


V-(ls)a-(lH)b-(lr)c-D


V-(lr)c-(lH)b-(ls)a-D


V-(lH)d-(ls)a-(lr)c-(lH)e-D


V-(lH)d-(lr)c-(ls)a-(lH)e-D


V-(lH)d-(ls)a-(lH)b-(lr)c-(lH)e-D


V-(lH)d-(lr)c-(lH)b-(ls)a-(lH)e-D


V-(ls)a-(lr)c-(lH)b-D


V-[(ls)a-(lH)b]d-(lr)c-(lH)e-D


In some embodiments, the linker may comprise a complexing agent for siRNA or miRNA disclosed in U.S. Pat. No. 8,772,471 to Shankar et al., the contents of which are incorporated herein by reference in their entirety, including poly-amino acids, polyimines, polyacrylates, polyalkylacrylates, polyoxethanes, polyalkylcyanoacrylates, cationized gelatins, albumins, starches, acrylates, polyethyleneglycols (PEG) and starches, polyalkylcyanoacrylates, DEAE-derivatized polyimines, pollulans, celluloses and starches, chitosan, N-trimethylchitosan, poly-L-lysine, polyhistidine, polyornithine, polyspermines, protamine, polyvinylpyridine, polythiodiethylaminomethylethylene P(TDAE), polyaminostyrene (e.g. p-amino), poly(methylcyanoacrylate), poly(ethylcyanoacrylate), poly(butylcyanoacrylate), poly(isobutylcyanoacrylate), poly(isohexylcynaoacrylate), DEAE-methacrylate, DEAE-hexylacrylate, DEAE-acrylamide, DE AE-albumin and DEAE-dextran, polymethylacrylate, polyhexylacrylate, poly(D,L-lactic acid), poly(DL-lactic-co-glycolic acid (PLGA), alginate, and polyethyleneglycol (PEG), and polyethylenimine.


In some embodiments, the linker may comprise a pharmacokinetic modulator consisting of a hydrophobic group having 16 or more carbon atoms, e.g. 16 to 20 carbon atoms, as disclosed in US 2012/0157509 to Hadwiger et al., the contents of which are incorporated herein by reference in their entirety. For example, the pharmacokinetic modulator may be selected from the group consisting of: palmitoyl, hexadec-8-enoyl, oleyl, (9E,12E)-octadeca-9,12-dienoyl, dioctanoyl, C16-C20 acyl, and cholesterol. The linker may further comprise a lysine or ornithine between the pharmacokinetic modulator and the targeting moiety.


In some embodiments, the linker may comprise a cell-penetrating peptide, also called cell-permeable peptide, protein-transduction domain (PTD) or membrane-translocation sequences (MTS), to facilitate the cellular uptake of the conjugates of the invention. Cell-penetrating peptides are peptides that are capable of crossing biological membrane or a physiological barrier. They can direct conjugates of the present invention to a desired cellular destination, e.g. into the cytoplasm (cytosol, endoplasmic reticulum, Golgi apparatus, etc.) or the nucleus. In one embodiment, cell-penetrating peptides direct or facilitate penetration of conjugates of the present invention across a phospholipid, mitochondrial, endosomal or nuclear membrane. They direct conjugates of the present invention from outside the cell through the plasma membrane, and into the cytoplasm or to a desired location within the cell, e.g., the nucleus, the ribosome, the mitochondria, the endoplasmic reticulum, a lysosome, or a peroxisome. In another embodiment, cell-penetrating peptides direct conjugates of the present invention across the blood-brain, trans-mucosal, hematoretinal, skin, gastrointestinal and/or pulmonary barriers. Cell-penetrating peptides can be any suitable length, such as less than or equal to about 500, 250, 150, 100, 50, 25, 10 or 5 amino acids in length. For example, they may be 4, 5, 6, 7, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19, 20, 21, 22, 23, 24 or 25 amino acids in length. They may be cationic or amphiphilic and may be arginine or lysine rich. Any cell penetrating peptide and analogs disclosed in Jafari et al., Bioimpacts, vol 5(2):103-111 (2015), the contents of which are incorporated herein by reference in their entirety, may be employed in the linker moiety of the conjugates of the present invention.


II. Particles

Particles comprising one or more conjugates can be polymeric particles, lipid particles, solid lipid particles, self assembled particles, composite nanoparticles of conjugate phospholipids, surfactants, proteins, polyaminoacids, inorganic particles, or combinations thereof (e.g., lipid stabilized polymeric particles). In some embodiments, the conjugates are substantially encapsulated or partially encapsulated in the particles. In some embodiments, the conjugates are deposited and/or absorbed on the surface of the particles. In some embodiments, the conjugates are incorporated in the particles. In some embodiments, the conjugates are part of or a component of the particle. The conjugates may be attached to the surface of the particles with covalent bonds, or non-covalent interactions. In some embodiments, the conjugates of the present invention self-assemble into a particle.


As used herein, the term “encapsulate” means to enclose, surround or encase. As it relates to the formulation of the conjugates of the invention, encapsulation may be substantial, complete or partial. The term “substantially encapsulated” means that at least greater than 50, 60, 70, 80, 85, 90, 95, 96, 97, 98, 99, 99.9, 99.9 or greater than 99.999% of conjugate of the invention may be enclosed, surrounded or encased within the particle. “Partially encapsulation” means that less than 10, 10, 20, 30, 40 50 or less of the conjugate of the invention may be enclosed, surrounded or encased within the particle. For example, at least 1, 5, 10, 20, 30, 40, 50, 60, 70, 80, 85, 90, 95, 96, 97, 98, 99, 99.9, 99.99 or greater than 99.99% of the pharmaceutical composition or compound of the invention are encapsulated in the particle. Encapsulation may be determined by any known method.


In some embodiments, the particles are polymeric particles or contain a polymeric matrix. The particles can contain any of the polymers described herein or derivatives or copolymers thereof. The particles will generally contain one or more biocompatible polymers. The polymers can be biodegradable polymers. The polymers can be hydrophobic polymers, hydrophilic polymers, or amphiphilic polymers. In some embodiments, the particles contain one or more polymers having an additional targeting moiety attached thereto. In some embodiments, the particles are inorganic particles, such as but not limited to, gold nanoparticles and iron oxide nanoparticles.


The size of the particles can be adjusted for the intended application. The particles can be nanoparticles or microparticles. The particle can have a diameter of about 10 nm to about 10 microns, about 10 nm to about 1 micron, about 10 nm to about 500 nm, about 20 nm to about 500 nm, or about 25 nm to about 250 nm. In some embodiments the particle is a nanoparticle having a diameter from about 25 nm to about 250 nm. In some embodiments, the particle is a nanoparticle having a diameter from about 50 nm to about 150 nm. In some embodiments, the particle is a nanoparticle having a diameter from about 70 nm to about 130 nm. In some embodiments, the particle is a nanoparticle having a diameter of about 100 nm. It is understood by those in the art that a plurality of particles will have a range of sizes and the diameter is understood to be the median diameter of the particle size distribution. Polydispersity index (PDI) of the particles may be ≤about 0.5, ≤about 0.2, or ≤about 0.1. In some embodiments, the nanoparticles have low PDI but bimodal distribution. Drug loading may be ≥about 0.1%, ≥about 1%, ≥about 5%, ≥about 10%, or ≥out 20%. Drug loading, as used herein, refers to the weight ratio of the conjugates, where the conjugate is the drug and the weight ratio refers to the weight of the conjugate relative to the weight of the nanoparticle. Drug loading may depend on delivery system composition, drug concentration, a lyophilized weight, and reconstituted drug concentration. The weight of the dried composition can be measured, the drug concentration could be measured, and a weight by weight % of the drug can be subsequently calculated. Particle ζ-potential (in 1/10th PBS) may be ≤0 mV or from about −30 to 0 mV. Drug released in vitro from the particle at 2 h may be less than about 60%, less than about 40%, or less than about 20%. Regarding pharmacokinetics, plasma area under the curve (AUC) in a plot of concentration of drug in blood plasma against time may be at least 2 fold greater than free drug conjugate, at least 4 fold greater than free drug conjugate, at least 5 fold greater than free drug conjugate, at least 8 fold greater than free drug conjugate, or at least 10 fold greater than free drug conjugate. Tumor PK/PD of the particle may be at least 5 fold greater than free drug conjugate, at least 8 fold greater than free drug conjugate, at least 10 fold greater than free drug conjugate, or at least 15 fold greater than free drug conjugate. The ratio of Cmax of the particle to Cmax of free drug conjugate may be at least about 2, at least about 4, at least about 5, or at least about 10. Cmax, as used herein, refers to the maximum or peak serum concentration that a drug achieves in a specified compartment or test area of the body after the drug has been administrated and prior to the administration of a second dose. The ratio of MTD of a particle to MTD of free drug conjugate may be at least about 0.5, at least about 1, at least about 2, or at least about 5. Efficacy in tumor models, e.g., TGI %, or modulation of pharmacodynamics biomarkers (e.g. higher intensity, temporal profile) of a particle is better than free drug conjugate. Toxicity of a particle is lower than free drug conjugate.


In various embodiments, a particle may be a nanoparticle, i.e., the particle has a characteristic dimension of less than about 1 micrometer, where the characteristic dimension of a particle is the diameter of a perfect sphere having the same volume as the particle. The size distribution of the particles can be characterized by an average diameter (e.g., the average diameter for the plurality of particles). In some embodiments, the diameter of the particles may have a Gaussian-type distribution. In some embodiments, the size distribution of the particles have an average diameter of less than about 300 nm, less than about 250 nm, less than about 200 nm, less than about 150 nm, less than about 100 nm, less than about 50 nm, less than about 30 nm, less than about 10 nm, less than about 3 nm, or less than about 1 nm. In some embodiments, the particles have an average diameter of at least about 5 nm, at least about 10 nm, at least about 30 nm, at least about 50 nm, at least about 100 nm, at least about 150 nm, or greater. In certain embodiments, the plurality of the particles have an average diameter of about 10 nm, about 25 nm, about 50 nm, about 100 nm, about 150 nm, about 200 nm, about 250 nm, about 300 nm, about 500 nm, or the like. In some embodiments, the plurality of particles have an average diameter between about 10 nm and about 500 nm, between about 50 nm and about 400 nm, between about 100 nm and about 300 nm, between about 150 nm and about 250 nm, between about 175 nm and about 225 nm, or the like. In some embodiments, the plurality of particles have an average diameter between about 10 nm and about 500 nm, between about 20 nm and about 400 nm, between about 30 nm and about 300 nm, between about 40 nm and about 200 nm, between about 50 nm and about 175 nm, between about 60 nm and about 150 nm, between about 70 nm and about 130 nm, or the like. For example, the average diameter can be between about 70 nm and 130 nm. In some embodiments, the plurality of particles have an average diameter between about 20 nm and about 220 nm, between about 30 nm and about 200 nm, between about 40 nm and about 180 nm, between about 50 nm and about 170 nm, between about 60 nm and about 150 nm, or between about 70 nm and about 130 nm. In one embodiment, the particles have a size of 40 to 120 nm with a zeta potential close to 0 mV at low to zero ionic strengths (1 to 10 mM), with zeta potential values between +5 to −5 mV, and a zero/neutral or a small −ve surface charge.


A. Conjugates


The particles contain one or more conjugates as described above. The conjugates can be present in the interior of the particle, on the surface of the particle, or both. In some embodiments, the conjugates are incorporated in the particles. In some embodiments, the conjugates are part of or a component of the particle.


The particles may comprise hydrophobic ion-pairing complexes or hydrophobic ion-pairs formed by one or more conjugates described above and counterions.


Hydrophobic ion-pairing (HIP) is the interaction between a pair of oppositely charged ions held together by Coulombic attraction. HIP, as used here in, refers to the interaction between the conjugate of the present invention and its counterions, wherein the counterion is not H+ or HO ions. Hydrophobic ion-pairing complex or hydrophobic ion-pair, as used herein, refers to the complex formed by the conjugate of the present invention and its counterions. In some embodiments, the counterions are hydrophobic. In some embodiments, the counterions are provided by a hydrophobic acid or a salt of a hydrophobic acid. In some embodiments, the counterions are provided by bile acids or salts, fatty acids or salts, lipids, phospholipids, amino acids, polyaminoacids or proteins. In some embodiments, the counterions are negatively charged (anionic). In some embodiments, the counterions are or positively charged (cataionic). Non-limited examples of negative charged counterions include the counterions sodium sulfosuccinate (AOT), sodium oleate, sodium dodecyl sulfate (SDS), human serum albumin (HSA), dextran sulphate, sodium deoxycholate, sodium cholate, sodium stearate, anionic lipids, phospholipids, amino acids, or any combination thereof. Non-limited examples of positively charged counterions include 1,2-dioleoyl-3-trimethylammonium-propane (chloride salt) (DOTAP), cetrimonium bromide (CTAB), quaternary ammonium salt didodecyl dimethylammonium bromide (DMAB) or Didodecyldimethylammonium bromide (DDAB). Without wishing to be bound by any theory, in some embodiments, HIP may increase the hydrophobicity and/or lipophilicity of the conjugate of the present invention. In some embodiments, increasing the hydrophobicity and/or lipophilicity of the conjugate of the present invention may be beneficial for particle formulations and may provide higher solubility of the conjugate of the present invention in organic solvents and lower solubility in an aqueous medium. Without wishing to be bound by any theory, it is believed that particle formulations that include HIP pairs have improved formulation properties, such as encapsulation efficiency, drug loading and/or release profile. Without wishing to be bound by any theory, in some embodiments, slow release of the conjugate of the invention from the particles may occur, due to a decrease in the conjugate's solubility in aqueous solution. In addition, without wishing to be bound by any theory, complexing the conjugate with large hydrophobic counterions may slow diffusion of the conjugate within a polymeric matrix. In some embodiments, HIP occurs without covalent conjugation of the counterion to the conjugate of the present invention.


Without wishing to be bound by any theory, the strength of HIP may impact the encapsulation efficiency, drug load and release rate of the particles of the invention. In some embodiments, the strength of the HIP may be increased by increasing the magnitude of the difference between the pKa of the conjugate of the present invention and the pKa of the agent providing the counterion. Also without wishing to be bound by any theory, the conditions for ion pair formation may impact the drug load and release rate of the particles of the invention.


In some embodiments, any suitable hydrophobic acid or a combination thereof may form a HIP pair with the conjugate of the present invention. In some embodiments, the hydrophobic acid may be a carboxylic acid (such as but not limited to a monocarboxylic acid, dicarboxylic acid, tricarboxylic acid), a sulfinic acid, a sulfenic acid, or a sulfonic acid. In some embodiments, a salt of a suitable hydrophobic acid or a combination thereof may be used to form a HIP pair with the conjugate of the present invention. Examples of hydrophobic acids, saturated fatty acids, unsaturated fatty acids, aromatic acids, bile acid, polyelectrolyte, their dissociation constant in water (pKa) and log P values were disclosed in WO2014/043,625, the contents of which are incorporated herein by reference in their entirety. The strength of the hydrophobic acid, the difference between the pKa of the hydrophobic acid and the pKa of the conjugate of the present invention, log P of the hydrophobic acid, the phase transition temperature of the hydrophobic acid, the molar ratio of the hydrophobic acid to the conjugate of the present invention, and the concentration of the hydrophobic acid were also disclosed in WO2014/043,625, the contents of which are incorporated herein by reference in their entirety.


In some embodiments, particles of the present invention including a HIP complex and/or prepared by a process that provides a counterion to form HIP complex with the conjugate may have a higher encapsulation efficiency and/or drug loading than particles without a HIP complex or prepared by a process that does not provide any counterion to form HIP complex with the conjugate. In some embodiments, encapsulation efficiency or drug loading may increase 50%, 100%, 2 times, 3 times, 4 times, 5 times, 6 times, 7 times, 8 times, 9 times, or 10 times.


In some embodiments, the particles of the invention may retain the total amount of conjugate for at least about 1 minute, at least about 15 minutes, at least about 1 hour, or at least about 2 hour when placed in a phosphate buffer solution at 37° C.


In some embodiments, the weight percentage of the conjugate in the particles is at least about 0.05%, 0.1%, 0.5%, 1%, 5%, 10%, 15%, 20%, 25%, 30%, 35%, 40%, 45%, or 50% such that the sum of the weight percentages of the components of the particles is 100%. In some embodiments, the weight percentage of the conjugate in the particles is from about 0.5% to about 10%, or about 10% to about 20%, or about 20% to about 30%, or about 30% to about 40%, or about 40% to about 50%, or about 50% to about 60%, or about 60% to about 70%, or about 70% to about 80%, or about 80% to about 90%, or about 90% to about 99% such that the sum of the weight percentages of the components of the particles is 100%.


In some instances, a conjugate may have a molecular weight of less than about 50,000 Da, less than about 40,000 Da, less than about 30,000 Da, less than about 20,000 Da, less than about 15,000 Da, less than about 10,000 Da, less than about 8,000 Da, less than about 5,000 Da, or less than about 3,000 Da. In some cases, the conjugate may have a molecular weight of between about 1,000 Da and about 50,000 Da, in some embodiments between about 1,000 Da and about 40,000 Da, in some embodiments between about 1,000 Da and about 30,000 Da, in some embodiments bout 1,000 Da and about 50,000 Da, between about 1,000 Da and about 20,000 Da, in some embodiments between about 1,000 Da and about 15,000 Da, in some embodiments between about 1,000 Da and about 10,000 Da, in some embodiments between about 1,000 Da and about 8,000 Da, in some embodiments between about 1,000 Da and about 5,000 Da, and in some embodiments between about 1,000 Da and about 3,000 Da. The molecular weight of the conjugate may be calculated as the sum of the atomic weight of each atom in the formula of the conjugate multiplied by the number of each atom. It may also be measured by mass spectrometry, NMR, chromatography, light scattering, viscosity, and/or any other methods known in the art. It is known in the art that the unit of molecular weight may be g/mol, Dalton (Da), or atomic mass unit (amu), wherein 1 g/mol=1 Da=1 amu.


B. Polymers


The particles may contain one or more polymers. Polymers may contain one more of the following polyesters: homopolymers including glycolic acid units, referred to herein as “PGA”, and lactic acid units, such as poly-L-lactic acid, poly-D-lactic acid, poly-D,L-lactic acid, poly-L-lactide, poly-D-lactide, and poly-D,L-lactide, collectively referred to herein as “PLA”, and caprolactone units, such as poly(8-caprolactone), collectively referred to herein as “PCL”; and copolymers including lactic acid and glycolic acid units, such as various forms of poly(lactic acid-co-glycolic acid) and poly(lactide-co-glycolide) characterized by the ratio of lactic acid:glycolic acid, collectively referred to herein as “PLGA”; and polyacrylates, and derivatives thereof. Exemplary polymers also include copolymers of polyethylene glycol (PEG) and the aforementioned polyesters, such as various forms of PLGA-PEG or PLA-PEG copolymers, collectively referred to herein as “PEGylated polymers”. In certain embodiments, the PEG region can be covalently associated with polymer to yield “PEGylated polymers” by a cleavable linker.


The particles may contain one or more hydrophilic polymers. Hydrophilic polymers include cellulosic polymers such as starch and polysaccharides; hydrophilic polypeptides; poly(amino acids) such as poly-L-glutamic acid (PGS), gamma-polyglutamic acid, poly-L-aspartic acid, poly-L-serine, or poly-L-lysine; polyalkylene glycols and polyalkylene oxides such as polyethylene glycol (PEG), polypropylene glycol (PPG), and poly(ethylene oxide) (PEO); poly(oxyethylated polyol); poly(olefinic alcohol); polyvinylpyrrolidone); poly(hydroxyalkylmethacrylamide); poly(hydroxyalkylmethacrylate); poly(saccharides); poly(hydroxy acids); poly(vinyl alcohol); polyoxazoline; and copolymers thereof.


The particles may contain one or more hydrophobic polymers. Examples of suitable hydrophobic polymers include polyhydroxyacids such as poly(lactic acid), poly(glycolic acid), and poly(lactic acid-co-glycolic acids); polyhydroxyalkanoates such as poly3-hydroxybutyrate or poly4-hydroxybutyrate; polycaprolactones; poly(orthoesters); polyanhydrides; poly(phosphazenes); poly(lactide-co-caprolactones); polycarbonates such as tyrosine polycarbonates; polyamides (including synthetic and natural polyamides), polypeptides, and poly(amino acids); polyesteramides; polyesters; poly(dioxanones); poly(alkylene alkylates); hydrophobic polyethers; polyurethanes; polyetheresters; polyacetals; polycyanoacrylates; polyacrylates; polymethylmethacrylates; polysiloxanes; poly(oxyethylene)/poly(oxypropylene) copolymers; polyketals; polyphosphates; polyhydroxyvalerates; polyalkylene oxalates; polyalkylene succinates; poly(maleic acids), as well as copolymers thereof.


In certain embodiments, the hydrophobic polymer is an aliphatic polyester. In some embodiments, the hydrophobic polymer is poly(lactic acid), poly(glycolic acid), or poly(lactic acid-co-glycolic acid).


In some embodiments, the particles may comprise triblock copolymers that self assemble and complex with the conjugates. Such triblock copolymers may comprise spatially separated hydrophobic and hydrophilic parts that have been developed for the effective delivery of negatively charged molecules such as nucleic acids including siRNAs. In one embodiment, the triblock copolymer may comprise a hydrophilic block, a hydrophobic block, and a positively charged block capable of reversibly complexing a negatively charged molecule. Any triblock copolymer disclosed in US 20100222407 to Segura et al., the contents of which are incorporated herein by reference in their entirety, may be used to complex with conjugates of the present invention and self assemble into a supramolecular structure such particles.


The particles can contain one or more biodegradable polymers. Biodegradable polymers can include polymers that are insoluble or sparingly soluble in water that are converted chemically or enzymatically in the body into water-soluble materials. Biodegradable polymers can include soluble polymers crosslinked by hydrolyzable cross-linking groups to render the crosslinked polymer insoluble or sparingly soluble in water.


Biodegradable polymers in the particle can include polyamides, polycarbonates, polyalkylenes, polyalkylene glycols, polyalkylene oxides, polyalkylene terepthalates, polyvinyl alcohols, polyvinyl ethers, polyvinyl esters, polyvinyl halides, polyvinylpyrrolidone, polyglycolides, polysiloxanes, polyurethanes and copolymers thereof, alkyl cellulose such as methyl cellulose and ethyl cellulose, hydroxyalkyl celluloses such as hydroxypropyl cellulose, hydroxy-propyl methyl cellulose, and hydroxybutyl methyl cellulose, cellulose ethers, cellulose esters, nitro celluloses, cellulose acetate, cellulose propionate, cellulose acetate butyrate, cellulose acetate phthalate, carboxylethyl cellulose, cellulose triacetate, cellulose sulphate sodium salt, polymers of acrylic and methacrylic esters such as poly (methyl methacrylate), poly(ethylmethacrylate), poly(butylmethacrylate), poly(isobutylmethacrylate), poly(hexlmethacrylate), poly(isodecylmethacrylate), poly(lauryl methacrylate), poly (phenyl methacrylate), poly(methyl acrylate), poly(isopropyl acrylate), poly(isobutyl acrylate), poly(octadecyl acrylate), polyethylene, polypropylene poly(ethylene glycol), poly(ethylene oxide), poly(ethylene terephthalate), poly(vinyl alcohols), poly(vinyl acetate, poly vinyl chloride polystyrene and polyvinylpryrrolidone, derivatives thereof, linear and branched copolymers and block copolymers thereof, and blends thereof. Exemplary biodegradable polymers include polyesters, poly(ortho esters), poly(ethylene imines), poly(caprolactones), poly(hydroxyalkanoates), poly(hydroxyvalerates), polyanhydrides, poly(acrylic acids), polyglycolides, poly(urethanes), polycarbonates, polyphosphate esters, polyphosphazenes, derivatives thereof, linear and branched copolymers and block copolymers thereof, and blends thereof. In some embodiments the particle contains biodegradable polyesters or polyanhydrides such as poly(lactic acid), poly(glycolic acid), and poly(lactic-co-glycolic acid).


The particles can contain one or more amphiphilic polymers. Amphiphilic polymers can be polymers containing a hydrophobic polymer block and a hydrophilic polymer block. The hydrophobic polymer block can contain one or more of the hydrophobic polymers above or a derivative or copolymer thereof. The hydrophilic polymer block can contain one or more of the hydrophilic polymers above or a derivative or copolymer thereof. In some embodiments the amphiphilic polymer is a di-block polymer containing a hydrophobic end formed from a hydrophobic polymer and a hydrophilic end formed of a hydrophilic polymer. In some embodiments, a moiety can be attached to the hydrophobic end, to the hydrophilic end, or both. The particle can contain two or more amphiphilic polymers.


In one embodiment, the conjugate of the invention may be delivered with a block copolymer drug delivery system for coordination of cisplatin and gemcitabine into liposomes as disclosed in U.S. RE45471 to Harada, et al., (Nanocarrier), the contents of which are incorporated herein by reference in their entirety. The block copolymers are comprised of PEG- and polyamino acids.


In one embodiment, the conjugate of the invention may be delivered with a polymer micelle and having a pH values of 3.0 to 7.0 and comprises a coordination compound having a block copolymer of polyethylene glycol and polyglutamic acid and cisplatin that is coordinate-bonded to the block copolymer as disclosed in U.S. Pat. No. 8,895,076 to Kataoka, et al., (Nanocarrier), the contents of which are incorporated herein by reference in their entirety. The block copolymers are comprised of PEG- and polyamino acids.


In one embodiment, the conjugate of the invention may be delivered in a lyophilized preparation, comprising a drug-encapsulating polymer micelle and saccharides and/or polyethylene glycol as a stabilizing agent as disclosed in US 20140141072 to Ogawa, et al., (Nanocarrier), the contents of which are incorporated herein by reference in their entirety. The drug-encapsulating polymer micelle is formed from a block copolymer having in the molecule, a hydrophilic polymer segment and a polymer segment which is hydrophobic or chargeable or which comprises the repetitive units of both of them, and it is a substantially spherical core-shell type micelle in which the drug is carried principally in a core part and in which a shell part is constituted by the above hydrophilic polymer segment. The block copolymers are comprised of PEG- and polyamino acids. The stabilizing agent is selected from the group consisting of saccharides which are maltose, trehalose, xylitol, glucose, sucrose, fructose, lactose, mannitol and dextrin and polyethylene glycol.


In one embodiment, the conjugate of the invention may be delivered by a micellar preparation comprising a novel block copolymer and a sparingly water-soluble anticancer agent, as disclosed in US 20140142167 to Shimizu, et al., (Nanocarrier), the contents of which are incorporated herein by reference in their entirety. The block copolymers are comprised of PEG- and polyamino acids.


In one embodiment, the conjugate of the invention may be delivered by a preparation containing drug-encapsulating polymer micelles with a controlled size, which comprises forming a solution by dispersing and dissolving a block copolymer with hydrophilic and hydrophobic segments, and a sparingly water-soluble drug, as disclosed in US 20060057219 to Nagasaki, et al., (Nanocarrier), the contents of which are incorporated herein by reference in their entirety. The block copolymers are comprised of PEG- and polyamino acids.


In one embodiment, the conjugate of the invention may be delivered in a stable liquid composition of a cisplatin coordination compound as described in EP 2305275 to Kataoka, et al., (Nanocarrier), the contents of which are incorporated herein by reference in their entirety. The stabilized liquid composition comprises a coordination compound in which cisplatin is coordinate-bonded to a block copolymer consisting of polyethylene glycol and polyglutamic acid.


In one embodiment, the conjugate of the invention may be encapsulated in polymer micelles formed from a block copolymer having a hydrophilic segment and hydrophobic segment, and has been subjected to high-pressure treatment as described in EP 1815869 to Yamamoto, et al., (Nanocarrier), the contents of which are incorporated herein by reference in their entirety. The block copolymer used for the invention having a hydrophilic segment and a hydrophobic segment. The polymer composed of the hydrophilic segment is not limited, and there may be mentioned segments of polyethylene glycol, polyphosphoric acid, polyoxyethylene, polysaccharides, polyacrylamide, polyacrylic acid, polymethacrylamide, polymethacrylic acid, polyvinylpyrrolidone, polyvinyl alcohol, polymethacrylic acid ester, polyacrylic acid ester, polyamino acid, and derivatives thereof. Preferred among these are segments composed of polyethylene glycol. The hydrophilic segment may have a low molecular functional group on the opposite side of the end bonding with the hydrophobic segment, so long as it does not adversely affect formation of the polymer micelles. The hydrophobic segment is also not limited, and there may be mentioned polypeptides, particularly polypeptides of polyhomoamino acids, and for example, L- or D-amino acids or their racemic mixtures, and especially L-amino acids such as poly(aspartic acid), poly(glutamic acid), polyaspartic acid esters, polyglutamic acid esters or their partial hydrolysates, polylysine, polyacrylic acid, polymethacrylic acid, polymalic acid, polylactic acid, polyalkylene oxides, long-chain alcohols, and other known biocompatible polymers, biodegradable polymers and the like. The hydrophobic segment may have a low molecular functional group on the opposite side of the end bonding with the hydrophilic segment, similar to that explained for the hydrophilic segment, so long as it does not adversely affect interaction between the drug and the hydrophobic segment during formation of the polymer micelles. The hydrophilic segment and hydrophobic segment are not restricted in size so long as they can form polymer micelles in an aqueous solution (or aqueous medium) in the presence of a water-insoluble drug, but generally the hydrophilic segment has preferably 30-1000 and more preferably 50-600 repeating units, while the hydrophobic segment preferably has 10-100 and more preferably 15-80 repeating units


In some embodiments, the conjugates of the invention are formulated into polymeric nanoparticles containing at least one polymer and any therapeutic agent or imaging agent as described in U.S. Pat. No. 8,618,240 to Podobinski, et al., (Cerulean), the contents of which are incorporated herein by reference in their entirety. The polymer can be any of poly(lactide-co-glycolide), poly(lactide), poly(epsilon-caprolactone), poly(isobutylcyanoacrylate), poly(isohexylcyanoacrylate), poly(n-butylcyanoacrylate), poly(acrylate), poly(methacrylate), poly(lactide)-poly(ethylene glycol), poly(lactide-co-glycolide)-poly(ethylene glycol), poly(epsilon-caprolactone)-poly(ethylene glycol), and poly(hexadecylcyanoacrylate-co-poly(ethylene glycol) cyanoacrylate). In some embodiments, the conjugates of the invention are formulated into polymeric nanoparticles through systems and methods that allow concurrent generation of a nanoparticle-containing fluid and its filtration to increase the concentration of the nanoparticles therein as described in U.S. Pat. No. 8,546,521 to Ramstack et al., (Cerulean), the contents of which are incorporated herein by reference in their entirety. The preparation of polymeric nanoparticles, which include any of polylactic acid (PLA) and polyglycolic acid (PGA), comprise a therapeutic agent such as a taxane, or such as docetaxel attached to a polymer component.


In some embodiments, the conjugates of the invention are formulated into nanoparticles comprising a cyclodextrin polymer delivery system and docetaxel (CRLX-301) or camptothecin (CRLX-101) as described in U.S. Pat. No. 8,618,240, US 20140099263, and WO2013025337 to Crawford et al., (Cerulean), the contents of each of which are incorporated herein by reference in their entirety. The cyclodextrin containing polymer (CDP) comprises various combinations of cyclodextrins (e.g., beta-cyclodextrin), comonomers (e.g., PEG containing comonomers), linkers linking the cyclodextrins and comonomers, and/or linkers tethering the docetaxel or campththecin to the CDP, and the PEG has a molecular weight less than 3.4 kDa.


In some embodiments, the conjugates of the invention are formulated into liquid polymeric compositions forming a peptide or protein drug-containing implant in a living body as described in EP 2359860 to Kang, et al., (Samyang), the contents of which are incorporated herein by reference in their entirety. The formulation comprises a water-soluble biocompatible liquid polyethylene glycol derivative, a biodegradable block copolymer which is insoluble in water but soluble in said water-soluble biocompatible liquid polyethylene glycol derivative and a peptide or protein drug, wherein when injected into a living body, the composition forms a polymeric implant containing the physiologically active substance that gradually release the physiologically active substance and then decomposes into materials harmless to the human body.


In some embodiments, the conjugates of the invention are formulated into polymeric micellar nanoparticle compositions as described in EP 2376062 to Seo, et al., (Samyang), the contents of which are incorporated herein by reference in their entirety. The formulation comprises dissolving a poorly water-soluble drug, a salt of polylactic acid or polylactic acid derivative, whose carboxylic acid end is bound to an alkali metal ion, and an amphiphilic block copolymer into an organic solvent; and adding an aqueous solution to the resultant mixture in the organic solvent to form micelles. The copolymer is a diblock copolymer polymerized from a hydrophilic segment and a hydrophobic segment. In the block copolymer, polyethylene oxide is used as a hydrophilic segment and polyaminoacid or hydrophobic group-bound polyaminoacid is used as a hydrophobic segment. The poorly water-soluble drug may be selected from taxane anticancer agents. Particular examples of the taxane anticancer agents may include paclitaxel, docetaxel, 7-epipaclitaxel, t-acetyl paclitaxel, 10-desacetyl-paclitaxel, 10-desacetyl-7-epipaclitaxel, 7-xylosylpaclitaxel, 10-desacetyl-7-glutarylpaclitaxel, 7-N,N-dimethylglycylpaclitaxel, 7-L-alanylpaclitaxel or a mixture thereof. More particularly, the taxane anticancer agent may be paclitaxel or docetaxel.


In some embodiments, the conjugates of the invention are formulated into polymeric micellar nanoparticle compositions as described in EP 2376062 to Seo, et al., (Samyang), the contents of which are incorporated herein by reference in their entirety. The formulation comprises polylactic acid or its derivative as the hydrophobic block and may be one or more selected from a group consisting of polylactic acid, polylactide, polyglycolide, polymandelic acid, polycaprolactone, polydioxan-2-one, polyamino acid, polyorthoester, polyanhydride and a copolymer thereof. Specifically, it may be polylactic acid, polylactide, polyglycolide, polymandelic acid, polycaprolactone or polydioxan-2-one. More specifically, the polylactic acid or its derivative may be one or more selected from a group consisting of polylactic acid, polylactide, polycaprolactone, a copolymer of lactic acid and mandelic acid, a copolymer of lactic acid and glycolic acid, a copolymer of lactic acid and caprolactone, and a copolymer of lactic acid and 1,4-dioxan-2-one. In an embodiment, the hydrophilic block may have a number average molecular weight of 500-20,000 daltons. The hydrophobic block may have a number average molecular weight of 500-10,000 daltons. In another embodiment, the content of the hydrophilic block may be 40-70 wt % based on the total weight of the diblock copolymer. Within this range, the micelle of the amphiphilic diblock copolymer can be maintained stably. The amount of the amphiphilic diblock copolymer may be 80-99.9 wt % based on the total weight of the composition. In an embodiment, the composition may comprise: 0.01-10 wt % of taxane; 0.01-10 wt % of cyclosporin; and 80-99.8 wt % of an amphiphilic diblock copolymer, based on the total weight of the composition. In another embodiment, the composition may comprise: 0.01-10 wt % of taxane; 0.01-10 wt % of cyclosporin; 40-90 wt % of an amphiphilic diblock copolymer; and 10-50 wt % of a polylactic acid alkali metal salt having a terminal carboxyl group. The complex amphiphilic diblock copolymer micelle composition in which taxane and cyclosporin are encapsulated together may have a particle size of 10-200 nm in an aqueous solution, and may be in solid state when freeze dried.


In some embodiments, the conjugates may be incorporated into particles comprising block copolymers with amphilic polymer complexes. For example, the particles may comprise a polyoxyethylene polyoxypropylene copolymer mixture, wherein the copolymer mixture contains two block copolymers, one of which is a hydrophobic copolymer having an ethylene oxide content of from about 10% to about 50% by weight of the copolymer mixture and the other block copolymer being a hydrophilic copolymer having an ethylene oxide content of from about 50% by weight to about 90% by weight of the copolymer mixture as disclosed in U.S. Pat. No. 8,148,338 to Klinski et al. (Supratek Pharma), the contents of which are incorporated herein by reference in their entirety.


In some embodiments, the conjugates may be incorporated into particles that are responsive to temperature, pH, and ionic conditions. For example, the particles may comprise an ionizable network of covalently cross-linked homopolymeric ionizable monomers wherein the ionizable network is covalently attached to a single terminal region of an amphiphilic copolymer to form a plurality of ‘dangling chains’ and wherein the ‘dangling chains’ of amphiphilic copolymer form immobile intra-network aggregates in aqueous solution, as disclosed in U.S. Pat. No. 7,204,997 to Bromberg et al., the contents of which are incorporated herein by reference in their entirety.


In some embodiments, the conjugates may be incorporated into cyclodextrin polymers. The cyclodextrin polymers may target transferrin. For example, the particles may comprise polyconjugates for delivering the RNA interference polynucleotide to a mammalian cell in vivo comprising a membrane inactive reversibly modified amphipathic membrane active random copolymer as disclosed in U.S. Pat. No. 8,658,211 or 8,137,695 to Rozema et al. (Calandro), the contents of which are incorporated herein by reference in their entirety.


In some embodiments, the conjugates may be incorporated into nanoparticles with cyclic oligosaccharide molecules localized on the surface. Any nanparticle comprising a polymer and having cyclic oligosaccharide molecules on the surface disclosed in U.S. Pat. No. 6,881,421 to da Silveira et al. (Bioalliance Pharma), the contents of which are incorporated herein by reference in their entirety. For example, the nanoparticles may comprise polymers such as poly(alkylcyanoacrylate) and the cyclic oligosaccharide is a neutral or charged, native, branched or polymerized or chemically modified cyclodextrin. Any nanoparticle comprising at least one poly(alkylcyanoacrylate) and at least one cyclodextrin disclosed in WO2012131018 to Pisani et al. may be used.


C. Lipids


The particles may contain one or more lipids or amphiphilic compounds. For example, the particles can be liposomes, lipid micelles, solid lipid particles, or lipid-stabilized polymeric particles. The lipid particle can be made from one or a mixture of different lipids. Lipid particles are formed from one or more lipids, which can be neutral, anionic, or cationic at physiologic pH. The lipid particle is preferably made from one or more biocompatible lipids. The lipid particles may be formed from a combination of more than one lipid, for example, a charged lipid may be combined with a lipid that is non-ionic or uncharged at physiological pH.


The particle can be a lipid micelle. Lipid micelles for drug delivery are known in the art. Lipid micelles can be formed, for instance, as a water-in-oil emulsion with a lipid surfactant. An emulsion is a blend of two immiscible phases wherein a surfactant is added to stabilize the dispersed droplets. In some embodiments the lipid micelle is a microemulsion. A microemulsion is a thermodynamically stable system composed of at least water, oil and a lipid surfactant producing a transparent and thermodynamically stable system whose droplet size is less than 1 micron, from about 10 nm to about 500 nm, or from about 10 nm to about 250 nm. Lipid micelles are generally useful for encapsulating hydrophobic active agents, including hydrophobic therapeutic agents, hydrophobic prophylactic agents, or hydrophobic diagnostic agents.


The particle can be a liposome. Liposomes are small vesicles composed of an aqueous medium surrounded by lipids arranged in spherical bilayers. Liposomes can be classified as small unilamellar vesicles, large unilamellar vesicles, or multi-lamellar vesicles. Multi-lamellar liposomes contain multiple concentric lipid bilayers. Liposomes can be used to encapsulate agents, by trapping hydrophilic agents in the aqueous interior or between bilayers, or by trapping hydrophobic agents within the bilayer.


The liposomes typically have an aqueous core. The aqueous core can contain water or a mixture of water and alcohol. Suitable alcohols include, but are not limited to, methanol, ethanol, propanol, (such as isopropanol), butanol (such as n-butanol, isobutanol, sec-butanol, tert-butanol, pentanol (such as amyl alcohol, isobutyl carbinol), hexanol (such as 1-hexanol, 2-hexanol, 3-hexanol), heptanol (such as 1-heptanol, 2-heptanol, 3-heptanol and 4-heptanol) or octanol (such as 1-octanol) or a combination thereof.


The particle can be a solid lipid particle. Solid lipid particles present an alternative to the colloidal micelles and liposomes. Solid lipid particles are typically submicron in size, i.e. from about 5 nm to about 1 micron, from 5 nm to about 500 nm, or from 5 nm to about 250 nm. Solid lipid particles are formed of lipids that are solids at room temperature. They are derived from oil-in-water emulsions, by removing the liquid oil with a solid lipid particle.


Suitable neutral and anionic lipids include, but are not limited to, sterols and lipids such as cholesterol, phospholipids, lysolipids, lysophospholipids, sphingolipids or pegylated lipids. Neutral and anionic lipids include, but are not limited to, phosphatidylcholine (PC) (such as egg PC, soy PC), including 1,2-diacyl-glycero-3-phosphocholines; phosphatidylserine (PS), phosphatidylglycerol, phosphatidylinositol (PI); glycolipids; sphingophospholipids such as sphingomyelin and sphingoglycolipids (also known as 1-ceramidyl glucosides) such as ceramide galactopyranoside, gangliosides and cerebrosides; fatty acids, sterols, containing a carboxylic acid group for example, cholesterol; 1,2-diacyl-sn-glycero-3-phosphoethanolamine, including, but not limited to, 1,2-dioleylphosphoethanolamine (DOPE), 1,2-dihexadecylphosphoethanolamine (DUPE), 1,2-distearoylphosphatidylcholine (DSPC), 1,2-dipalmitoyl phosphatidylcholine (DPPC), and 1,2-dimyristoylphosphatidylcholine (DMPC). The lipids can also include various natural (e.g., tissue derived L-α-phosphatidyl: egg yolk, heart, brain, liver, soybean) and/or synthetic (e.g., saturated and unsaturated 1,2-diacyl-sn-glycero-3-phosphocholines, 1-acyl-2-acyl-sn-glycero-3-phosphocholines, 1,2-diheptanoyl-SN-glycero-3-phosphocholine) derivatives of the lipids.


Suitable cationic lipids include, but are not limited to, N-[1-(2,3-dioleoyloxy)propyl]-N,N,N-trimethyl ammonium salts, also references as TAP lipids, for example methylsulfate salt. Suitable TAP lipids include, but are not limited to, DOTAP (dioleoyl-), DMTAP (dimyristoyl-), DPTAP (dipalmitoyl-), and DSTAP (distearoyl-). Suitable cationic lipids in the liposomes include, but are not limited to, dimethyldioctadecyl ammonium bromide (DDAB), 1,2-diacyloxy-3-trimethylammonium propanes, N-[1-(2,3-dioloyloxy)propyl]-N,N-dimethyl amine (DODAP), 1,2-diacyloxy-3-dimethylammonium propanes, N-[1-(2,3-dioleyloxy)propyl]-N,N,N-trimethylammonium chloride (DOTMA), 1,2-dialkyloxy-3-dimethylammonium propanes, dioctadecylamidoglycylspermine (DOGS), 3-[N—(N′,N′-dimethylamino-ethane)carbamoyl]cholesterol (DC-Chol); 2,3-dioleoyloxy-N-(2-(sperminecarboxamido)-ethyl)-N,N-dimethyl-1-propanaminium trifluoro-acetate (DOSPA), β-alanyl cholesterol, cetyl trimethyl ammonium bromide (CTAB), diC14-amidine, N-ferf-butyl-N′-tetradecyl-3-tetradecylamino-propionamidine, N-(alpha-trimethylammonioacetyl)didodecyl-D-glutamate chloride (TMAG), ditetradecanoyl-N-(trimethylammonio-acetyl)diethanolamine chloride, 1,3-dioleoyloxy-2-(6-carboxy-spermyl)-propylamide (DOSPER), and N, N, N′, N′-tetramethyl-, N′-bis(2-hydroxylethyl)-2,3-dioleoyloxy-1,4-butanediammonium iodide. In one embodiment, the cationic lipids can be 1-[2-(acyloxy)ethyl]2-alkyl(alkenyl)-3-(2-hydroxyethyl)-imidazolinium chloride derivatives, for example, 1-[2-(9(Z)-octadecenoyloxy)ethyl]-2-(8(Z)-heptadecenyl-3-(2-hydroxyethyl)imidazolinium chloride (DOTIM), and 1-[2-(hexadecanoyloxy)ethyl]-2-pentadecyl-3-(2-hydroxyethyl)imidazolinium chloride (DPTIM). In one embodiment, the cationic lipids can be 2,3-dialkyloxypropyl quaternary ammonium compound derivatives containing a hydroxyalkyl moiety on the quaternary amine, for example, 1,2-dioleoyl-3-dimethyl-hydroxyethyl ammonium bromide (DORI), 1,2-dioleyloxypropyl-3-dimethyl-hydroxyethyl ammonium bromide (DORIE), 1,2-dioleyloxypropyl-3-dimethyl-hydroxypropyl ammonium bromide (DORIE-HP), 1,2-dioleyl-oxy-propyl-3-dimethyl-hydroxybutyl ammonium bromide (DORIE-HB), 1,2-dioleyloxypropyl-3-dimethyl-hydroxypentyl ammonium bromide (DORIE-Hpe), 1,2-dimyristyloxypropyl-3-dimethyl-hydroxylethyl ammonium bromide (DMRIE), 1,2-dipalmityloxypropyl-3-dimethyl-hydroxyethyl ammonium bromide (DPRIE), and 1,2-disteryloxypropyl-3-dimethyl-hydroxyethyl ammonium bromide (DSRIE).


Suitable solid lipids include, but are not limited to, higher saturated alcohols, higher fatty acids, sphingolipids, synthetic esters, and mono-, di-, and triglycerides of higher saturated fatty acids. Solid lipids can include aliphatic alcohols having 10-40, preferably 12-30 carbon atoms, such as cetostearyl alcohol. Solid lipids can include higher fatty acids of 10-40, preferably 12-30 carbon atoms, such as stearic acid, palmitic acid, decanoic acid, and behenic acid. Solid lipids can include glycerides, including monoglycerides, diglycerides, and triglycerides, of higher saturated fatty acids having 10-40, preferably 12-30 carbon atoms, such as glyceryl monostearate, glycerol behenate, glycerol palmitostearate, glycerol trilaurate, tricaprin, trilaurin, trimyristin, tripalmitin, tristearin, and hydrogenated castor oil. Suitable solid lipids can include cetyl palmitate, beeswax, or cyclodextrin.


Amphiphilic compounds include, but are not limited to, phospholipids, such as 1,2 distearoyl-sn-glycero-3-phosphoethanolamine (DSPE), dipalmitoylphosphatidylcholine (DPPC), distearoylphosphatidylcholine (DSPC), diarachidoylphosphatidylcholine (DAPC), dibehenoylphosphatidylcholine (DBPC), ditricosanoylphosphatidylcholine (DTPC), and dilignoceroylphatidylcholine (DLPC), incorporated at a ratio of between 0.01-60 (weight lipid/w polymer), for example, between 0.1-30 (weight lipid/w polymer). Phospholipids which may be used include, but are not limited to, phosphatidic acids, phosphatidyl cholines with both saturated and unsaturated lipids, phosphatidyl ethanolamines, phosphatidylglycerols, phosphatidylserines, phosphatidylinositols, lysophosphatidyl derivatives, cardiolipin, and β-acyl-y-alkyl phospholipids. Examples of phospholipids include, but are not limited to, phosphatidylcholines such as dioleoylphosphatidylcholine, dimyristoylphosphatidylcholine, dipentadecanoylphosphatidylcholine dilauroylphosphatidylcholine, dipalmitoylphosphatidylcholine (DPPC), distearoylphosphatidylcholine (DSPC), diarachidoylphosphatidylcholine (DAPC), dibehenoylphosphatidylcho-line (DBPC), ditricosanoylphosphatidylcholine (DTPC), dilignoceroylphatidylcholine (DLPC); and phosphatidylethanolamines such as dioleoylphosphatidylethanolamine or 1-hexadecyl-2-palmitoylglycerophos-phoethanolamine. Synthetic phospholipids with asymmetric acyl chains (e.g., with one acyl chain of 6 carbons and another acyl chain of 12 carbons) may also be used.


In one embodiment, the conjugate of the invention may be delivered with a drug delivery system for encapsulating cisplatin and other positively charged drugs into liposomes as disclosed in US 20090280164 to Boulikas (Regulon), the contents of which are incorporated herein by reference in their entirety. PEG coated liposomes comprising neutral and anionic lipids comprising DPPG to help the particles fuse with cellular membranes. The conjugates may be combinations of cisplatin with anticancer genes including but not limited to p53, IL-2, IL-12, angiostatin, and oncostatin, as well as combinations of cisplatin with HSV-tk plus ganciclovir.


In one embodiment, the conjugate of the invention may be delivered with a targeted drug delivery system for encapsulating plasmids, oligonucleotides or negatively-charged drugs in to liposomes as disclosed in US 20030072794 to Boulikas (Regulon), the contents of which are incorporated herein by reference in their entirety. The formulation includes complex formation between DNA with cationic lipid molecules and fusogenic/NLS peptide conjugates composed of a hydrophobic chain of about 10-20 amino acids and also containing four or more histidine residues or NLS at their one end. The encapsulated molecules display therapeutic efficacy in eradicating a variety of solid human tumors including but not limited to breast carcinoma and prostate carcinoma.


In one embodiment, the conjugate of the invention may be delivered with a drug delivery system for encapsulating Lipoplatin into liposomes as disclosed in WO 2014027994 to Boulikas, et al., (Regulon), the contents of which are incorporated herein by reference in their entirety. Lipoplatin can be prepared by mixing cisplatin with DPPG (dipalmitoyl phosphatidyl glycerol) or other negatively-charged lipid molecules at a 1:1 to 1:2, variations in the molar ratio between cisplatin and DPPG are also of therapeutic value targeting different tissues. The cisplatin-DPPG micelle complex is converted into liposomes encapsulating the cisplatin-DPPG-monolayer or to other type of complexes by direct addition of premade liposomes followed by dialysis against saline and extrusion through membranes to downsize these to 100-160 nm in diameter. Encapsulation of doxorubicin and other positively charged antineoplastic compounds by variations in the process. Addition of positively charged groups to neutral or negatively-charged compounds allows their encapsulation similarly into liposomes.


In some embodiments, the conjugates of the invention are loaded into targeted liposomes encapsulating drug for the treatment of cancer and other diseases as described in U.S. Pat. No. 8,758,810 to Okada, et al., (Mebiopharm), the contents of which are incorporated herein by reference in their entirety. In some embodiments, the conjugates of the invention are formulated with liposomes comprising one or more phosphatidylcholines selected from the group consisting of DMPC, DPPC, POPC, and DSPC, an N-(ω)-dicarboxylic acid-derivatized phosphatidyl ethanolamine, a targeting factor-modified N-(ω)-dicarboxylic acid-derivatized phosphatidyl ethanolamine, an encapsulated drug, and cholesterol. The targeting moiety may comprise transferrin-modified N-(ω)-dicarboxylic acid-derivatized phosphatidyl ethanolamines, folic acid, folate, hyaluronic acid, sugar chains (e.g., galactose, mannose, etc.), fragments of monoclonal antibodies, asialoglycoprotein, etc. In particular embodiments, the targeting factor is a protein or peptide directed to a cell surface receptor (e.g., transferrin, folate, folic acid, asialoglycoprotein, etc.). In other embodiments, the targeting factor is directed to an antigen (e.g., fragments of monoclonal antibodies (e.g., Fab, Fab′, F(ab′)2, Fc, etc. In a certain embodiments, the targeting factor is transferrin.


In some embodiments, the conjugates of the invention are loaded into a liposome preparation containing oxaliplatin and derivatized with a hydrophilic polymer and a ligand, as described in US 20040022842 to Eriguchi, et al., (Mebiopharm), the contents of which are incorporated herein by reference in their entirety. In one embodiment the hydrophilic polymer is polyethylene glycol, polymethylethylene glycol, polyhydroxypropylene glycol, polypropylene glycol, polymethylpropylene glycol and polyhydroxypropylene oxide, and the ligand is transferrin, folic acid, hyaluronic acid, a sugar chain, a monoclonal antibody and a Fab′ fragment of a monoclonal antibody.


In some embodiments, the conjugates of the invention are formulated into liposomal irinotecan nanoparticles, such as MM-398, as described in WO 2013188586 to Bayever, et al., (Merrimack), the contents of which are incorporated herein by reference in their entirety. The liposome is a unilamellar lipid bilayer vesicle of approximately 80-140 nm in diameter that encapsulates an aqueous space which contains irinotecan complexed in a gelated or precipitated state as a salt with sucrose octasulfate. The lipid membrane of the liposome is composed of phosphatidylcholine, cholesterol, and a polyethyleneglycol-derivatized phosphatidyl-ethanolamine in the amount of approximately one polyethyleneglycol (PEG) molecule for 200 phospholipid molecules.


In some embodiments, the conjugates of the invention are formulated into an immunoliposome loaded with anthracycline and a targeting moiety that is a first anti-HER2 antibody and an anti-cancer therapeutic comprising a second anti-HER2 antibody, such as MM-302, as described in WO 2014089127 to Moyo, et al., (Merrimack), the contents of which are incorporated herein by reference in their entirety. Imunoliposomes are antibody (typically antibody fragment) targeted liposomes that provide advantages over non-immunoliposomal preparations because they are selectively internalized by cells bearing cell surface antigens targeted by the antibody. Such antibodies and immunoliposomes are described, for example, in the following US patents and patent applications: U.S. Pat. Nos. 7,871,620, 6,214,388, 7,135,177, and 7,507,407 (“Immunoliposomes that optimize internalization into target cells”); U.S. Pat. No. 6,210,707 (“Methods of forming protein-linked lipidic microparticles and compositions thereof); U.S. Pat. No. 7,022,336 (“Methods for attaching protein to lipidic microparticles with high efficiency”); and U.S. Pat. Nos. 7,892,554 and 7,244,826 (“Internalizing ErbB2 antibodies.”). Immunoliposomes targeting HER2 can be prepared in accordance with the foregoing patent disclosures.


In some embodiments, the conjugates of the invention are encapsulated into a liposomal carrier with an anthracycline agent and a cytidine analog as described in U.S. Pat. No. 8,431,806 to Mayer, et al., (Celator), the contents of which are incorporated herein by reference in their entirety. In some embodiments, the conjugates of the invention are encapsulated into a liposomal carrier with cytarabine and daunorubicin at a fixed, molar ratio of cytarabine to daunorubicin of about 5:1 ratio as described in U.S. Pat. No. 8,092,828 to Louie et al., (Celator), the contents of which are incorporated herein by reference in their entirety. A method to treat a leukemia in a human patient, said method comprising administering intravenously to said patient wherein the liposomes comprise DSPC:DSPG:cholesterol at 7:2:1 molar ratio.


In some embodiments, the conjugates of the invention are encapsulated into a liposomal carrier with a fixed, non-antagonistic molar ratio of irinotecan and floxuridine as described in U.S. Pat. No. 8,431,806 to Janoff, et al., (Celator), the contents of which are incorporated herein by reference in their entirety. Any suitable delivery vehicle can be employed that permits the sustained delivery of irinotecan:floxuridine combination in the fixed non-antagonistic molar ratio. In some embodiments, a liposomal formulation may be employed. The liposomes are designed for sustained delivery of the encapsulated drugs at a fixed ratio to a tumor site. In one embodiment, irinotecan and floxuridine are stably associated with the liposomes. Typically, the liposomes have a diameter of less than 300 nm, sometimes less than 200 nm. In one example, the nominal size of these liposomes is approximately 110 nm and sterilization is achieved by filtration through a 0.2 m filter. In a specific embodiment, the liposome membrane is composed of distearoylphosphatidylcholine (DSPC), distearoylphosphatidylglycerol (DSPG) and cholesterol (CHOL) in a 7:2:1:molar ratio. In one instance, the liposomes are prepared by a water in oil derived liposome method and extruded liposomes are suspended in phosphate-buffered sucrose at pH 7.0. Any suitable means of encapsulating the drug combination in the liposomes can be employed. In a specific embodiment, irinotecan and floxuridine are encapsulated in the liposome using a copper gluconate/triethanolamine-based active loading procedure whereby irinotecan accumulates due to complexation inside pre-formed liposomes and floxuridine is passively encapsulated.


In some embodiments, the conjugates of the invention are delivered by liposomes having controlled release of campththecens/plantiums as described in U.S. Pat. No. 8,431,806 to Tardi, et al., (Celator), the contents of which are incorporated herein by reference in their entirety. The platinum-based liposomes comprise a mixture of at least two phosphatidyl choline lipids of varying acyl chain length including 5-55% of a phosphatidyl choline lipid containing acyl groups of chain length of 14-17 carbon atoms, and at least 5-55% of a second phosphatidyl choline lipid containing acyl groups of chain length of at least 18 carbon atoms. The liposomes comprise DSPC and either DMPC or DPPC at a ratio in the range of about 13:1 to 1:13, with the platinum-based drug is cisplatin, carboplatin or oxaliplatin. The liposomes further comprise cholesterol, phosphatidylglycerol, and an additional therapeutic agent is irinotecan (CPT-II), topotecan, 9-aminocamptothecin or lurtotecan, or is a hydrophilic salt of a water-insoluble camptothecin. Additionally, the platinum-based drug and said additional therapeutic agent are present in a mole ratio that has a non-antagonistic cytotoxic or cytostatic effect to relevant cells or tumor cell homogenates, and wherein said platinum-based drug and additional therapeutic agent are stably associated with delivery vehicles such that a non-antagonistic mole ratio is maintained in the blood of a subject for at least one hour after administration. The water-soluble camptothecin is irinotecan (CPT-II), topotecan, 9-aminocamptothecin or lurtotecan, or is a hydrophilic salt of a water-insoluble camptothecin and the platinum-based drug is cisplatin, carboplatin or oxaliplatin. The liposomes comprise a mixture of DSPC and a second phosphatidylcholine lipid that is not DSPC at a ratio in the range of about 13:1 to 1:13, the phosphatidyl choline lipids are DSPC and either DPPC or DMPC. The liposomes further comprise phosphatidylglycerol or a phosphatidylinositol, such as DSPG or DMPG. The liposome may comprise of cholesterol or a third agent.


In some embodiments, the conjugates of the invention comprise pharmaceutical capsules which comprises a suspension of microparticles suspended in an oil as described in EP 2501365 to Duena, et al., (GP Pharm), the contents of which are incorporated herein by reference in their entirety. The pharmaceutical capsule comprises a suspension of polymeric microcapsules which comprise at least one polymer and an active pharmaceutical ingredient selected from the group formed by the angiotensin-converting enzyme inhibitors and the angiotensin receptor blockers, these microcapsules being suspended in an oil which contains polyunsaturated fatty acid alkyl esters. The polyunsaturated fatty acids of these alkyl esters belong to the omega-3 series and include eicosapentaenoic acid, docosahexaenoic acid, and/or mixtures thereof. The alkyl radical of these alkyl esters is selected from the group formed by short chain alkyl radicals, with from 1 to 8 carbon atoms, and may comprise more than 50% of polyunsaturated fatty acid alkyl esters. The angiotensin-converting enzyme inhibitor is selected from the group formed by captopril, enalapril, enalaprilat, ramipril, quinapril, perindopril, lisinopril, benazepril, fosinopril, spirapril, trandolapril, moexipril, cilazapril, imidapril, rentiapril, temocapril, alacepril, delapril, moveltipril, zofenopril, pentopril, libenzapril, pivopril, ceronapril, indolapril, teprotide, their pharmaceutically acceptable salts and their acids. The angiotensin II receptor blocker is selected from the group formed by candesartan, eprosartan, irbesartan, losartan, olmesartan, telmisartan, valsartan, tasosartan, pratosartan, azilsartan, saralasin, ripisartan, elisartan, milfasartan, embusartan, fonsartan, saprisartan, zolasartan, forasartan, pomisartan, abitesartan, fimasartan, N-benzyl-losartan, enoltasosartan, glycyl-losartan, opomisartan, trityl-losartan, sarmesin, isoteolin and their pharmaceutically acceptable salts. The polymer of these microcapsules is selected from the group formed by proteins, polyesters, polyacrylates, polycyanoacrylates, polysaccharides, polyethylene glycol and/or mixtures thereof, and include the group formed by gelatin, albumin, alginates, carrageenans, pectins, gum arabic, chitosan, carboxymethyl cellulose, ethyl cellulose, hydroxypropyl methylcellulose, nitrocellulose, cellulose acetate butyrate, cellulose acetate phthalate, hydroxypropyl methylcellulose phthalate, hydroxypropyl methylcellulose acetate-succinate, polyvinyl acetate phthalate, poly(e-caprolactone), poly(p-dioxanone), poly(6-valerolactone), poly(p-hydroxybutyrate), poly(p-hydroxybutyrate) and β-hydroxyvalerate copolymers, poly(p-hydroxypropionate), methacrylic acid copolymers, dimethylaminoethyl methacrylate copolymers, trimethylammonium ethyl methacrylate copolymers, polymers and copolymers of lactic and glycolic acids, polymers and copolymers of lactic and glycolic acids and polyethylene glycol and/or mixtures thereof. The microcapsules represent between 0.001% and 80% of the total weight of the capsule, and contain at least one plasticizer, a fluidifying agent and/or an antioxidant. The capsule comprises an enteric coating.


In some embodiments, the conjugates of the invention comprise nebulized liposomal amikacin formulation as described in US 20130089598 to Gupta (Insmed Corp.), the contents of which are incorporated herein by reference in their entirety. The nebulized liposomal amikacin formulation comprises a lipid to amikacin ratio of about 0.3 to about 1.0 by weight comprising a lipid selected from the group consisting of egg phosphatidylcholine (EPC), egg phosphatidylglycerol (EPG), egg phosphatidylinositol (EPI), egg phosphatidylserine (EPS), phosphatidylethanolamine (EPE), phosphatidic acid (EPA), soy phosphatidyl choline (SPC), soy phosphatidylglycerol (SPG), soy phosphatidylserine (SPS), soy phosphatidylinositol (SPI), soy phosphatidylethanolamine (SPE), soy phosphatidic acid (SPA), hydrogenated egg phosphatidyl choline (HEPC), hydrogenated egg phosphatidylglycerol (HEPG), hydrogenated egg phosphatidylinositol (HEPI), hydrogenated egg phosphatidylserine (HEPS), hydrogenated phosphatidylethanolamine (HEPE), hydrogenated phosphatidic acid (HEPA), hydrogenated soy phosphatidylcholine (HSPC), hydrogenated soy phosphatidylglycerol (HSPG), hydrogenated soy phosphatidylserine (HSPS), hydrogenated soy phosphatidylinositol (HSPI), hydrogenated soy phosphatidylethanolamine (HSPE), hydrogenated soy phosphatidic acid (HSPA), dipalmitoylphosphatidylcholine (DPPC), dimyristoylphosphatidylcholine (DMPC), dimyristoylphosphatidylglycerol (DMPG), dipalmitoylphosphatidylglycerol (DPPG), distearoylphosphatidylcholine (DSPC), distearoylphosphatidylglycerol (DSPG), dioleylphosphatidylethanolamine (DOPE), palmitoylstearoylphosphatidylcholine (PSPC), palmitoylstearolphosphatidylglycerol (PSPG), mono-oleoyl-phosphatidylethanolamine (MOPE), cholesterol, ergosterol, lanosterol, tocopherol, ammonium salts of fatty acids, ammonium salts of phospholipids, ammonium salts of glycerides, myristylamine, palmitylamine, laurylamine, stearylamine, dilauroyl ethylphosphocholine (DLEP), dimyristoyl ethylphosphocholine (DMEP), dipalmitoyl ethylphosphocholine (DPEP) and distearoyl ethylphosphocholine (DSEP), N-(2,3-di-(9-(Z)-octadecenyloxy)-prop-1-yl-N,N,N-trimethylammonium chloride (DOTMA), 1,2-bis(oleoyloxy)-3-(trimethylammonio)propane (DOTAP), phosphatidylglycerols (PGs), phosphatidic acids (PAs), phosphatidylinositols (PIs), phosphatidyl serines (PSs), distearoylphosphatidylglycerol (DSPG), dimyristoylphosphatidylacid (DMPA), dipalmitoylphosphatidylacid (DPPA), distearoylphosphatidylacid (DSPA), dimyristoylphosphatidylinositol (DMPI), dipalmitoylphosphatidylinositol (DPPI), distearoylphospatidylinositol (DSPI), dimyristoylphosphatidylserine (DMPS), dipalmitoylphosphatidylserine (DPPS), distearoylphosphatidylserine (DSPS), and mixtures thereof.


In some embodiments, the conjugates of the invention comprise sublingual formulations comprising fentanyl as described in U.S. Pat. No. 8,486,972 to Kottayil, et al., (Insys Therapeutics), the contents of which are incorporated herein by reference in their entirety. The non-propellant sublingual fentanyl formulation comprising of discrete liquid droplets of about 0.1% to about 0.8% by weight of fentanyl or a pharmaceutically acceptable salt, about 20% to 60% by weight of ethanol, about 4% to 6% by weight of propylene glycol, and the discrete liquid droplets have a size distribution of from about 10 m to about 200 m.


In some embodiments, the conjugates of the invention comprise oral cannabinoid formulations, including an aqueous-based oral dronabinol solution as described in U.S. Pat. No. 8,222,292 to Goskonda, et al., (Insys Therapeutics), the contents of which are incorporated herein by reference in their entirety. The oral cannabinoid formulations comprising essentially of dronabinol, 30-33% w/w water, about 50% w/w ethanol, 0.01% w/w butylated hydroxylanisole (BHA) or 0.1% w/w ethylenediaminetetraacetic acid (EDTA) and 5-21% w/w co-solvent, having a combined total of 100%, where the co-solvent is selected from the group consisting of propylene glycol, polyethylene glycol and combinations thereof.


In some embodiments, the conjugates of the invention comprise a thermosensitive liposome for the delivery as described in EP 2217209 to Mei, et al., (Celison), the contents of which are incorporated herein by reference in their entirety. The thermosensitive liposome comprises at least one phosphatidylcholine, at least one phosphatidylglycerol and at least one lysolipid, and the gel to liquid phase transition temperature of the liposome is from 39 0° C. to 45° C. The formulation may comprise of PEGylated phospholipid phosphatidylcholine, dipalmitoylphosphatidylcholine (DPPC), distearoylphosphatidylglycerol (DSPG), and the lysolipid is monostearoylphosphatidylcholine (MSPC), lipid is PEG-2000 modified distearoylphosphatidylethanolamine (DSPE-PEG2000). The liposome may comprising DPPC:DSPG:MSPC DSPE-PEG2000:active agent in the ratio of 60-80:6-12:6-12:4-15:1-30 on a weight basis.


In some embodiments, the conjugates may be incorporated into lipid-based systems. The lipid-based systems may comprise a lipid or lysolipid derivative, e.g., liposomes (and micelles) including lipid derivatives having an aliphatic group and a hydrophilic moiety as described in U.S. Pat. No. 7,368,254, 7,166,297 or WO2007107161 to Jorgensen et al. (Liplasome Pharma), the contents of which are incorporated herein by reference in their entirety. In another example, the lipid-based system may be a liposome comprising between 25% and 45% (mol/mol) of an anionic lipid, less than 1% cholesterol (mol/mol) wherein the liposome has been exposed to a divalent cation at a concentration between 0.1 mM and 1 mM as described in US 20120009243 to Vikbjerg et al., the contents of which are incorporated herein by reference in their entirety.


D. Inorganic Nanoparticles


Inorganic nanoparticles exhibit a combination of physical, chemical, optical and electronic properties and provide a highly multifunctional platform to image and diagnose diseases, to selectively deliver therapeutic agents, and to sensitive cells and tissues to treatment regiments. Not wishing to be bound to any theory, enhanced permeability and retention (EPR) effect provides a basis for the selective accumulation of many high-molecular-weight drugs. Circulating inorganic nanoparticles preferentially accumulate at tumor sites and in inflamed tissues (Yuan et al., Cancer Res., vol. 55(17):3752-6, 1995, the contents of which are incorporated herein by reference in their entirety) and remain lodged due to their low diffusivity (Pluen et al., PNAS, vol. 98(8):4628-4633, 2001, the contents of which are incorporated herein by reference in their entirety). The size of the inorganic nanoparticles may be 10 nm-500 nm, 10 nm-100 nm or 100 nm-500 nm. The inorganic nanoparticles may comprise metal (gold, iron, silver, copper, nickel, etc.), oxides (ZnO, TiO2, Al2O3, SiO2, iron oxide, copper oxide, nickel oxide, etc.), or semiconductor (CdS, CdSe, etc.). The inorganic nanoparticles may also be perfluorocarbon or FeCo.


Inorganic nanoparticles have high surface area per unit volume. Therefore, they may be loaded with therapeutic drugs and imaging agents at high densities. A variety of methods may be used to load therapeutic drugs into/onto the inorganic nanoparticles, including but not limited to, covalent bonds, electrostatic interactions, entrapment, and encapsulation. In addition to therapeutic agent drug loads, the inorganic nanoparticles may be functionalized with targeting moieties, such as tumor-targeting ligands, on the surface. Formulating therapeutic agents with inorganic nanoparticles allows imaging, detection and monitoring of the therapeutic agents.


In some embodiments, conjugates of the invention are formulated with gold nanoparticles. Gold nanoparticles may be in the forms of nanospheres, nanorods, nanoshells (e.g., a particle with silica core and gold shell), nanocages, etc and may be synthesized with any known method, such as colloidal methods, seeded growth methods, etc. The conjugates of the invention may be attached to the surface of the gold nanoparticles with covalent bonds, linkers, or non-covalent bonds with any known method. Once synthesized, the surface of gold nanoparticles is usually surrounded by a stabilizing agent, which creates an overall surface charge. A variety of molecules may be attached to the surface of gold nanoparticles through electrostatic interactions. McIntosh et al. utilized mixed monolayer protected Au clusters coated with a cationic stabilizing agent, 11-trimethylammoniumundecanethiol, to non-covalently attach the negatively charged phosphate backbone of DNA to the surface of the nanoparticle (McIntosh et al., JACS, vol. 123(31):7626-7629, 2001, the contents of which are incorporated herein by reference in their entirety). Huo et al. coupled prostate-specific antigen antibodies to the surface of anionic, citrate-stabilized gold nanospheres through electrostatic interactions (Huo et al., JACS, vol. 130(9):2780-2782, 2008, the contents of which are incorporated herein by reference in their entirety).


In one embodiment, the conjugate of the invention is hydrophobic and may be form a kinetically stable complex with gold nanoparticles functionalized with water-soluble zwitterionic ligands disclosed by Kim et al. (Kim et al., JACS, vol. 131(4):1360-1361, 2009, the contents of which are incorporated herein by reference in their entirety). Kim et al. demonstrated that hydrophobic drugs carried by the gold nanoparticles are efficiently released into cells with little or no cellular uptake of the gold nanoparticles.


In one embodiment, the conjugates of the invention may be formulated with gold nanoshells. As a non-limiting example, the conjugates may be delivered with a temperature sensitive system comprising polymers and gold nanoshells and may be released photothermally. Sershen et al. designed a delivery vehicle comprising hydrogel and gold nanoshells, wherein the hydrogels are made of copolymers of N-isopropylacrylamide (NIPAAm) and acrylamide (AAm) and the gold nanoshells are made of gold and gold sulfide (Sershen et al., J Biomed Mater, vol. 51:293-8, 2000, the contents of which are incorporated herein by reference in their entirety). Irradiation at 1064 nm was absorbed by the nanoshells and converted to heat, which led to the collapse of the hydrogen and release of the drug. The conjugate of the invention may also be encapsulated inside hollow gold nanoshells.


In some embodiments, the conjugates of the invention may be attached to gold nanoparticles via covalent bonds. Covalent attachment to gold nanoparticles may be achieved through a linker, such as a free thiol, amine or carboxylate functional group. In some embodiments, the linkers are located on the surface of the gold nanoparticles. In some embodiments, the conjugates of the invention may be modified to comprise the linkers. The linkers may comprise a PEG or oligoethylene glycol moiety with varying length to increase the particles' stability in biological environment and to control the density of the drug loads. PEG or oligoethylene glycol moieties also minimize nonspecific adsorption of undesired biomolecules. PEG or oligoethylene glycol moieties may be branched or linear. Tong et al. disclosed that branched PEG moieties on the surface of gold nanoparticles increase circulatory half-life of the gold nanoparticles and reduced serum protein binding (Tong et al., Langmuir, vol. 25(21):12454-9, 2009, the contents of which are incorporated herein by reference in their entirety).


In one embodiment, the conjugate of the invention may comprise PEG-thiol groups and may attach to gold nanoparticles via the thiol group. The synthesis of thiol-PEGylated conjugates and the attachment to gold nanoparticles may follow the method disclosed by El-Sayed et al. (El-Sayed et al., Bioconjug. Chem., vol. 20(12):2247-2253, 2010, the contents of which are incorporated herein by reference in their entirety).


In another embodiment, the conjugate of the invention may be tethered to an amine-functionalized gold nanoparticles. Lippard et al. disclosed that Pt(IV) prodrugs may be delivered with amine-functionalized polyvalent oligonucleotide gold nanoparticles and are only activated into their active Pt(II) forms after crossing the cell membrane and undergoing intracellular reduction (Lippard et al., JACS, vol. 131(41):14652-14653, 2009, the contents of which are incorporated herein by reference in their entirety). The cytotoxic effects for the Pt(IV)-gold nanoparticle complex are higher than the free Pt(IV) drugs and free cisplatin.


In some embodiments, the conjugates of the invention are formulated with magnetic nanoparticle such as iron, cobalt, nickel and oxides thereof, or iron hydroxide nanoparticles. Localized magnetic field gradients may be used to attract magnetic nanoparticles to a chosen site, to hold them until the therapy is complete, and then to remove them. Magnetic nanoparticles may also be heated by magnetic fields. Alexiou et al. prepared an injection of magnetic particle, ferrofluids (FFs), bound to anticancer agents and then concentrated the particles in the desired tumor area by an external magnetic field (Alexiou et al., Cancer Res. vol. 60(23):6641-6648, 2000, the contents of which are incorporated herein by reference in their entirety). The desorption of the anticancer agent took place within 60 min to make sure that the drug can act freely once localized to the tumor by the magnetic field.


In some embodiments, the conjugates of the invention are loaded onto iron oxide nanoparticles. In some embodiments, the conjugates of the invention are formulated with superparamagnetic nanoparticles based on a core consisting of iron oxides (SPION). SPION are coated with inorganic materials (silica, gold, etc.) or organic materials (phospholipids, fatty acids, polysaccharides, peptides or other surfactants and polymers) and can be further functionalized with drugs, proteins or plasmids.


In one embodiment, water-dispersible oleic acid (OA)-poloxamer-coated iron oxide magnetic nanoparticles disclosed by Jain et al. (Jain, Mol. Pharm., vol. 2(3):194-205, 2005, the contents of which are incorporated herein by reference in their entirety) may be used to deliver the conjugates of the invention. Therapeutic drugs partition into the OA shell surrounding the iron oxide nanoparticles and the poloxamer copolymers (i.e., Pluronics) confers aqueous dispersity to the formulation. According to Jain et al., neither the formulation components nor the drug loading affected the magnetic properties of the core iron oxide nanoparticles. Sustained release of the therapeutic drugs was achieved.


In one embodiment, the conjugates of the invention are bonded to magnetic nanoparticles with a linker. The linker may be a linker capable of undergoing an intramolecular cyclization to release the conjugates of the invention. Any linker and nanoparticles disclosed in WO2014124329 to Knipp et al., the contents of which are incorporated herein by reference in their entirety, may be used. The cyclization may be induced by heating the magnetic nanoparticle or by application of an alternating electromagnetic field to the magnetic nanoparticle.


In one embodiment, the conjugates of the invention may be delivered with a drug delivery system disclosed in U.S. Pat. No. 7,329,638 to Yang et al., the contents of which are incorporated herein by reference in their entirety. The drug delivery system comprises a magnetic nanoparticle associated with a positively charged cationic molecule, at least one therapeutic agent and a molecular recognition element.


In one embodiment, nanoparticles having a phosphate moiety are used to deliver the conjugates of the invention. The phosphate-containing nanoparticle disclosed in U.S. Pat. No. 8,828,975 to Hwu et al., the contents of which are incorporated herein by reference in their entirety, may be used. The nanoparticles may comprise gold, iron oxide, titanium dioxide, zinc oxide, tin dioxide, copper, aluminum, cadmium selenide, silicon dioxide or diamond. The nanoparticles may contain a PEG moiety on the surface.


In some embodiments, the conjugates of the invention may be bound delivered with metal vehicles. The colloidal metal vehicles may be any metal particle disclosed in U.S. Pat. No. 8,137,989 to Tarmakin et al., the contents of which are incorporated herein by reference in their entirety. The colloidal metal vehicles may also be PEGylated metal particles disclosed in U.S. Pat. Nos. 8,785,202, 7,229,841, or U.S. Pat. No. 7,387,900 to Tamarkin et al. (Cytimmune), the contents of which are incorporated herein by reference in their entirety, such as colloidal gold particles with PEG thiol derivatives covalently bound to the gold particles. For another example, the colloidal metal vehicles may be gold nanoparticles, silver nanoparticles, silica nanoparticles, iron nanoparticles, metal hybrid nanoparticles such as gold/iron nanoparticles, nanoshells, gold nanoshells, silver nanoshells, gold nanorods, silver nanorods, metal hybrid nanorods, quantum dots, nanoclusters, liposomes, dendrimers, metal/liposome particles, metal/dendrimer nanohybrids or carbon nanotubes as disclosed in WO2009039502 to Tamarkin et al., the contents of which are incorporated herein by reference in their entirety. A stealth agent may be employed such as PEG, PolyPEG, polyoxypropylene polymers, polyvinylpyrrolidone polymers, rPEG, or hydroxyethyl starch, hydrophilic agents and polymers.


In some embodiments, the conjugates of the invention may be delivered with nanoparticles that partially transduce an external energy into heat energy for increasing the temperature of a target area and allow for focused hyperthermia, including nanoshells, nanorods, carbon nanotubes, fullerenes, carbon fullerenes, paramagnetic particles, metallic nanoparticles, metal colloids, carbon particles, buckyballs, nanocubes, nanostars, indocyanine green encapsulated in nanoparticles, acoustic particles, and any combination thereof as disclosed in US20130197295 to Krishnan et al., the contents of which are incorporated herein by reference in their entirety. For example, conjugates may be delivered with gold nanoshells with silica cores or gold-gold sulfide nanoshells disclosed by Krishnan et al.


In some embodiments, the conjugates of the invention may be attached to inorganic nanoparticles via thiols, dextran, biotin-streptavadin linkages, or through metals coated with cationic polymers. In one example, superparamagnetic iron oxide particles coated with polyarginine, polylysine, or polyethyleneimine (PEI) disclosed by Mok et al. in Expert Opin Drug Deliv., vol. 10(1):73-87 (2013), the contents of which are incorporated herein by reference in their entirety, may be used to deliver the conjugates of the present invention.


E. Additional Targeting Moieties


The particles can contain one or more targeting moieties targeting the particle to a specific organ, tissue, cell type, or subcellular compartment in addition to the targeting moieties of the conjugate. The additional targeting moieties can be present on the surface of the particle, on the interior of the particle, or both. The additional targeting moieties can be immobilized on the surface of the particle, e.g., can be covalently attached to polymer or lipid in the particle. In preferred embodiments, the additional targeting moieties are covalently attached to an amphiphilic polymer or a lipid such that the targeting moieties are oriented on the surface of the particle.


F. Additional Active Agents


The particles can contain one or more additional active agents in addition to those RNAi agents in the conjugates. The additional active agents can be therapeutic, prophylactic, diagnostic, or nutritional agents as listed above.


The additional active agents can be present in any amount, e.g. from about 0.05% to about 90%, from about 1% to about 50%, from about 0.05% to about 25%, from about 0.05% to about 20%, from about 0.05% to about 10%, from about 1% to about 90%, from about 1% to about 50%, from about 1% to about 25%, from about 1% to about 20%, from about 1% to about 10%, or from about 5% to about 10% (w/w) based upon the weight of the particle. In one embodiment, the agents are incorporated in about 1% to about 10% loading w/w.


III. Pharmaceutical Compositions and Formulations

In some embodiments, compositions are administered to humans, human patients, healthy volunteers, or any other subjects. For the purposes of the present disclosure, the phrase “active ingredient” generally refers to the conjugate or particles containing the conjugates to be delivered as described herein.


Although the descriptions of pharmaceutical compositions provided herein are principally directed to pharmaceutical compositions which are suitable for administration to humans, it will be understood by the skilled artisan that such compositions are generally suitable for administration to any other animal, e.g., to animals, e.g. mammals, rodents, or avians. Modification of pharmaceutical compositions suitable for administration to humans in order to render the compositions suitable for administration to various animals is well understood, and the ordinarily skilled veterinary pharmacologist can design and/or perform such modification with merely ordinary, if any, experimentation. Subjects to which administration of the pharmaceutical compositions is contemplated include, but are not limited to, humans and/or other primates; mammals, including commercially relevant mammals such as cattle, pigs, horses, sheep, cats, dogs, mice, and/or rats; and/or birds, including commercially relevant birds such as poultry, chickens, ducks, geese, and/or turkeys.


Formulations of the pharmaceutical compositions described herein may be prepared by any method known or hereafter developed in the art of pharmacology. In general, such preparatory methods include the step of bringing the active ingredient into association with one or more excipients and/or one or more other accessory ingredients including solvents and aqueous solutions, and then, if necessary and/or desirable, dissolving, dividing, sterilizing, filling or shaping and/or packaging the product into a desired single- or multi-use units.


A pharmaceutical composition in accordance with the invention may be prepared, packaged, and/or sold in bulk, as a single unit dose, and/or as a plurality of single unit doses. As used herein, a “unit dose” is discrete amount of the pharmaceutical composition comprising a predetermined amount of the active ingredient. The amount of the active ingredient is generally equal to the dosage of the active ingredient which would be administered to a subject and/or a convenient fraction of such a dosage such as, for example, one-half or one-third of such a dosage.


Relative amounts of the active ingredient, the pharmaceutically acceptable excipient, and/or any additional ingredients in a pharmaceutical composition in accordance with the invention will vary, depending upon the identity, size, and/or condition of the subject treated and further depending upon the route by which the composition is to be administered. By way of example, the composition may comprise between 0.05% and 100%, e.g., between 0.1 and 75%, between 0.5 and 50%, between 1-30%, between 5-80%, at least 80% (w/w) active ingredient.


The conjugates or particles of the present invention can be formulated using one or more excipients to: (1) increase stability; (2) permit the sustained or delayed release (e.g., from a depot formulation of the monomaleimide); (3) alter the biodistribution (e.g., target the monomaleimide compounds to specific tissues or cell types); (4) alter the release profile of the monomaleimide compounds in vivo. Non-limiting examples of the excipients include any and all solvents, dispersion media, diluents, or other liquid vehicles, dispersion or suspension aids, surface active agents, isotonic agents, thickening or emulsifying agents, and preservatives. Excipients of the present invention may also include, without limitation, lipidoids, liposomes, lipid nanoparticles, polymers, lipoplexes, core-shell nanoparticles, peptides, proteins, hyaluronidase, nanoparticle mimics and combinations thereof. Accordingly, the formulations of the invention may include one or more excipients, each in an amount that together increases the stability of the monomaleimide compounds.


In some embodiments, the conjugates or particles of the present invention are formulated in aqueous formulations such as pH 7.4 phosphate-buffered formulation, or pH 6.2 citrate-buffered formulation; formulations for lyophilization such as pH 6.2 citrate-buffered formulation with 3% mannitol, pH 6.2 citrate-buffered formulation with 4% mannitol/1% sucrose; or a formulation prepared by the process disclosed in U.S. Pat. No. 8,883,737 to Reddy et al. (Endocyte), the contents of which are incorporated herein by reference in their entirety.


In some embodiments, the conjugates or particles of the present invention targets folate receptors and are formulated in liposomes prepared following methods by Leamon et al. in Bioconjugate Chemistry, vol. 14 738-747 (2003), the contents of which are incorporated herein by reference in their entirety. Briefly, folate-targeted liposomes will consist of 40 mole % cholesterol, either 4 mole % or 6 mole % polyethyleneglycol (Mr˜2000)-derivatized phosphatidylethanolamine (PEG2000-PE, Nektar, Ala., Huntsville, Ala.), either 0.03 mole % or 0.1 mole % folate-cysteine-PEG3400-PE and the remaining mole % will be composed of egg phosphatidylcholine, as disclosed in U.S. Pat. No. 8,765,096 to Leamon et al. (Endocyte), the contents of which are incorporated herein by reference in their entirety. Lipids in chloroform will be dried to a thin film by rotary evaporation and then rehydrated in PBS containing the drug. Rehydration will be accomplished by vigorous vortexing followed by 10 cycles of freezing and thawing. Liposomes will be extruded 10 times through a 50 nm pore size polycarbonate membrane using a high-pressure extruder. Similarly, liposomes not targeting folate receports may be prepared identically with the absence of folate-cysteine-PEG3400-PE.


In some embodiments, the conjugates or particles of the present invention are formulated in parenteral dosage forms including but limited to aqueous solutions of the conjugates or particles, in an isotonic saline, 5% glucose or other pharmaceutically acceptable liquid carriers such as liquid alcohols, glycols, esters, and amides, as disclosed in U.S. Pat. No. 7,910,594 to Vlahov et al. (Endocyte), the contents of which are incorporated herein by reference in their entirety. The parenteral dosage form may be in the form of a reconstitutable lyophilizate comprising the dose of the conjugates or particles. Any prolonged release dosage forms known in the art can be utilized such as, for example, the biodegradable carbohydrate matrices described in U.S. Pat. Nos. 4,713,249; 5,266,333; and 5,417,982, the disclosures of which are incorporated herein by reference, or, alternatively, a slow pump (e.g., an osmotic pump) can be used.


In some embodiments, the parenteral formulations are aqueous solutions containing carriers or excipients such as salts, carbohydrates and buffering agents (e.g., at a pH of from 3 to 9). In some embodiments, the conjugates or particles of the present invention may be formulated as a sterile non-aqueous solution or as a dried form and may be used in conjunction with a suitable vehicle such as sterile, pyrogen-free water. The preparation of parenteral formulations under sterile conditions, for example, by lyophilization under sterile conditions, may readily be accomplished using standard pharmaceutical techniques well-known to those skilled in the art. The solubility of a conjugates or particles used in the preparation of a parenteral formulation may be increased by the use of appropriate formulation techniques, such as the incorporation of solubility-enhancing agents.


In some embodiments, the conjugates or particles of the present invention may be prepared in an aqueous sterile liquid formulation comprising monobasic sodium phosphate monohydrate, dibasic disodium phosphate dihydrate, sodium chloride, potassium chloride and water for injection, as disclosed in US 20140140925 to Leamon et al., the contents of which are incorporated herein by reference in their entirety. For example, the conjugates or particles of the present invention may be formulated in an aqueous liquid of pH 7.4, phosphate buffered formulation for intravenous administration as disclosed in Example 23 of WO2011014821 to Leamon et al. (Endocyte), the contents of which are incorporated herein by reference in their entirety. According to Leamon, the aqueous formulation needs to be stored in the frozen state to ensure its stability.


In some embodiments, the conjugates or particles of the present invention are formulated for intravenous (IV) administration. Any formulation or any formulation prepared according to the process disclosed in US 20140030321 to Ritter et al. (Endocyte), the contents of which are incorporated herein by reference in their entirety, may be used. For example, the conjugates or particles may be formulated in an aqueous sterile liquid formulation of pH 7.4 phosphate buffered composition comprising sodium phosphate, monobasic monohydrate, disodium phosphate, dibasic dehydrate, sodium chloride, and water for injection. As another example, the conjugates or particles may be formulated in pH 6.2 citrated-buffered formulation comprising trisodium citrate, dehydrate, citric acid and water for injection. As another example, the conjugates or particles may be formulated with 3% mannitol in a pH 6.2 citrate-buffered formulation for lyophilization comprising trisodium citrate, dehydrate, citric acid and mannitol. 3% mannitol may be replaced with 4% mannitol and 1% sucrose.


In some embodiments, the particles comprise biocompatible polymers. In some embodiments, the particles comprise about 0.2 to about 35 weight percent of a therapeutic agent; and about 10 to about 99 weight percent of a biocompatible polymer such as a diblock poly(lactic) acid-poly(ethylene)glycol as disclosed in US 20140356444 to Troiano et al. (BIND Therapeutics), the contents of which are incorporated herein by reference in their entirety. Any therapeutical particle composition in U.S. Pat. Nos. 8,663,700, 8,652,528, 8,609,142, 8,293,276 and 8,420,123, the contents of each of which are incorporated herein by reference in their entirety, may also be used.


In some embodiments, the particles comprise a hydrophobic acid. In some embodiments, the particles comprise about 0.05 to about 30 weight percent of a substantially hydrophobic acid; about 0.2 to about 20 weight percent of a basic therapeutic agent having a protonatable nitrogen; wherein the pKa of the basic therapeutic agent is at least about 1.0 pKa units greater than the pKa of the hydrophobic acid; and about 50 to about 99.75 weight percent of a diblock poly(lactic) acid-poly(ethylene)glycol copolymer or a diblock poly(lactic acid-co-glycolic acid)-poly(ethylene)glycol copolymer, wherein the therapeutic nanoparticle comprises about 10 to about 30 weight percent poly(ethylene)glycol as disclosed in WO2014043625 to Figueiredo et al. (BIND Therapeutics), the contents of which are incorporated herein by reference in their entirety. Any therapeutical particle composition in US 20140149158, 20140248358, 20140178475 to Figueiredo et al., the contents of each of which are incorporated herein by reference in their entirety, may also be used.


In some embodiments, the particles comprise a chemotherapeutic agent; a diblock copolymer of poly(ethylene)glycol and polylactic acid; and a ligand conjugate, as disclosed in US 20140235706 to Zale et al. (BIND Therapeutics), the contents of which are incorporated herein by reference in their entirety. Any of the particle compositions in U.S. Pat. Nos. 8,603,501, 8,603,500, 8,603,499, 8,273,363, 8,246,968, 20130172406 to Zale et al., may also be used.


In some embodiments, the particles comprise a targeting moiety. As a non-limiting example, the particles may comprise about 1 to about 20 mole percent PLA-PEG-basement vascular membrane targeting peptide, wherein the targeting peptide comprises PLA having a number average molecular weight of about 15 to about 20 kDa and PEG having a number average molecular weight of about 4 to about 6 kDa; about 10 to about 25 weight percent anti-neointimal hyperplasia (NIH) agent; and about 50 to about 90 weight percent non-targeted poly-lactic acid-PEG, wherein the therapeutic particle is capable of releasing the anti-NIH agent to a basement vascular membrane of a blood vessel for at least about 8 hours when the therapeutic particle is placed in the blood vessel as disclosed in U.S. Pat. No. 8,563,041 to Grayson et al. (BIND Therapeutics), the contents of which are incorporated herein by reference in their entirety.


In some embodiments, the particles comprise about 4 to about 25% by weight of an anti-cancer agent; about 40 to about 99% by weight of poly(D,L-lactic)acid-poly(ethylene)glycol copolymer; and about 0.2 to about 10 mole percent PLA-PEG-ligand; wherein the pharmaceutical aqueous suspension have a glass transition temperature between about 39 and 41° C., as disclosed in U.S. Pat. No. 8,518,963 to Ali et al. (BIND Therapeutics), the contents of which are incorporated herein by reference in their entirety.


In some embodiments, the particles comprise about 0.2 to about 35 weight percent of a therapeutic agent; about 10 to about 99 weight percent of a diblock poly(lactic) acid-poly(ethylene)glycol copolymer or a diblock poly(lactic)-co-poly (glycolic) acid-poly(ethylene)glycol copolymer; and about 0 to about 75 weight percent poly(lactic) acid or poly(lactic) acid-co-poly (glycolic) acid as disclosed in WO2012166923 to Zale et al. (BIND Therapeutics), the contents of which are incorporated herein by reference in their entirety.


In some embodiments, the particles are long circulating and may be formulated in a biocompatible and injectable formulation. For example, the particles may be a sterile, biocompatible and injectable nanoparticle composition comprising a plurality of long circulating nanoparticles having a diameter of about 70 to about 130 nm, each of the plurality of the long circulating nanoparticles comprising about 70 to about 90 weight percent poly(lactic) acid-co-poly(ethylene) glycol, wherein the weight ratio of poly(lactic) acid to poly(ethylene) glycol is about 15 kDa/2 kDa to about 20 kDa/10 kDa, and a therapeutic agent encapsulated in the nanoparticles as disclosed in US 20140093579 to Zale et al. (BIND Therapeutics), the contents of which are incorporated herein by reference in their entirety.


In some embodiments, provided is a reconstituted lyophilized pharmaceutical composition suitable for parenteral administration comprising the particles of the present invention and an appropriate lyoprotectant (bulking agent). For example, the reconstituted lyophilized pharmaceutical composition may comprise a 0.1-100 mg/mL concentration of polymeric nanoparticles in an aqueous medium; wherein the polymeric nanoparticles comprise: a poly(lactic) acid-block-poly(ethylene)glycol copolymer or poly(lactic)-co-poly(glycolic) acid-block-poly(ethylene)glycol copolymer, and a taxane agent; 4 to 6 weight percent sucrose or trehalose; and 7 to 12 weight percent hydroxypropyl β-cyclodextrin, as disclosed in U.S. Pat. No. 8,637,083 to Troiano et al. (BIND Therapeutics), the contents of which are incorporated herein by reference in their entirety. Any pharmaceutical composition in U.S. Pat. Nos. 8,603,535, 8,357,401, 20130230568, 20130243863 to Troiano et al. may also be used.


In some embodiments, the conjugates of the invention may be delivered with a bacteriophage. For example, a bacteriophage may be conjugated through a labile/non labile linker or directly to at least 1,000 therapeutic drug molecules such that the drug molecules are conjugated to the outer surface of the bacteriophage as disclosed in US 20110286971 to Yacoby et al., the contents of which are incorporated herein by reference in their entirety. According to Yacoby et al., the bacteriophage may comprise an exogenous targeting moiety that binds a cell surface molecule on a target cell.


In some embodiments, the conjugates of the invention may be delivered with a dendrimer. The conjugates may be encapsulated in a dendrimer, or disposed on the surface of a dendrimer. For example, the conjugates may bind to a scaffold for dendritic encapsulation, wherein the scaffold is covalently or non-covalently attached to a polysaccharide, as disclosed in US 20090036553 to Piccariello et al., the contents of which are incorporated herein by reference in their entirety. The scaffold may be any peptide or oligonucleotide scaffold disclosed by Piccariello et al.


In some embodiments, the conjugates of the invention may be delivered by a cyclodextrin. In one embodiment, the conjugates may be formulated with a polymer comprising a cyclodexrin moiety and a linker moiety as disclosed in US 20130288986 to Davis et al., the contents of which are incorporated herein by reference in their entirety. Davis et al. also teaches that the conjugate may be covalently attached to a polymer through a tether, wherein the tether comprises a self-cyclizing moiety.


In some embodiments, the conjugates of the invention may be delivered with an aliphatic polymer. For example, the aliphatic polymer may comprise polyesters with grafted zwitterions, such as polyester-graft-phosphorylcholine polymers prepared by ring-opening polymerization and click chemistry as disclosed in U.S. Pat. No. 8,802,738 to Emrick, the contents of which are incorporated herein by reference in their entirety. Excipients


Pharmaceutical formulations may additionally comprise a pharmaceutically acceptable excipient, which, as used herein, includes any and all solvents, dispersion media, diluents, or other liquid vehicles, dispersion or suspension aids, surface active agents, isotonic agents, thickening or emulsifying agents, preservatives, solid binders, lubricants and the like, as suited to the particular dosage form desired. Remington's The Science and Practice of Pharmacy, 21st Edition, A. R. Gennaro (Lippincott, Williams & Wilkins, Baltimore, Md., 2006; incorporated herein by reference in its entirety) discloses various excipients used in formulating pharmaceutical compositions and known techniques for the preparation thereof. Except insofar as any conventional excipient medium is incompatible with a substance or its derivatives, such as by producing any undesirable biological effect or otherwise interacting in a deleterious manner with any other component(s) of the pharmaceutical composition, its use is contemplated to be within the scope of this invention.


In some embodiments, a pharmaceutically acceptable excipient is at least 95%, at least 96%, at least 97%, at least 98%, at least 99%, or 100% pure. In some embodiments, an excipient is approved for use in humans and for veterinary use. In some embodiments, an excipient is approved by United States Food and Drug Administration. In some embodiments, an excipient is pharmaceutical grade. In some embodiments, an excipient meets the standards of the United States Pharmacopoeia (USP), the European Pharmacopoeia (EP), the British Pharmacopoeia, and/or the International Pharmacopoeia.


Pharmaceutically acceptable excipients used in the manufacture of pharmaceutical compositions include, but are not limited to, inert diluents, dispersing and/or granulating agents, surface active agents and/or emulsifiers, disintegrating agents, binding agents, preservatives, buffering agents, lubricating agents, and/or oils. Such excipients may optionally be included in pharmaceutical compositions.


Exemplary diluents include, but are not limited to, calcium carbonate, sodium carbonate, calcium phosphate, dicalcium phosphate, calcium sulfate, calcium hydrogen phosphate, sodium phosphate lactose, sucrose, cellulose, microcrystalline cellulose, kaolin, mannitol, sorbitol, inositol, sodium chloride, dry starch, cornstarch, powdered sugar, etc., and/or combinations thereof.


Exemplary granulating and/or dispersing agents include, but are not limited to, potato starch, corn starch, tapioca starch, sodium starch glycolate, clays, alginic acid, guar gum, citrus pulp, agar, bentonite, cellulose and wood products, natural sponge, cation-exchange resins, calcium carbonate, silicates, sodium carbonate, cross-linked poly(vinyl-pyrrolidone) (crospovidone), sodium carboxymethyl starch (sodium starch glycolate), carboxymethyl cellulose, cross-linked sodium carboxymethyl cellulose (croscarmellose), methylcellulose, pregelatinized starch (starch 1500), microcrystalline starch, water insoluble starch, calcium carboxymethyl cellulose, magnesium aluminum silicate (VEEGUM®), sodium lauryl sulfate, quaternary ammonium compounds, etc., and/or combinations thereof.


Exemplary surface active agents and/or emulsifiers include, but are not limited to, natural emulsifiers (e.g. acacia, agar, alginic acid, sodium alginate, tragacanth, chondrux, cholesterol, xanthan, pectin, gelatin, egg yolk, casein, wool fat, cholesterol, wax, and lecithin), colloidal clays (e.g. bentonite [aluminum silicate] and VEEGUM® [magnesium aluminum silicate]), long chain amino acid derivatives, high molecular weight alcohols (e.g. stearyl alcohol, cetyl alcohol, oleyl alcohol, triacetin monostearate, ethylene glycol distearate, glyceryl monostearate, and propylene glycol monostearate, polyvinyl alcohol), carbomers (e.g. carboxy polymethylene, polyacrylic acid, acrylic acid polymer, and carboxyvinyl polymer), carrageenan, cellulosic derivatives (e.g. carboxymethylcellulose sodium, powdered cellulose, hydroxymethyl cellulose, hydroxypropyl cellulose, hydroxypropyl methylcellulose, methylcellulose), sorbitan fatty acid esters (e.g. polyoxyethylene sorbitan monolaurate [TWEEN®20], polyoxyethylene sorbitan [TWEENn®60], polyoxyethylene sorbitan monooleate [TWEEN®80], sorbitan monopalmitate [SPAN®40], sorbitan monostearate [SPAN®60], sorbitan tristearate [SPAN®65], glyceryl monooleate, sorbitan monooleate [SPAN®80]), polyoxyethylene esters (e.g. polyoxyethylene monostearate [MYRJ®45], polyoxyethylene hydrogenated castor oil, polyethoxylated castor oil, polyoxymethylene stearate, and SOLUTOL®), sucrose fatty acid esters, polyethylene glycol fatty acid esters (e.g. CREMOPHOR®), polyoxyethylene ethers, (e.g. polyoxyethylene lauryl ether [BRIJ®30]), poly(vinyl-pyrrolidone), diethylene glycol monolaurate, triethanolamine oleate, sodium oleate, potassium oleate, ethyl oleate, oleic acid, ethyl laurate, sodium lauryl sulfate, PLUORINC®F 68, POLOXAMER®188, cetrimonium bromide, cetylpyridinium chloride, benzalkonium chloride, docusate sodium, etc. and/or combinations thereof.


Exemplary binding agents include, but are not limited to, starch (e.g. cornstarch and starch paste); gelatin; sugars (e.g. sucrose, glucose, dextrose, dextrin, molasses, lactose, lactitol, mannitol); natural and synthetic gums (e.g. acacia, sodium alginate, extract of Irish moss, panwar gum, ghatti gum, mucilage of isapol husks, carboxymethylcellulose, methylcellulose, ethylcellulose, hydroxyethylcellulose, hydroxypropyl cellulose, hydroxypropyl methylcellulose, microcrystalline cellulose, cellulose acetate, poly(vinyl-pyrrolidone), magnesium aluminum silicate (Veegum®), and larch arabogalactan); alginates; polyethylene oxide; polyethylene glycol; inorganic calcium salts; silicic acid; polymethacrylates; waxes; water; alcohol; etc.; and combinations thereof.


Exemplary preservatives may include, but are not limited to, antioxidants, chelating agents, antimicrobial preservatives, antifungal preservatives, alcohol preservatives, acidic preservatives, and/or other preservatives. Exemplary antioxidants include, but are not limited to, alpha tocopherol, ascorbic acid, acorbyl palmitate, butylated hydroxyanisole, butylated hydroxytoluene, monothioglycerol, potassium metabisulfite, propionic acid, propyl gallate, sodium ascorbate, sodium bisulfite, sodium metabisulfite, and/or sodium sulfite. Exemplary chelating agents include ethylenediaminetetraacetic acid (EDTA), citric acid monohydrate, disodium edetate, dipotassium edetate, edetic acid, fumaric acid, malic acid, phosphoric acid, sodium edetate, tartaric acid, and/or trisodium edetate. Exemplary antimicrobial preservatives include, but are not limited to, benzalkonium chloride, benzethonium chloride, benzyl alcohol, bronopol, cetrimide, cetylpyridinium chloride, chlorhexidine, chlorobutanol, chlorocresol, chloroxylenol, cresol, ethyl alcohol, glycerin, hexetidine, imidurea, phenol, phenoxyethanol, phenylethyl alcohol, phenylmercuric nitrate, propylene glycol, and/or thimerosal. Exemplary antifungal preservatives include, but are not limited to, butyl paraben, methyl paraben, ethyl paraben, propyl paraben, benzoic acid, hydroxybenzoic acid, potassium benzoate, potassium sorbate, sodium benzoate, sodium propionate, and/or sorbic acid. Exemplary alcohol preservatives include, but are not limited to, ethanol, polyethylene glycol, phenol, phenolic compounds, bisphenol, chlorobutanol, hydroxybenzoate, and/or phenylethyl alcohol. Exemplary acidic preservatives include, but are not limited to, vitamin A, vitamin C, vitamin E, beta-carotene, citric acid, acetic acid, dehydroacetic acid, ascorbic acid, sorbic acid, and/or phytic acid. Other preservatives include, but are not limited to, tocopherol, tocopherol acetate, deteroxime mesylate, cetrimide, butylated hydroxyanisol (BHA), butylated hydroxytoluened (BHT), ethylenediamine, sodium lauryl sulfate (SLS), sodium lauryl ether sulfate (SLES), sodium bisulfite, sodium metabisulfite, potassium sulfite, potassium metabisulfite, GLYDANT PLUS®, PHENONIP®, methylparaben, GERMALL®115, GERMABEN®II, NEOLONE™, KATHON™, and/or EUXYL®.


Exemplary buffering agents include, but are not limited to, citrate buffer solutions, acetate buffer solutions, phosphate buffer solutions, ammonium chloride, calcium carbonate, calcium chloride, calcium citrate, calcium glubionate, calcium gluceptate, calcium gluconate, D-gluconic acid, calcium glycerophosphate, calcium lactate, propanoic acid, calcium levulinate, pentanoic acid, dibasic calcium phosphate, phosphoric acid, tribasic calcium phosphate, calcium hydroxide phosphate, potassium acetate, potassium chloride, potassium gluconate, potassium mixtures, dibasic potassium phosphate, monobasic potassium phosphate, potassium phosphate mixtures, sodium acetate, sodium bicarbonate, sodium chloride, sodium citrate, sodium lactate, dibasic sodium phosphate, monobasic sodium phosphate, sodium phosphate mixtures, tromethamine, magnesium hydroxide, aluminum hydroxide, alginic acid, pyrogen-free water, isotonic saline, Ringer's solution, ethyl alcohol, etc., and/or combinations thereof.


Exemplary lubricating agents include, but are not limited to, magnesium stearate, calcium stearate, stearic acid, silica, talc, malt, glyceryl behanate, hydrogenated vegetable oils, polyethylene glycol, sodium benzoate, sodium acetate, sodium chloride, leucine, magnesium lauryl sulfate, sodium lauryl sulfate, etc., and combinations thereof.


Exemplary oils include, but are not limited to, almond, apricot kernel, avocado, babassu, bergamot, black current seed, borage, cade, camomile, canola, caraway, carnauba, castor, cinnamon, cocoa butter, coconut, cod liver, coffee, corn, cotton seed, emu, eucalyptus, evening primrose, fish, flaxseed, geraniol, gourd, grape seed, hazel nut, hyssop, isopropyl myristate, jojoba, kukui nut, lavandin, lavender, lemon, Litsea cubeba, macademia nut, mallow, mango seed, meadowfoam seed, mink, nutmeg, olive, orange, orange roughy, palm, palm kernel, peach kernel, peanut, poppy seed, pumpkin seed, rapeseed, rice bran, rosemary, safflower, sandalwood, sasquana, savoury, sea buckthorn, sesame, shea butter, silicone, soybean, sunflower, tea tree, thistle, tsubaki, vetiver, walnut, and wheat germ oils. Exemplary oils include, but are not limited to, butyl stearate, caprylic triglyceride, capric triglyceride, cyclomethicone, diethyl sebacate, dimethicone 360, isopropyl myristate, mineral oil, octyldodecanol, oleyl alcohol, silicone oil, and/or combinations thereof.


Excipients such as cocoa butter and suppository waxes, retinoid-like excipient (e.g. excipients that resemble vitamin A), coloring agents, coating agents, sweetening, flavoring, and/or perfuming agents can be present in the composition, according to the judgment of the formulator.


Lipidoids


The synthesis of lipidoids has been extensively described. Provided herein is lipidoids formulated and uses in delivering conjugates of the present invention. Complexes, micelles, liposomes or particles can be prepared containing these lipidoids and therefore, can result in an effective delivery of the conjugates of the present invention, as judged by the production of an encoded protein, following the injection of a lipidoid formulation via localized and/or systemic routes of administration. Lipidoid complexes of conjugates of the present invention can be administered by various means including, but not limited to, intravenous, intramuscular, or subcutaneous routes.


In vivo delivery of therapeutic agents may be affected by many parameters, including, but not limited to, the formulation composition, nature of particle PEGylation, degree of loading, drug to lipid ratio, and biophysical parameters such as, but not limited to, particle size (Akinc et al., Mol Ther. 2009 17:872-879; herein incorporated by reference in its entirety). As an example, small changes in the anchor chain length of poly(ethylene glycol) (PEG) lipids may result in significant effects on in vivo efficacy. Formulations with the different lipidoids, including, but not limited to penta[3-(1-laurylaminopropionyl)]-triethylenetetramine hydrochloride (TETA-5LAP; aka 98N12-5, see Murugaiah et al., Analytical Biochemistry, 401:61 (2010); herein incorporated by reference in its entirety), C12-200 (including derivatives and variants), and MD1, can be tested for in vivo activity.


The lipidoid referred to herein as “98N12-5” is disclosed by Akinc et al., Mol Ther. 2009 17:872-879 and is incorporated by reference in its entirety.


The lipidoid referred to herein as “C12-200” is disclosed by Love et al., Proc Natl Acad Sci USA. 2010 107:1864-1869 and Liu and Huang, Molecular Therapy. 2010 669-670 (see FIG. 1); both of which are herein incorporated by reference in their entirety. The lipidoid formulations can include particles comprising either 3 or 4 or more components in addition to conjugates of the present invention. As an example, formulations with certain lipidoids, include, but are not limited to, 98N12-5 and may contain 42% lipidoid, 48% cholesterol and 10% PEG (C14 alkyl chain length). As another example, formulations with certain lipidoids, include, but are not limited to, C12-200 and may contain 50% lipidoid, 10% disteroylphosphatidyl choline, 38.5% cholesterol, and 1.5% PEG-DMG.


In one embodiment, conjugates of the present invention formulated with a lipidoid for systemic intravenous administration can target the liver. For example, a final optimized intravenous formulation using conjugates of the present invention, and comprising a lipid molar composition of 42% 98N12-5, 48% cholesterol, and 10% PEG-lipid with a final weight ratio of about 7.5 to 1 total lipid to conjugates, and a C14 alkyl chain length on the PEG lipid, with a mean particle size of roughly 50-60 nm, can result in the distribution of the formulation to be greater than 90% to the liver. (see, Akinc et al., Mol Ther. 2009 17:872-879; herein incorporated by reference in its entirety). In another example, an intravenous formulation using a C12-200 (see U.S. provisional application 61/175,770 and published international application WO2010129709, each of which is herein incorporated by reference in their entirety) lipidoid may have a molar ratio of 50/10/38.5/1.5 of C12-200/disteroylphosphatidyl choline/cholesterol/PEG-DMG, with a weight ratio of 7 to 1 total lipid to conjugates, and a mean particle size of 80 nm may be effective to deliver conjugates of the present invention to hepatocytes (see, Love et al., Proc Natl Acad Sci USA. 2010 107:1864-1869 herein incorporated by reference in its entirety). In another embodiment, an MD1 lipidoid-containing formulation may be used to effectively deliver conjugates of the present invention to hepatocytes in vivo. The characteristics of optimized lipidoid formulations for intramuscular or subcutaneous routes may vary significantly depending on the target cell type and the ability of formulations to diffuse through the extracellular matrix into the blood stream. While a particle size of less than 150 nm may be desired for effective hepatocyte delivery due to the size of the endothelial fenestrate (see, Akinc et al., Mol Ther. 2009 17:872-879 herein incorporated by reference in its entirety), use of a lipidoid-formulated conjugates to deliver the formulation to other cells types including, but not limited to, endothelial cells, myeloid cells, and muscle cells may not be similarly size-limited. Use of lipidoid formulations to deliver therapeutic agents in vivo to other non-hepatocyte cells such as myeloid cells and endothelium has been reported (see Akinc et al., Nat Biotechnol. 2008 26:561-569; Leuschner et al., Nat Biotechnol. 201129:1005-1010; Cho et al. Adv. Funct. Mater. 2009 19:3112-3118; 8th International Judah Folkman Conference, Cambridge, Mass. Oct. 8-9, 2010; each of which is herein incorporated by reference in its entirety). Effective delivery to myeloid cells, such as monocytes, lipidoid formulations may have a similar component molar ratio. Different ratios of lipidoids and other components including, but not limited to, disteroylphosphatidyl choline, cholesterol and PEG-DMG, may be used to optimize the formulation of the conjugates for delivery to different cell types including, but not limited to, hepatocytes, myeloid cells, muscle cells, etc. For example, the component molar ratio may include, but is not limited to, 50% C12-200, 10% disteroylphosphatidyl choline, 38.5% cholesterol, and %1.5 PEG-DMG (see Leuschner et al., Nat Biotechnol 201129:1005-1010; herein incorporated by reference in its entirety). The use of lipidoid formulations for the localized delivery of conjugates to cells (such as, but not limited to, adipose cells and muscle cells) via either subcutaneous or intramuscular delivery, may not require all of the formulation components desired for systemic delivery, and as such may comprise only the lipidoid and the conjugates.


Liposomes, Lipoplexes, and Lipid Nanoparticles


The conjugates of the invention can be formulated using one or more liposomes, lipoplexes, or lipid nanoparticles. In one embodiment, pharmaceutical compositions of the conjugates of the invention include liposomes. Liposomes are artificially-prepared vesicles which may primarily be composed of a lipid bilayer and may be used as a delivery vehicle for the administration of nutrients and pharmaceutical formulations. Liposomes can be of different sizes such as, but not limited to, a multilamellar vesicle (MLV) which may be hundreds of nanometers in diameter and may contain a series of concentric bilayers separated by narrow aqueous compartments, a small unicellular vesicle (SUV) which may be smaller than 50 nm in diameter, and a large unilamellar vesicle (LUV) which may be between 50 and 500 nm in diameter. Liposome design may include, but is not limited to, opsonins or ligands in order to improve the attachment of liposomes to unhealthy tissue or to activate events such as, but not limited to, endocytosis. Liposomes may contain a low or a high pH in order to improve the delivery of the pharmaceutical formulations.


The formation of liposomes may depend on the physicochemical characteristics such as, but not limited to, the pharmaceutical formulation entrapped and the liposomal ingredients, the nature of the medium in which the lipid vesicles are dispersed, the effective concentration of the entrapped substance and its potential toxicity, any additional processes involved during the application and/or delivery of the vesicles, the optimization size, polydispersity and the shelf-life of the vesicles for the intended application, and the batch-to-batch reproducibility and possibility of large-scale production of safe and efficient liposomal products.


In one embodiment, pharmaceutical compositions described herein may include, without limitation, liposomes such as those formed from 1,2-dioleyloxy-N,N-dimethylaminopropane (DODMA) liposomes, DiLa2 liposomes from Marina Biotech (Bothell, Wash.), 1,2-dilinoleyloxy-3-dimethylaminopropane (DLin-DMA), 2,2-dilinoleyl-4-(2-dimethylaminoethyl)-[1,3]-dioxolane (DLin-KC2-DMA), and MC3 (US20100324120; herein incorporated by reference in its entirety) and liposomes which may deliver small molecule drugs such as, but not limited to, DOXIL® from Janssen Biotech, Inc. (Horsham, Pa.). The original manufacture method by Wheeler et al. was a detergent dialysis method, which was later improved by Jeffs et al. and is referred to as the spontaneous vesicle formation method. The liposome formulations are composed of 3 to 4 lipid components in addition to the conjugates of the invention. As an example a liposome can contain, but is not limited to, 55% cholesterol, 20% disteroylphosphatidyl choline (DSPC), 10% PEG-S-DSG, and 15% 1,2-dioleyloxy-N,N-dimethylaminopropane (DODMA), as described by Jeffs et al. As another example, certain liposome formulations may contain, but are not limited to, 48% cholesterol, 20% DSPC, 2% PEG-c-DMA, and 30% cationic lipid, where the cationic lipid can be 1,2-distearloxy-N,N-dimethylaminopropane (DSDMA), DODMA, DLin-DMA, or 1,2-dilinolenyloxy-3-dimethylaminopropane (DLenDMA), as described by Heyes et al.


In one embodiment, the conjugates of the invention may be formulated in a lipid vesicle which may have crosslinks between functionalized lipid bilayers.


In one embodiment, the conjugates of the invention may be formulated in a lipid-polycation complex. The formation of the lipid-polycation complex may be accomplished by methods known in the art and/or as described in U.S. Pub. No. 20120178702, herein incorporated by reference in its entirety. As a non-limiting example, the polycation may include a cationic peptide or a polypeptide such as, but not limited to, polylysine, polyornithine and/or polyarginine and the cationic peptides described in International Pub. No. WO2012013326; herein incorporated by reference in its entirety. In another embodiment, the conjugates of the invention may be formulated in a lipid-polycation complex which may further include a neutral lipid such as, but not limited to, cholesterol or dioleoyl phosphatidylethanolamine (DOPE).


The liposome formulation may be influenced by, but not limited to, the selection of the cationic lipid component, the degree of cationic lipid saturation, the nature of the PEGylation, ratio of all components and biophysical parameters such as size. In one example by Semple et al. (Semple et al. Nature Biotech. 2010 28:172-176; herein incorporated by reference in its entirety), the liposome formulation was composed of 57.1% cationic lipid, 7.1% dipalmitoylphosphatidylcholine, 34.3% cholesterol, and 1.4% PEG-c-DMA.


In some embodiments, the ratio of PEG in the lipid nanoparticle (LNP) formulations may be increased or decreased and/or the carbon chain length of the PEG lipid may be modified from C14 to C18 to alter the pharmacokinetics and/or biodistribution of the LNP formulations. As a non-limiting example, LNP formulations may contain 1-5% of the lipid molar ratio of PEG-c-DOMG as compared to the cationic lipid, DSPC and cholesterol. In another embodiment the PEG-c-DOMG may be replaced with a PEG lipid such as, but not limited to, PEG-DSG (1,2-Distearoyl-sn-glycerol, methoxypolyethylene glycol) or PEG-DPG (1,2-Dipalmitoyl-sn-glycerol, methoxypolyethylene glycol). The cationic lipid may be selected from any lipid known in the art such as, but not limited to, DLin-MC3-DMA, DLin-DMA, C12-200 and DLin-KC2-DMA.


In one embodiment, the cationic lipid may be selected from, but not limited to, a cationic lipid described in International Publication Nos. WO2012040184, WO2011153120, WO2011149733, WO2011090965, WO2011043913, WO2011022460, WO2012061259, WO2012054365, WO2012044638, WO2010080724, WO201021865 and WO2008103276, U.S. Pat. Nos. 7,893,302, 7,404,969 and 8,283,333 and US Patent Publication No. US20100036115 and US20120202871; each of which is herein incorporated by reference in their entirety. In another embodiment, the cationic lipid may be selected from, but not limited to, formula A described in International Publication Nos. WO2012040184, WO2011153120, WO2011149733, WO2011090965, WO2011043913, WO2011022460, WO2012061259, WO2012054365 and WO2012044638; each of which is herein incorporated by reference in their entirety. In yet another embodiment, the cationic lipid may be selected from, but not limited to, formula CLI-CLXXIX of International Publication No. WO2008103276, formula CLI-CLXXIX of U.S. Pat. No. 7,893,302, formula CLI-CLXXXXII of U.S. Pat. No. 7,404,969 and formula I-VI of US Patent Publication No. US20100036115; each of which is herein incorporated by reference in their entirety. As a non-limiting example, the cationic lipid may be selected from (20Z,23Z)—N,N-dimethylnonacosa-20,23-dien-10-amine, (17Z,20Z)—N,N-dimemylhexacosa-17,20-dien-9-amine, (1Z,19Z)—N5N-dimethylpentacosa-16, 19-dien-8-amine, (13Z,16Z)—N,N-dimethyldocosa-13,16-dien-5-amine, (12Z,15Z)—N,N-dimethylhenicosa-12,15-dien-4-amine, (14Z,17Z)—N,N-dimethyltricosa-14,17-dien-6-amine, (15Z,18Z)—N,N-dimethyltetracosa-15,18-dien-7-amine, (18Z,21Z)—N,N-dimethylheptacosa-18,21-dien-10-amine, (15Z,18Z)—N,N-dimethyltetracosa-15,18-dien-5-amine, (14Z,17Z)—N,N-dimethyltricosa-14,17-dien-4-amine, (19Z,22Z)—N,N-dimeihyloctacosa-19,22-dien-9-amine, (18Z,21 Z)—N,N-dimethylheptacosa-18,21-dien-8-amine, (17Z,20Z)—N,N-dimethylhexacosa-17,20-dien-7-amine, (16Z,19Z)—N,N-dimethylpentacosa-16,19-dien-6-amine, (22Z,25Z)—N,N-dimethylhentriaconta-22,25-dien-10-amine, (21 Z,24Z)—N,N-dimethyltriaconta-21,24-dien-9-amine, (18Z)—N,N-dimethylheptacos-18-en-10-amine, (17Z)—N,N-dimethylhexacos-17-en-9-amine, (19Z,22Z)—N,N-dimethyloctacosa-19,22-dien-7-amine, N,N-dimethylheptacosan-10-amine, (20Z,23Z)—N-ethyl-N-methylnonacosa-20,23-dien-10-amine, 1-[(11Z,14Z)-1-nonylicosa-11,14-dien-1-yl] pyrrolidine, (20Z)—N,N-dimethylheptacos-20-en-10-amine, (15Z)—N,N-dimethyl eptacos-15-en-10-amine, (14Z)—N,N-dimethylnonacos-14-en-10-amine, (17Z)—N,N-dimethylnonacos-17-en-10-amine, (24Z)—N,N-dimethyltritriacont-24-en-10-amine, (20Z)—N,N-dimethylnonacos-20-en-10-amine, (22Z)—N,N-dimethylhentriacont-22-en-10-amine, (16Z)—N,N-dimethylpentacos-16-en-8-amine, (12Z,15Z)—N,N-dimethyl-2-nonylhenicosa-12,15-dien-1-amine, (13Z,16Z)—N,N-dimethyl-3-nonyldocosa-13,16-dien-1-amine, N,N-dimethyl-1-[(1S,2R)-2-octylcyclopropyl] eptadecan-8-amine, 1-[(1S,2R)-2-hexylcyclopropyl]-N,N-dimethylnonadecan-10-amine, N,N-dimethyl-1-[(1S,2R)-2-octylcyclopropyl]nonadecan-10-amine, N,N-dimethyl-21-[(1S,2R)-2-octylcyclopropyl]henicosan-10-amine,N,N-dimethyl-1-[(1S,2S)-2-{[(1R,2R)-2-pentylcyclopropyl]methyl}cyclopropyl]nonadecan-10-amine,N,N-dimethyl-1-[(1S,2R)-2-octylcyclopropyl]hexadecan-8-amine, N,N-dimethyl-[(1R,2S)-2-undecylcyclopropyl]tetradecan-5-amine, N,N-dimethyl-3-{7-[(1S,2R)-2-octylcyclopropyl]heptyl} dodecan-1-amine, 1-[(1R,2S)-2-heptylcyclopropyl]-N,N-dimethyloctadecan-9-amine, 1-[(1S,2R)-2-decylcyclopropyl]-N,N-dimethylpentadecan-6-amine, N,N-dimethyl-1-[(1S,2R)-2-octylcyclopropyl]pentadecan-8-amine, R—N,N-dimethyl-1-[(9Z,12Z)-octadeca-9,12-dien-1-yloxy]-3-(octyloxy)propan-2-amine, S—N,N-dimethyl-1-[(9Z,12Z)-octadeca-9,12-dien-1-yloxy]-3-(octyloxy)propan-2-amine, 1-{2-[(9Z,12Z)-octadeca-9,12-dien-1-yloxy]-1-[(octyloxy)methyl]ethyl}pyrrolidine, (2S)—N,N-dimethyl-1-[(9Z,12Z)-octadeca-9,12-dien-1-yloxy]-3-[(5Z)-oct-5-en-1-yloxy]propan-2-amine, 1-{2-[(9Z,12Z)-octadeca-9,12-dien-1-yloxy]-1-[(octyloxy)methyl]ethyl}azetidine, (2S)-1-(hexyloxy)-N,N-dimethyl-3-[(9Z,12Z)-octadeca-9,12-dien-1-yloxy]propan-2-amine, (2S)-1-(heptyloxy)-N,N-dimethyl-3-[(9Z,12Z)-octadeca-9,12-dien-1-yloxy]propan-2-amine, N,N-dimethyl-1-(nonyloxy)-3-[(9Z,12Z)-octadeca-9,12-dien-1-yloxy]propan-2-amine, N,N-dimethyl-1-[(9Z)-octadec-9-en-1-yloxy]-3-(octyloxy)propan-2-amine; (2S)—N,N-dimethyl-1-[(6Z,9Z,12Z)-octadeca-6,9,12-trien-1-yloxy]-3-(octyloxy)propan-2-amine, (2S)-1-[(11Z,14Z)-icosa-11,14-dien-1-yloxy]-N,N-dimethyl-3-(pentyloxy)propan-2-amine, (2S)-1-(hexyloxy)-3-[(11Z,14Z)-icosa-11,14-dien-1-yloxy]-N,N-dimethylpropan-2-amine, 1-[(11Z,14Z)-icosa-11,14-dien-1-yloxy]-N,N-dimethyl-3-(octyloxy)propan-2-amine, 1-[(13Z,16Z)-docosa-13,16-dien-1-yloxy]-N,N-dimethyl-3-(octyloxy)propan-2-amine, (2S)-1-[(13Z,16Z)-docosa-13,16-dien-1-yloxy]-3-(hexyloxy)-N,N-dimethylpropan-2-amine, (2S)-1-[(13Z)-docos-13-en-1-yloxy]-3-(hexyloxy)-N,N-dimethylpropan-2-amine, 1-[(13Z)-docos-13-en-1-yloxy]-N,N-dimethyl-3-(octyloxy)propan-2-amine, 1-[(9Z)-hexadec-9-en-1-yloxy]-N,N-dimethyl-3-(octyloxy)propan-2-amine, (2R)—N,N-dimethyl-H(1-metoyloctyl)oxy]-3-[(9Z,12Z)-octadeca-9,12-dien-1-yloxy]propan-2-amine, (2R)-1-[(3,7-dimethyloctyl)oxy]-N,N-dimethyl-3-[(9Z,12Z)-octadeca-9,12-dien-1-yloxy]propan-2-amine, N,N-dimethyl-1-(octyloxy)-3-({8-[(1S,2S)-2-{[(1R,2R)-2-pentylcyclopropyl]methyl}cyclopropyl]octyl}oxy)propan-2-amine, N,N-dimethyl-1-{[8-(2-oclylcyclopropyl)octyl]oxy}-3-(octyloxy)propan-2-amine and (11E,20Z,23Z)—N,N-dimethylnonacosa-11,20,2-trien-10-amine or a pharmaceutically acceptable salt or stereoisomer thereof.


In one embodiment, the cationic lipid may be synthesized by methods known in the art and/or as described in International Publication Nos. WO2012040184, WO2011153120, WO2011149733, WO2011090965, WO2011043913, WO2011022460, WO2012061259, WO2012054365, WO2012044638, WO2010080724 and WO201021865; each of which is herein incorporated by reference in their entirety.


In one embodiment, the LNP formulation may contain PEG-c-DOMG at 3% lipid molar ratio. In another embodiment, the LNP formulation may contain PEG-c-DOMG at 1.5% lipid molar ratio.


In one embodiment, the LNP formulation may contain PEG-DMG 2000 (1,2-dimyristoyl-sn-glycero-3-phophoethanolamine-N-[methoxy(polyethylene glycol)-2000). In one embodiment, the LNP formulation may contain PEG-DMG 2000, a cationic lipid known in the art and at least one other component. In another embodiment, the LNP formulation may contain PEG-DMG 2000, a cationic lipid known in the art, DSPC and cholesterol. As a non-limiting example, the LNP formulation may contain PEG-DMG 2000, DLin-DMA, DSPC and cholesterol. As another non-limiting example the LNP formulation may contain PEG-DMG 2000, DLin-DMA, DSPC and cholesterol in a molar ratio of 2:40:10:48 (see e.g. Geall et al., Nonviral delivery of self-amplifying RNA vaccines, PNAS 2012; PMID: 22908294; herein incorporated by reference in its entirety).


In one embodiment, the LNP formulation may be formulated by the methods described in International Publication Nos. WO2011127255 or WO2008103276, each of which is herein incorporated by reference in their entirety. As a non-limiting example, conjugates described herein may be encapsulated in LNP formulations as described in WO2011127255 and/or WO2008103276; each of which is herein incorporated by reference in their entirety. As another non-limiting example, conjugates described herein may be formulated in a nanoparticle to be delivered by a parenteral route as described in U.S. Pub. No. 20120207845; herein incorporated by reference in its entirety.


In one embodiment, LNP formulations described herein may comprise a polycationic composition. As a non-limiting example, the polycationic composition may be selected from formula 1-60 of US Patent Publication No. US20050222064; herein incorporated by reference in its entirety. In another embodiment, the LNP formulations comprising a polycationic composition may be used for the delivery of the conjugates described herein in vivo and/or in vitro.


In one embodiment, the LNP formulations described herein may additionally comprise a permeability enhancer molecule. Non-limiting permeability enhancer molecules are described in US Patent Publication No. US20050222064; herein incorporated by reference in its entirety.


In one embodiment, the pharmaceutical compositions may be formulated in liposomes such as, but not limited to, DiLa2 liposomes (Marina Biotech, Bothell, Wash.), SMARTICLES® (Marina Biotech, Bothell, Wash.), neutral DOPC (1,2-dioleoyl-sn-glycero-3-phosphocholine) based liposomes (e.g., siRNA delivery for ovarian cancer (Landen et al. Cancer Biology & Therapy 2006 5(12)1708-1713); herein incorporated by reference in its entirety) and hyaluronan-coated liposomes (Quiet Therapeutics, Israel).


The nanoparticle formulations may be a carbohydrate nanoparticle comprising a carbohydrate carrier and conjugates of the present invention. As a non-limiting example, the carbohydrate carrier may include, but is not limited to, an anhydride-modified phytoglycogen or glycogen-type material, phtoglycogen octenyl succinate, phytoglycogen beta-dextrin, anhydride-modified phytoglycogen beta-dextrin. (See e.g., International Publication No. WO2012109121; herein incorporated by reference in its entirety).


Lipid nanoparticle formulations may be improved by replacing the cationic lipid with a biodegradable cationic lipid which is known as a rapidly eliminated lipid nanoparticle (reLNP). Ionizable cationic lipids, such as, but not limited to, DLinDMA, DLin-KC2-DMA, and DLin-MC3-DMA, have been shown to accumulate in plasma and tissues over time and may be a potential source of toxicity. The rapid metabolism of the rapidly eliminated lipids can improve the tolerability and therapeutic index of the lipid nanoparticles by an order of magnitude from a 1 mg/kg dose to a 10 mg/kg dose in rat. Inclusion of an enzymatically degraded ester linkage can improve the degradation and metabolism profile of the cationic component, while still maintaining the activity of the reLNP formulation. The ester linkage can be internally located within the lipid chain or it may be terminally located at the terminal end of the lipid chain. The internal ester linkage may replace any carbon in the lipid chain.


In one embodiment, the internal ester linkage may be located on either side of the saturated carbon. Non-limiting examples of reLNPs include,




embedded image


Lipid nanoparticles may be engineered to alter the surface properties of particles so the lipid nanoparticles may penetrate the mucosal barrier. Mucus is located on mucosal tissue such as, but not limited to, oral (e.g., the buccal and esophageal membranes and tonsil tissue), ophthalmic, gastrointestinal (e.g., stomach, small intestine, large intestine, colon, rectum), nasal, respiratory (e.g., nasal, pharyngeal, tracheal and bronchial membranes), genital (e.g., vaginal, cervical and urethral membranes). Nanoparticles larger than 10-200 nm which are preferred for higher drug encapsulation efficiency and the ability to provide the sustained delivery of a wide array of drugs have been thought to be too large to rapidly diffuse through mucosal barriers. Mucus is continuously secreted, shed, discarded or digested and recycled so most of the trapped particles may be removed from the mucosla tissue within seconds or within a few hours. Large polymeric nanoparticles (200 nm-500 nm in diameter) which have been coated densely with a low molecular weight polyethylene glycol (PEG) diffused through mucus only 4 to 6-fold lower than the same particles diffusing in water (Lai et al. PNAS 2007 104(5):1482-487; Lai et al. Adv Drug Deliv Rev. 2009 61(2): 158-171; each of which is herein incorporated by reference in their entirety). The transport of nanoparticles may be determined using rates of permeation and/or fluorescent microscopy techniques including, but not limited to, fluorescence recovery after photobleaching (FRAP) and high resolution multiple particle tracking (MPT). As a non-limiting example, compositions which can penetrate a mucosal barrier may be made as described in U.S. Pat. No. 8,241,670, herein incorporated by reference in its entirety.


The lipid nanoparticle engineered to penetrate mucus may comprise a polymeric material (i.e. a polymeric core) and/or a polymer-vitamin conjugate and/or a tri-block co-polymer. The polymeric material may include, but is not limited to, polyamines, polyethers, polyamides, polyesters, polycarbamates, polyureas, polycarbonates, poly(styrenes), polyimides, polysulfones, polyurethanes, polyacetylenes, polyethylenes, polyethyeneimines, polyisocyanates, polyacrylates, polymethacrylates, polyacrylonitriles, and polyarylates. The polymeric material may be biodegradable and/or biocompatible. The polymeric material may additionally be irradiated. As a non-limiting example, the polymeric material may be gamma irradiated (See e.g., International App. No. WO201282165, herein incorporated by reference in its entirety). Non-limiting examples of specific polymers include poly(caprolactone) (PCL), ethylene vinyl acetate polymer (EVA), poly(lactic acid) (PLA), poly(L-lactic acid) (PLLA), poly(glycolic acid) (PGA), poly(lactic acid-co-glycolic acid) (PLGA), poly(L-lactic acid-co-glycolic acid) (PLLGA), poly(D,L-lactide) (PDLA), poly(L-lactide) (PLLA), poly(D,L-lactide-co-caprolactone), poly(D,L-lactide-co-caprolactone-co-glycolide), poly(D,L-lactide-co-PEO-co-D,L-lactide), poly(D,L-lactide-co-PPO-co-D,L-lactide), polyalkyl cyanoacralate, polyurethane, poly-L-lysine (PLL), hydroxypropyl methacrylate (HPMA), polyethyleneglycol, poly-L-glutamic acid, poly(hydroxy acids), polyanhydrides, polyorthoesters, poly(ester amides), polyamides, poly(ester ethers), polycarbonates, polyalkylenes such as polyethylene and polypropylene, polyalkylene glycols such as poly(ethylene glycol) (PEG), polyalkylene oxides (PEO), polyalkylene terephthalates such as poly(ethylene terephthalate), polyvinyl alcohols (PVA), polyvinyl ethers, polyvinyl esters such as poly(vinyl acetate), polyvinyl halides such as poly(vinyl chloride) (PVC), polyvinylpyrrolidone, polysiloxanes, polystyrene (PS), polyurethanes, derivatized celluloses such as alkyl celluloses, hydroxyalkyl celluloses, cellulose ethers, cellulose esters, nitro celluloses, hydroxypropylcellulose, carboxymethylcellulose, polymers of acrylic acids, such as poly(methyl(meth)acrylate) (PMMA), poly(ethyl(meth)acrylate), poly(butyl(meth)acrylate), poly(isobutyl(meth)acrylate), poly(hexyl(meth)acrylate), poly(isodecyl(meth)acrylate), poly(lauryl(meth)acrylate), poly(phenyl(meth)acrylate), poly(methyl acrylate), poly(isopropyl acrylate), poly(isobutyl acrylate), poly(octadecyl acrylate) and copolymers and mixtures thereof, polydioxanone and its copolymers, polyhydroxyalkanoates, polypropylene fumarate, polyoxymethylene, poloxamers, poly(ortho)esters, poly(butyric acid), poly(valeric acid), poly(lactide-co-caprolactone), and trimethylene carbonate, polyvinylpyrrolidone. The lipid nanoparticle may be coated or associated with a co-polymer such as, but not limited to, a block co-polymer, and (poly(ethylene glycol))-(poly(propylene oxide))-(poly(ethylene glycol)) triblock copolymer (see e.g., US Publication 20120121718 and US Publication 20100003337 and U.S. Pat. No. 8,263,665; each of which is herein incorporated by reference in their entirety). The co-polymer may be a polymer that is generally regarded as safe (GRAS) and the formation of the lipid nanoparticle may be in such a way that no new chemical entities are created. For example, the lipid nanoparticle may comprise poloxamers coating PLGA nanoparticles without forming new chemical entities which are still able to rapidly penetrate human mucus (Yang et al. Angew. Chem. Int. Ed. 2011 50:2597-2600; herein incorporated by reference in its entirety).


The vitamin of the polymer-vitamin conjugate may be vitamin E. The vitamin portion of the conjugate may be substituted with other suitable components such as, but not limited to, vitamin A, vitamin E, other vitamins, cholesterol, a hydrophobic moiety, or a hydrophobic component of other surfactants (e.g., sterol chains, fatty acids, hydrocarbon chains and alkylene oxide chains).


The lipid nanoparticle engineered to penetrate mucus may include surface altering agents such as, but not limited to, anionic proteins (e.g., bovine serum albumin), surfactants (e.g., cationic surfactants such as for example dimethyldioctadecyl-ammonium bromide), sugars or sugar derivatives (e.g., cyclodextrin), nucleic acids, polymers (e.g., heparin, polyethylene glycol and poloxamer), mucolytic agents (e.g., N-acetylcysteine, mugwort, bromelain, papain, clerodendrum, acetylcysteine, bromhexine, carbocisteine, eprazinone, mesna, ambroxol, sobrerol, domiodol, letosteine, stepronin, tiopronin, gelsolin, thymosin β4 dornase alfa, neltenexine, erdosteine) and various DNases including rhDNase. The surface altering agent may be embedded or enmeshed in the particle's surface or disposed (e.g., by coating, adsorption, covalent linkage, or other process) on the surface of the lipid nanoparticle. (see e.g., US Publication 20100215580 and US Publication 20080166414; each of which is herein incorporated by reference in their entirety).


The mucus penetrating lipid nanoparticles may comprise at least one conjugate described herein. The conjugate may be encapsulated in the lipid nanoparticle and/or disposed on the surface of the particle. The conjugate may be covalently coupled to the lipid nanoparticle. Formulations of mucus penetrating lipid nanoparticles may comprise a plurality of nanoparticles. Further, the formulations may contain particles which may interact with the mucus and alter the structural and/or adhesive properties of the surrounding mucus to decrease mucoadhesion which may increase the delivery of the mucus penetrating lipid nanoparticles to the mucosal tissue.


In one embodiment, the conjugate of the invention is formulated as a lipoplex, such as, without limitation, the ATUPLEX™ system, the DACC system, the DBTC system and other siRNA-lipoplex technology from Silence Therapeutics (London, United Kingdom), STEMFECT™ from STEMGENT® (Cambridge, Mass.), and polyethylenimine (PEI) or protamine-based targeted and non-targeted delivery of therapeutic agents (Aleku et al. Cancer Res. 2008 68:9788-9798; Strumberg et al. Int J Clin Pharmacol Ther 2012 50:76-78; Santel et al., Gene Ther 2006 13:1222-1234; Santel et al., Gene Ther 2006 13:1360-1370; Gutbier et al., Pulm Pharmacol. Ther. 2010 23:334-344; Kaufmann et al. Microvasc Res 2010 80:286-293 Weide et al. J Immunother. 2009 32:498-507; Weide et al. J Immunother. 2008 31:180-188; Pascolo Expert Opin. Biol. Ther. 4:1285-1294; Fotin-Mleczek et al., 2011 J. Immunother. 34:1-15; Song et al., Nature Biotechnol. 2005, 23:709-717; Peer et al., Proc Natl Acad Sci USA. 2007 6; 104:4095-4100; deFougerolles Hum Gene Ther. 2008 19:125-132; all of which are incorporated herein by reference in its entirety).


In one embodiment such formulations may also be constructed or compositions altered such that they passively or actively are directed to different cell types in vivo, including but not limited to hepatocytes, immune cells, tumor cells, endothelial cells, antigen presenting cells, and leukocytes (Akinc et al. Mol Ther. 2010 18:1357-1364; Song et al., Nat Biotechnol. 2005 23:709-717; Judge et al., J Clin Invest. 2009 119:661-673; Kaufmann et al., Microvasc Res 2010 80:286-293; Santel et al., Gene Ther 2006 13:1222-1234; Santel et al., Gene Ther 2006 13:1360-1370; Gutbier et al., Pulm Pharmacol. Ther. 2010 23:334-344; Basha et al., Mol. Ther. 2011 19:2186-2200; Fenske and Cullis, Expert Opin Drug Deliv. 2008 5:25-44; Peer et al., Science. 2008 319:627-630; Peer and Lieberman, Gene Ther. 2011 18:1127-1133; all of which are incorporated herein by reference in its entirety). One example of passive targeting of formulations to liver cells includes the DLin-DMA, DLin-KC2-DMA and DLin-MC3-DMA-based lipid nanoparticle formulations which have been shown to bind to apolipoprotein E and promote binding and uptake of these formulations into hepatocytes in vivo (Akinc et al. Mol Ther. 2010 18:1357-1364; herein incorporated by reference in its entirety). Formulations can also be selectively targeted through expression of different ligands on their surface as exemplified by, but not limited by, folate, transferrin, N-acetylgalactosamine (GalNAc), and antibody targeted approaches (Kolhatkar et al., Curr Drug Discov Technol. 2011 8:197-206; Musacchio and Torchilin, Front Biosci. 2011 16:1388-1412; Yu et al., Mol Membr Biol. 2010 27:286-298; Patil et al., Crit Rev Ther Drug Carrier Syst. 2008 25:1-61; Benoit et al., Biomacromolecules. 2011 12:2708-2714; Zhao et al., Expert Opin Drug Deliv. 2008 5:309-319; Akinc et al., Mol Ther. 2010 18:1357-1364; Srinivasan et al., Methods Mol Biol. 2012 820:105-116; Ben-Arie et al., Methods Mol Biol. 2012 757:497-507; Peer 2010 J Control Release. 20:63-68; Peer et al., Proc Natl Acad Sci USA. 2007 104:4095-4100; Kim et al., Methods Mol Biol. 2011 721:339-353; Subramanya et al., Mol Ther. 2010 18:2028-2037; Song et al., Nat Biotechnol. 2005 23:709-717; Peer et al., Science. 2008 319:627-630; Peer and Lieberman, Gene Ther. 2011 18:1127-1133; all of which are incorporated herein by reference in its entirety).


In one embodiment, the conjugates of the invention are formulated as a solid lipid nanoparticle. A solid lipid nanoparticle (SLN) may be spherical with an average diameter between 10 to 1000 nm. SLN possess a solid lipid core matrix that can solubilize lipophilic molecules and may be stabilized with surfactants and/or emulsifiers. In a further embodiment, the lipid nanoparticle may be a self-assembly lipid-polymer nanoparticle (see Zhang et al., ACS Nano, 2008, 2 (8), pp 1696-1702; herein incorporated by reference in its entirety).


In one embodiment, the conjugates of the invention can be formulated for controlled release and/or targeted delivery. As used herein, “controlled release” refers to a pharmaceutical composition or compound release profile that conforms to a particular pattern of release to effect a therapeutic outcome. In one embodiment, the conjugates of the invention may be encapsulated into a delivery agent described herein and/or known in the art for controlled release and/or targeted delivery. As used herein, the term “encapsulate” means to enclose, surround or encase. As it relates to the formulation of the conjugates of the invention, encapsulation may be substantial, complete or partial. The term “substantially encapsulated” means that at least greater than 50, 60, 70, 80, 85, 90, 95, 96, 97, 98, 99, 99.9, 99.9 or greater than 99.999% of conjugate of the invention may be enclosed, surrounded or encased within the particle. “Partially encapsulation” means that less than 10, 10, 20, 30, 40 50 or less of the conjugate of the invention may be enclosed, surrounded or encased within the particle. For example, at least 1, 5, 10, 20, 30, 40, 50, 60, 70, 80, 85, 90, 95, 96, 97, 98, 99, 99.9, 99.99 or greater than 99.99% of the pharmaceutical composition or compound of the invention are encapsulated in the particle.


In one embodiment, the controlled release formulation may include, but is not limited to, tri-block co-polymers. As a non-limiting example, the formulation may include two different types of tri-block co-polymers (International Pub. No. WO2012131104 and WO2012131106; each of which is herein incorporated by reference in its entirety).


In another embodiment, the conjugates of the invention may be encapsulated into a lipid nanoparticle or a rapidly eliminated lipid nanoparticle and the lipid nanoparticles or a rapidly eliminated lipid nanoparticle may then be encapsulated into a polymer, hydrogel and/or surgical sealant described herein and/or known in the art. As a non-limiting example, the polymer, hydrogel or surgical sealant may be PLGA, ethylene vinyl acetate (EVAc), poloxamer, GELSITE® (Nanotherapeutics, Inc. Alachua, Fla.), HYLENEX® (Halozyme Therapeutics, San Diego Calif.), surgical sealants such as fibrinogen polymers (Ethicon Inc. Cornelia, Ga.), TISSELL® (Baxter International, Inc Deerfield, Ill.), PEG-based sealants, and COSEAL® (Baxter International, Inc Deerfield, Ill.).


In another embodiment, the lipid nanoparticle may be encapsulated into any polymer known in the art which may form a gel when injected into a subject. As a non-limiting example, the lipid nanoparticle may be encapsulated into a polymer matrix which may be biodegradable.


In one embodiment, the conjugate formulation for controlled release and/or targeted delivery may also include at least one controlled release coating. Controlled release coatings include, but are not limited to, OPADRY®, polyvinylpyrrolidone/vinyl acetate copolymer, polyvinylpyrrolidone, hydroxypropyl methylcellulose, hydroxypropyl cellulose, hydroxyethyl cellulose, EUDRAGIT RL®, EUDRAGIT RS® and cellulose derivatives such as ethylcellulose aqueous dispersions (AQUACOAT® and SURELEASE®).


In one embodiment, the controlled release and/or targeted delivery formulation may comprise at least one degradable polyester which may contain polycationic side chains. Degradable polyesters include, but are not limited to, poly(serine ester), poly(L-lactide-co-L-lysine), poly(4-hydroxy-L-proline ester), and combinations thereof. In another embodiment, the degradable polyesters may include a PEG conjugation to form a PEGylated polymer.


In one embodiment, the conjugate of the present invention may be encapsulated in a therapeutic nanoparticle. Therapeutic nanoparticles may be formulated by methods described herein and known in the art such as, but not limited to, International Pub Nos. WO2010005740, WO2010030763, WO2010005721, WO2010005723, WO2012054923, US Pub. Nos. US20110262491, US20100104645, US20100087337, US20100068285, US20110274759, US20100068286 and US20120288541, and U.S. Pat. Nos. 8,206,747, 8,293,276 8,318,208 and 8,318,211; each of which is herein incorporated by reference in their entirety. In another embodiment, therapeutic polymer nanoparticles may be identified by the methods described in US Pub No. US20120140790, herein incorporated by reference in its entirety.


In one embodiment, the therapeutic nanoparticle may be formulated for sustained release. As used herein, “sustained release” refers to a pharmaceutical composition or compound that conforms to a release rate over a specific period of time. The period of time may include, but is not limited to, hours, days, weeks, months and years. As a non-limiting example, the sustained release nanoparticle may comprise a polymer and a therapeutic agent such as, but not limited to, the conjugate of the present invention (see International Pub No. 2010075072 and US Pub No. US20100216804, US20110217377 and US20120201859, each of which is herein incorporated by reference in their entirety).


In one embodiment, the therapeutic nanoparticles may be formulated to be target specific. As a non-limiting example, the therapeutic nanoparticles may include a corticosteroid (see International Pub. No. WO2011084518 herein incorporated by reference in its entirety). In one embodiment, the therapeutic nanoparticles of the present invention may be formulated to be cancer specific. As a non-limiting example, the therapeutic nanoparticles may be formulated in nanoparticles described in International Pub No. WO2008121949, WO2010005726, WO2010005725, WO2011084521 and US Pub No. US20100069426, US20120004293 and US20100104655, each of which is herein incorporated by reference in their entirety.


In one embodiment, the nanoparticles of the present invention may comprise a polymeric matrix. As a non-limiting example, the nanoparticle may comprise two or more polymers such as, but not limited to, polyethylenes, polycarbonates, polyanhydrides, polyhydroxyacids, polypropylfumerates, polycaprolactones, polyamides, polyacetals, polyethers, polyesters, poly(orthoesters), polycyanoacrylates, polyvinyl alcohols, polyurethanes, polyphosphazenes, polyacrylates, polymethacrylates, polycyanoacrylates, polyureas, polystyrenes, polyamines, polylysine, poly(ethylene imine), poly(serine ester), poly(L-lactide-co-L-lysine), poly(4-hydroxy-L-proline ester) or combinations thereof.


In one embodiment, the therapeutic nanoparticle comprises a diblock copolymer. In one embodiment, the diblock copolymer may include PEG in combination with a polymer such as, but not limited to, polyethylenes, polycarbonates, polyanhydrides, polyhydroxyacids, polypropylfumerates, polycaprolactones, polyamides, polyacetals, polyethers, polyesters, poly(orthoesters), polycyanoacrylates, polyvinyl alcohols, polyurethanes, polyphosphazenes, polyacrylates, polymethacrylates, polycyanoacrylates, polyureas, polystyrenes, polyamines, polylysine, poly(ethylene imine), poly(serine ester), poly(L-lactide-co-L-lysine), poly(4-hydroxy-L-proline ester) or combinations thereof.


As a non-limiting example the therapeutic nanoparticle comprises a PLGA-PEG block copolymer (see US Pub. No. US20120004293 and U.S. Pat. No. 8,236,330, each of which is herein incorporated by reference in their entirety). In another non-limiting example, the therapeutic nanoparticle is a stealth nanoparticle comprising a diblock copolymer of PEG and PLA or PEG and PLGA (see U.S. Pat. No. 8,246,968, herein incorporated by reference in its entirety).


In one embodiment, the therapeutic nanoparticle may comprise a multiblock copolymer (See e.g., U.S. Pat. Nos. 8,263,665 and 8,287,910; each of which is herein incorporated by reference in its entirety).


In one embodiment, the block copolymers described herein may be included in a polyion complex comprising a non-polymeric micelle and the block copolymer. (See e.g., U.S. Pub. No. 20120076836; herein incorporated by reference in its entirety).


In one embodiment, the therapeutic nanoparticle may comprise at least one acrylic polymer. Acrylic polymers include but are not limited to, acrylic acid, methacrylic acid, acrylic acid and methacrylic acid copolymers, methyl methacrylate copolymers, ethoxyethyl methacrylates, cyanoethyl methacrylate, amino alkyl methacrylate copolymer, poly(acrylic acid), poly(methacrylic acid), polycyanoacrylates and combinations thereof.


In one embodiment, the therapeutic nanoparticles may comprise at least one cationic polymer described herein and/or known in the art.


In one embodiment, the therapeutic nanoparticles may comprise at least one amine-containing polymer such as, but not limited to polylysine, polyethylene imine, poly(amidoamine) dendrimers, poly(beta-amino esters) (See e.g., U.S. Pat. No. 8,287,849; herein incorporated by reference in its entirety) and combinations thereof.


In one embodiment, the therapeutic nanoparticles may comprise at least one degradable polyester which may contain polycationic side chains. Degradable polyesters include, but are not limited to, poly(serine ester), poly(L-lactide-co-L-lysine), poly(4-hydroxy-L-proline ester), and combinations thereof. In another embodiment, the degradable polyesters may include a PEG conjugation to form a PEGylated polymer.


In another embodiment, the therapeutic nanoparticle may include a conjugation of at least one targeting ligand. The targeting ligand may be any ligand known in the art such as, but not limited to, a monoclonal antibody. (Kirpotin et al, Cancer Res. 2006 66:6732-6740; herein incorporated by reference in its entirety).


In one embodiment, the therapeutic nanoparticle may be formulated in an aqueous solution which may be used to target cancer (see International Pub No. WO2011084513 and US Pub No. US20110294717, each of which is herein incorporated by reference in their entirety).


In one embodiment, the conjugates of the invention may be encapsulated in, linked to and/or associated with synthetic nanocarriers. Synthetic nanocarriers include, but are not limited to, those described in International Pub. Nos. WO2010005740, WO2010030763, WO201213501, WO2012149252, WO2012149255, WO2012149259, WO2012149265, WO2012149268, WO2012149282, WO2012149301, WO2012149393, WO2012149405, WO2012149411 and WO2012149454 and US Pub. Nos. US20110262491, US20100104645, US20100087337 and US20120244222, each of which is herein incorporated by reference in their entirety. The synthetic nanocarriers may be formulated using methods known in the art and/or described herein. As a non-limiting example, the synthetic nanocarriers may be formulated by the methods described in International Pub Nos. WO2010005740, WO2010030763 and WO201213501 and US Pub. Nos. US20110262491, US20100104645, US20100087337 and US20120244222, each of which is herein incorporated by reference in their entirety. In another embodiment, the synthetic nanocarrier formulations may be lyophilized by methods described in International Pub. No. WO2011072218 and U.S. Pat. No. 8,211,473; each of which is herein incorporated by reference in their entirety.


In one embodiment, the synthetic nanocarriers may contain reactive groups to release the conjugates described herein (see International Pub. No. WO20120952552 and US Pub No. US20120171229, each of which is herein incorporated by reference in their entirety).


In one embodiment, the synthetic nanocarriers may be formulated for targeted release. In one embodiment, the synthetic nanocarrier is formulated to release the conjugates at a specified pH and/or after a desired time interval. As a non-limiting example, the synthetic nanoparticle may be formulated to release the conjugates after 24 hours and/or at a pH of 4.5 (see International Pub. Nos. WO2010138193 and WO2010138194 and US Pub Nos. US20110020388 and US20110027217, each of which is herein incorporated by reference in their entirety).


In one embodiment, the synthetic nanocarriers may be formulated for controlled and/or sustained release of conjugates described herein. As a non-limiting example, the synthetic nanocarriers for sustained release may be formulated by methods known in the art, described herein and/or as described in International Pub No. WO2010138192 and US Pub No. 20100303850, each of which is herein incorporated by reference in their entirety.


In one embodiment, the nanoparticle may be optimized for oral administration. The nanoparticle may comprise at least one cationic biopolymer such as, but not limited to, chitosan or a derivative thereof. As a non-limiting example, the nanoparticle may be formulated by the methods described in U.S. Pub. No. 20120282343; herein incorporated by reference in its entirety.


Polymers, Biodegradable Nanoparticles, and Core-Shell Nanoparticles


The conjugates of the invention can be formulated using natural and/or synthetic polymers. Non-limiting examples of polymers which may be used for delivery include, but are not limited to, DYNAMIC POLYCONJUGATE® (Arrowhead Research Corp., Pasadena, Calif.) formulations from MIRUS® Bio (Madison, Wis.) and Roche Madison (Madison, Wis.), PHASERX™ polymer formulations such as, without limitation, SMARTT POLYMER TECHNOLOGY™ (Seattle, Wash.), DMRI/DOPE, poloxamer, VAXFECTIN® adjuvant from Vical (San Diego, Calif.), chitosan, cyclodextrin from Calando Pharmaceuticals (Pasadena, Calif.), dendrimers and poly(lactic-co-glycolic acid) (PLGA) polymers, RONDEL™ (RNAi/Oligonucleotide Nanoparticle Delivery) polymers (Arrowhead Research Corporation, Pasadena, Calif.) and pH responsive co-block polymers such as, but not limited to, PHASERX™ (Seattle, Wash.).


A non-limiting example of chitosan formulation includes a core of positively charged chitosan and an outer portion of negatively charged substrate (U.S. Pub. No. 20120258176; herein incorporated by reference in its entirety). Chitosan includes, but is not limited to N-trimethyl chitosan, mono-N-carboxymethyl chitosan (MCC), N-palmitoyl chitosan (NPCS), EDTA-chitosan, low molecular weight chitosan, chitosan derivatives, or combinations thereof.


In one embodiment, the polymers used in the present invention have undergone processing to reduce and/or inhibit the attachment of unwanted substances such as, but not limited to, bacteria, to the surface of the polymer. The polymer may be processed by methods known and/or described in the art and/or described in International Pub. No. WO2012150467, herein incorporated by reference in its entirety.


A non-limiting example of PLGA formulations include, but are not limited to, PLGA injectable depots (e.g., ELIGARD® which is formed by dissolving PLGA in 66% N-methyl-2-pyrrolidone (NMP) and the remainder being aqueous solvent and leuprolide. Once injected, the PLGA and leuprolide peptide precipitates into the subcutaneous space).


Many of these polymer approaches have demonstrated efficacy in delivering therapeutic agents in vivo into the cell cytoplasm (reviewed in deFougerolles Hum Gene Ther. 2008 19:125-132; herein incorporated by reference in its entirety). Two polymer approaches that have yielded robust in vivo delivery of nucleic acids, in this case with small interfering RNA (siRNA), are dynamic polyconjugates and cyclodextrin-based nanoparticles. The first of these delivery approaches uses dynamic polyconjugates and has been shown in vivo in mice to effectively deliver siRNA and silence endogenous target mRNA in hepatocytes (Rozema et al., Proc Natl Acad Sci USA. 2007 104:12982-12887; herein incorporated by reference in its entirety). This particular approach is a multicomponent polymer system whose key features include a membrane-active polymer to which nucleic acid, in this case siRNA, is covalently coupled via a disulfide bond and where both PEG (for charge masking) and N-acetylgalactosamine (for hepatocyte targeting) groups are linked via pH-sensitive bonds (Rozema et al., Proc Natl Acad Sci USA. 2007 104:12982-12887; herein incorporated by reference in its entirety). On binding to the hepatocyte and entry into the endosome, the polymer complex disassembles in the low-pH environment, with the polymer exposing its positive charge, leading to endosomal escape and cytoplasmic release of the siRNA from the polymer. Through replacement of the N-acetylgalactosamine group with a mannose group, it was shown one could alter targeting from asialoglycoprotein receptor-expressing hepatocytes to sinusoidal endothelium and Kupffer cells. Another polymer approach involves using transferrin-targeted cyclodextrin-containing polycation nanoparticles. These nanoparticles have demonstrated targeted silencing of the EWS-FLIJ gene product in transferrin receptor-expressing Ewing's sarcoma tumor cells (Hu-Lieskovan et al., Cancer Res. 2005 65: 8984-8982; herein incorporated by reference in its entirety) and siRNA formulated in these nanoparticles was well tolerated in non-human primates (Heidel et al., Proc Natl Acad Sci USA 2007 104:5715-21; herein incorporated by reference in its entirety). Both of these delivery strategies incorporate rational approaches using both targeted delivery and endosomal escape mechanisms.


The polymer formulation can permit the sustained or delayed release of the conjugates of the invention (e.g., following intramuscular or subcutaneous injection). The polymer formulation may also be used to increase the stability of the conjugate. Biodegradable polymers have been previously used to protect conjugates from degradation and been shown to result in sustained release of payloads in vivo (Rozema et al., Proc Natl Acad Sci USA. 2007 104:12982-12887; Sullivan et al., Expert Opin Drug Deliv. 2010 7:1433-1446; Convertine et al., Biomacromolecules. 2010 Oct. 1; Chu et al., Acc Chem Res. 2012 Jan. 13; Manganiello et al., Biomaterials. 2012 33:2301-2309; Benoit et al., Biomacromolecules. 2011 12:2708-2714; Singha et al., Nucleic Acid Ther. 20112:133-147; deFougerolles Hum Gene Ther. 2008 19:125-132; Schaffert and Wagner, Gene Ther. 2008 16:1131-1138; Chaturvedi et al., Expert Opin Drug Deliv. 2011 8:1455-1468; Davis, Mol Pharm. 2009 6:659-668; Davis, Nature 2010 464:1067-1070; each of which is herein incorporated by reference in its entirety).


In one embodiment, the pharmaceutical compositions may be sustained release formulations. In a further embodiment, the sustained release formulations may be for subcutaneous delivery. Sustained release formulations may include, but are not limited to, PLGA microspheres, ethylene vinyl acetate (EVAc), poloxamer, GELSITE® (Nanotherapeutics, Inc. Alachua, Fla.), HYLENEX® (Halozyme Therapeutics, San Diego Calif.), surgical sealants such as fibrinogen polymers (Ethicon Inc. Cornelia, Ga.), TISSELL® (Baxter International, Inc Deerfield, Ill.), PEG-based sealants, and COSEAL® (Baxter International, Inc Deerfield, Ill.).


As a non-limiting example conjugates of the present invention may be formulated in PLGA microspheres by preparing the PLGA microspheres with tunable release rates (e.g., days and weeks) and encapsulating conjugates of the present invention in the PLGA microspheres while maintaining the integrity of conjugates of the present invention during the encapsulation process. EVAc are non-biodegradable, biocompatible polymers which are used extensively in pre-clinical sustained release implant applications (e.g., extended release products Ocusert a pilocarpine ophthalmic insert for glaucoma or progestasert a sustained release progesterone intrauterine device; transdermal delivery systems Testoderm, Duragesic and Selegiline; catheters). Poloxamer F-407 NF is a hydrophilic, non-ionic surfactant triblock copolymer of polyoxyethylene-polyoxypropylene-polyoxyethylene having a low viscosity at temperatures less than 5° C. and forms a solid gel at temperatures greater than 15° C. PEG-based surgical sealants comprise two synthetic PEG components mixed in a delivery device which can be prepared in one minute, seals in 3 minutes and is reabsorbed within 30 days. GELSITE® and natural polymers are capable of in-situ gelation at the site of administration. They have been shown to interact with protein and peptide therapeutic candidates through ionic interaction to provide a stabilizing effect.


Polymer formulations can also be selectively targeted through expression of different ligands as exemplified by, but not limited by, folate, transferrin, and N-acetylgalactosamine (GalNAc) (Benoit et al., Biomacromolecules. 2011 12:2708-2714; Rozema et al., Proc Natl Acad Sci USA. 2007 104:12982-12887; Davis, Mol Pharm. 2009 6:659-668; Davis, Nature 2010 464:1067-1070; each of which is herein incorporated by reference in its entirety).


The conjugates of the invention may be formulated with or in a polymeric compound. The polymer may include at least one polymer such as, but not limited to, polyethenes, polyethylene glycol (PEG), poly(l-lysine)(PLL), PEG grafted to PLL, cationic lipopolymer, biodegradable cationic lipopolymer, polyethyleneimine (PEI), cross-linked branched poly(alkylene imines), a polyamine derivative, a modified poloxamer, a biodegradable polymer, elastic biodegradable polymer, biodegradable block copolymer, biodegradable random copolymer, biodegradable polyester copolymer, biodegradable polyester block copolymer, biodegradable polyester block random copolymer, multiblock copolymers, linear biodegradable copolymer, poly[α-(4-aminobutyl)-L-glycolic acid) (PAGA), biodegradable cross-linked cationic multi-block copolymers, polycarbonates, polyanhydrides, polyhydroxyacids, polypropylfumerates, polycaprolactones, polyamides, polyacetals, polyethers, polyesters, poly(orthoesters), polycyanoacrylates, polyvinyl alcohols, polyurethanes, polyphosphazenes, polyacrylates, polymethacrylates, polycyanoacrylates, polyureas, polystyrenes, polyamines, polylysine, poly(ethylene imine), poly(serine ester), poly(L-lactide-co-L-lysine), poly(4-hydroxy-L-proline ester), acrylic polymers, amine-containing polymers, dextran polymers, dextran polymer derivatives or combinations thereof.


As a non-limiting example, the conjugate of the invention may be formulated with the polymeric compound of PEG grafted with PLL as described in U.S. Pat. No. 6,177,274; herein incorporated by reference in its entirety. In another example, the conjugate may be suspended in a solution or medium with a cationic polymer, in a dry pharmaceutical composition or in a solution that is capable of being dried as described in U.S. Pub. Nos. 20090042829 and 20090042825; each of which are herein incorporated by reference in their entireties.


As another non-limiting example the conjugate of the invention may be formulated with a PLGA-PEG block copolymer (see US Pub. No. US20120004293 and U.S. Pat. No. 8,236,330, each of which are herein incorporated by reference in their entireties) or PLGA-PEG-PLGA block copolymers (See U.S. Pat. No. 6,004,573, herein incorporated by reference in its entirety). As a non-limiting example, the conjugate of the invention may be formulated with a diblock copolymer of PEG and PLA or PEG and PLGA (see U.S. Pat. No. 8,246,968, herein incorporated by reference in its entirety).


A polyamine derivative maybe used to deliver conjugates of the invention or to treat and/or prevent a disease or to be included in an implantable or injectable device (U.S. Pub. No. 20100260817 herein incorporated by reference in its entirety). As a non-limiting example, a pharmaceutical composition may include the conjugates of the invention and the polyamine derivative described in U.S. Pub. No. 20100260817 (the contents of which are incorporated herein by reference in its entirety). As a non-limiting example the conjugates of the invention may be delivered using a polyaminde polymer such as, but not limited to, a polymer comprising a 1,3-dipolar addition polymer prepared by combining a carbohydrate diazide monomer with a dilkyne unite comprising oligoamines (U.S. Pat. No. 8,236,280; herein incorporated by reference in its entirety).


The conjugate of the invention maybe formulated with at least one acrylic polymer. Acrylic polymers include but are not limited to, acrylic acid, methacrylic acid, acrylic acid and methacrylic acid copolymers, methyl methacrylate copolymers, ethoxyethyl methacrylates, cyanoethyl methacrylate, amino alkyl methacrylate copolymer, poly(acrylic acid), poly(methacrylic acid), polycyanoacrylates and combinations thereof.


In one embodiment, the conjugates of the invention may be formulated with at least one polymer and/or derivatives thereof described in International Publication Nos. WO2011115862, WO2012082574 and WO2012068187 and U.S. Pub. No. 20120283427, each of which are herein incorporated by reference in their entireties. In another embodiment, the conjugates of the invention may be formulated with a polymer of formula Z as described in WO2011115862, herein incorporated by reference in its entirety. In yet another embodiment, the conjugates of the invention may be formulated with a polymer of formula Z, Z′ or Z″ as described in International Pub. Nos. WO2012082574 or WO2012068187, each of which are herein incorporated by reference in their entireties. The polymers formulated with the conjugates of the present invention may be synthesized by the methods described in International Pub. Nos. WO2012082574 or WO2012068187, each of which are herein incorporated by reference in their entireties.


Formulations of conjugates of the invention may include at least one amine-containing polymer such as, but not limited to polylysine, polyethylene imine, poly(amidoamine) dendrimers or combinations thereof.


For example, the conjugate of the invention may be formulated in a pharmaceutical compound including a poly(alkylene imine), a biodegradable cationic lipopolymer, a biodegradable block copolymer, a biodegradable polymer, or a biodegradable random copolymer, a biodegradable polyester block copolymer, a biodegradable polyester polymer, a biodegradable polyester random copolymer, a linear biodegradable copolymer, PAGA, a biodegradable cross-linked cationic multi-block copolymer or combinations thereof. The biodegradable cationic lipopolymer may be made by methods known in the art and/or described in U.S. Pat. No. 6,696,038, U.S. App. Nos. 20030073619 and 20040142474 each of which is herein incorporated by reference in their entireties. The poly(alkylene imine) may be made using methods known in the art and/or as described in U.S. Pub. No. 20100004315, herein incorporated by reference in its entirety. The biodegradable polymer, biodegradable block copolymer, the biodegradable random copolymer, biodegradable polyester block copolymer, biodegradable polyester polymer, or biodegradable polyester random copolymer may be made using methods known in the art and/or as described in U.S. Pat. Nos. 6,517,869 and 6,267,987, the contents of which are each incorporated herein by reference in their entirety. The linear biodegradable copolymer may be made using methods known in the art and/or as described in U.S. Pat. No. 6,652,886. The PAGA polymer may be made using methods known in the art and/or as described in U.S. Pat. No. 6,217,912 herein incorporated by reference in its entirety. The PAGA polymer may be copolymerized to form a copolymer or block copolymer with polymers such as but not limited to, poly-L-lysine, polyargine, polyornithine, histones, avidin, protamines, polylactides and poly(lactide-co-glycolides). The biodegradable cross-linked cationic multi-block copolymers may be made my methods known in the art and/or as described in U.S. Pat. No. 8,057,821 or U.S. Pub. No. 2012009145 each of which are herein incorporated by reference in their entireties. For example, the multi-block copolymers may be synthesized using linear polyethyleneimine (LPEI) blocks which have distinct patterns as compared to branched polyethyleneimines. Further, the composition or pharmaceutical composition may be made by the methods known in the art, described herein, or as described in U.S. Pub. No. 20100004315 or U.S. Pat. Nos. 6,267,987 and 6,217,912 each of which are herein incorporated by reference in their entireties.


The conjugates of the invention may be formulated with at least one degradable polyester which may contain polycationic side chains. Degradable polyesters include, but are not limited to, poly(serine ester), poly(L-lactide-co-L-lysine), poly(4-hydroxy-L-proline ester), and combinations thereof. In another embodiment, the degradable polyesters may include a PEG conjugation to form a PEGylated polymer.


The conjugate of the invention may be formulated with at least one crosslinkable polyester. Crosslinkable polyesters include those known in the art and described in US Pub. No. 20120269761, herein incorporated by reference in its entirety.


In one embodiment, the polymers described herein may be conjugated to a lipid-terminating PEG. As a non-limiting example, PLGA may be conjugated to a lipid-terminating PEG forming PLGA-DSPE-PEG. As another non-limiting example, PEG conjugates for use with the present invention are described in International Publication No. WO2008103276, herein incorporated by reference in its entirety. The polymers may be conjugated using a ligand conjugate such as, but not limited to, the conjugates described in U.S. Pat. No. 8,273,363, herein incorporated by reference in its entirety.


In one embodiment, the conjugates of the invention may be conjugated with another compound. Non-limiting examples of conjugates are described in U.S. Pat. Nos. 7,964,578 and 7,833,992, each of which are herein incorporated by reference in their entireties. In another embodiment, the conjugates of the invention may be conjugated with conjugates of formula 1-122 as described in U.S. Pat. Nos. 7,964,578 and 7,833,992, each of which are herein incorporated by reference in their entireties. The conjugates described herein may be conjugated with a metal such as, but not limited to, gold. (See e.g., Giljohann et al. Journ. Amer. Chem. Soc. 2009 131(6): 2072-2073; herein incorporated by reference in its entirety). In another embodiment, the conjugates of the invention may be conjugated and/or encapsulated in gold-nanoparticles. (International Pub. No. WO201216269 and U.S. Pub. No. 20120302940; each of which is herein incorporated by reference in its entirety).


In one embodiment, the polymer formulation of the present invention may be stabilized by contacting the polymer formulation, which may include a cationic carrier, with a cationic lipopolymer which may be covalently linked to cholesterol and polyethylene glycol groups. The polymer formulation may be contacted with a cationic lipopolymer using the methods described in U.S. Pub. No. 20090042829 herein incorporated by reference in its entirety. The cationic carrier may include, but is not limited to, polyethylenimine, poly(trimethylenimine), poly(tetramethylenimine), polypropylenimine, aminoglycoside-polyamine, dideoxy-diamino-b-cyclodextrin, spermine, spermidine, poly(2-dimethylamino)ethyl methacrylate, poly(lysine), poly(histidine), poly(arginine), cationized gelatin, dendrimers, chitosan, 1,2-Dioleoyl-3-Trimethylammonium-Propane (DOTAP), N-[1-(2,3-dioleoyloxy)propyl]-N,N,N-trimethylammonium chloride (DOTMA), 1-[2-(oleoyloxy)ethyl]-2-oleyl-3-(2-hydroxyethyl)imidazolinium chloride (DOTIM), 2,3-dioleyloxy-N-[2(sperminecarboxamido)ethyl]-N,N-dimethyl-1-propanaminium trifluoroacetate (DOSPA), 3B—[N—(N′,N′-Dimethylaminoethane)-carbamoyl]Cholesterol Hydrochloride (DC-Cholesterol HCl) diheptadecylamidoglycyl spermidine (DOGS), N,N-distearyl-N,N-dimethylammonium bromide (DDAB), N-(1,2-dimyristyloxyprop-3-yl)-N,N-dimethyl-N-hydroxyethyl ammonium bromide (DMRIE), N,N-dioleyl-N,N-dimethylammonium chloride DODAC) and combinations thereof.


The conjugates of the invention may be formulated in a polyplex of one or more polymers (U.S. Pub. No. 20120237565 and 20120270927; each of which is herein incorporated by reference in its entirety). In one embodiment, the polyplex comprises two or more cationic polymers. The cationic polymer may comprise a poly(ethylene imine) (PEI) such as linear PEI.


The conjugates of the invention can also be formulated as a nanoparticle using a combination of polymers, lipids, and/or other biodegradable agents, such as, but not limited to, calcium phosphate. Components may be combined in a core-shell, hybrid, and/or layer-by-layer architecture, to allow for fine-tuning of the nanoparticle so that delivery of the conjugates of the invention may be enhanced (Wang et al., Nat Mater. 2006 5:791-796; Fuller et al., Biomaterials. 2008 29:1526-1532; DeKoker et al., Adv Drug Deliv Rev. 201163:748-761; Endres et al., Biomaterials. 201132:7721-7731; Su et al., Mol Pharm. 2011 Jun. 6; 8(3):774-87; each of which is herein incorporated by reference in its entirety). As a non-limiting example, the nanoparticle may comprise a plurality of polymers such as, but not limited to hydrophilic-hydrophobic polymers (e.g., PEG-PLGA), hydrophobic polymers (e.g., PEG) and/or hydrophilic polymers (International Pub. No. WO20120225129; herein incorporated by reference in its entirety).


Biodegradable calcium phosphate nanoparticles in combination with lipids and/or polymers have been shown to deliver therapeutic agents in vivo. In one embodiment, a lipid coated calcium phosphate nanoparticle, which may also contain a targeting ligand such as anisamide, may be used to deliver the conjugate of the present invention. For example, to effectively deliver a therapeutic agent in a mouse metastatic lung model a lipid coated calcium phosphate nanoparticle was used (Li et al., J Contr Rel. 2010 142: 416-421; Li et al., J Contr Rel. 2012 158:108-114; Yang et al., Mol Ther. 2012 20:609-615; herein incorporated by reference in its entirety). This delivery system combines both a targeted nanoparticle and a component to enhance the endosomal escape, calcium phosphate, in order to improve delivery of the therapeutic agent.


In one embodiment, calcium phosphate with a PEG-polyanion block copolymer disclosed in Kazikawa et al., J Contr Rel. 2004 97:345-356; Kazikawa et al., J Contr Rel. 2006 111:368-370, herein incorporated by reference in its entirety, may be used to deliver conjugates of the present invention.


In one embodiment, a PEG-charge-conversional polymer (Pitella et al., Biomaterials. 201132:3106-3114) may be used to form a nanoparticle to deliver the conjugate of the present invention. The PEG-charge-conversional polymer may improve upon the PEG-polyanion block copolymers by being cleaved into a polycation at acidic pH, thus enhancing endosomal escape.


The use of core-shell nanoparticles has additionally focused on a high-throughput approach to synthesize cationic cross-linked nanogel cores and various shells (Siegwart et al., Proc Natl Acad Sci USA. 2011 108:12996-13001). The complexation, delivery, and internalization of the polymeric nanoparticles can be precisely controlled by altering the chemical composition in both the core and shell components of the nanoparticle. For example, the core-shell nanoparticles may efficiently deliver a therapeutic agent to mouse hepatocytes after they covalently attach cholesterol to the nanoparticle.


In one embodiment, a hollow lipid core comprising a middle PLGA layer and an outer neutral lipid layer containing PEG may be used to delivery of the conjugate of the present invention. As a non-limiting example, in mice bearing a luciferase-expressing tumor, it was determined that the lipid-polymer-lipid hybrid nanoparticle significantly suppressed luciferase expression, as compared to a conventional lipoplex (Shi et al, Angew Chem Int Ed. 2011 50:7027-7031; herein incorporated by reference in its entirety).


In one embodiment, the lipid nanoparticles may comprise a core of the conjugates disclosed herein and a polymer shell. The polymer shell may be any of the polymers described herein and are known in the art. In an additional embodiment, the polymer shell may be used to protect the modified nucleic acids in the core.


Core-shell nanoparticles for use with the conjugates of the present invention are described and may be formed by the methods described in U.S. Pat. No. 8,313,777 herein incorporated by reference in its entirety.


In one embodiment, the core-shell nanoparticles may comprise a core of the conjugates disclosed herein and a polymer shell. The polymer shell may be any of the polymers described herein and are known in the art. In an additional embodiment, the polymer shell may be used to protect the modified nucleic acid molecules in the core.


Peptides and Proteins


The conjugate of the invention can be formulated with peptides and/or proteins in order to increase penetration of cells by the conjugates of the invention. In one embodiment, peptides such as, but not limited to, cell penetrating peptides and proteins and peptides that enable intracellular delivery may be used to deliver pharmaceutical formulations. A non-limiting example of a cell penetrating peptide which may be used with the pharmaceutical formulations of the present invention include a cell-penetrating peptide sequence attached to polycations that facilitates delivery to the intracellular space, e.g., HIV-derived TAT peptide, penetratins, transportans, or hCT derived cell-penetrating peptides (see, e.g., Caron et al., Mol. Ther. 3(3):310-8 (2001); Langel, Cell-Penetrating Peptides: Processes and Applications (CRC Press, Boca Raton Fla., 2002); El-Andaloussi et al., Curr. Pharm. Des. 11(28):3597-611 (2003); and Deshayes et al., Cell. Mol. Life Sci. 62(16):1839-49 (2005), all of which are incorporated herein by reference). The compositions can also be formulated to include a cell penetrating agent, e.g., liposomes, which enhance delivery of the compositions to the intracellular space. The conjugates of the invention may be complexed to peptides and/or proteins such as, but not limited to, peptides and/or proteins from Aileron Therapeutics (Cambridge, Mass.) and Permeon Biologics (Cambridge, Mass.) in order to enable intracellular delivery (Cronican et al., ACS Chem. Biol. 2010 5:747-752; McNaughton et al., Proc. Natl. Acad. Sci. USA 2009 106:6111-6116; Sawyer, Chem Biol Drug Des. 2009 73:3-6; Verdine and Hilinski, Methods Enzymol. 2012; 503:3-33; all of which are herein incorporated by reference in its entirety).


In one embodiment, the cell-penetrating polypeptide may comprise a first domain and a second domain. The first domain may comprise a supercharged polypeptide. The second domain may comprise a protein-binding partner. As used herein, “protein-binding partner” includes, but are not limited to, antibodies and functional fragments thereof, scaffold proteins, or peptides. The cell-penetrating polypeptide may further comprise an intracellular binding partner for the protein-binding partner. The cell-penetrating polypeptide may be capable of being secreted from a cell where conjugates of the invention may be introduced.


Administration


The conjugates or particles of the present invention may be administered by any route which results in a therapeutically effective outcome. These include, but are not limited to enteral, gastroenteral, epidural, oral, transdermal, epidural (peridural), intracerebral (into the cerebrum), intracerebroventricular (into the cerebral ventricles), epicutaneous (application onto the skin), intradermal, (into the skin itself), subcutaneous (under the skin), nasal administration (through the nose), intravenous (into a vein), intraarterial (into an artery), intramuscular (into a muscle), intracardiac (into the heart), intraosseous infusion (into the bone marrow), intrathecal (into the spinal canal), intraperitoneal, (infusion or injection into the peritoneum), intravesical infusion, intravitreal, (through the eye), intracavernous injection, (into the base of the penis), intravaginal administration, intrauterine, extra-amniotic administration, transdermal (diffusion through the intact skin for systemic distribution), transmucosal (diffusion through a mucous membrane), insufflation (snorting), sublingual, sublabial, enema, eye drops (onto the conjunctiva), or in ear drops. In specific embodiments, compositions may be administered in a way which allows them cross the blood-brain barrier, vascular barrier, or other epithelial barrier.


The formulations described herein contain an effective amount of conjugates or particles in a pharmaceutical carrier appropriate for administration to an individual in need thereof. The may be administered parenterally (e.g., by injection or infusion). The formulations or variations thereof may be administered in any manner including enterally, topically (e.g., to the eye), or via pulmonary administration. In some embodiments the formulations are administered topically.


A. Parenteral Formulations


The conjugates or particles can be formulated for parenteral delivery, such as injection or infusion, in the form of a solution, suspension or emulsion. The formulation can be administered systemically, regionally or directly to the organ or tissue to be treated.


Parenteral formulations can be prepared as aqueous compositions using techniques known in the art. Typically, such compositions can be prepared as injectable formulations, for example, solutions or suspensions; solid forms suitable for using to prepare solutions or suspensions upon the addition of a reconstitution medium prior to injection; emulsions, such as water-in-oil (w/o) emulsions, oil-in-water (o/w) emulsions, and microemulsions thereof, liposomes, or emulsomes.


The carrier can be a solvent or dispersion medium containing, for example, water, ethanol, one or more polyols (e.g., glycerol, propylene glycol, and liquid polyethylene glycol), oils, such as vegetable oils (e.g., peanut oil, corn oil, sesame oil, etc.), and combinations thereof. The proper fluidity can be maintained, for example, by the use of a coating, such as lecithin, by the maintenance of the required particle size in the case of dispersion and/or by the use of surfactants. In many cases, it will be preferable to include isotonic agents, for example, sugars or sodium chloride.


Solutions and dispersions of the particles can be prepared in water or another solvent or dispersing medium suitably mixed with one or more pharmaceutically acceptable excipients including, but not limited to, surfactants, dispersants, emulsifiers, pH modifying agents, and combinations thereof.


Suitable surfactants may be anionic, cationic, amphoteric or nonionic surface active agents. Suitable anionic surfactants include, but are not limited to, those containing carboxylate, sulfonate and sulfate ions. Examples of anionic surfactants include sodium, potassium, ammonium of long chain alkyl sulfonates and alkyl aryl sulfonates such as sodium dodecylbenzene sulfonate; dialkyl sodium sulfosuccinates, such as sodium dodecylbenzene sulfonate; dialkyl sodium sulfosuccinates, such as sodium bis-(2-ethylthioxyl)-sulfosuccinate; and alkyl sulfates such as sodium lauryl sulfate. Cationic surfactants include, but are not limited to, quaternary ammonium compounds such as benzalkonium chloride, benzethonium chloride, cetrimonium bromide, stearyl dimethylbenzyl ammonium chloride, polyoxyethylene and coconut amine. Examples of nonionic surfactants include ethylene glycol monostearate, propylene glycol myristate, glyceryl monostearate, glyceryl stearate, polyglyceryl-4-oleate, sorbitan acylate, sucrose acylate, PEG-150 laurate, PEG-400 monolaurate, polyoxyethylene monolaurate, polysorbates, polyoxyethylene octylphenylether, PEG-1000 cetyl ether, polyoxyethylene tridecyl ether, polypropylene glycol butyl ether, Poloxamer® 401, stearoyl monoisopropanolamide, and polyoxyethylene hydrogenated tallow amide. Examples of amphoteric surfactants include sodium N-dodecyl-β-alanine, sodium N-lauryl-β-iminodipropionate, myristoamphoacetate, lauryl betaine and lauryl sulfobetaine.


The formulation can contain a preservative to prevent the growth of microorganisms. Suitable preservatives include, but are not limited to, parabens, chlorobutanol, phenol, sorbic acid, and thimerosal. The formulation may also contain an antioxidant to prevent degradation of the conjugate(s) or particles.


The formulation is typically buffered to a pH of 3-8 for parenteral administration upon reconstitution. Suitable buffers include, but are not limited to, phosphate buffers, acetate buffers, and citrate buffers. If using 10% sucrose or 5% dextrose, a buffer may not be required.


Water soluble polymers are often used in formulations for parenteral administration. Suitable water-soluble polymers include, but are not limited to, polyvinylpyrrolidone, dextran, carboxymethylcellulose, and polyethylene glycol.


Sterile injectable solutions can be prepared by incorporating the particles in the required amount in the appropriate solvent or dispersion medium with one or more of the excipients listed above, as required, followed by filtered sterilization. Generally, dispersions are prepared by incorporating the various sterilized particles into a sterile vehicle which contains the basic dispersion medium and the required other ingredients from those listed above. In the case of sterile powders for the preparation of sterile injectable solutions, the preferred methods of preparation are vacuum-drying and freeze-drying techniques which yield a powder of the particle plus any additional desired ingredient from a previously sterile-filtered solution thereof. The powders can be prepared in such a manner that the particles are porous in nature, which can increase dissolution of the particles. Methods for making porous particles are well known in the art.


Pharmaceutical formulations for parenteral administration can be in the form of a sterile aqueous solution or suspension of particles formed from one or more polymer-drug conjugates. Acceptable solvents include, for example, water, Ringer's solution, phosphate buffered saline (PBS), and isotonic sucrose, dextrose or sodium chloride solution. The formulation may also be a sterile solution, suspension, or emulsion in a nontoxic, parenterally acceptable diluent or solvent such as 1,3-butanediol.


In some instances, the formulation is distributed or packaged in a liquid form. Alternatively, formulations for parenteral administration can be packed as a solid, obtained, for example by lyophilization of a suitable liquid formulation. The solid can be reconstituted with an appropriate carrier or diluent prior to administration.


Solutions, suspensions, or emulsions for parenteral administration may be buffered with an effective amount of buffer necessary to maintain a pH suitable for ocular administration. Suitable buffers are well known by those skilled in the art and some examples of useful buffers are acetate, borate, carbonate, citrate, and phosphate buffers.


Solutions, suspensions, or emulsions for parenteral administration may also contain one or more tonicity agents to adjust the isotonic range of the formulation. Suitable tonicity agents are well known in the art and some examples include glycerin, sucrose, dextrose, mannitol, sorbitol, sodium chloride, and other electrolytes.


Solutions, suspensions, or emulsions for parenteral administration may also contain one or more preservatives to prevent bacterial contamination of the ophthalmic preparations. Suitable preservatives are known in the art, and include polyhexamethylenebiguanidine (PHMB), benzalkonium chloride (BAK), stabilized oxychloro complexes (otherwise known as Purite®), phenylmercuric acetate, chlorobutanol, sorbic acid, chlorhexidine, benzyl alcohol, parabens, thimerosal, and mixtures thereof.


Solutions, suspensions, or emulsions for parenteral administration may also contain one or more excipients known art, such as dispersing agents, wetting agents, and suspending agents.


B. Mucosal Topical Formulations


The conjugates or particles can be formulated for topical administration to a mucosal surface Suitable dosage forms for topical administration include creams, ointments, salves, sprays, gels, lotions, emulsions, liquids, and transdermal patches. The formulation may be formulated for transmucosal transepithelial, or transendothelial administration. The compositions contain one or more chemical penetration enhancers, membrane permeability agents, membrane transport agents, emollients, surfactants, stabilizers, and combination thereof. In some embodiments, the particles can be administered as a liquid formulation, such as a solution or suspension, a semi-solid formulation, such as a lotion or ointment, or a solid formulation. In some embodiments, the particles are formulated as liquids, including solutions and suspensions, such as eye drops or as a semi-solid formulation, to the mucosa, such as the eye or vaginally or rectally.


“Surfactants” are surface-active agents that lower surface tension and thereby increase the emulsifying, foaming, dispersing, spreading and wetting properties of a product. Suitable non-ionic surfactants include emulsifying wax, glyceryl monooleate, polyoxyethylene alkyl ethers, polyoxyethylene castor oil derivatives, polysorbate, sorbitan esters, benzyl alcohol, benzyl benzoate, cyclodextrins, glycerin monostearate, poloxamer, povidone and combinations thereof. In one embodiment, the non-ionic surfactant is stearyl alcohol.


“Emulsifiers” are surface active substances which promote the dispersion of one liquid in another and promote the formation of a stable mixture, or emulsion, of oil and water or water in oil. Common emulsifiers are: anaionic, cataionic and nonionic surfactants or mixtures of surfactants, certain animal and vegetable oils, and various polar surface active compounds. Suitable emulsifiers include acacia, anionic emulsifying wax, calcium stearate, carbomers, cetostearyl alcohol, cetyl alcohol, cholesterol, diethanolamine, ethylene glycol palmitostearate, glycerin monostearate, glyceryl monooleate, hydroxpropyl cellulose, hypromellose, lanolin, hydrous, lanolin alcohols, lecithin, medium-chain triglycerides, methylcellulose, mineral oil and lanolin alcohols, monobasic sodium phosphate, monoethanolamine, nonionic emulsifying wax, oleic acid, poloxamer, poloxamers, polyoxyethylene alkyl ethers, polyoxyethylene castor oil derivatives, polyoxyethylene sorbitan fatty acid esters, polyoxyethylene stearates, propylene glycol alginate, self-emulsifying glyceryl monostearate, sodium citrate dehydrate, sodium lauryl sulfate, sorbitan esters, stearic acid, sunflower oil, tragacanth, triethanolamine, xanthan gum and combinations thereof. In one embodiment, the emulsifier is glycerol stearate.


Suitable classes of penetration enhancers are known in the art and include, but are not limited to, fatty alcohols, fatty acid esters, fatty acids, fatty alcohol ethers, amino acids, phospholipids, lecithins, cholate salts, enzymes, amines and amides, complexing agents (liposomes, cyclodextrins, modified celluloses, and diimides), macrocyclics, such as macrocylic lactones, ketones, and anhydrides and cyclic ureas, surfactants, N-methyl pyrrolidones and derivatives thereof, DMSO and related compounds, ionic compounds, azone and related compounds, and solvents, such as alcohols, ketones, amides, polyols (e.g., glycols). Examples of these classes are known in the art.


Dosing


The present invention provides methods comprising administering conjugates or particles containing the conjugate as described herein to a subject in need thereof. Conjugates or particles containing the conjugates as described herein may be administered to a subject using any amount and any route of administration effective for preventing or treating or imaging a disease, disorder, and/or condition (e.g., a disease, disorder, and/or condition relating to working memory deficits). The exact amount required will vary from subject to subject, depending on the species, age, and general condition of the subject, the severity of the disease, the particular composition, its mode of administration, its mode of activity, and the like.


Compositions in accordance with the invention are typically formulated in dosage unit form for ease of administration and uniformity of dosage. It will be understood, however, that the total daily usage of the compositions of the present invention may be decided by the attending physician within the scope of sound medical judgment. The specific therapeutically effective, prophylactically effective, or appropriate imaging dose level for any particular patient will depend upon a variety of factors including the disorder being treated and the severity of the disorder; the activity of the specific compound employed; the specific composition employed; the age, body weight, general health, sex and diet of the patient; the time of administration, route of administration, and rate of excretion of the specific compound employed; the duration of the treatment; drugs used in combination or coincidental with the specific compound employed; and like factors well known in the medical arts.


In some embodiments, compositions in accordance with the present invention may be administered at dosage levels sufficient to deliver from about 0.0001 mg/kg to about 100 mg/kg, from about 0.001 mg/kg to about 0.05 mg/kg, from about 0.005 mg/kg to about 0.05 mg/kg, from about 0.001 mg/kg to about 0.005 mg/kg, from about 0.05 mg/kg to about 0.5 mg/kg, from about 0.01 mg/kg to about 50 mg/kg, from about 0.1 mg/kg to about 40 mg/kg, from about 0.5 mg/kg to about 30 mg/kg, from about 0.01 mg/kg to about 10 mg/kg, from about 0.1 mg/kg to about 10 mg/kg, or from about 1 mg/kg to about 25 mg/kg, of subject body weight per day, one or more times a day, to obtain the desired therapeutic, diagnostic, prophylactic, or imaging effect. The desired dosage may be delivered three times a day, two times a day, once a day, every other day, every third day, every week, every two weeks, every three weeks, or every four weeks. In some embodiments, the desired dosage may be delivered using multiple administrations (e.g., two, three, four, five, six, seven, eight, nine, ten, eleven, twelve, thirteen, fourteen, or more administrations). When multiple administrations are employed, split dosing regimens such as those described herein may be used.


As used herein, a “split dose” is the division of single unit dose or total daily dose into two or more doses, e.g, two or more administrations of the single unit dose. As used herein, a “single unit dose” is a dose of any therapeutic administered in one dose/at one time/single route/single point of contact, i.e., single administration event. As used herein, a “total daily dose” is an amount given or prescribed in 24 hr period. It may be administered as a single unit dose. In one embodiment, the monomaleimide compounds of the present invention are administered to a subject in split doses. The monomaleimide compounds may be formulated in buffer only or in a formulation described herein.


Dosage Forms


A pharmaceutical composition described herein can be formulated into a dosage form described herein, such as a topical, intranasal, intratracheal, or injectable (e.g., intravenous, intraocular, intravitreal, intramuscular, intracardiac, intraperitoneal, subcutaneous).


Liquid Dosage Forms


Liquid dosage forms for parenteral administration include, but are not limited to, pharmaceutically acceptable emulsions, microemulsions, solutions, suspensions, syrups, and/or elixirs. In addition to active ingredients, liquid dosage forms may comprise inert diluents commonly used in the art including, but not limited to, water or other solvents, solubilizing agents and emulsifiers such as ethyl alcohol, isopropyl alcohol, ethyl carbonate, ethyl acetate, benzyl alcohol, benzyl benzoate, propylene glycol, 1,3-butylene glycol, dimethylformamide, oils (in particular, cottonseed, groundnut, corn, germ, olive, castor, and sesame oils), glycerol, tetrahydrofurfuryl alcohol, polyethylene glycols and fatty acid esters of sorbitan, and mixtures thereof. In certain embodiments for parenteral administration, compositions may be mixed with solubilizing agents such as CREMOPHOR®, alcohols, oils, modified oils, glycols, polysorbates, cyclodextrins, polymers, and/or combinations thereof.


Injectable


Injectable preparations, for example, sterile injectable aqueous or oleaginous suspensions may be formulated according to the known art and may include suitable dispersing agents, wetting agents, and/or suspending agents. Sterile injectable preparations may be sterile injectable solutions, suspensions, and/or emulsions in nontoxic parenterally acceptable diluents and/or solvents, for example, a solution in 1,3-butanediol. Among the acceptable vehicles and solvents that may be employed include, but are not limited to, water, Ringer's solution, U.S.P., and isotonic sodium chloride solution. Sterile, fixed oils are conventionally employed as a solvent or suspending medium. For this purpose any bland fixed oil can be employed including synthetic mono- or diglycerides. Fatty acids such as oleic acid can be used in the preparation of injectables.


Injectable formulations can be sterilized, for example, by filtration through a bacterial-retaining filter, and/or by incorporating sterilizing agents in the form of sterile solid compositions which can be dissolved or dispersed in sterile water or other sterile injectable medium prior to use.


In order to prolong the effect of an active ingredient, it may be desirable to slow the absorption of the active ingredient from subcutaneous or intramuscular injection. This may be accomplished by the use of a liquid suspension of crystalline or amorphous material with poor water solubility. The rate of absorption of the monomaleimide compounds then depends upon its rate of dissolution which, in turn, may depend upon crystal size and crystalline form. Alternatively, delayed absorption of a parenterally administered monomaleimide compound may be accomplished by dissolving or suspending the monomalimide in an oil vehicle. Injectable depot forms are made by forming microencapsule matrices of the monomaleimide compounds in biodegradable polymers such as polylactide-polyglycolide. Depending upon the ratio of monomaleimide compounds to polymer and the nature of the particular polymer employed, the rate of monomaleimide compound release can be controlled. Examples of other biodegradable polymers include, but are not limited to, poly(orthoesters) and poly(anhydrides). Depot injectable formulations may be prepared by entrapping the monomaleimide compounds in liposomes or microemulsions which are compatible with body tissues.


Pulmonary


Formulations described herein as being useful for pulmonary delivery may also be used for intranasal delivery of a pharmaceutical composition. Another formulation suitable for intranasal administration may be a coarse powder comprising the active ingredient and having an average particle from about 0.2 um to 500 um. Such a formulation may be administered in the manner in which snuff is taken, i.e. by rapid inhalation through the nasal passage from a container of the powder held close to the nose.


Formulations suitable for nasal administration may, for example, comprise from about as little as 0.1% (w/w) and as much as 100% (w/w) of active ingredient, and may comprise one or more of the additional ingredients described herein. A pharmaceutical composition may be prepared, packaged, and/or sold in a formulation suitable for buccal administration. Such formulations may, for example, be in the form of tablets and/or lozenges made using conventional methods, and may, for example, contain about 0.1% to 20% (w/w) active ingredient, where the balance may comprise an orally dissolvable and/or degradable composition and, optionally, one or more of the additional ingredients described herein. Alternately, formulations suitable for buccal administration may comprise a powder and/or an aerosolized and/or atomized solution and/or suspension comprising active ingredient. Such powdered, aerosolized, and/or aerosolized formulations, when dispersed, may have an average particle and/or droplet size in the range from about 0.1 nm to about 200 nm, and may further comprise one or more of any additional ingredients described herein.


General considerations in the formulation and/or manufacture of pharmaceutical agents may be found, for example, in Remington: The Science and Practice of Pharmacy 21st ed., Lippincott Williams & Wilkins, 2005 (incorporated herein by reference in its entirety).


Coatings or Shells


Solid dosage forms of tablets, dragees, capsules, pills, and granules can be prepared with coatings and shells such as enteric coatings and other coatings well known in the pharmaceutical formulating art. They may optionally comprise opacifying agents and can be of a composition that they release the active ingredient(s) only, or preferentially, in a certain part of the intestinal tract, optionally, in a delayed manner. Examples of embedding compositions which can be used include polymeric substances and waxes. Solid compositions of a similar type may be employed as fillers in soft and hard-filled gelatin capsules using such excipients as lactose or milk sugar as well as high molecular weight polyethylene glycols and the like.


IV. Methods of Making Conjugates

The conjugates can be made by many different synthetic procedures. The conjugates can be prepared from linkers having one or more reactive coupling groups or from one or more linker precursors capable of reacting with a reactive coupling group on an RNAi agent or targeting moiety to form a covalent bond.


The conjugates can be prepared from a linker precursor capable of reacting with a reactive coupling group on an RNAi agent or targeting moiety to form the linker covalently bonded to the RNAi agent or targeting moiety.


The linker precursor can be a diacid or substituted diacid. Diacids, as used herein, can refer to substituted or unsubstituted alkyl, heteroalkyl, aryl, or heteroaryl compounds having two or more carboxylic acid groups, preferably having between 2 and 50, between 2 and 30, between 2 and 12, or between 2 and 8 carbon atoms. Suitable diacids can include oxalic acid, malonic acid, succinic acid, glutaric acid, adipic acid, pimelic acid, suberic acid, azelaic acid, sebacic acid, phthalic acid, iso-phthalic acid, terephthalic acid, and derivatives thereof.


The linker precursor can be an activated diacid derivative such as a diacid anhydride, diacid ester, or diacid halide. The diacid anhydride can be a cyclic anhydride obtained from the intramolecular dehydration of a diacid or diacid derivative such as those described above. The diacid anhydride can be malonic anhydride, succinic anhydride, glutaric anhydride, adipic anhydride, pimelic anhydride, phthalic anhydride, diglycolic anhydride, or a derivative thereof; preferably succinic anhydride, diglycolic anhydride, or a derivative thereof. The diacid ester can be an activated ester of any of the diacids described above, including methyl and butyl diesters or bis-(p-nitrophenyl) diesters of oxalic acid, malonic acid, succinic acid, glutaric acid, adipic acid, pimelic acid, suberic acid, azelaic acid, sebacic acid, phthalic acid, iso-phthalic acid, terephthalic acid, and derivatives thereof. The diacid halide can include the corresponding acid fluorides, acid chlorides, acid bromides, or acid iodides of the diacids described above. In preferred embodiments the diacid halide is succinyl chloride or diglycolyl chloride. For example, a therapeutic agent having a reactive (—OH) coupling group and a targeting moiety having a reactive (—NH2) coupling group can be used to prepare a conjugate having a disuccinate linker according to the following general scheme.




embedded image


Referring to Scheme I above, the conjugates can be prepared by providing an RNAi agent (Therapeutic Agent) having a hydroxyl group and reacting it with a succinic anhydride linker precursor to form the conjugate of RNAi agent-succinate-SSPy. A targeting moiety (Targeting Ligand) with an available —NH2 group is reacted with a coupling reagent and the RNAi agent-succinate-SSPy to form the targeting moiety-linker-RNAi agent conjugate.


Other functional groups that can be linked to include, but are not limited to, —SH, —COOH, alkenyl, phosphate, sulfate, heterocyclic NH, alkyne and ketone.


The coupling reaction can be carried out under esterification conditions known to those of ordinary skill in the art such as in the presence of activating agents, e.g., carbodiimides (such as diisopropoylcarbodiimide (DIPC)), with or without catalyst such as dimethylaminopyridine (DMAP). This reaction can be carried out in an appropriate solvent, such as dichloromethane, chloroform or ethyl acetate, at a temperature or between about 0° C. and the reflux temperature of the solvent (e.g., ambient temperature). The coupling reaction is generally performed in a solvent such as pyridine or in a chlorinated solvent in the presence of a catalyst such as DMAP or pyridine at a temperature between about 0° C. and the reflux temperature of the solvent (e.g., ambient temperature). In preferred embodiments, the coupling reagent is selected from the group consisting of 4-(2-pyridyldithio)-butanoic acid, and a carbodiimide coupling reagent such as DCC in a chlorinated, ethereal or amidic solvent (such as N,N-dimethylformamide) in the presence of a catalyst such as DMAP at a temperature between about 0° C. and the reflux temperature of the solvent (e.g., ambient temperature).


The conjugates can be prepared by coupling an RNAi agent and/or targeting moiety having one or more reactive coupling groups to a linker having complimentary reactive groups capable of reacting with the reactive coupling groups on the RNAi agent or targeting moiety to form a covalent bond. For example, an RNAi agent or targeting moiety having a primary amine group can be coupled to a linker having an isothiocyonate group or another amine-reactive coupling group. In some embodiments, the linker contains a first reactive coupling group capable of reacting with a complimentary functional group on the RNAi agent and a second reactive coupling group different from the first and capable of reacting with a complimentary group on the targeting moiety. In some embodiments, one or both of the reactive coupling groups on the linker can be protected with a suitable protecting group during part of the synthesis.


In some embodiments, the conjugates of the invention may be synthesized with ‘click chemistry’ of the copper ion-catalyzed acetylene-azide cycloaddition reaction. For example, WO2010093395 to Govindan, the contents of which are incorporated herein by reference in their entirety, teaches that the targeting moiety comprises L2, wherein L2 comprises a targeting moiety-coupling end and one or more acetylene or azide groups at the other end. The active agent moiety comprises L1, wherein L1 comprises a defined PEG with azide or acetylene at one end, complementary to the acetylene or azide moiety in L2, and a reactive group such as carboxylic acid or hydroxyl group at the other end. ‘Click chemistry’ between L2 and L1 yields a conjugate comprising the targeting moiety and the active agent.


In some embodiments, the conjugates of the invention may be synthesized with thiol-ene ‘click chemistry’. For example, US 20130323169 to Xu et al., the contents of which are incorporated herein by reference in their entirety, teaches preparing a drug conjugate by reacting a sulfhydryl or thiol group (—SH) on the targeting moiety with a double bond on the linker moiety.


V. Methods of Making Particles

In various embodiments, a method of making the particles includes providing a conjugate; providing a base component such as PLA-PEG or PLGA-PEG, optionally mixed with PLA or PLGA, for forming a particle; combining the conjugate and the base component in an organic solution to form a first organic phase; and combining the first organic phase with a first aqueous solution to form a second phase; emulsifying the second phase to form an emulsion phase; and recovering particles. In various embodiments, the emulsion phase is further homogenized.


In some embodiments, the first phase includes about 5 to about 50% weight, e.g., about 1 to about 40% solids, or about 5 to about 30% solids, e.g. about 5%, 10%, 15%, and 20%, of the conjugate and the base component. In certain embodiments, the first phase includes about 5% weight of the conjugate and the base component. In various embodiments, the organic phase comprises acetonitrile, tetrahydrofuran, ethyl acetate, isopropyl alcohol, isopropyl acetate, dimethylformamide, methylene chloride, dichloromethane, chloroform, acetone, benzyl alcohol, TWEEN® 80, SPAN® 80, or a combination thereof. In some embodiments, the organic phase includes benzyl alcohol, ethyl acetate, or a combination thereof.


In various embodiments, the aqueous solution includes water, sodium cholate, ethyl acetate, and/or benzyl alcohol. In various embodiments, a surfactant or a surfactant mixture is added into the first phase, the second phase, or both. A surfactant, in some instances, can act as an emulsifier or a stabilizer for a composition disclosed herein. A suitable surfactant can be a cationic surfactant, an anionic surfactant, or a nonionic surfactant. In some embodiments, a surfactant suitable for making a composition described herein includes sorbitan fatty acid esters, polyoxyethylene sorbitan fatty acid esters and polyoxyethylene stearates. Examples of such fatty acid ester nonionic surfactants are the TWEEN® 80, SPAN® 80, and MYJ® surfactants from ICI. SPAN® surfactants include C12-C1 sorbitan monoesters. TWEEN® surfactants include poly(ethylene oxide) C12-C1 sorbitan monoesters. MYJ® surfactants include poly(ethylene oxide) stearates. In certain embodiments, the aqueous solution also comprises a surfactant (e.g., an emulsifier), including a polysorbate. For example, the aqueous solution can include polysorbate 80. In some embodiments, a suitable surfactant includes a lipid-based surfactant. For example, the composition can include 1,2-dihexanoyl-sn-glycero-3-phosphocholine, 1,2-diheptanoyl-sn-glycero-3-phosphocholine, PEGlyated 1,2-distearoyl-sn-glycero-3-phosphoethanolamine (including PEG5000-DSPE), PEGlyated 1,2-dioleoyl-sn-glycero-3-phosphoethanolamine (including 1,2-dioleoyl-sn-glycero-3-phosphoethanolamine-N-[methoxy(polyethylene glycol)-5000](ammonium salt)).


Emulsifying the second phase to form an emulsion phase may be performed in one or two emulsification steps. For example, a primary emulsion may be prepared, and then emulsified to form a fine emulsion. The primary emulsion can be formed, for example, using simple mixing, a high pressure homogenizer, probe sonicator, stir bar, or a rotor stator homogenizer. The primary emulsion may be formed into a fine emulsion through the use of e.g. a probe sonicator or a high pressure homogenizer, e.g. by pass(es) through a homogenizer. For example, when a high pressure homogenizer (microfluidizer) is used, the pressure used may be about 1,000 to about 30,000 psi, about 4000 to about 10,000 psi, or 4000 or 5000 psi.


Either solvent evaporation or dilution may be needed to complete the extraction of the solvent and solidify the particles. For better control over the kinetics of extraction and a more scalable process, a solvent dilution via aqueous quench may be used. For example, the emulsion can be diluted into cold water to a concentration sufficient to dissolve all of the organic solvent to form a quenched phase. Quenching may be performed at least partially at a temperature of about 5° C. or less. For example, water used in the quenching may be at a temperature that is less that room temperature (e.g. about 0 to about 10° C., or about 0 to about 5° C.).


In various embodiments, the particles are purified and recovered by filtration. For example, ultrafiltration membranes can be used. Exemplary filtration may be performed using a tangential flow filtration system. For example, by using a membrane with a pore size suitable to retain particles while allowing solutes, micelles, and organic solvent to pass, particles can be selectively separated. Exemplary membranes with molecular weight cut-offs of about 100-500 kDa (−3-25 nm) may be used.


In various embodiments, the particles are freeze-dried or lyophilized, in some instances, to extend their shelf life. In some embodiments, the composition also includes a lyoprotectant. In certain embodiments, a lyoprotectant is selected from a sugar, a polyalcohol, or a derivative thereof. In some embodiments, a lyoprotectant is selected from a monosaccharide, a disaccharide, or a mixture thereof. For example, a lyoprotectant can be sucrose, lactulose, trehalose, lactose, glucose, maltose, mannitol, cellobiose, or a mixture thereof.


Methods of making particles containing one or more conjugates are provided. The particles can be polymeric particles, lipid particles, self-assembled particles, mixed michelles, or combinations thereof. The various methods described herein can be adjusted to control the size and composition of the particles, e.g. some methods are best suited for preparing microparticles while others are better suited for preparing particles. The selection of a method for preparing particles having the descried characteristics can be performed by the skilled artisan without undue experimentation.


i. Polymeric Particles


Methods of making polymeric particles are known in the art. Polymeric particles can be prepared using any suitable method known in the art. Common microencapsulation techniques include, but are not limited to, spray drying, interfacial polymerization, hot melt encapsulation, phase separation encapsulation (spontaneous emulsion microencapsulation, solvent evaporation microencapsulation, and solvent removal microencapsulation), coacervation, low temperature microsphere formation, and phase inversion nanoencapsulation (PIN). A brief summary of these methods is presented below.


1. Spray Drying


Methods for forming polymeric particles using spray drying techniques are described in U.S. Pat. No. 6,620,617. In this method, the polymer is dissolved in an organic solvent such as methylene chloride or in water. A known amount of one or more conjugates or additional active agents to be incorporated in the particles is suspended (in the case of an insoluble active agent) or co-dissolved (in the case of a soluble active agent) in the polymer solution. The solution or dispersion is pumped through a micronizing nozzle driven by a flow of compressed gas, and the resulting aerosol is suspended in a heated cyclone of air, allowing the solvent to evaporate from the microdroplets, forming particles. Microspheres/nanospheres ranging between 0.1 10 microns can be obtained using this method.


2. Interfacial Polymerization


Interfacial polymerization can also be used to encapsulate one or more conjugates and/or additional active agents. Using this method, a monomer and the conjugates or active agent(s) are dissolved in a solvent. A second monomer is dissolved in a second solvent (typically aqueous) which is immiscible with the first. An emulsion is formed by suspending the first solution through stirring in the second solution. Once the emulsion is stabilized, an initiator is added to the aqueous phase causing interfacial polymerization at the interface of each droplet of emulsion.


3. Hot Melt Microencapsulation


Microspheres can be formed from polymers such as polyesters and polyanhydrides using hot melt microencapsulation methods as described in Mathiowitz et al., Reactive Polymers, 6:275 (1987). In this method, the use of polymers with molecular weights between 3,000-75,000 daltons is typical. In this method, the polymer first is melted and then mixed with the solid particles of one or more active agents to be incorporated that have been sieved to less than 50 microns. The mixture is suspended in a non-miscible solvent (like silicon oil), and, with continuous stirring, heated to 5° C. above the melting point of the polymer. Once the emulsion is stabilized, it is cooled until the polymer particles solidify. The resulting microspheres are washed by decanting with petroleum ether to produce a free flowing powder.


4. Phase Separation Microencapsulation


In phase separation microencapsulation techniques, a polymer solution is stirred, optionally in the presence of one or more active agents to be encapsulated. While continuing to uniformly suspend the material through stirring, a nonsolvent for the polymer is slowly added to the solution to decrease the polymer's solubility. Depending on the solubility of the polymer in the solvent and nonsolvent, the polymer either precipitates or phase separates into a polymer rich and a polymer poor phase. Under proper conditions, the polymer in the polymer rich phase will migrate to the interface with the continuous phase, encapsulating the active agent(s) in a droplet with an outer polymer shell.


a. Spontaneous Emulsion Microencapsulation


Spontaneous emulsification involves solidifying emulsified liquid polymer droplets formed above by changing temperature, evaporating solvent, or adding chemical cross-linking agents. The physical and chemical properties of the encapsulant, as well as the properties of the one or more active agents optionally incorporated into the nascent particles, dictates suitable methods of encapsulation. Factors such as hydrophobicity, molecular weight, chemical stability, and thermal stability affect encapsulation.


b. Solvent Evaporation Microencapsulation


Methods for forming microspheres using solvent evaporation techniques are described in Mathiowitz et al., J. Scanning Microscopy, 4:329 (1990); Beck et al., Fertil. Steril., 31:545 (1979); Beck et al., Am. J. Obstet. Gynecol. 135(3) (1979); Benita et al., J. Pharm. Sci., 73:1721 (1984); and U.S. Pat. No. 3,960,757. The polymer is dissolved in a volatile organic solvent, such as methylene chloride. One or more active agents to be incorporated are optionally added to the solution, and the mixture is suspended in an aqueous solution that contains a surface active agent such as poly(vinyl alcohol). The resulting emulsion is stirred until most of the organic solvent evaporated, leaving solid microparticles/nanoparticles. This method is useful for relatively stable polymers like polyesters and polystyrene.


c. Solvent Removal Microencapsulation


The solvent removal microencapsulation technique is primarily designed for polyanhydrides and is described, for example, in WO 93/21906. In this method, the substance to be incorporated is dispersed or dissolved in a solution of the selected polymer in a volatile organic solvent, such as methylene chloride. This mixture is suspended by stirring in an organic oil, such as silicon oil, to form an emulsion. Microspheres that range between 1-300 microns can be obtained by this procedure. Substances which can be incorporated in the microspheres include pharmaceuticals, pesticides, nutrients, imaging agents, and metal compounds.


5. Coacervation


Encapsulation procedures for various substances using coacervation techniques are known in the art, for example, in GB-B-929 406; GB-B-929 40 1; and U.S. Pat. Nos. 3,266,987, 4,794,000, and 4,460,563. Coacervation involves the separation of a macromolecular solution into two immiscible liquid phases. One phase is a dense coacervate phase, which contains a high concentration of the polymer encapsulant (and optionally one or more active agents), while the second phase contains a low concentration of the polymer. Within the dense coacervate phase, the polymer encapsulant forms nanoscale or microscale droplets. Coacervation may be induced by a temperature change, addition of a non-solvent or addition of a micro-salt (simple coacervation), or by the addition of another polymer thereby forming an interpolymer complex (complex coacervation).


6. Low Temperature Casting of Microspheres


Methods for very low temperature casting of controlled release particles are described in U.S. Pat. No. 5,019,400. In this method, a polymer is dissolved in a solvent optionally with one or more dissolved or dispersed active agents. The mixture is then atomized into a vessel containing a liquid non solvent at a temperature below the freezing point of the polymer substance solution which freezes the polymer droplets. As the droplets and non solvent for the polymer are warmed, the solvent in the droplets thaws and is extracted into the non solvent, resulting in the hardening of the microspheres.


7. Phase Inversion Nanoencapsulation (PIN)


Particles can also be formed using the phase inversion nanoencapsulation (PIN) method, wherein a polymer is dissolved in a “good” solvent, fine particles of a substance to be incorporated, such as a drug, are mixed or dissolved in the polymer solution, and the mixture is poured into a strong non solvent for the polymer, to spontaneously produce, under favorable conditions, polymeric microspheres, wherein the polymer is either coated with the particles or the particles are dispersed in the polymer. For example, see, U.S. Pat. No. 6,143,211. The method can be used to produce monodisperse populations of particles and microparticles in a wide range of sizes, including, for example, about 100 nanometers to about 10 microns.


Advantageously, an emulsion need not be formed prior to precipitation. The process can be used to form microspheres from thermoplastic polymers.


8. Emulsion Methods


In some embodiments, a particle is prepared using an emulsion solvent evaporation method. For example, a polymeric material is dissolved in a water immiscible organic solvent and mixed with a drug solution or a combination of drug solutions. In some embodiments a solution of a therapeutic, prophylactic, or diagnostic agent to be encapsulated is mixed with the polymer solution. The polymer can be, but is not limited to, one or more of the following: PLA, PGA, PCL, their copolymers, polyacrylates, the aforementioned PEGylated polymers. The drug molecules can include one or more conjugates as described above and one or more additional active agents. The water immiscible organic solvent, can be, but is not limited to, one or more of the following: chloroform, dichloromethane, and acyl acetate. The drug can be dissolved in, but is not limited to, one or more of the following: acetone, ethanol, methanol, isopropyl alcohol, acetonitrile and Dimethyl sulfoxide (DMSO).


An aqueous solution is added into the resulting polymer solution to yield emulsion solution by emulsification. The emulsification technique can be, but not limited to, probe sonication or homogenization through a homogenizer.


9. Nanoprecipitation


In another embodiment, a conjugate containing particle is prepared using nanoprecipitation methods or microfluidic devices. The conjugate containing polymeric material is mixed with a drug or drug combinations in a water miscible organic solvent, optionally containing additional polymers. The additional polymer can be, but is not limited to, one or more of the following: PLA, PGA, PCL, their copolymers, polyacrylates, the aforementioned PEGylated polymers. The water miscible organic solvent, can be, but is not limited to, one or more of the following: acetone, ethanol, methanol, isopropyl alcohol, acetonitrile and dimethyl sulfoxide (DMSO). The resulting mixture solution is then added to a polymer non-solvent, such as an aqueous solution, to yield particle solution.


10. Microfluidics


Methods of making particles using microfluidics are known in the art. Suitable methods include those described in U.S. Patent Application Publication No. 2010/0022680 A1. In general, the microfluidic device comprises at least two channels that converge into a mixing apparatus. The channels are typically formed by lithography, etching, embossing, or molding of a polymeric surface. A source of fluid is attached to each channel, and the application of pressure to the source causes the flow of the fluid in the channel. The pressure may be applied by a syringe, a pump, and/or gravity. The inlet streams of solutions with polymer, targeting moieties, lipids, drug, payload, etc. converge and mix, and the resulting mixture is combined with a polymer non-solvent solution to form the particles having the desired size and density of moieties on the surface. By varying the pressure and flow rate in the inlet channels and the nature and composition of the fluid sources particles can be produced having reproducible size and structure.


ii. Lipid Particles


Methods of making lipid particles are known in the art. Lipid particles can be lipid micelles, liposomes, or solid lipid particles prepared using any suitable method known in the art. Common techniques for created lipid particles encapsulating an active agent include, but are not limited to high pressure homogenization techniques, supercritical fluid methods, emulsion methods, solvent diffusion methods, and spray drying. A brief summary of these methods is presented below.


1. High Pressure Homogenization (HPH) Methods


High pressure homogenization is a reliable and powerful technique, which is used for the production of smaller lipid particles with narrow size distributions, including lipid micelles, liposomes, and solid lipid particles. High pressure homogenizers push a liquid with high pressure (100-2000 bar) through a narrow gap (in the range of a few microns). The fluid can contain lipids that are liquid at room temperature or a melt of lipids that are solid at room temperature. The fluid accelerates on a very short distance to very high velocity (over 1000 Km/h). This creates high shear stress and cavitation forces that disrupt the particles, generally down to the submicron range. Generally 5-10% lipid content is used but up to 40% lipid content has also been investigated.


Two approaches of HPH are hot homogenization and cold homogenization, work on the same concept of mixing the drug in bulk of lipid solution or melt.


a. Hot Homogenization:


Hot homogenization is carried out at temperatures above the melting point of the lipid and can therefore be regarded as the homogenization of an emulsion. A pre-emulsion of the drug loaded lipid melt and the aqueous emulsifier phase is obtained by a high-shear mixing. HPH of the pre-emulsion is carried out at temperatures above the melting point of the lipid. A number of parameters, including the temperature, pressure, and number of cycles, can be adjusted to produce lipid particles with the desired size. In general, higher temperatures result in lower particle sizes due to the decreased viscosity of the inner phase. However, high temperatures increase the degradation rate of the drug and the carrier. Increasing the homogenization pressure or the number of cycles often results in an increase of the particle size due to high kinetic energy of the particles.


b. Cold Homogenization


Cold homogenization has been developed as an alternative to hot homogenization. Cold homogenization does not suffer from problems such as temperature-induced drug degradation or drug distribution into the aqueous phase during homogenization. The cold homogenization is particularly useful for solid lipid particles, but can be applied with slight modifications to produce liposomes and lipid micelles. In this technique the drug containing lipid melt is cooled, the solid lipid ground to lipid microparticles and these lipid microparticles are dispersed in a cold surfactant solution yielding a pre-suspension. The pre-suspension is homogenized at or below room temperature, where the gravitation force is strong enough to break the lipid microparticles directly to solid lipid nanoparticles.


2. Ultrasonication/High Speed Homogenization Methods


Lipid particles, including lipid micelles, liposomes, and solid lipid particles, can be prepared by ultrasonication/high speed homogenization. The combination of both ultrasonication and high speed homogenization is particularly useful for the production of smaller lipid particles. Liposomes are formed in the size range from 10 nm to 200 nm, preferably 50 nm to 100 nm, by this process.


3. Solvent Evaporation Methods


Lipid particles can be prepared by solvent evaporation approaches. The lipophilic material is dissolved in a water-immiscible organic solvent (e.g., cyclohexane) that is emulsified in an aqueous phase. Upon evaporation of the solvent, particles dispersion is formed by precipitation of the lipid in the aqueous medium. Parameters such as temperature, pressure, choices of solvents can be used to control particle size and distribution. Solvent evaporation rate can be adjusted through increased/reduced pressure or increased/reduced temperature.


4. Solvent Emulsification-Diffusion Methods


Lipid particles can be prepared by solvent emulsification-diffusion methods. The lipid is first dissolved in an organic phase, such as ethanol and acetone. An acidic aqueous phase is used to adjust the zeta potential to induce lipid coacervation. The continuous flow mode allows the continuous diffusion of water and alcohol, reducing lipid solubility, which causes thermodynamic instability and generates liposomes


5. Supercritical Fluid Methods


Lipid particles, including liposomes and solid lipid particles, can be prepared from supercritical fluid methods. Supercritical fluid approaches have the advantage of replacing or reducing the amount of the organic solvents used in other preparation methods. The lipids, conjugate and/or additional active agents to be encapsulated, and excipients can be solvated at high pressure in a supercritical solvent. The supercritical solvent is most commonly CO2, although other supercritical solvents are known in the art. To increase solubility of the lipid, a small amount of co-solvent can be used. Ethanol is a common co-solvent, although other small organic solvents that are generally regarded as safe for formulations can be used. The lipid particles, lipid micelles, liposomes, or solid lipid particles can be obtained by expansion of the supercritical solution or by injection into a non-solvent aqueous phase. The particle formation and size distribution can be controlled by adjusting the supercritical solvent, co-solvent, non-solvent, temperatures, pressures, etc.


6. Microemulsion Based Methods


Microemulsion based methods for making lipid particles are known in the art. These methods are based upon the dilution of a multiphase, usually two-phase, system. Emulsion methods for the production of lipid particles generally involve the formation of a water-in-oil emulsion through the addition of a small amount of aqueous media to a larger volume of immiscible organic solution containing the lipid. The mixture is agitated to disperse the aqueous media as tiny droplets throughout the organic solvent and the lipid aligns itself into a monolayer at the boundary between the organic and aqueous phases. The size of the droplets is controlled by pressure, temperature, the agitation applied and the amount of lipid present.


The water-in-oil emulsion can be transformed into a liposomal suspension through the formation of a double emulsion. In a double emulsion, the organic solution containing the water droplets is added to a large volume of aqueous media and agitated, producing a water-in-oil-in-water emulsion. The size and type of lipid particle formed can be controlled by the choice of and amount of lipid, temperature, pressure, co-surfactants, solvents, etc.


7. Spray Drying Methods


Spray drying methods similar to those described above for making polymeric particle can be employed to create solid lipid particles. This works best for lipid with a melting point above 70° C.


In some embodiments, conjugates of the present invention may be encapsulated in polymeric particles using a single oil in water emulsion method. As a non-limiting example, the conjugate and a suitable polymer or block copolymer or a mixture of polymers/block copolymers, are dissolved in organic solvents such as, but not limited to, dichloromethane (DCM), ethyl acetate (EtAc) or choloform to form the oil phase. Co-solvents such as, but not limited to, dimethyl formamide (DMF), acetonitrile (CAN) or benzyl alcohol (BA) may be used to control the size of the particles and/or to solubilize the conjugate. Polymers used in the formulation may include, but not limited to, PLA97-b-PEG5, PLA35-b-PEG5 and PLA16-b-PEG5 copolymers.


In some embodiments, the particle may be prepared by combining a therapeutic agent, a first polymer, and an organic acid with an organic solvent to form a first organic phase having about 1 to about 50% solids; combining the first organic phase with a first aqueous solution to form the plurality of therapeutic nanoparticles; and recovering the therapeutic nanoparticles by filtration as disclosed in WO2014043618 to Figueiredo et al. (BIND), the contents of which are incorporated herein by reference in their entirety.


Particle formulations may be prepared by varying the lipophilicity of conjugates of the present invention. The lipophilicity may be varied by using hydrophobic ion-pairs or hydrophobic ion-paring (HIP) of the conjugates with different counterions. HIP alters the solubility of the conjugates of the present invention. The aqueous solubility may drop and the solubility in organic phases may increase.


Any suitable agent may be used to provide counterions to form HIP complex with the conjugate of the present invention. In some embodiments, the HIP complex may be formed prior to formulation of the particles.


VI. Methods of Using the Conjugates and Particles

The conjugates or particles as described herein or formulations containing the conjugates or particles as described herein can be administered to treat any hyperproliferative disease, metabolic disease, infectious disease, inflammatory disease, cancer, or any other disease, as appropriate. The formulations can be used for immunization. The formulations may be delivered to various body parts, such as but not limited to, brain and central nervous system, eyes, ears, lungs, bone, heart, kidney, liver, spleen, breast, ovary, colon, pancreas, muscles, gastrointestinal tract, mouth, skin, to treat diseases associated with such body parts. Formulations may be administered by injection, orally, or topically, typically to a mucosal surface (lung, nasal, oral, buccal, sublingual, vaginally, rectally) or to the eye (intraocularly or transocularly).


The terms “treat,” “treatment,” and the like mean to relieve or alleviate at least one symptom associated with a condition, or to slow or reverse the progression or anticipated progression of such condition, such as slowing the progression of a malignancy or cancer, or increasing the clearance of an infectious organism to alleviate/reduce the symptoms caused by the infection, e.g., hepatitis caused by infection with a hepatitis virus.


By “lower” in the context of a disease marker or symptom is meant a statistically significant decrease in such level. The decrease can be, for example, at least 10%, at least 20%, at least 30%, at least 40% or more, and is preferably down to a level accepted as within the range of normal for an individual without such disorder.


In some embodiments, the conjugates or particles of the present invention may be combined with at least one other active agent to form a composition. The at least one active agent may be a therapeutic, prophylactic, diagnostic, or nutritional agent. It may be a small molecule, protein, peptide, lipid, glycolipid, glycoprotein, lipoprotein, carbohydrate, sugar, or nucleic acid. The conjugates or particles of the present invention and the at least one other active agent may have the same target and/or treat the same disease.


In some embodiments, the at least one other active agent may be agents to augment EPR effect in patients, e.g. vascular mediators such as NO, CO, bradykinin, VEGF to further enhance EPR effect thus achieving more tumor accumulation of the conjugates or particles (Yin et al., JSM Clin Oncol Res 2(1): 1010 (2014), the contents of which are incorporated herein by reference in their entirety). Any augmentation agent disclosed in section 5 of Maeda et al., Adv. Drug Deliv. Rev. (2012), the contents of which are incorporated herein by reference in their entirety, may be combined with conjugates or particles of the present invention.


In some embodiments, the conjugates or particles of the present invention may be co-delivered with cells. Conjugates or particles of the present invention may preincubate with cells such as Buffy coat cells, stromal cells, or stem cells.


The conjugates or particles of the present invention and the at least one other active agent may be administered simultaneously or sequentially. They may be present as a mixture for simultaneous administration, or may each be present in separate containers for sequential administration.


The term “simultaneous administration”, as used herein, is not specifically restricted and means that the particles and the at least one other active agent are substantially administered at the same time, e.g. as a mixture or in immediate subsequent sequence.


The term “sequential administration”, as used herein, is not specifically restricted and means that the particles and the at least one other active agent are not administered at the same time but one after the other, or in groups, with a specific time interval between administrations. The time interval may be the same or different between the respective administrations of the particles and the at least one other active agent and may be selected, for example, from the range of 2 minutes to 96 hours, 1 to 7 days or one, two or three weeks. Generally, the time interval between the administrations may be in the range of a few minutes to hours, such as in the range of 2 minutes to 72 hours, 30 minutes to 24 hours, or 1 to 12 hours. Further examples include time intervals in the range of 24 to 96 hours, 12 to 36 hours, 8 to 24 hours, and 6 to 12 hours.


In some embodiments, more than one conjugate or particle may be combined to form a composition. The particles may comprise different conjugates, wherein the conjugates may have different RNAi agents, different linkers, and/or different targeting moieties. The particles may have different particle compositions, different drug loadings, and/or different sizes. The particles in the composition may be administered simultaneously or sequentially. They may be present as a mixture for simultaneous administration, or may each be present in separate containers for sequential administration.


In some embodiments, conjugates or particles of the present invention may be combined in a depot form with a temporal sequence of release of the conjugates or particles. In some cases, the conjugates comprise RNAi agents with different targets.


In some embodiments, conjugates or particles comprising such conjugates may be combined to form a composition. Pharmacokinetic properties of the composition, such as Cmax, may be modulated by adjusting the weight percent ratio of the conjugates and the particles comprising such conjugates.


In various embodiments, methods for treating a subject having a cancer are provided, wherein the method comprises administering a therapeutically-effective amount of the conjugates or particles, as described herein, to a subject having a cancer, suspected of having cancer, or having a predisposition to a cancer. According to the present invention, cancer embraces any disease or malady characterized by uncontrolled cell proliferation, e.g., hyperproliferation. Cancers may be characterized by tumors, e.g., solid tumors or any neoplasm.


In some embodiments, provided is a method for treating a subjection having infection, comprising administering a therapeutically-effective amount of the conjugates or particles, as described herein, to the subject. Any viral disease disclosed in Tan et al., Cell Research, vol. 14:460-466 (2004), the contents of which are incorporated herein by reference in their entirety, such as hepatitis, influenza, diseases related to poliovirus, hepatitis C virus (HCV), baculovirus, HIV, paramyxovirus, SARS-associated coronavirus, Avian Sarcoma Leucosis Virus (ASLV), Dengue (DEN) virus, West nile virus (WNV), Epstein-Barr virus (EBV), Vesicular stomatitis virus (VSV), or Rotavirus, may be treated or prevented with conjugates or particles of the present invention. RNAi agents in the conjugates may inhibit viral transcripts or protein synthesis in host cells, affect pre- or post-transcriptional aspects of viral life cycle, inhibit the expression of viral surface receptors, suppress the transcription of viral genome, blocks viral replication, inhibit viral accessory genes, etc. In one non-limiting example, conjugates or particles of the present invention may be used to treat or prevent myocarditis caused by coxsackie virus B3 (CVB3). Conjugates or particles may comprise any siRNA disclosed in Zhang et al, Antiviral Res., vol. 83(3):307-316 (2009), the contents of which are incorporated herein by reference in their entirety, wherein the siRNA inhibit CVB3 viral proteases 2A and reduce CVB3 replication.


In some embodiments, provided is a method for treating a subjection having inflammation, comprising administering a therapeutically-effective amount of the conjugates or particles, as described herein, to the subject. In one embodiment, the conjugates or particles may comprise a folate-targeting active agent, or a targeting moiety that binds to the folate receptor.


In some embodiments, the subject maybe otherwise free of indications for treatment with the conjugates or particles. In some embodiments, methods include use of cancer cells, including but not limited to mammalian cancer cells. In some instances, the mammalian cancer cells are human cancer cells.


In some embodiments, the conjugates or particles of the present teachings have been found to inhibit cancer and/or tumor growth. They may also reduce, including cell proliferation, invasiveness, and/or metastasis, thereby rendering them useful for the treatment of a cancer.


In some embodiments, the conjugates or particles of the present teachings may be used to prevent the growth of a tumor or cancer, and/or to prevent the metastasis of a tumor or cancer. In some embodiments, compositions of the present teachings may be used to shrink or destroy a cancer.


In some embodiments, the conjugates or particles provided herein are useful for inhibiting proliferation of a cancer cell. In some embodiments, the conjugates or particles provided herein are useful for inhibiting cellular proliferation, e.g., inhibiting the rate of cellular proliferation, preventing cellular proliferation, and/or inducing cell death. In general, the conjugates or particles as described herein can inhibit cellular proliferation of a cancer cell or both inhibiting proliferation and/or inducing cell death of a cancer cell.


The cancers treatable by methods of the present teachings generally occur in mammals. Mammals include, for example, humans, non-human primates, dogs, cats, rats, mice, rabbits, ferrets, guinea pigs horses, pigs, sheep, goats, and cattle. The cancers may be selected from acanthoma, acinic cell carcinoma, acute erythroleukaemia, acute leukaemia, acute lymphoblastic B cell leukaemia, acute lymphoblastic leukaemia, acute lymphoblastic T cell leukaemia, acute lymphocytic leukemia, acute monocytic leukemia, acute myeloblastic leukemia, acute myelogenous leukemia, acute myeloid leukaemia, acute pancreatitis, adamantinoma, adenofibroma, adenolipoma, adenomyoma, adenosarcoma, adnexal tumour, adrenal cortical adenoma, adrenal cortical carcinoma, adrenal cortical neoplasm, alveolar clear cell tumor, anaplastic large cell lymphoma, angiofibrolipoma, angiofibroma, angioleiomyoma, angiolipoma, angiomyolipoma, angiomyxoma, angiosarcoma, astroblastoma, astrocytoma, astrocytoma glioblastoma, atypical Spitzoid tumour, atypical teratoid tumour, B cell lymphoma, B cell neoplasm, Barrett oesophagus, basal cell carcinoma of the skin, bile duct cancer, biliary tract cancer, bladder cancer, Bowen disease, brain cancer, breast cancer, Burkitt lymphoma, cancer of the large intestine, cancer of the small intestine, cancer of the vagina, carcinoid tumor, central nervous system cancers, cervical cancer, cholangiocarcinoma, chondroblastoma, chondrosarcoma, chronic eosinophilic leukaemia, chronic lymphocytic leukaemia, chronic myeloid leukaemia, chronic myelomonocytic leukaemia, chronic pancreatitis, clear cell renal cell carcinoma, colon cancer, colorectal cancer, Crohns disease, Cushings syndrome, dermatofibroma, dermatofibrosarcoma protuberans, desmoid tumour, desmoplastic fibroblastoma, desmoplastic fibroma, desmoplastic infantile astrocytoma, diffuse large B cell lymphoma, ductal breast cancer, ductal breast cancer in situ, endometrial cancer, endometrial polyp, endometrial stromal sarcoma, endometrioid adenocarcinoma, esophageal cancer, Ewings sarcoma, eye cancer, fallopian tube tumor, fibroblastoma, fibromyxoidsarcoma, fibrosarcoma, fibrosis, gallbladder cancer, gastric cancer, gastrointestinal cancer, glioblastoma, glioblastoma multiforme, glioma, glioneural tumour, glioneuronal tumour, gliosarcoma, glomangiopericytoma, haemangioblastoma, haemangioendothelioma, haemangioma, hairy cell leukaemia, hamartoma, head and neck cancer, Hodgkin disease, Hurthle cell tumour, kidney cancer, Langerhans cell histiocytosis, Langerhans cell sarcoma, leiomyoblastoma, leiomyoma, leiomyosarcoma, leukemia, lipoastrocytoma, lipoblastoma, lipoleiomyoma, liposarcoma, liver cancer, lymphoma, malignant adnexal tumour, malignant fibrous histiocytoma, mantle cell lymphoma, mast cell leukaemia, mast cell sarcoma, medulloblastoma, melanoma, meningioma, Merkel cell tumor, mesothelioma, myeloma, myoepithelial tumour, myofibroblastic tumour, neuroblastoma, neuroendocrine cancer, neuroendocrine tumour, non-small cell lung cancer, oligoastrocytoma, oligodendroglioma, osteosarcoma, ovarian cancer, pancreatic cancer, pancreatic endocrine tumour, parathyroid tumour, pituitary cancer, polycythaemia vera, primitive neuroectodermal tumour, prostate cancer, rectal cancer, renal cancer, renal cell carcinoma, retinoblastoma, rhabdoid tumour, rhabdomyoma, rhabdomyosarcoma, salivary gland tumor, sarcoma, serous ovarian cancer, small cell lung cancer, squamous cell lung cancer, stomach cancer, synovial sarcoma, testicular cancer, testicular tumour, thymic carcinoma, thymic neuroendocrine tumour, thyroid cancer, unclassifiable tumor, urinary tract tumor, urothelial tumor, uterine cancer, uterine papillary serous carcinoma, and yolk sac tumor.


In various embodiments, the cancer is lung cancer, breast cancer, e.g., mutant BRCA1 and/or mutant BRCA2 breast cancer, non-BRCA-associated breast cancer, colorectal cancer, neuroendodrine cancer, ovarian cancer, pancreatic cancer, colorectal cancer, bladder cancer, prostate cancer, cervical cancer, renal cancer, leukemia, central nervous system cancers, myeloma, and melanoma. In some embodiments, the cancer is lung cancer. In certain embodiments, the cancer is human lung carcinoma, ovarian cancer, pancreatic cancer or colorectal cancer.


In some embodiments, the conjugates or particles of the present invention are used to up-regulate a target gene. In one embodiment, the target gene is selected from E-cadherin, human progesterone receptor (hPR), p53, and PTEN. Conjugates or particles of the present invention comprise agRNA with sequences disclosed in U.S. Pat. No. 7,709,456 to Corey et al., the contents of which are incorporated herein by reference in their entirety. In another embodiment, the target gene is selected from p21, E-cadherin, and VEGF. Conjugates or particles of present invention comprise saRNA with sequences disclosed in U.S. Pat. No. 8,877,721 to Li et al., the contents of which are incorporated herein by reference in their entirety. In another embodiment, the target gene is brain-derived neurotrophic factor (BDNF). Conjugates or particles of the present invention comprise single stranded oligonucleotide for activating or enhancing expression of BDNF disclosed in WO2013173601 to Krieg et al., the contents of which are incorporated herein by reference in their entirety, and are used to treat neurodegenerative diseases such as amyotrophic lateral sclerosis (ALS, also known as Lou Gehrig's disease), Alzheimer's Disease (AD), Huntington's disease (HD) and Parkinson's Disease (PD). In another embodiment, the target gene is apolipoprotein A1 gene (APOA1) or ABCA1. Conjugates or particles of the present invention comprise any single-stranded oligonucleotide disclosed in WO2013173647 to Krieg et al., the contents of which are incorporated herein by reference in their entirety, and are used to treat dyslipidemia and atherosclerosis and regulate cholesterol homeostasis. In another embodiment, the target gene is Utrophin (UTRN). Conjugates or particles of the present invention comprise single stranded oligonucleotide disclosed WO2013173645 to Krieg et al., the contents of which are incorporated herein by reference in their entirety, and are used to muscular dystrophies, including Duchenne muscular dystrophy (DMD), Becker Muscular Dystrophy (BMD), and myotonic dystrophy. In another embodiment, methyl CpG binding protein 2 gene (MECP2). Conjugates or particles of the present invention comprise single stranded oligonucleotide disclosed in WO2013173608 to Krieg et al., the contents of which are incorporated herein by reference in their entirety, and are used to regulate brain function and treat Rett Syndrom.


The conjugates or particles as described herein or formulations containing the conjugates or particles as described herein can be used for the selective tissue delivery of a therapeutic, prophylactic, or diagnostic agent to an individual or patient in need thereof. Dosage regimens may be adjusted to provide the optimum desired response (e.g., a therapeutic or prophylactic response). For example, a single bolus may be administered, several divided doses may be administered over time or the dose may be proportionally reduced or increased as indicated by the exigencies of the therapeutic situation. Dosage unit form as used herein refers to physically discrete units suited as unitary dosages for the mammalian subjects to be treated; each unit containing a predetermined quantity of active compound calculated to produce the desired therapeutic.


In various embodiments, a conjugate contained within a particle is released in a controlled manner. The release can be in vitro or in vivo. For example, particles can be subject to a release test under certain conditions, including those specified in the U.S. Pharmacopeia and variations thereof.


In various embodiments, less than about 90%, less than about 80%, less than about 70%, less than about 60%, less than about 50%, less than about 40%, less than about 30%, less than about 20% of the conjugate contained within particles is released in the first hour after the particles are exposed to the conditions of a release test. In some embodiments, less that about 90%, less than about 80%, less than about 70%, less than about 60%, or less than about 50% of the conjugate contained within particles is released in the first hour after the particles are exposed to the conditions of a release test. In certain embodiments, less than about 50% of the conjugate contained within particles is released in the first hour after the particles are exposed to the conditions of a release test.


With respect to a conjugate being released in vivo, for example, the conjugate contained within a particle administered to a subject may be protected from a subject's body, and the body may also be isolated from the conjugate until the conjugate is released from the particle.


Thus, in some embodiments, the conjugate may be substantially contained within the particle until the particle is delivered into the body of a subject. For example, less than about 90%, less than about 80%, less than about 70%, less than about 60%, less than about 50%, less than about 40%, less than about 30%, less than about 20%, less than about 15%, less than about 10%, less than about 5%, or less than about 1% of the total conjugate is released from the particle prior to the particle being delivered into the body, for example, a treatment site, of a subject. In some embodiments, the conjugate may be released over an extended period of time or by bursts (e.g., amounts of the conjugate are released in a short period of time, followed by a periods of time where substantially no conjugate is released). For example, the conjugate can be released over 6 hours, 12 hours, 24 hours, or 48 hours. In certain embodiments, the conjugate is released over one week or one month.


In some embodiments, the conjugates or particles of the present teachings may be administered to tumors with a high level of enhanced permeability and retention (EPR) effect. In some embodiments, tumors with a high level of enhanced permeability and retention effect may be identified with imaging techniques. As a non-limited example, iron oxide nanoparticle magnetic resonance imaging may be administered to a patient and EPR effects are measured.


In some embodiments, compounds and/or composition of the present teachings may be administered to a subject selected with the method disclosed in WO2015017506, the contents of which are incorporated herein by reference in their entirety, the method comprising:


(a) administering a contrast agent to the subject;


(b) measuring the level of accumulation of the contrast agent at least one intended site of treatment; and


(c) selecting the subject based on the level of the accumulation of the contrast agent;


wherein the intended site of treatment is a tumor.


Cancer Gene Therapies

In some embodiments, conjugates or particles of the present invention may be used in cancer gene therapies. Cancer developments often involve genetic abnormalities which lead to unregulated cancer-promoting oncogenes or disabled tumor suppressor genes. Cancer gene therapy aims to correct these gene abnormalities by suppressing pathological genes or up-regulating tumor suppressor genes. RNAi agents have shown great efficiency in suppressing the expression of genes involved in cancer development. For example, RNAi agent may down-regulate a tumor oncogene or proto-oncogene, or down-regulate a mutated tumor suppressor gene.


The term “oncogene” as used herein refers to a nucleic acid sequence encoding, or polypeptide of, a mutated and/or overexpressed version of a normal gene that in a dominant fashion can release the cell from normal restraints on growth and contribute to the cell's tumorigenicity. Examples of oncogenes include but not limited to gp40 (v-fms); p21 (ras); p55 (v-myc); p65 (gag-jun); pp 60 (v-src); v-abl; v-erb; v-erba; v-fos; etc. “Proto-oncogene” or “pro-oncogene” refers to the normal expression of a nucleic acid expressing the normal, cellular equivalent of an oncogene. Proto-oncogenes are usually involved in the signaling and regulation of cell growth, such as c-myc, c-fos, c-jun, etc.


Any gene involved in cancer development may be a target gene of the RNAi agent in the conjugates or particles of the present invention.


In some embodiments, target genes of the RNAi agents regulate cell apoptosis and cell cycle. Programmed cell death, or apoptosis, is down-regulated in a lot of cancers. p53 is inactivated by point mutation in more than 50% of human cancer. RNAi agents may be used to suppress the mutated p53 and restore the function of the wild type p53. RNAi agents may target anti-apoptosis factors, such as Bcl-2, survivin and Akt1. In one embodiment, conjugates or particles of the present invention may comprise siRNAs inhibiting p53 as disclosed in U.S. Pat. No. 7,781,575 to Khvorova et al, the contents of which are incorporated herein by reference in their entirety. In another embodiment, conjugates or particles of the present invention may comprise siRNAs inhibiting Bcl-2 or Bcl-XL expression as disclosed in Okamoto et al., J. Cell Mol. Med., vol. 11(2):349-361 (2007) or Lei et al., Acta Biochimica et Biophysica Sinica, vol. 38(10):704-710 (2006), the contents of each of which are incorporated herein by reference in their entirety, and are used to enhance Gemcitabine effects in human pancreatic cancer cells or sensitize human hepatocellular cells to 5-fluorouracil and hydroxycamptothecin. In another embodiment, conjugates or particles of the present invention may comprise Akt1-siRNA disclosed in Han et al., J. Exp. Cin. Cancer Res., vol. 25(4): 601-606 (2006), the contents of which are incorporated herein by reference in their entirety, and are used to reduce multidrug resistance of gastric cancer cells. In another embodiment, conjugates or particles of the present invention may comprise any siRNA inhibiting surviving expression as disclosed in U.S. Pat. No. 7,807,819 to Khvorova et al., U.S. Pat. No. 8,772,472 to Han et al., or WO 2009114476 to Xie et al., the contents of each of which are incorporated herein by reference in their entirety.


In some embodiments, target genes of the RNAi agents are involved in neoplastic cell signaling pathways. Signaling transducers such as protein kinases are critical for the proliferation and survival pathways of cancer cells. In one embodiment, conjugates or particles of the present invention may comprise siRNAs inhibiting Bcr-Abl oncogene mRNA as disclosed in Scherr et al., Blood, vol. 102:2236-2239 (2003), the contents of which are incorporated herein by reference in their entirety, and are used to treat chronic myeloid leukemia (CML) and Bcr-Abl-positive acute lymphoblastic leukemia (ALL). In another embodiment, conjugates or particles of present invention may comprise siRNAs inhibiting HER-2 mRNA as disclosed in Urban-Klein et al., Gene Therapy, vol. 12:461-466 (2005), the contents of which are incorporated herein by reference in their entirety, and are used to treat cancers such as pancreatic, ovarian, and breast cancers.


In some embodiments, target genes of the RNAi agents are involved in angiogenesis. Blood vessels provide ways for tumor cells to metastasize and spread to other organs in the body. Tumor cells can arrive at a metastatic site and establish a new blood supply network. Conjugates or particles of the present invention may comprise RNAi agents inhibiting expression of pro-angiogenic factors or genes such as vascular endothelial growth factor (VEGF) and fibroblast growth factor (FGF). In one embodiment, conjugates or particles of the present invention comprise siRNA inhibiting vascular endothelial growth factor (VEGF) as disclosed in U.S. Pat. No. 8,541,384 to Tolentino et al. or US 20100113307 to Khvorova et al., the contents of each of which are incorporated herein by reference in their entirety, and are used to suppress tumor angiogenesis and tumor growth.


In some embodiments, target genes of the RNAi agents are involved in drug resistance. Multidrug resistance (MDR) remains a major obstacle to successful chemotherapeutic treatment of cancer and can be caused by overexpression of P-glycoprotein, the MDR1 gene product. In one embodiment, conjugates or particles of the present invention comprise shRNAs that decrease the level of MDR1 P-glycoprotein as disclosed in Pichler et al., Clinical Cancer Research, vol. 11:4487 (2005), the contents of which are incorporated herein by reference in their entirety, and are used to sensitize cancer cells to cytotoxic agents including vincristine, paclitaxel and doxorubicin.


Combination Therapies

The invention further relates to the use of conjugates or particles or a pharmaceutical composition thereof, e.g., for treating a cancer, in combination with other pharmaceuticals and/or other therapeutic methods, e.g., with known pharmaceuticals and/or known therapeutic methods, such as, for example, those which are currently employed for treating these disorders. For example, the conjugates or particles or pharmaceutical composition thereof can also be administered in conjunction with one or more additional anti-cancer treatments, such as biological, chemotherapy and radiotherapy. Accordingly, a treatment can include, for example, imatinib (Gleevac), all-trans-retinoic acid, a monoclonal antibody treatment (gemtuzumab, ozogamicin), chemotherapy (for example, chlorambucil, prednisone, prednisolone, vincristine, cytarabine, clofarabine, farnesyl transferase inhibitors, decitabine, inhibitors of MDR1), rituximab, interferon-α, anthracycline drugs (such as daunorubicin or idarubicin), L-asparaginase, doxorubicin, cyclophosphamide, doxorubicin, bleomycin, fludarabine, etoposide, pentostatin, or cladribine), bone marrow transplant, stem cell transplant, radiation therapy, anti-metabolite drugs (methotrexate and 6-mercaptopurine), or any combination thereof.


Radiation therapy (also called radiotherapy, X-ray therapy, or irradiation) is the use of ionizing radiation to kill cancer cells and shrink tumors. Radiation therapy can be administered externally via external beam radiotherapy (EBRT) or internally via brachytherapy. The effects of radiation therapy are localised and confined to the region being treated. Radiation therapy may be used to treat almost every type of solid tumor, including cancers of the brain, breast, cervix, larynx, lung, pancreas, prostate, skin, stomach, uterus, or soft tissue sarcomas. Radiation is also used to treat leukemia and lymphoma.


Chemotherapy is the treatment of cancer with drugs that can destroy cancer cells. In current usage, the term “chemotherapy” usually refers to cytotoxic drugs which affect rapidly dividing cells in general, in contrast with targeted therapy. Chemotherapy drugs interfere with cell division in various possible ways, e.g. with the duplication of DNA or the separation of newly formed chromosomes. Most forms of chemotherapy target all rapidly dividing cells and are not specific to cancer cells, although some degree of specificity may come from the inability of many cancer cells to repair DNA damage, while normal cells generally can. Most chemotherapy regimens are given in combination. Exemplary chemotherapeutic agents include, but are not limited to, 5-FU Enhancer, 9-AC, AG2037, AG3340, Aggrecanase Inhibitor, Aminoglutethimide, Amsacrine (m-AMSA), Asparaginase, Azacitidine, Batimastat (BB94), BAY 12-9566, BCH-4556, Bis-Naphtalimide, Busulfan, Capecitabine, Carboplatin, Carmustaine+Polifepr Osan, cdk4/cdk2 inhibitors, Chlorombucil, CI-994, Cisplatin, Cladribine, CS-682, Cytarabine HCl, D2163, Dactinomycin, Daunorubicin HCl, DepoCyt, Dexifosamide, Docetaxel, Dolastain, Doxifluridine, Doxorubicin, DX8951f, E 7070, EGFR, Epirubicin, Erythropoietin, Estramustine phosphate sodium, Etoposide (VP16-213), Farnesyl Transferase Inhibitor, FK 317, Flavopiridol, Floxuridine, Fludarabine, Fluorouracil (5-FU), Flutamide, Fragyline, Gemcitabine, Hexamethylmelamine (HMM), Hydroxyurea (hydroxycarbamide), Ifosfamide, Interferon Alfa-2a, Interferon Alfa-2b, Interleukin-2, Irinotecan, ISI 641, Krestin, Lemonal DP 2202, Leuprolide acetate (LHRH-releasing factor analogue), Levamisole, LiGLA (lithium-gamma linolenate), Lodine Seeds, Lometexol, Lomustine (CCNU), Marimistat, Mechlorethamine HCl (nitrogen mustard), Megestrol acetate, Meglamine GLA, Mercaptopurine, Mesna, Mitoguazone (methyl-GAG; methyl glyoxal bis-guanylhydrazone; MGBG), Mitotane (o.p′-DDD), Mitoxantrone, Mitoxantrone HCl, MMI 270, MMP, MTA/LY 231514, Octreotide, ODN 698, OK-432, Oral Platinum, Oral Taxoid, Paclitaxel (TAXOL®), PARP Inhibitors, PD 183805, Pentostatin (2′ deoxycoformycin), PKC 412, Plicamycin, Procarbazine HCl, PSC 833, Ralitrexed, RAS Farnesyl Transferase Inhibitor, RAS Oncogene Inhibitor, Semustine (methyl-CCNU), Streptozocin, Suramin, Tamoxifen citrate, Taxane Analog, Temozolomide, Teniposide (VM-26), Thioguanine, Thiotepa, Topotecan, Tyrosine Kinase, UFT (Tegafur/Uracil), Valrubicin, Vinblastine sulfate, Vindesine sulfate, VX-710, VX-853, YM 116, ZD 0101, ZD 0473/Anormed, ZD 1839, ZD 9331.


Biological therapies use the body's immune system, either directly or indirectly, to fight cancer or to lessen the side effects that may be caused by some cancer treatments. This approach may include immune response modifying therapies such as the administration of interferons, interleukins, colony-stimulating factors, monoclonal antibodies, vaccines, gene therapy, and nonspecific immunomodulating agents are also envisioned as anti-cancer therapies to be combined with conjugates or particles or compositions thereof. Small molecule targeted therapy drugs are generally inhibitors of enzymatic domains on mutated, overexpressed, or otherwise critical proteins within the cancer cell, such as tyrosine kinase inhibitors imatinib (Gleevec/Glivec) and gefitinib (Iressa). Examples of monoclonal antibody therapies that can be used with conjugates or particles or pharmaceutical composition thereof include, but are not limited to, the anti-HER2/neu antibody trastuzumab (Herceptin) used in breast cancer, and the anti-CD20 antibody rituximab, used in a variety of B-cell malignancies. The growth of some cancers can be inhibited by providing or blocking certain hormones. Common examples of hormone-sensitive tumors include certain types of breast and prostate cancers. Removing or blocking estrogen or testosterone is often an important additional treatment. In certain cancers, administration of hormone agonists, such as progestogens may be therapeutically beneficial.


Cancer immunotherapy refers to a diverse set of therapeutic strategies designed to induce the patient's own immune system to fight the tumor, and include, but are not limited to, intravesical BCG immunotherapy for superficial bladder cancer, vaccines to generate specific immune responses, such as for malignant melanoma and renal cell carcinoma, and the use of Sipuleucel-T for prostate cancer, in which dendritic cells from the patient are loaded with prostatic acid phosphatase peptides to induce a specific immune response against prostate-derived cells.


In some embodiments, conjugates or particles or compositions thereof are administered in combination with an angiogenesis inhibitor. In some embodiments, the angiogenesis inhibitors for use in the methods described herein include, but are not limited to, monoclonal antibody therapies directed against specific pro-angiogenic growth factors and/or their receptors. Examples of these are: bevacizumab (Avastin®), cetuximab (Erbitux®), panitumumab (Vectibix™), and trastuzumab (Herceptin®). In some embodiments, the angiogenesis inhibitors for use in the methods described herein include but are not limited to small molecule tyrosine kinase inhibitors (TKIs) of multiple pro-angiogenic growth factor receptors. The three TKIs that are currently approved as anti-cancer therapies are erlotinib (Tarceva®), sorafenib (Nexavar®), and sunitinib (Sutent®). In some embodiments, the angiogenesis inhibitors for use in the methods described herein include but are not limited to inhibitors of mTOR (mammalian target of rapamycin) such as temsirolimus (Toricel™), bortezomib (Velcade®), thalidomide (Thalomid®), and Doxycyclin.


In other embodiments, the angiogenesis inhibitors for use in the methods described herein include one or more drugs that target the VEGF pathway, including, but not limited to, Bevacizumab (Avastin®), sunitinib (Sutent®), and sorafenib (Nexavar®). Additional VEGF inhibitors include CP-547,632 (3-(4-Bromo-2,6-difluoro-benzyloxy)-5-[3-(4-pyrrolidin 1-yl-butyl)-ureido]-isothiazole-4-carboxylic acid amide hydrochloride; Pfizer Inc., NY), AG13736, AG28262 (Pfizer Inc.), SU5416, SU11248, & SU6668 (formerly Sugen Inc., now Pfizer, New York, N.Y.), ZD-6474 (AstraZeneca), ZD4190 which inhibits VEGF-R2 and -R1 (AstraZeneca), CEP-7055 (Cephalon Inc., Frazer, Pa.), PKC 412 (Novartis), AEE788 (Novartis), AZD-2171), NEXAVAR® (BAY 43-9006, sorafenib; Bayer Pharmaceuticals and Onyx Pharmaceuticals), vatalanib (also known as PTK-787, ZK-222584: Novartis & Schering: AG), MACUGEN® (pegaptanib octasodium, NX-1838, EYE-001, Pfizer Inc./Gilead/Eyetech), IM862 (glufanide disodium, Cytran Inc. of Kirkland, Wash., USA), VEGFR2-selective monoclonal antibody DC101 (ImClone Systems, Inc.), angiozyme, a synthetic ribozyme from Ribozyme (Boulder, Colo.) and Chiron (Emeryville, Calif.), Sirna-027 (an siRNA-based VEGFR1 inhibitor, Sirna Therapeutics, San Francisco, Calif.) Caplostatin, soluble ectodomains of the VEGF receptors, Neovastat (Eterna Zentaris Inc; Quebec City, Calif.), ZM323881 (CalBiochem. CA, USA), pegaptanib (Macugen) (Eyetech Pharmaceuticals), an anti-VEGF aptamer and combinations thereof.


In other embodiments, the angiogenesis inhibitors for use in the methods described herein include anti-angiogenic factors such as alpha-2 antiplasmin (fragment), angiostatin (plasminogen fragment), antiangiogenic antithrombin III, cartilage-derived inhibitor (CDI), CD59 complement fragment, endostatin (collagen XVIII fragment), fibronectin fragment, gro-beta (a C-X-C chemokine), heparinases heparin hexasaccharide fragment, human chorionic gonadotropin (hCG), interferon alpha/beta/gamma, interferon inducible protein (IP-10), interleukin-12, kringle 5 (plasminogen fragment), beta-thromboglobulin, EGF (fragment), VEGF inhibitor, endostatin, fibronection (45 kD fragment), high molecular weight kininogen (domain 5), NK1, NK2, NK3 fragments of HGF, PF-4, serpin proteinase inhibitor 8, TGF-beta-1, thrombospondin-1, prosaposin, p53, angioarrestin, metalloproteinase inhibitors (TIMPs), 2-Methoxyestradiol, placental ribonuclease inhibitor, plasminogen activator inhibitor, prolactin 16 kD fragment, proliferin-related protein (PRP), retinoids, tetrahydrocortisol-S transforming growth factor-beta (TGF-b), vasculostatin, and vasostatin (calreticulin fragment).pamidronate thalidomide, TNP470, the bisphosphonate family such as amino-bisphosphonate zoledronic acid. bombesin/gastrin-releasing peptide (GRP) antagonists such as RC-3095 and RC-3940-II (Bajol A M, et. al., British Journal of Cancer (2004) 90, 245-252), anti-VEGF peptide RRKRRR (dRK6) (Seung-Ah Yoo, J. Immuno, 2005, 174: 5846-5855).


Efficacy of treatment or amelioration of disease can be assessed, for example by measuring disease progression, disease remission, symptom severity, reduction in pain, quality of life, dose of a medication required to sustain a treatment effect, level of a disease marker or any other measurable parameter appropriate for a given disease being treated or targeted for prevention. It is well within the ability of one skilled in the art to monitor efficacy of treatment or prevention by measuring any one of such parameters, or any combination of parameters. In connection with the administration of conjugates or particles or pharmaceutical composition thereof, “effective against” a cancer indicates that administration in a clinically appropriate manner results in a beneficial effect for at least a statistically significant fraction of patients, such as an improvement of symptoms, a cure, a reduction in disease load, reduction in tumor mass or cell numbers, extension of life, improvement in quality of life, or other effect generally recognized as positive by medical doctors familiar with treating the particular type of cancer.


A treatment or preventive effect is evident when there is a statistically significant improvement in one or more parameters of disease status, or by a failure to worsen or to develop symptoms where they would otherwise be anticipated. As an example, a favorable change of at least 10% in a measurable parameter of disease, and preferably at least 20%, 30%, 40%, 50% or more can be indicative of effective treatment. Efficacy for a given conjugate or particle drug or formulation of that drug can also be judged using an experimental animal model for the given disease as known in the art. When using an experimental animal model, efficacy of treatment is evidenced when a statistically significant reduction in a marker or symptom is observed.


Infectious Disease or Disorder

Conjugates or particles of the present invention may be used for treatment of an infectious disease or disorder, for example, in a subject having an infection. In some preferred embodiments the subject has an infection or is at risk of having an infection. An “infection” as used herein refers to a disease or condition attributable to the presence in a host of a foreign organism or agent that reproduces within the host. Infections typically involve breach of a normal mucosal or other tissue barrier by an infectious organism or agent. A subject that has an infection is a subject having objectively measurable infectious organisms or agents present in the subject's body. A subject at risk of having an infection is a subject that is predisposed to develop an infection. Such a subject can include, for example, a subject with a known or suspected exposure to an infectious organism or agent. A subject at risk of having an infection also can include a subject with a condition associated with impaired ability to mount an immune response to an infectious organism or agent, e.g., a subject with a congenital or acquired immunodeficiency, a subject undergoing radiation therapy or chemotherapy, a subject with a burn injury, a subject with a traumatic injury, a subject undergoing surgery or other invasive medical or dental procedure.


Infections are broadly classified as bacterial, viral, fungal, or parasitic based on the category of infectious organism or agent involved. Other less common types of infection are also known in the art, including, e.g., infections involving rickettsiae, mycoplasmas, and agents causing scrapie, bovine spongiform encephalopthy (BSE), and prion diseases (e.g., kuru and Creutzfeldt-Jacob disease). Examples of bacteria, viruses, fungi, and parasites which cause infection are well known in the art. An infection can be acute, subacute, chronic, or latent, and it can be localized or systemic. As defined herein, a “chronic infection” refers to those infections that are not cleared by the normal actions of the innate or adaptive immune responses and persist in the subject for a long duration of time, on the order of weeks, months, and years. A chronic infection may reflect latency of the infectious agent, and may be include periods in which no infectious symptoms are present, i.e., asymptomatic periods. Examples of chronic infections include, but are not limited to, HIV infection and herpesvirus infections. Furthermore, an infection can be predominantly intracellular or extracellular during at least one phase of the infectious organism's or agent's life cycle in the host.


Exemplary viruses include, but are not limited to: Retroviridae (e.g., human immunodeficiency viruses, such as HIV-1 (also referred to as HTLV-III), HIV-2, LAV or HTLV-III/LAV, or HIV-III, and other isolates, such as HIV-LP; Picornaviridae (e.g., polio viruses, hepatitis A virus; enteroviruses, human Coxsackie viruses, rhinoviruses, echoviruses); Calciviridae (e.g., strains that cause gastroenteritis); Togaviridae (e.g., equine encephalitis viruses, rubella viruses); Flaviviridae (e.g., dengue viruses, encephalitis viruses, yellow fever viruses); Coronaviridae (e.g., coronaviruses); Rhabdoviridae (e.g., vesicular stomatitis viruses, rabies viruses); Filoviridae (e.g., ebola viruses); Paramyxoviridae (e.g., parainfluenza viruses, mumps virus, measles virus, respiratory syncytial virus); adenovirus; Orthomyxoviridae (e.g., influenza viruses); Bungaviridae (e.g., Hantaan viruses, bunga viruses, phleboviruses and Nairo viruses); Arena viridae (hemorrhagic fever viruses); Reoviridae (e.g., reoviruses, orbiviurses and rotaviruses, i.e., Rotavirus A, Rotavirus B. Rotavirus C); Birnaviridae; Hepadnaviridae (Hepatitis A and B viruses); Parvoviridae (parvoviruses); Papovaviridae (papilloma viruses, polyoma viruses); Adenoviridae (most adenoviruses); Herpesviridae (herpes simplex virus (HSV) 1 and 2, Human herpes virus 6, Human herpes virus 7, Human herpes virus 8, varicella zoster virus, cytomegalovirus (CMV), herpes virus; Epstein-Barr virus; Rous sarcoma virus; West Nile virus; Japanese equine encephalitis, Norwalk, papilloma virus, parvovirus B19; Poxyiridae (variola viruses, vaccinia viruses, pox viruses); and Iridoviridae (e.g., African swine fever virus); Hepatitis D virus, Hepatitis E virus, and unclassified viruses (e.g., the etiological agents of Spongiform encephalopathies, the agent of delta hepatitis (thought to be a defective satellite of hepatitis B virus), the agents of non-A, non-B hepatitis (class 1=enterally transmitted; class 2=parenterally transmitted (i.e., Hepatitis C); Norwalk and related viruses, and astroviruses).


Bacteria include both Gram negative and Gram positive bacteria. Examples of Gram positive bacteria include, but are not limited to Pasteurella species, Staphylococci species, and Streptococcus species. Examples of Gram negative bacteria include, but are not limited to, Escherichia coli, Pseudomonas species, and Salmonella species. Specific examples of infectious bacteria include but are not limited to: Helicobacter pyloris, Borrelia burgdorferi, Legionella pneumophilia, Mycobacteria spp. (e.g., M. tuberculosis, M. avium, M intracellulare, M kansasii, M. gordonae, M. leprae), Staphylococcus aureus, Neisseria gonorrhoeae, Neisseria meningitidis, Listeria monocytogenes, Streptococcus pyogenes (Group A Streptococcus), Streptococcus agalactiae (Group B Streptococcus), Streptococcus (viridans group), Streptococcus faecalis, Streptococcus bovis, Streptococcus (anaerobic spp.), Streptococcus pneumoniae, pathogenic Campylobacter spp., Enterococcus spp., Haemophilus influenzae (Hemophilus influenza B, and Hemophilus influenza non-typable), Bacillus anthracis, Corynebacterium diphtheriae, Corynebacterium spp., Erysipelothrix rhusiopathiae, Clostridium perfringens, Clostridium tetani, Enterobacter aerogenes, Klebsiella pneumoniae, Pasteurella multocida, Bacteroides spp., Fusobacterium nucleatum, Streptobacillus moniliformis, Treponema pallidum, Treponema pertenue, Leptospira, Rickettsia, Actinomyces israelii, meningococcus, pertussis, pneumococcus, shigella, tetanus, Vibrio cholerae, yersinia, Pseudomonas species, Clostridia species, Salmonella typhi, Shigella dysenteriae, Yersinia pestis, Brucella species, Legionella pneumophila, Rickettsiae, Chlamydia, Clostridium perfringens, Clostridium botulinum, Staphylococcus aureus, Pseudomonas aeruginosa, Cryptosporidium parvum, Streptococcus pneumoniae, and Bordetella pertussis.


Exemplary fungi and yeast include, but are not limited to, Cryptococcus neoformans, Candida albicans, Candida tropicalis, Candida stellatoidea, Candida glabrata, Candida krusei, Candida parapsilosis, Candida guilliermondii, Candida viswanathii, Candida lusitaniae, Rhodotorula mucilaginosa, Aspergillus fumigatus, Aspergillus flavus, Blastomyces dermatitidis, Aspergillus clavatus, Cryptococcus neoformans, Chlamydia trachomatis, Coccidioides immitis, Cryptococcus laurentii, Cryptococcus albidus, Cryptococcus gattii, Nocardia spp, Histoplasma capsulatum, Pneumocystis jirovecii (or Pneumocystis carinii), Stachybotrys chartarum, and any combination thereof.


Exemplary parasites include, but are not limited to: Entamoeba histolytica; Plasmodium species (Plasmodium falciparum, Plasmodium malariae, Plasmodium ovale, Plasmodium vivax), Leishmania species (Leishmania tropica, Leishmania braziliensis, Leishmania donovani), Toxoplasmosis (Toxoplasma gondii), Trypanosoma gambiense, Trypanosoma rhodesiense (African sleeping sickness), Trypanosoma cruzi (Chagas' disease), Helminths (flat worms, round worms), Babesia microti, Babesia divergens, Giardia lamblia, and any combination thereof.


The invention further relates to the use of conjugates or particles of the present invention and compositions thereof for the treatment of an infectious disease, such as hepatitis B or a chronic bacterial infection, in combination with other pharmaceuticals and/or other therapeutic methods, e.g., with known pharmaceuticals and/or known therapeutic methods, such as, for example, those which are currently employed for treating such infectious diseases or disorders (e.g., antibiotics, anti-viral agents). For example, in certain embodiments, administration of conjugates or particles of the present invention is in combination with an antibacterial agent. Examples of anti-bacterial agents useful for the methods described herein include, but are not limited to, natural penicillins, semi-synthetic penicillins, clavulanic acid, cephalolsporins, bacitracin, ampicillin, carbenicillin, oxacillin, azlocillin, mezlocillin, piperacillin, methicillin, dicloxacillin, nafcillin, cephalothin, cephapirin, cephalexin, cefamandole, cefaclor, cefazolin, cefuroxine, cefoxitin, cefotaxime, cefsulodin, cefetamet, cefixime, ceftriaxone, cefoperazone, ceftazidine, moxalactam, carbapenems, imipenems, monobactems, euztreonam, vancomycin, polymyxin, amphotericin B, nystatin, imidazoles, clotrimazole, miconazole, ketoconazole, itraconazole, fluconazole, rifampins, ethambutol, tetracyclines, chloramphenicol, macrolides, aminoglycosides, streptomycin, kanamycin, tobramycin, amikacin, gentamicin, tetracycline, minocycline, doxycycline, chlortetracycline, erythromycin, roxithromycin, clarithromycin, oleandomycin, azithromycin, chloramphenicol, quinolones, co-trimoxazole, norfloxacin, ciprofloxacin, enoxacin, nalidixic acid, temafloxacin, sulfonamides, gantrisin, and trimethoprim; Acedapsone; Acetosulfone Sodium; Alamecin; Alexidine; Amdinocillin; Amdinocillin Pivoxil; Amicycline; Amifloxacin; Amifloxacin Mesylate; Amikacin; Amikacin Sulfate; Aminosalicylic acid; Aminosalicylate sodium; Amoxicillin; Amphomycin; Ampicillin; Ampicillin Sodium; Apalcillin Sodium; Apramycin; Aspartocin; Astromicin Sulfate; Avilamycin; Avoparcin; Azithromycin; Azlocillin; Azlocillin Sodium; Bacampicillin Hydrochloride; Bacitracin; Bacitracin Methylene Disalicylate; Bacitracin Zinc; Bambermycins; Benzoylpas Calcium; Berythromycin; Betamicin Sulfate; Biapenem; Biniramycin; Biphenamine Hydrochloride; Bispyrithione Magsulfex; Butikacin; Butirosin Sulfate; Capreomycin Sulfate; Carbadox; Carbenicillin Disodium; Carbenicillin Indanyl Sodium; Carbenicillin Phenyl Sodium; Carbenicillin Potassium; Carumonam Sodium; Cefaclor; Cefadroxil; Cefamandole; Cefamandole Nafate; Cefamandole Sodium; Cefaparole; Cefatrizine; Cefazaflur Sodium; Cefazolin; Cefazolin Sodium; Cefbuperazone; Cefdinir; Cefepime; Cefepime Hydrochloride; Cefetecol; Cefixime; Cefinenoxime Hydrochloride; Cefinetazole; Cefinetazole Sodium; Cefonicid Monosodium; Cefonicid Sodium; Cefoperazone Sodium; Ceforanide; Cefotaxime Sodium; Cefotetan; Cefotetan Disodium; Cefotiam Hydrochloride; Cefoxitin; Cefoxitin Sodium; Cefpimizole; Cefpimizole Sodium; Cefpiramide; Cefpiramide Sodium; Cefpirome Sulfate; Cefpodoxime Proxetil; Cefprozil; Cefroxadine; Cefsulodin Sodium; Ceftazidime; Ceftibuten; Ceftizoxime Sodium; Ceftriaxone Sodium; Cefuroxime; Cefuroxime Axetil; Cefuroxime Pivoxetil; Cefuroxime Sodium; Cephacetrile Sodium; Cephalexin; Cephalexin Hydrochloride; Cephaloglycin; Cephaloridine; Cephalothin Sodium; Cephapirin Sodium; Cephradine; Cetocycline Hydrochloride; Cetophenicol; Chloramphenicol; Chloramphenicol Palmitate; Chloramphenicol Pantothenate Complex; Chloramphenicol Sodium Succinate; Chlorhexidine Phosphanilate; Chloroxylenol; Chlortetracycline Bisulfate; Chlortetracycline Hydrochloride; Cinoxacin; Ciprofloxacin; Ciprofloxacin Hydrochloride; Cirolemycin; Clarithromycin; Clinafloxacin Hydrochloride; Clindamycin; Clindamycin Hydrochloride; Clindamycin Palmitate Hydrochloride; Clindamycin Phosphate; Clofazimine; Cloxacillin Benzathine; Cloxacillin Sodium; Cloxyquin; Colistimethate Sodium; Colistin Sulfate; Coumermycin; Coumermycin Sodium; Cyclacillin; Cycloserine; Dalfopristin; Dapsone; Daptomycin; Demeclocycline; Demeclocycline Hydrochloride; Demecycline; Denofungin; Diaveridine; Dicloxacillin; Dicloxacillin Sodium; Dihydrostreptomycin Sulfate; Dipyrithione; Dirithromycin; Doxycycline; Doxycycline Calcium; Doxycycline Fosfatex; Doxycycline Hyclate; Droxacin Sodium; Enoxacin; Epicillin; Epitetracycline Hydrochloride; Erythromycin; Erythromycin Acistrate; Erythromycin Estolate; Erythromycin Ethylsuccinate; Erythromycin Gluceptate; Erythromycin Lactobionate; Erythromycin Propionate; Erythromycin Stearate; Ethambutol Hydrochloride; Ethionamide; Fleroxacin; Floxacillin; Fludalanine; Flumequine; Fosfomycin; Fosfomycin Tromethamine; Fumoxicillin; Furazolium Chloride; Furazolium Tartrate; Fusidate Sodium; Fusidic Acid; Gentamicin Sulfate; Gloximonam; Gramicidin; Haloprogin; Hetacillin; Hetacillin Potassium; Hexedine; Ibafloxacin; Inipenem; Isoconazole; Isepamicin; Isoniazid; Josamycin; Kanamycin Sulfate; Kitasamycin; Levofuraltadone; Levopropylcillin Potassium; Lexithromycin; Lincomycin; Lincomycin Hydrochloride; Lomefloxacin; Lomefloxacin Hydrochloride; Lomefloxacin Mesylate; Loracarbef; Mafenide; Meclocycline; Meclocycline Sulfosalicylate; Megalomicin Potassium Phosphate; Mequidox; Meropenem; Methacycline; Methacycline Hydrochloride; Methenamine; Methenamine Hippurate; Methenamine Mandelate; Methicillin Sodium; Metioprim; Metronidazole Hydrochloride; Metronidazole Phosphate; Mezlocillin; Mezlocillin Sodium; Minocycline; Minocycline Hydrochloride; Mirincamycin Hydrochloride; Monensin; Monensin Sodium; Nafcillin Sodium; Nalidixate Sodium; Nalidixic Acid; Natamycin; Nebramycin; Neomycin Palmitate; Neomycin Sulfate; Neomycin Undecylenate; Netilmicin Sulfate; Neutramycin; Nifuradene; Nifuraldezone; Nifuratel; Nifuratrone; Nifurdazil; Nifurimide; Nifurpirinol; Nifurquinazol; Nifurthiazole; Nitrocycline; Nitrofurantoin; Nitromide; Norfloxacin; Novobiocin Sodium; Ofloxacin; Ormetoprim; Oxacillin Sodium; Oximonam; Oximonam Sodium; Oxolinic Acid; Oxytetracycline; Oxytetracycline Calcium; Oxytetracycline Hydrochloride; Paldimycin; Parachlorophenol; Paulomycin; Pefloxacin; Pefloxacin Mesylate; Penamecillin; Penicillin G Benzathine; Penicillin G Potassium; Penicillin G Procaine; Penicillin G Sodium; Penicillin V; Penicillin V Benzathine; Penicillin V Hydrabamine; Penicillin V Potassium; Pentizidone Sodium; Phenyl Aminosalicylate; Piperacillin Sodium; Pirbenicillin Sodium; Piridicillin Sodium; Pirlimycin Hydrochloride; Pivampicillin Hydrochloride; Pivampicillin Pamoate; Pivampicillin Probenate; Polymyxin B Sulfate; Porfiromycin; Propikacin; Pyrazinamide; Pyrithione Zinc; Quindecamine Acetate; Quinupristin; Racephenicol; Ramoplanin; Ranimycin; Relomycin; Repromicin; Rifabutin; Rifametane; Rifamexil; Rifamide; Rifampin; Rifapentine; Rifaximin; Rolitetracycline; Rolitetracycline Nitrate; Rosaramicin; Rosaramicin Butyrate; Rosaramicin Propionate; Rosaramicin Sodium Phosphate; Rosaramicin Stearate; Rosoxacin; Roxarsone; Roxithromycin; Sancycline; Sanfetrinem Sodium; Sarmoxicillin; Sarpicillin; Scopafungin; Sisomicin; Sisomicin Sulfate; Sparfloxacin; Spectinomycin Hydrochloride; Spiramycin; Stallimycin Hydrochloride; Steffimycin; Streptomycin Sulfate; Streptonicozid; Sulfabenz; Sulfabenzamide; Sulfacetamide; Sulfacetamide Sodium; Sulfacytine; Sulfadiazine; Sulfadiazine Sodium; Sulfadoxine; Sulfalene; Sulfamerazine; Sulfameter; Sulfamethazine; Sulfamethizole; Sulfamethoxazole; Sulfamonomethoxine; Sulfamoxole; Sulfanilate Zinc; Sulfanitran; Sulfasalazine; Sulfasomizole; Sulfathiazole; Sulfazamet; Sulfisoxazole; Sulfisoxazole Acetyl; Sulfisoxazole Diolamine; Sulfomyxin; Sulopenem; Sultamicillin; Suncillin Sodium; Talampicillin Hydrochloride; Teicoplanin; Temafloxacin Hydrochloride; Temocillin; Tetracycline; Tetracycline Hydrochloride; Tetracycline Phosphate Complex; Tetroxoprim; Thiamphenicol; Thiphencillin Potassium; Ticarcillin Cresyl Sodium; Ticarcillin Disodium; Ticarcillin Monosodium; Ticlatone; Tiodonium Chloride; Tobramycin; Tobramycin Sulfate; Tosufloxacin; Trimethoprim; Trimethoprim Sulfate; Trisulfapyrimidines; Troleandomycin; Trospectomycin Sulfate; Tyrothricin; Vancomycin; Vancomycin Hydrochloride; Virginiamycin; and Zorbamycin.


In other embodiments, administration of conjugates or particles of the present invention and composition thereof is performed in combination with an anti-viral medicament or agent. Exemplary antiviral agents useful for the methods described herein include, but are not limited to, immunoglobulins, amantadine, interferon, nucleoside analogues, and protease inhibitors. Specific examples of antiviral agents include but are not limited to Acemannan; Acyclovir; Acyclovir Sodium; Adefovir; Alovudine; Alvircept Sudotox; Amantadine Hydrochloride; Aranotin; Arildone; Atevirdine Mesylate; Avridine; Cidofovir; Cipamfylline; Cytarabine Hydrochloride; Delavirdine Mesylate; Desciclovir; Didanosine; Disoxaril; Edoxudine; Enviradene; Enviroxime; Famciclovir; Famotine Hydrochloride; Fiacitabine; Fialuridine; Fosarilate; Foscamet Sodium; Fosfonet Sodium; Ganciclovir; Ganciclovir Sodium; Idoxuridine; Kethoxal; Lamivudine; Lobucavir; Memotine Hydrochloride; Methisazone; Nevirapine; Penciclovir; Pirodavir; Ribavirin; Rimantadine Hydrochloride; Saquinavir Mesylate; Somantadine Hydrochloride; Sorivudine; Statolon; Stavudine; Tilorone Hydrochloride; Trifluridine; Valacyclovir Hydrochloride; Vidarabine; Vidarabine Phosphate; Vidarabine Sodium Phosphate; Viroxime; Zalcitabine; Zidovudine; and Zinviroxime.


In other embodiments, administration of conjugates or particles of the present invention and compositions thereof is performed in combination with an anti-fungal medicament or agent. An “antifungal medicament” is an agent that kills or inhibits the growth or function of infective fungi. Anti-fungal medicaments are sometimes classified by their mechanism of action. Some anti-fungal agents function as cell wall inhibitors by inhibiting glucose synthase, other antifungal agents function by destabilizing membrane integrity, and other antifungal agents function by breaking down chitin (e.g., chitinase) or immunosuppression (501 cream). Thus, exemplary antifungal medicaments useful for the methods described herein include, but are not limited to, imidazoles, 501 cream, and Acrisorcin, Ambruticin, Amorolfine, Amphotericin B, Azaconazole, Azaserine, Basifungin, BAY 38-9502, Bifonazole, Biphenamine Hydrochloride, Bispyrithione Magsulfex, Butenafine, Butoconazole Nitrate, Calcium Undecylenate, Candicidin, Carbol-Fuchsin, Chitinase, Chlordantoin, Ciclopirox, Ciclopirox Olamine, Cilofungin, Cisconazole, Clotrimazole, Cuprimyxin, Denofungin, Dipyrithione, Doconazole, Econazole, Econazole Nitrate, Enilconazole, Ethonam Nitrate, Fenticonazole Nitrate, Filipin, FK 463, Fluconazole, Flucytosine, Fungimycin, Griseofulvin, Hamycin, Isoconazole, Itraconazole, Kalafungin, Ketoconazole, Lomofungin, Lydimycin, Mepartricin, Miconazole, Miconazole Nitrate, MK 991, Monensin, Monensin Sodium, Naftifine Hydrochloride, Neomycin Undecylenate, Nifuratel, Nifurmerone, Nitralamine Hydrochloride, Nystatin, Octanoic Acid, Orconazole Nitrate, Oxiconazole Nitrate, Oxifungin Hydrochloride, Parconazole Hydrochloride, Partricin, Potassium Iodide, Pradimicin, Proclonol, Pyrithione Zinc, Pyrrolnitrin, Rutamycin, Sanguinarium Chloride, Saperconazole, Scopafungin, Selenium Sulfide, Sertaconazole, Sinefungin, Sulconazole Nitrate, Terbinafine, Terconazole, Thiram, Ticlatone, Tioconazole, Tolciclate, Tolindate, Tolnaftate, Triacetin, Triafungin, UK 292, Undecylenic Acid, Viridofulvin, Voriconazole, Zinc Undecylenate, and Zinoconazole Hydrochloride.


In further embodiments, administration of conjugates or particles of the present invention and compositions thereof is administered in combination with an anti-parasitic medicament or agent. An “antiparasitic medicament” refers to an agent that kills or inhibits the growth or function of infective parasites. Examples of antiparasitic medicaments, also referred to as parasiticides, useful for the methods described herein include, but are not limited to, albendazole, amphotericin B, benznidazole, bithionol, chloroquine HCl, chloroquine phosphate, clindamycin, dehydroemetine, diethylcarbamazine, diloxanide furoate, doxycycline, eflomithine, furazolidaone, glucocorticoids, halofantrine, iodoquinol, ivermectin, mebendazole, mefloquine, meglumine antimoniate, melarsoprol, metrifonate, metronidazole, niclosamide, nifurtimox, oxamniquine, paromomycin, pentamidine isethionate, piperazine, praziquantel, primaquine phosphate, proguanil, pyrantel pamoate, pyrimethanmine-sulfonamides, pyrimethanmine-sulfadoxine, quinacrine HCl, quinine sulfate, quinidine gluconate, spiramycin, stibogluconate sodium (sodium antimony gluconate), suramin, tetracycline, thiabendazole, timidazole, trimethroprim-sulfamethoxazole, and tryparsamide, some of which are used alone or in combination with others.


The conjugates or particles of the present invention and compositions thereof and an additional therapeutic agent can be administered in combination in the same composition, e.g., parenterally, or the additional therapeutic agent can be administered as part of a separate composition or by another method described herein.


Patients can be administered a therapeutic amount of conjugates or particles of the present invention, such as 0.5 mg/kg, 1.0 mg/kg, 1.5 mg/kg, 2.0 mg/kg, or 2.5 mg/kg dsRNA. The conjugates or particles can be administered by intravenous infusion over a period of time, such as over a 5 minute, 10 minute, 15 minute, 20 minute, or 25 minute period. The administration is repeated, for example, on a regular basis, such as biweekly (i.e., every two weeks) for one month, two months, three months, four months or longer. After an initial treatment regimen, the treatments can be administered on a less frequent basis. For example, after administration biweekly for three months, administration can be repeated once per month, for six months or a year or longer.


Before administration of a full dose of the conjugates or particles of the present invention, patients can be administered a smaller dose, such as a 5% infusion reaction, and monitored for adverse effects, such as an allergic reaction, or for elevated lipid levels or blood pressure. In another example, the patient can be monitored for unwanted immunostimulatory effects, such as increased cytokine (e.g., TNF-alpha or INF-alpha) levels.


Genetic predisposition plays a role in the development of some cancers and hematological malignancies. Therefore, a patient in need of conjugates or particles of the present invention may be identified by taking a family history, or, for example, screening for one or more genetic markers or variants. A healthcare provider, such as a doctor, nurse, or family member, can take a family history before prescribing or administering conjugates or particles of the present invention.


VI. Kits and Devices

The invention provides a variety of kits and devices for conveniently and/or effectively carrying out methods of the present invention. Typically kits will comprise sufficient amounts and/or numbers of components to allow a user to perform multiple treatments of a subject(s) and/or to perform multiple experiments.


Any of the compositions described herein may be comprised in a kit. In a non-limiting example, reagents for generating conjugates or particles of the present invention, including RNAi agents and specifically siRNA molecules are included in a kit. The kit may further include reagents or instructions for creating or synthesizing the conjugates or particles. It may also include one or more buffers, such as a nuclease buffer, transcription buffer, or a hybridization buffer, compounds for preparing the conjugates or particles, and components for isolating the resultant products. Other kits of the invention may include components for making a nucleic acid array comprising RNAi agents, e.g., siRNA, and thus, may include, for example, a solid support.


The components of the kits may be packaged either in aqueous media or in lyophilized form. The container means of the kits will generally include at least one vial, test tube, flask, bottle, syringe or other container means, into which a component may be placed, and preferably, suitably aliquoted. Where there are more than one component in the kit (labeling reagent and label may be packaged together), the kit also will generally contain a second, third or other additional container into which the additional components may be separately placed. However, various combinations of components may be comprised in a vial. The kits of the present invention also will typically include a means for containing the conjugates or particles, and any other reagent containers in close confinement for commercial sale. Such containers may include injection or blow-molded plastic containers into which the desired vials are retained.


When the components of the kit are provided in one and/or more liquid solutions, the liquid solution is an aqueous solution, with a sterile aqueous solution being particularly preferred. However, the components of the kit may be provided as dried powder(s). When reagents and/or components are provided as a dry powder, the powder can be reconstituted by the addition of a suitable solvent. It is envisioned that the solvent may also be provided in another container means. In some embodiments, labeling dyes are provided as a dried power. It is contemplated that 10, 20, 30, 40, 50, 60, 70, 80, 90, 100, 120, 120, 130, 140, 150, 160, 170, 180, 190, 200, 300, 400, 500, 600, 700, 800, 900, 1000 micrograms or at least or at most those amounts of dried dye are provided in kits of the invention. The dye may then be resuspended in any suitable solvent, such as DMSO.


The container means will generally include at least one vial, test tube, flask, bottle, syringe and/or other container means, into which the conjugates or particles and formulations thereof are placed, preferably, suitably allocated. The kits may also comprise a second container means for containing a sterile, pharmaceutically acceptable buffer and/or other diluent.


The kits of the present invention may also typically include a means for containing the vials in close confinement for commercial sale, such as, e.g., injection and/or blow-molded plastic containers into which the desired vials are retained.


Kits may also include components that preserve or maintain the RNAi agents or that protect against their degradation. Such components may be RNAse-free or protect against RNAses, such as RNase inhibitors. Such kits generally will comprise, in suitable means, distinct containers for each individual reagent or solution.


A kit can include instructions for employing the kit components as well the use of any other reagent not included in the kit. Instructions may include variations that can be implemented.


In one embodiment, the present invention provides kits for inhibiting tumor cell growth in vitro or in vivo, comprising a conjugate and/or particle of the present invention or a combination of conjugates and/or particles of the present invention, optionally in combination with any other active agents.


The kit may further comprise packaging and instructions and/or a delivery agent to form a formulation composition. The delivery agent may comprise a saline, a buffered solution, or any delivery agent disclosed herein. The amount of each component may be varied to enable consistent, reproducible higher concentration saline or simple buffer formulations. The components may also be varied in order to increase the stability of the conjugates and/or particles in the buffer solution over a period of time and/or under a variety of conditions.


The present invention provides for devices which may incorporate conjugates and/or particles of the present invention. These devices contain in a stable formulation available to be immediately delivered to a subject in need thereof, such as a human patient. In some embodiments, the subject has cancer.


Non-limiting examples of the devices include a pump, a catheter, a needle, a transdermal patch, a pressurized olfactory delivery device, iontophoresis devices, multi-layered microfluidic devices. The devices may be employed to deliver conjugates and/or particles of the present invention according to single, multi- or split-dosing regiments. The devices may be employed to deliver conjugates and/or particles of the present invention across biological tissue, intradermal, subcutaneously, or intramuscularly.


It will be appreciated that the following examples are intended to illustrate but not to limit the present invention. Various other examples and modifications of the foregoing description and examples will be apparent to a person skilled in the art after reading the disclosure without departing from the spirit and scope of the invention, and it is intended that all such examples or modifications be included within the scope of the appended claims. All publications and patents referenced herein are hereby incorporated by reference in their entirety.


VIII. Definitions

The term “compound”, as used herein, is meant to include all stereoisomers, geometric isomers, tautomers, and isotopes of the structures depicted. In the present application, compound is used interchangeably with conjugate. Therefore, conjugate, as used herein, is also meant to include all stereoisomers, geometric isomers, tautomers, and isotopes of the structures depicted.


The compounds described herein can be asymmetric (e.g., having one or more stereocenters). All stereoisomers, such as enantiomers and diastereomers, are intended unless otherwise indicated. Compounds of the present disclosure that contain asymmetrically substituted carbon atoms can be isolated in optically active or racemic forms. Methods on how to prepare optically active forms from optically active starting materials are known in the art, such as by resolution of racemic mixtures or by stereoselective synthesis. Many geometric isomers of olefins, C═N double bonds, and the like can also be present in the compounds described herein, and all such stable isomers are contemplated in the present disclosure. Cis and trans geometric isomers of the compounds of the present disclosure are described and may be isolated as a mixture of isomers or as separated isomeric forms.


Compounds of the present disclosure also include tautomeric forms. Tautomeric forms result from the swapping of a single bond with an adjacent double bond and the concomitant migration of a proton. Tautomeric forms include prototropic tautomers which are isomeric protonation states having the same empirical formula and total charge. Examples prototropic tautomers include ketone-enol pairs, amide-imidic acid pairs, lactam-lactim pairs, amide-imidic acid pairs, enamine-imine pairs, and annular forms where a proton can occupy two or more positions of a heterocyclic system, such as, 1H- and 3H-imidazole, 1H-, 2H- and 4H-1,2,4-triazole, 1H- and 2H-isoindole, and 1H- and 2H-pyrazole. Tautomeric forms can be in equilibrium or sterically locked into one form by appropriate substitution.


Compounds of the present disclosure also include all of the isotopes of the atoms occurring in the intermediate or final compounds. “Isotopes” refers to atoms having the same atomic number but different mass numbers resulting from a different number of neutrons in the nuclei. For example, isotopes of hydrogen include tritium and deuterium.


The compounds and salts of the present disclosure can be prepared in combination with solvent or water molecules to form solvates and hydrates by routine methods.


The terms “subject” or “patient”, as used herein, refer to any organism to which the particles may be administered, e.g., for experimental, therapeutic, diagnostic, and/or prophylactic purposes. Typical subjects include animals (e.g., mammals such as mice, rats, rabbits, guinea pigs, cattle, pigs, sheep, horses, dogs, cats, hamsters, lamas, non-human primates, and humans).


The terms “treating” or “preventing”, as used herein, can include preventing a disease, disorder or condition from occurring in an animal that may be predisposed to the disease, disorder and/or condition but has not yet been diagnosed as having the disease, disorder or condition; inhibiting the disease, disorder or condition, e.g., impeding its progress; and relieving the disease, disorder, or condition, e.g., causing regression of the disease, disorder and/or condition. Treating the disease, disorder, or condition can include ameliorating at least one symptom of the particular disease, disorder, or condition, even if the underlying pathophysiology is not affected, such as treating the pain of a subject by administration of an analgesic agent even though such agent does not treat the cause of the pain.


A “target”, as used herein, shall mean a site to which targeted constructs bind. A target may be either in vivo or in vitro. In certain embodiments, a target may be cancer cells found in leukemias or tumors (e.g., tumors of the brain, lung (small cell and non-small cell), ovary, prostate, breast and colon as well as other carcinomas and sarcomas). In still other embodiments, a target may refer to a molecular structure to which a targeting moiety or ligand binds, such as a hapten, epitope, receptor, dsDNA fragment, carbohydrate or enzyme. A target may be a type of tissue, e.g., neuronal tissue, intestinal tissue, pancreatic tissue, liver, kidney, prostate, ovary, lung, bone marrow, or breast tissue


The term “therapeutic effect” is art-recognized and refers to a local or systemic effect in animals, particularly mammals, and more particularly humans caused by a pharmacologically active substance. The term thus means any substance intended for use in the diagnosis, cure, mitigation, treatment or prevention of disease or in the enhancement of desirable physical or mental development and conditions in an animal or human.


The term “modulation” is art-recognized and refers to up regulation (i.e., activation or stimulation), down regulation (i.e., inhibition or suppression) of a response, or the two in combination or apart.


“Parenteral administration”, as used herein, means administration by any method other than through the digestive tract (enteral) or non-invasive topical routes. For example, parenteral administration may include administration to a patient intravenously, intradermally, intraperitoneally, intrapleurally, intratracheally, intraossiously, intracerebrally, intrathecally, intramuscularly, subcutaneously, subjunctivally, by injection, and by infusion.


“Topical administration”, as used herein, means the non-invasive administration to the skin, orifices, or mucosa. Topical administrations can be administered locally, i.e., they are capable of providing a local effect in the region of application without systemic exposure. Topical formulations can provide systemic effect via adsorption into the blood stream of the individual. Topical administration can include, but is not limited to, cutaneous and transdermal administration, buccal administration, intranasal administration, intravaginal administration, intravesical administration, ophthalmic administration, and rectal administration.


“Enteral administration”, as used herein, means administration via absorption through the gastrointestinal tract. Enteral administration can include oral and sublingual administration, gastric administration, or rectal administration.


“Pulmonary administration”, as used herein, means administration into the lungs by inhalation or endrotracheal administration. As used herein, the term “inhalation” refers to intake of air to the alveoli. The intake of air can occur through the mouth or nose.


The terms “sufficient” and “effective”, as used interchangeably herein, refer to an amount (e.g., mass, volume, dosage, concentration, and/or time period) needed to achieve one or more desired result(s). A “therapeutically effective amount” is at least the minimum concentration required to effect a measurable improvement or prevention of at least one symptom or a particular condition or disorder, to effect a measurable enhancement of life expectancy, or to generally improve patient quality of life. The therapeutically effective amount is thus dependent upon the specific biologically active molecule and the specific condition or disorder to be treated. Therapeutically effective amounts of many active agents, such as antibodies, are known in the art. The therapeutically effective amounts of compounds and compositions described herein, e.g., for treating specific disorders may be determined by techniques that are well within the craft of a skilled artisan, such as a physician.


The terms “bioactive agent” and “active agent”, as used interchangeably herein, include, without limitation, physiologically or pharmacologically active substances that act locally or systemically in the body. A bioactive agent is a substance used for the treatment (e.g., therapeutic agent), prevention (e.g., prophylactic agent), diagnosis (e.g., diagnostic agent), cure or mitigation of disease or illness, a substance which affects the structure or function of the body, or pro-drugs, which become biologically active or more active after they have been placed in a predetermined physiological environment.


The term “prodrug” refers to an agent, including a nucleic acid or protein that is converted into a biologically active form in vitro and/or in vivo. Prodrugs can be useful because, in some situations, they may be easier to administer than the parent compound. For example, a prodrug may be bioavailable by oral administration whereas the parent compound is not. The prodrug may also have improved solubility in pharmaceutical compositions compared to the parent drug. A prodrug may be converted into the parent drug by various mechanisms, including enzymatic processes and metabolic hydrolysis. Harper, N.J. (1962) Drug Latentiation in Jucker, ed. Progress in Drug Research, 4:221-294; Morozowich et al. (1977) Application of Physical Organic Principles to Prodrug Design in E. B. Roche ed. Design of Biopharmaceutical Properties through Prodrugs and Analogs, APhA; Acad. Pharm. Sci.; E. B. Roche, ed. (1977) Bioreversible Carriers in Drug in Drug Design, Theory and Application, APhA; H. Bundgaard, ed. (1985) Design of Prodrugs, Elsevier; Wang et al. (1999) Prodrug approaches to the improved delivery of peptide drug, Curr. Pharm. Design. 5(4):265-287; Pauletti et al. (1997) Improvement in peptide bioavailability: Peptidomimetics and Prodrug Strategies, Adv. Drug. Delivery Rev. 27:235-256; Mizen et al. (1998). The Use of Esters as Prodrugs for Oral Delivery of β-Lactam antibiotics, Pharm. Biotech. 11:345-365; Gaignault et al. (1996) Designing Prodrugs and Bioprecursors I. Carrier Prodrugs, Pract. Med. Chem. 671-696; M. Asgharnejad (2000). Improving Oral Drug Transport Via Prodrugs, in G. L. Amidon, P. I. Lee and E. M. Topp, Eds., Transport Processes in Pharmaceutical Systems, Marcell Dekker, p. 185-218; Balant et al. (1990) Prodrugs for the improvement of drug absorption via different routes of administration, Eur. J. Drug Metab. Pharmacokinet., 15(2): 143-53; Balimane and Sinko (1999). Involvement of multiple transporters in the oral absorption of nucleoside analogs, Adv. Drug Delivery Rev., 39(1-3):183-209; Browne (1997). Fosphenytoin (Cerebyx), Clin. Neuropharmacol. 20(1): 1-12; Bundgaard (1979). Bioreversible derivatization of drugs—principle and applicability to improve the therapeutic effects of drugs, Arch. Pharm. Chemi. 86(1): 1-39; H. Bundgaard, ed. (1985) Design of Prodrugs, New York: Elsevier; Fleisher et al. (1996) Improved oral drug delivery: solubility limitations overcome by the use of prodrugs, Adv. Drug Delivery Rev. 19(2): 115-130; Fleisher et al. (1985) Design of prodrugs for improved gastrointestinal absorption by intestinal enzyme targeting, Methods Enzymol. 112: 360-81; Farquhar D, et al. (1983) Biologically Reversible Phosphate-Protective Groups, J. Pharm. Sci., 72(3): 324-325; Han, H. K. et al. (2000) Targeted prodrug design to optimize drug delivery, AAPS PharmSci., 2(1): E6; Sadzuka Y. (2000) Effective prodrug liposome and conversion to active metabolite, Curr. Drug Metab., 1(1):31-48; D. M. Lambert (2000) Rationale and applications of lipids as prodrug carriers, Eur. J. Pharm. Sci., 11 Suppl. 2:S15-27; Wang, W. et al. (1999) Prodrug approaches to the improved delivery of peptide drugs. Curr. Pharm. Des., 5(4):265-87.


The term “biocompatible”, as used herein, refers to a material that along with any metabolites or degradation products thereof that are generally non-toxic to the recipient and do not cause any significant adverse effects to the recipient. In general, biocompatible materials are materials that do not elicit a significant inflammatory or immune response when administered to a patient.


The term “biodegradable” as used herein, generally refers to a material that will degrade or erode under physiologic conditions to smaller units or chemical species that are capable of being metabolized, eliminated, or excreted by the subject. The degradation time is a function of composition and morphology. Degradation times can be from hours to weeks or even longer.


The term “pharmaceutically acceptable”, as used herein, refers to compounds, materials, compositions, and/or dosage forms that are, within the scope of sound medical judgment, suitable for use in contact with the tissues of human beings and animals without excessive toxicity, irritation, allergic response, or other problems or complications commensurate with a reasonable benefit/risk ratio, in accordance with the guidelines of agencies such as the U.S. Food and Drug Administration. A “pharmaceutically acceptable carrier”, as used herein, refers to all components of a pharmaceutical formulation that facilitate the delivery of the composition in vivo. Pharmaceutically acceptable carriers include, but are not limited to, diluents, preservatives, binders, lubricants, disintegrators, swelling agents, fillers, stabilizers, and combinations thereof.


The term “molecular weight”, as used herein, generally refers to the mass or average mass of a material. If a polymer or oligomer, the molecular weight can refer to the relative average chain length or relative chain mass of the bulk polymer. In practice, the molecular weight of polymers and oligomers can be estimated or characterized in various ways including gel permeation chromatography (GPC) or capillary viscometry. GPC molecular weights are reported as the weight-average molecular weight (Mw) as opposed to the number-average molecular weight (Mn). Capillary viscometry provides estimates of molecular weight as the inherent viscosity determined from a dilute polymer solution using a particular set of concentration, temperature, and solvent conditions.


The term “small molecule”, as used herein, generally refers to an organic molecule that is less than 2000 g/mol in molecular weight, less than 1500 g/mol, less than 1000 g/mol, less than 800 g/mol, or less than 500 g/mol. Small molecules are non-polymeric and/or non-oligomeric.


The term “hydrophilic”, as used herein, refers to substances that have strongly polar groups that readily interact with water.


The term “hydrophobic”, as used herein, refers to substances that lack an affinity for water; tending to repel and not absorb water as well as not dissolve in or mix with water.


The term “lipophilic”, as used herein, refers to compounds having an affinity for lipids.


The term “amphiphilic”, as used herein, refers to a molecule combining hydrophilic and lipophilic (hydrophobic) properties. “Amphiphilic material” as used herein refers to a material containing a hydrophobic or more hydrophobic oligomer or polymer (e.g., biodegradable oligomer or polymer) and a hydrophilic or more hydrophilic oligomer or polymer.


The term “targeting moiety”, as used herein, refers to a moiety that binds to or localizes to a specific locale. The moiety may be, for example, a protein, nucleic acid, nucleic acid analog, carbohydrate, or small molecule. The locale may be a tissue, a particular cell type, or a subcellular compartment. In some embodiments, a targeting moiety can specifically bind to a selected molecule.


The term “reactive coupling group”, as used herein, refers to any chemical functional group capable of reacting with a second functional group to form a covalent bond. The selection of reactive coupling groups is within the ability of the skilled artisan. Examples of reactive coupling groups can include primary amines (—NH2) and amine-reactive linking groups such as isothiocyanates, isocyanates, acyl azides, NHS esters, sulfonyl chlorides, aldehydes, glyoxals, epoxides, oxiranes, carbonates, aryl halides, imidoesters, carbodiimides, anhydrides, and fluorophenyl esters. Most of these conjugate to amines by either acylation or alkylation. Examples of reactive coupling groups can include aldehydes (—COH) and aldehyde reactive linking groups such as hydrazides, alkoxyamines, and primary amines. Examples of reactive coupling groups can include thiol groups (—SH) and sulfhydryl reactive groups such as maleimides, haloacetyls, and pyridyl disulfides. Examples of reactive coupling groups can include photoreactive coupling groups such as aryl azides or diazirines. The coupling reaction may include the use of a catalyst, heat, pH buffers, light, or a combination thereof.


The term “protective group”, as used herein, refers to a functional group that can be added to and/or substituted for another desired functional group to protect the desired functional group from certain reaction conditions and selectively removed and/or replaced to deprotect or expose the desired functional group. Protective groups are known to the skilled artisan. Suitable protective groups may include those described in Greene and Wuts., Protective Groups in Organic Synthesis, (1991). Acid sensitive protective groups include dimethoxytrityl (DMT), tert-butylcarbamate (tBoc) and trifluoroacetyl (tFA). Base sensitive protective groups include 9-fluorenylmethoxycarbonyl (Fmoc), isobutyrl (iBu), benzoyl (Bz) and phenoxyacetyl (pac). Other protective groups include acetamidomethyl, acetyl, tert-amyloxycarbonyl, benzyl, benzyloxycarbonyl, 2-(4-biphFnylyl)-2-propyloxycarbonyl, 2-bromobenzyloxycarbonyl, tert-buty tert-butyloxycarbonyl, 1-carbobenzoxamido-2,2.2-trifluoroethyl, 2,6-dichlorobenzyl, 2-(3,5-dimethoxyphenyl)-2-propyloxycarbonyl, 2,4-dinitrophenyl, dithiasuccinyl, formyl, 4-methoxybenzenesulfonyl, 4-methoxybenzyl, 4-methylbenzyl, o-nitrophenylsulfenyl, 2-phenyl-2-propyloxycarbonyl, α-2,4,5-tetramethylbenzyloxycarbonyl, p-toluenesulfonyl, xanthenyl, benzyl ester, N-hydroxysuccinimide ester, p-nitrobenzyl ester, p-nitrophenyl ester, phenyl ester, p-nitrocarbonate, p-nitrobenzylcarbonate, trimethylsilyl and pentachlorophenyl ester.


The term “activated ester”, as used herein, refers to alkyl esters of carboxylic acids where the alkyl is a good leaving group rendering the carbonyl susceptible to nucleophilic attack by molecules bearing amino groups. Activated esters are therefore susceptible to aminolysis and react with amines to form amides. Activated esters contain a carboxylic acid ester group —CO2R where R is the leaving group.


The term “alkyl” refers to the radical of saturated aliphatic groups, including straight-chain alkyl groups, branched-chain alkyl groups, cycloalkyl (alicyclic) groups, alkyl-substituted cycloalkyl groups, and cycloalkyl-substituted alkyl groups.


In some embodiments, a straight chain or branched chain alkyl has 30 or fewer carbon atoms in its backbone (e.g., C1-C30 for straight chains, C3-C30 for branched chains), 20 or fewer, 12 or fewer, or 7 or fewer. Likewise, in some embodiments cycloalkyls have from 3-10 carbon atoms in their ring structure, e.g. have 5, 6 or 7 carbons in the ring structure. The term “alkyl” (or “lower alkyl”) as used throughout the specification, examples, and claims is intended to include both “unsubstituted alkyls” and “substituted alkyls”, the latter of which refers to alkyl moieties having one or more substituents replacing a hydrogen on one or more carbons of the hydrocarbon backbone. Such substituents include, but are not limited to, halogen, hydroxyl, carbonyl (such as a carboxyl, alkoxycarbonyl, formyl, or an acyl), thiocarbonyl (such as a thioester, a thioacetate, or a thioformate), alkoxyl, phosphoryl, phosphate, phosphonate, a phosphinate, amino, amido, amidine, imine, cyano, nitro, azido, sulfhydryl, alkylthio, sulfate, sulfonate, sulfamoyl, sulfonamido, sulfonyl, heterocyclyl, aralkyl, or an aromatic or heteroaromatic moiety.


Unless the number of carbons is otherwise specified, “lower alkyl” as used herein means an alkyl group, as defined above, but having from one to ten carbons, or from one to six carbon atoms in its backbone structure. Likewise, “lower alkenyl” and “lower alkynyl” have similar chain lengths. Throughout the application, preferred alkyl groups are lower alkyls. In some embodiments, a substituent designated herein as alkyl is a lower alkyl.


It will be understood by those skilled in the art that the moieties substituted on the hydrocarbon chain can themselves be substituted, if appropriate. For instance, the substituents of a substituted alkyl may include halogen, hydroxy, nitro, thiols, amino, azido, imino, amido, phosphoryl (including phosphonate and phosphinate), sulfonyl (including sulfate, sulfonamido, sulfamoyl and sulfonate), and silyl groups, as well as ethers, alkylthios, carbonyls (including ketones, aldehydes, carboxylates, and esters), —CF3, —CN and the like. Cycloalkyls can be substituted in the same manner.


The term “heteroalkyl”, as used herein, refers to straight or branched chain, or cyclic carbon-containing radicals, or combinations thereof, containing at least one heteroatom. Suitable heteroatoms include, but are not limited to, O, N, Si, P, Se, B, and S, wherein the phosphorous and sulfur atoms are optionally oxidized, and the nitrogen heteroatom is optionally quaternized. Heteroalkyls can be substituted as defined above for alkyl groups.


The term “alkylthio” refers to an alkyl group, as defined above, having a sulfur radical attached thereto. In some embodiments, the “alkylthio” moiety is represented by one of —S-alkyl, —S-alkenyl, and —S-alkynyl. Representative alkylthio groups include methylthio, and ethylthio. The term “alkylthio” also encompasses cycloalkyl groups, alkene and cycloalkene groups, and alkyne groups. “Arylthio” refers to aryl or heteroaryl groups. Alkylthio groups can be substituted as defined above for alkyl groups.


The terms “alkenyl” and “alkynyl”, refer to unsaturated aliphatic groups analogous in length and possible substitution to the alkyls described above, but that contain at least one double or triple bond respectively.


The terms “alkoxyl” or “alkoxy” as used herein refers to an alkyl group, as defined above, having an oxygen radical attached thereto. Representative alkoxyl groups include methoxy, ethoxy, propyloxy, and tert-butoxy. An “ether” is two hydrocarbons covalently linked by an oxygen. Accordingly, the substituent of an alkyl that renders that alkyl an ether is or resembles an alkoxyl, such as can be represented by one of —O-alkyl, —O-alkenyl, and —O-alkynyl. Aroxy can be represented by —O-aryl or O-heteroaryl, wherein aryl and heteroaryl are as defined below. The alkoxy and aroxy groups can be substituted as described above for alkyl.


The terms “amine” and “amino” are art-recognized and refer to both unsubstituted and substituted amines, e.g., a moiety that can be represented by the general formula:




embedded image


wherein R9, R10, and R′10 each independently represent a hydrogen, an alkyl, an alkenyl, —(CH2)m—R8 or R9 and R10 taken together with the N atom to which they are attached complete a heterocycle having from 4 to 8 atoms in the ring structure; R8 represents an aryl, a cycloalkyl, a cycloalkenyl, a heterocycle or a polycycle; and m is zero or an integer in the range of 1 to 8. In some embodiments, only one of R9 or R10 can be a carbonyl, e.g., R9, R10 and the nitrogen together do not form an imide. In still other embodiments, the term “amine” does not encompass amides, e.g., wherein one of R9 and R10 represents a carbonyl. In additional embodiments, R9 and R10 (and optionally R′10) each independently represent a hydrogen, an alkyl or cycloalkly, an alkenyl or cycloalkenyl, or alkynyl. Thus, the term “alkylamine” as used herein means an amine group, as defined above, having a substituted (as described above for alkyl) or unsubstituted alkyl attached thereto, i.e., at least one of R9 and R10 is an alkyl group.


The term “amido” is art-recognized as an amino-substituted carbonyl and includes a moiety that can be represented by the general formula:




embedded image


wherein R9 and R10 are as defined above.


“Aryl”, as used herein, refers to C5-C10-membered aromatic, heterocyclic, fused aromatic, fused heterocyclic, biaromatic, or bihetereocyclic ring systems. Broadly defined, “aryl”, as used herein, includes 5-, 6-, 7-, 8-, 9-, and 10-membered single-ring aromatic groups that may include from zero to four heteroatoms, for example, benzene, pyrrole, furan, thiophene, imidazole, oxazole, thiazole, triazole, pyrazole, pyridine, pyrazine, pyridazine and pyrimidine, and the like. Those aryl groups having heteroatoms in the ring structure may also be referred to as “aryl heterocycles” or “heteroaromatics”. The aromatic ring can be substituted at one or more ring positions with one or more substituents including, but not limited to, halogen, azide, alkyl, aralkyl, alkenyl, alkynyl, cycloalkyl, hydroxyl, alkoxyl, amino (or quaternized amino), nitro, sulfhydryl, imino, amido, phosphonate, phosphinate, carbonyl, carboxyl, silyl, ether, alkylthio, sulfonyl, sulfonamido, ketone, aldehyde, ester, heterocyclyl, aromatic or heteroaromatic moieties, —CF3, —CN; and combinations thereof.


The term “aryl” also includes polycyclic ring systems having two or more cyclic rings in which two or more carbons are common to two adjoining rings (i.e., “fused rings”) wherein at least one of the rings is aromatic, e.g., the other cyclic ring or rings can be cycloalkyls, cycloalkenyls, cycloalkynyls, aryls and/or heterocycles. Examples of heterocyclic rings include, but are not limited to, benzimidazolyl, benzofuranyl, benzothiofuranyl, benzothiophenyl, benzoxazolyl, benzoxazolinyl, benzthiazolyl, benztriazolyl, benztetrazolyl, benzisoxazolyl, benzisothiazolyl, benzimidazolinyl, carbazolyl, 4aH carbazolyl, carbolinyl, chromanyl, chromenyl, cinnolinyl, decahydroquinolinyl, 2H,6H-1,5,2-dithiazinyl, dihydrofuro[2,3 b]tetrahydrofuran, furanyl, furazanyl, imidazolidinyl, imidazolinyl, imidazolyl, 1H-indazolyl, indolenyl, indolinyl, indolizinyl, indolyl, 3H-indolyl, isatinoyl, isobenzofuranyl, isochromanyl, isoindazolyl, isoindolinyl, isoindolyl, isoquinolinyl, isothiazolyl, isoxazolyl, methylenedioxyphenyl, morpholinyl, naphthyridinyl, octahydroisoquinolinyl, oxadiazolyl, 1,2,3-oxadiazolyl, 1,2,4-oxadiazolyl, 1,2,5-oxadiazolyl, 1,3,4-oxadiazolyl, oxazolidinyl, oxazolyl, oxindolyl, pyrimidinyl, phenanthridinyl, phenanthrolinyl, phenazinyl, phenothiazinyl, phenoxathinyl, phenoxazinyl, phthalazinyl, piperazinyl, piperidinyl, piperidonyl, 4-piperidonyl, piperonyl, pteridinyl, purinyl, pyranyl, pyrazinyl, pyrazolidinyl, pyrazolinyl, pyrazolyl, pyridazinyl, pyridooxazole, pyridoimidazole, pyridothiazole, pyridinyl, pyridyl, pyrimidinyl, pyrrolidinyl, pyrrolinyl, 2H-pyrrolyl, pyrrolyl, quinazolinyl, quinolinyl, 4H-quinolizinyl, quinoxalinyl, quinuclidinyl, tetrahydrofuranyl, tetrahydroisoquinolinyl, tetrahydroquinolinyl, tetrazolyl, 6H-1,2,5-thiadiazinyl, 1,2,3-thiadiazolyl, 1,2,4-thiadiazolyl, 1,2,5-thiadiazolyl, 1,3,4-thiadiazolyl, thianthrenyl, thiazolyl, thienyl, thienothiazolyl, thienooxazolyl, thienoimidazolyl, thiophenyl and xanthenyl. One or more of the rings can be substituted as defined above for “aryl”.


The term “aralkyl”, as used herein, refers to an alkyl group substituted with an aryl group (e.g., an aromatic or heteroaromatic group).


The term “carbocycle”, as used herein, refers to an aromatic or non-aromatic ring in which each atom of the ring is carbon.


“Heterocycle” or “heterocyclic”, as used herein, refers to a cyclic radical attached via a ring carbon or nitrogen of a monocyclic or bicyclic ring containing 3-10 ring atoms, and preferably from 5-6 ring atoms, consisting of carbon and one to four heteroatoms each selected from the group consisting of non-peroxide oxygen, sulfur, and N(Y) wherein Y is absent or is H, O, (C1-C10) alkyl, phenyl or benzyl, and optionally containing 1-3 double bonds and optionally substituted with one or more substituents. Examples of heterocyclic ring include, but are not limited to, benzimidazolyl, benzofuranyl, benzothiofuranyl, benzothiophenyl, benzoxazolyl, benzoxazolinyl, benzthiazolyl, benztriazolyl, benztetrazolyl, benzisoxazolyl, benzisothiazolyl, benzimidazolinyl, carbazolyl, 4aH-carbazolyl, carbolinyl, chromanyl, chromenyl, cinnolinyl, decahydroquinolinyl, 2H,6H-1,5,2-dithiazinyl, dihydrofuro[2,3-b]tetrahydrofuran, furanyl, furazanyl, imidazolidinyl, imidazolinyl, imidazolyl, 1H-indazolyl, indolenyl, indolinyl, indolizinyl, indolyl, 3H-indolyl, isatinoyl, isobenzofuranyl, isochromanyl, isoindazolyl, isoindolinyl, isoindolyl, isoquinolinyl, isothiazolyl, isoxazolyl, methylenedioxyphenyl, morpholinyl, naphthyridinyl, octahydroisoquinolinyl, oxadiazolyl, 1,2,3-oxadiazolyl, 1,2,4-oxadiazolyl, 1,2,5-oxadiazolyl, 1,3,4-oxadiazolyl, oxazolidinyl, oxazolyl, oxepanyl, oxetanyl, oxindolyl, pyrimidinyl, phenanthridinyl, phenanthrolinyl, phenazinyl, phenothiazinyl, phenoxathinyl, phenoxazinyl, phthalazinyl, piperazinyl, piperidinyl, piperidonyl, 4-piperidonyl, piperonyl, pteridinyl, purinyl, pyranyl, pyrazinyl, pyrazolidinyl, pyrazolinyl, pyrazolyl, pyridazinyl, pyridooxazole, pyridoimidazole, pyridothiazole, pyridinyl, pyridyl, pyrimidinyl, pyrrolidinyl, pyrrolinyl, 2H-pyrrolyl, pyrrolyl, quinazolinyl, quinolinyl, 4H-quinolizinyl, quinoxalinyl, quinuclidinyl, tetrahydrofuranyl, tetrahydroisoquinolinyl, tetrahydropyranyl, tetrahydroquinolinyl, tetrazolyl, 6H-1,2,5-thiadiazinyl, 1,2,3-thiadiazolyl, 1,2,4-thiadiazolyl, 1,2,5-thiadiazolyl, 1,3,4-thiadiazolyl, thianthrenyl, thiazolyl, thienyl, thienothiazolyl, thienooxazolyl, thienoimidazolyl, thiophenyl and xanthenyl. Heterocyclic groups can optionally be substituted with one or more substituents at one or more positions as defined above for alkyl and aryl, for example, halogen, alkyl, aralkyl, alkenyl, alkynyl, cycloalkyl, hydroxyl, amino, nitro, sulfhydryl, imino, amido, phosphate, phosphonate, phosphinate, carbonyl, carboxyl, silyl, ether, alkylthio, sulfonyl, ketone, aldehyde, ester, a heterocyclyl, an aromatic or heteroaromatic moiety, —CF3, and —CN.


The term “carbonyl” is art-recognized and includes such moieties as can be represented by the general formula:




embedded image


wherein X is a bond or represents an oxygen or a sulfur, and R11 represents a hydrogen, an alkyl, a cycloalkyl, an alkenyl, an cycloalkenyl, or an alkynyl, R′11 represents a hydrogen, an alkyl, a cycloalkyl, an alkenyl, an cycloalkenyl, or an alkynyl. Where X is an oxygen and R11 or R′11 is not hydrogen, the formula represents an “ester”. Where X is an oxygen and R11 is as defined above, the moiety is referred to herein as a carboxyl group, and particularly when R11 is a hydrogen, the formula represents a “carboxylic acid”. Where X is an oxygen and R′11 is hydrogen, the formula represents a “formate”. In general, where the oxygen atom of the above formula is replaced by sulfur, the formula represents a “thiocarbonyl” group. Where X is a sulfur and R11 or R′11 is not hydrogen, the formula represents a “thioester.” Where X is a sulfur and R11 is hydrogen, the formula represents a “thiocarboxylic acid.” Where X is a sulfur and R′11 is hydrogen, the formula represents a “thioformate.” On the other hand, where X is a bond, and R11 is not hydrogen, the above formula represents a “ketone” group. Where X is a bond, and R11 is hydrogen, the above formula represents an “aldehyde” group.


The term “monoester” as used herein refers to an analog of a dicarboxylic acid wherein one of the carboxylic acids is functionalized as an ester and the other carboxylic acid is a free carboxylic acid or salt of a carboxylic acid. Examples of monoesters include, but are not limited to, to monoesters of succinic acid, glutaric acid, adipic acid, suberic acid, sebacic acid, azelaic acid, oxalic and maleic acid.


The term “heteroatom” as used herein means an atom of any element other than carbon or hydrogen. Examples of heteroatoms are boron, nitrogen, oxygen, phosphorus, sulfur and selenium. Other heteroatoms include silicon and arsenic.


As used herein, the term “nitro” means —NO2; the term “halogen” designates —F, —Cl, —Br or —I; the term “sulfhydryl” means —SH; the term “hydroxyl” means —OH; and the term “sulfonyl” means —SO2—.


The term “substituted” as used herein, refers to all permissible substituents of the compounds described herein. In the broadest sense, the permissible substituents include acyclic and cyclic, branched and unbranched, carbocyclic and heterocyclic, aromatic and nonaromatic substituents of organic compounds. Illustrative substituents include, but are not limited to, halogens, hydroxyl groups, or any other organic groupings containing any number of carbon atoms, preferably 1-14 carbon atoms, and optionally include one or more heteroatoms such as oxygen, sulfur, or nitrogen grouping in linear, branched, or cyclic structural formats. Representative substituents include alkyl, substituted alkyl, alkenyl, substituted alkenyl, alkynyl, substituted alkynyl, phenyl, substituted phenyl, aryl, substituted aryl, heteroaryl, substituted heteroaryl, halo, hydroxyl, alkoxy, substituted alkoxy, phenoxy, substituted phenoxy, aroxy, substituted aroxy, alkylthio, substituted alkylthio, phenylthio, substituted phenylthio, arylthio, substituted arylthio, cyano, isocyano, substituted isocyano, carbonyl, substituted carbonyl, carboxyl, substituted carboxyl, amino, substituted amino, amido, substituted amido, sulfonyl, substituted sulfonyl, sulfonic acid, phosphoryl, substituted phosphoryl, phosphonyl, substituted phosphonyl, polyaryl, substituted polyaryl, C3-C20 cyclic, substituted C3-C20 cyclic, heterocyclic, substituted heterocyclic, aminoacid, peptide, and polypeptide groups.


Heteroatoms such as nitrogen may have hydrogen substituents and/or any permissible substituents of organic compounds described herein which satisfy the valences of the heteroatoms. It is understood that “substitution” or “substituted” includes the implicit proviso that such substitution is in accordance with permitted valence of the substituted atom and the substituent, and that the substitution results in a stable compound, i.e., a compound that does not spontaneously undergo transformation such as by rearrangement, cyclization, or elimination.


In a broad aspect, the permissible substituents include acyclic and cyclic, branched and unbranched, carbocyclic and heterocyclic, aromatic and nonaromatic substituents of organic compounds. Illustrative substituents include, for example, those described herein. The permissible substituents can be one or more and the same or different for appropriate organic compounds. The heteroatoms such as nitrogen may have hydrogen substituents and/or any permissible substituents of organic compounds described herein which satisfy the valencies of the heteroatoms.


In various embodiments, the substituent is selected from alkoxy, aryloxy, alkyl, alkenyl, alkynyl, amide, amino, aryl, arylalkyl, carbamate, carboxy, cyano, cycloalkyl, ester, ether, formyl, halogen, haloalkyl, heteroaryl, heterocyclyl, hydroxyl, ketone, nitro, phosphate, sulfide, sulfinyl, sulfonyl, sulfonic acid, sulfonamide, and thioketone, each of which optionally is substituted with one or more suitable substituents. In some embodiments, the substituent is selected from alkoxy, aryloxy, alkyl, alkenyl, alkynyl, amide, amino, aryl, arylalkyl, carbamate, carboxy, cycloalkyl, ester, ether, formyl, haloalkyl, heteroaryl, heterocyclyl, ketone, phosphate, sulfide, sulfinyl, sulfonyl, sulfonic acid, sulfonamide, and thioketone, wherein each of the alkoxy, aryloxy, alkyl, alkenyl, alkynyl, amide, amino, aryl, arylalkyl, carbamate, carboxy, cycloalkyl, ester, ether, formyl, haloalkyl, heteroaryl, heterocyclyl, ketone, phosphate, sulfide, sulfinyl, sulfonyl, sulfonic acid, sulfonamide, and thioketone can be further substituted with one or more suitable substituents.


Examples of substituents include, but are not limited to, halogen, azide, alkyl, aralkyl, alkenyl, alkynyl, cycloalkyl, hydroxyl, alkoxyl, amino, nitro, sulfhydryl, imino, amido, phosphonate, phosphinate, carbonyl, carboxyl, silyl, ether, alkylthio, sulfonyl, sulfonamido, ketone, aldehyde, thioketone, ester, heterocyclyl, —CN, aryl, aryloxy, perhaloalkoxy, aralkoxy, heteroaryl, heteroaryloxy, heteroarylalkyl, heteroaralkoxy, azido, alkylthio, oxo, acylalkyl, carboxy esters, carboxamido, acyloxy, aminoalkyl, alkylaminoaryl, alkylaryl, alkylaminoalkyl, alkoxyaryl, arylamino, aralkylamino, alkylsulfonyl, carboxamidoalkylaryl, carboxamidoaryl, hydroxyalkyl, haloalkyl, alkylaminoalkylcarboxy, aminocarboxamidoalkyl, cyano, alkoxyalkyl, perhaloalkyl, arylalkyloxyalkyl, and the like. In some embodiments, the substituent is selected from cyano, halogen, hydroxyl, and nitro.


The term “copolymer” as used herein, generally refers to a single polymeric material that is comprised of two or more different monomers. The copolymer can be of any form, such as random, block, graft, etc. The copolymers can have any end-group, including capped or acid end groups.


The term “mean particle size”, as used herein, generally refers to the statistical mean particle size (diameter) of the particles in the composition. The diameter of an essentially spherical particle may be referred to as the physical or hydrodynamic diameter of a spherical particle with an equivalent volume. The diameter of a non-spherical particle may refer to the hydrodynamic diameter. As used herein, the diameter of a non-spherical particle may refer to the largest linear distance between two points on the surface of the particle. Mean particle size can be measured using methods known in the art such as dynamic light scattering (DLS), electron microscopy, laser diffraction, MALDI-TOF, zeta potential measurement, AFM, TEM, SEM X-Ray microanalysis, or nanoparticle tracking analysis. Two populations can be said to have a “substantially equivalent mean particle size” when the statistical mean particle size of the first population of particles is within 20% of the statistical mean particle size of the second population of particles; for example, within 15%, or within 10%.


The terms “monodisperse” and “homogeneous size distribution”, as used interchangeably herein, describe a population of particles, microparticles, or nanoparticles all having the same or nearly the same size. As used herein, a monodisperse distribution refers to particle distributions in which 90% of the distribution lies within 5% of the mean particle size.


The term “polydispersity index” is used herein as a measure of the size distribution of an ensemble of particles, e.g., nanoparticles. The polydispersity index can be calculated based on dynamic light scattering measurements.


The terms “polypeptide,” “peptide” and “protein” generally refer to a polymer of amino acid residues. As used herein, the term also applies to amino acid polymers in which one or more amino acids are chemical analogs or modified derivatives of corresponding naturally-occurring amino acids. The term “protein”, as generally used herein, refers to a polymer of amino acids linked to each other by peptide bonds to form a polypeptide for which the chain length is sufficient to produce tertiary and/or quaternary structure. The term “protein” excludes small peptides by definition, the small peptides lacking the requisite higher-order structure necessary to be considered a protein.


A “functional fragment” of a protein, polypeptide or nucleic acid is a protein, polypeptide or nucleic acid whose sequence is not identical to the full-length protein, polypeptide or nucleic acid, yet retains at least one function as the full-length protein, polypeptide or nucleic acid. A functional fragment can possess more, fewer, or the same number of residues as the corresponding native molecule, and/or can contain one or more amino acid or nucleotide substitutions. Methods for determining the function of a nucleic acid (e.g., coding function, ability to hybridize to another nucleic acid) are well-known in the art. Similarly, methods for determining protein function are well-known. For example, the DNA binding function of a polypeptide can be determined, for example, by filter-binding, electrophoretic mobility shift, or immunoprecipitation assays. DNA cleavage can be assayed by gel electrophoresis. The ability of a protein to interact with another protein can be determined, for example, by co-immunoprecipitation, two-hybrid assays or complementation, e.g., genetic or biochemical. See, for example, Fields et al. (1989) Nature 340:245-246; U.S. Pat. No. 5,585,245 and PCT WO 98/44350.


As used herein, the term “linker” refers to a carbon chain that can contain heteroatoms (e.g., nitrogen, oxygen, sulfur, etc.) and which may be 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19, 20, 21, 22, 23, 24, 25, 26, 27, 28, 29, 30, 31, 32, 33, 34, 35, 36, 37, 38, 39, 40, 41, 42, 43, 44, 45, 46, 47, 48, 49, 50 atoms long. Linkers may be substituted with various substituents including, but not limited to, hydrogen atoms, alkyl, alkenyl, alkynl, amino, alkylamino, dialkylamino, trialkylamino, hydroxyl, alkoxy, halogen, aryl, heterocyclic, aromatic heterocyclic, cyano, amide, carbamoyl, carboxylic acid, ester, thioether, alkylthioether, thiol, and ureido groups. Those of skill in the art will recognize that each of these groups may in turn be substituted. Examples of linkers include, but are not limited to, pH-sensitive linkers, protease cleavable peptide linkers, nuclease sensitive nucleic acid linkers, lipase sensitive lipid linkers, glycosidase sensitive carbohydrate linkers, hypoxia sensitive linkers, photo-cleavable linkers, heat-labile linkers, enzyme cleavable linkers (e.g., esterase cleavable linker), ultrasound-sensitive linkers, and x-ray cleavable linkers.


The term “pharmaceutically acceptable counter ion” refers to a pharmaceutically acceptable anion or cation. In various embodiments, the pharmaceutically acceptable counter ion is a pharmaceutically acceptable ion. For example, the pharmaceutically acceptable counter ion is selected from citrate, malate, acetate, oxalate, chloride, bromide, iodide, nitrate, sulfate, bisulfate, phosphate, acid phosphate, isonicotinate, acetate, lactate, salicylate, tartrate, oleate, tannate, pantothenate, bitartrate, ascorbate, succinate, maleate, gentisinate, fumarate, gluconate, glucaronate, saccharate, formate, benzoate, glutamate, methanesulfonate, ethanesulfonate, benzenesulfonate, p-toluenesulfonate and pamoate (i.e., 1,1′-methylene-bis-(2-hydroxy-3-naphthoate)). In some embodiments, the pharmaceutically acceptable counter ion is selected from chloride, bromide, iodide, nitrate, sulfate, bisulfate, phosphate, acid phosphate, citrate, malate, acetate, oxalate, acetate, and lactate. In particular embodiments, the pharmaceutically acceptable counter ion is selected from chloride, bromide, iodide, nitrate, sulfate, bisulfate, and phosphate.


The term “pharmaceutically acceptable salt(s)” refers to salts of acidic or basic groups that may be present in compounds used in the present compositions. Compounds included in the present compositions that are basic in nature are capable of forming a wide variety of salts with various inorganic and organic acids. The acids that may be used to prepare pharmaceutically acceptable acid addition salts of such basic compounds are those that form non-toxic acid addition salts, i.e., salts containing pharmacologically acceptable anions, including but not limited to sulfate, citrate, malate, acetate, oxalate, chloride, bromide, iodide, nitrate, sulfate, bisulfate, phosphate, acid phosphate, isonicotinate, acetate, lactate, salicylate, citrate, tartrate, oleate, tannate, pantothenate, bitartrate, ascorbate, succinate, maleate, gentisinate, fumarate, gluconate, glucaronate, saccharate, formate, benzoate, glutamate, methanesulfonate, ethanesulfonate, benzenesulfonate, p-toluenesulfonate and pamoate (i.e., 1,1′-methylene-bis-(2-hydroxy-3-naphthoate)) salts. Compounds included in the present compositions that include an amino moiety may form pharmaceutically acceptable salts with various amino acids, in addition to the acids mentioned above. Compounds included in the present compositions, that are acidic in nature are capable of forming base salts with various pharmacologically acceptable cations. Examples of such salts include alkali metal or alkaline earth metal salts and, particularly, calcium, magnesium, sodium, lithium, zinc, potassium, and iron salts.


If the compounds described herein are obtained as an acid addition salt, the free base can be obtained by basifying a solution of the acid salt. Conversely, if the product is a free base, an addition salt, particularly a pharmaceutically acceptable addition salt, may be produced by dissolving the free base in a suitable organic solvent and treating the solution with an acid, in accordance with conventional procedures for preparing acid addition salts from base compounds. Those skilled in the art will recognize various synthetic methodologies that may be used to prepare non-toxic pharmaceutically acceptable addition salts.


A pharmaceutically acceptable salt can be derived from an acid selected from 1-hydroxy-2-naphthoic acid, 2,2-dichloroacetic acid, 2-hydroxyethanesulfonic acid, 2-oxoglutaric acid, 4-acetamidobenzoic acid, 4-aminosalicylic acid, acetic acid, adipic acid, ascorbic acid, aspartic acid, benzenesulfonic acid, benzoic acid, camphoric acid, camphor-O-sulfonic acid, capric acid (decanoic acid), caproic acid (hexanoic acid), caprylic acid (octanoic acid), carbonic acid, cinnamic acid, citric acid, cyclamic acid, dodecylsulfuric acid, ethane-1,2-disulfonic acid, ethanesulfonic acid, formic acid, fumaric acid, galactaric acid, gentisic acid, glucoheptonic acid, gluconic acid, glucuronic acid, glutamic acid, glutaric acid, glycerophosphoric acid, glycolic acid, hippuric acid, hydrobromic acid, hydrochloric acid, isethionic, isobutyric acid, lactic acid, lactobionic acid, lauric acid, maleic acid, malic acid, malonic acid, mandelic acid, methanesulfonic acid, mucic, naphthalene-1,5-disulfonic acid, naphthalene-2-sulfonic acid, nicotinic acid, nitric acid, oleic acid, oxalic acid, palmitic acid, pamoic acid, pantothenic, phosphoric acid, proprionic acid, pyroglutamic acid, salicylic acid, sebacic acid, stearic acid, succinic acid, sulfuric acid, tartaric acid, thiocyanic acid, toluenesulfonic acid, trifluoroacetic, and undecylenic acid.


The term “bioavailable” is art-recognized and refers to a form of the subject invention that allows for it, or a portion of the amount administered, to be absorbed by, incorporated to, or otherwise physiologically available to a subject or patient to whom it is administered.


Unless defined otherwise, all technical and scientific terms used herein have the same meanings as commonly understood by one of skill in the art to which the disclosed invention belongs. Publications cited herein and the materials for which they are cited are specifically incorporated by reference.


Those skilled in the art will recognize, or be able to ascertain using no more than routine experimentation, many equivalents to the specific embodiments of the invention described herein. Such equivalents are intended to be encompassed by the following claims.


The scope of the present invention is not intended to be limited to the above Description, but rather is as set forth in the appended claims.


In the claims, articles such as “a,” “an,” and “the” may mean one or more than one unless indicated to the contrary or otherwise evident from the context. Claims or descriptions that include “or” between one or more members of a group are considered satisfied if one, more than one, or all of the group members are present in, employed in, or otherwise relevant to a given product or process unless indicated to the contrary or otherwise evident from the context. The invention includes embodiments in which exactly one member of the group is present in, employed in, or otherwise relevant to a given product or process. The invention includes embodiments in which more than one, or all of the group members are present in, employed in, or otherwise relevant to a given product or process.


It is also noted that the term “comprising” is intended to be open and permits but does not require the inclusion of additional elements or steps. When the term “comprising” is used herein, the term “consisting of” is thus also encompassed and disclosed.


Where ranges are given, endpoints are included. Furthermore, it is to be understood that unless otherwise indicated or otherwise evident from the context and understanding of one of ordinary skill in the art, values that are expressed as ranges can assume any specific value or subrange within the stated ranges in different embodiments of the invention, to the tenth of the unit of the lower limit of the range, unless the context clearly dictates otherwise.


In addition, it is to be understood that any particular embodiment of the present invention that falls within the prior art may be explicitly excluded from any one or more of the claims. Since such embodiments are deemed to be known to one of ordinary skill in the art, they may be excluded even if the exclusion is not set forth explicitly herein. Any particular embodiment of the compositions of the invention can be excluded from any one or more claims, for any reason, whether or not related to the existence of prior art.


All cited sources, for example, references, publications, databases, database entries, and art cited herein, are incorporated into this application by reference, even if not expressly stated in the citation. In case of conflicting statements of a cited source and the instant application, the statement in the instant application shall control.


Section and table headings are not intended to be limiting.


EXAMPLES
Example 1. RNAi Agents Synthesis
Source of Reagents

Where the source of a reagent is not specifically given herein, such reagent may be obtained from any supplier of reagents for molecular biology at a quality/purity standard for application in molecular biology.


Oligonucleotide Synthesis.

All oligonucleotides are synthesized on an AKTAoligopilot synthesizer. Commercially available controlled pore glass solid support (dT-CPG, 500 {acute over (Å)}, Prime Synthesis) and RNA phosphoramidites with standard protecting groups, 5′-O-dimethoxytrityl N6-benzoyl-2′-t-butyldimethylsilyl-adenosine-3′-O—N,N′-diisopropyl-2-cyanoethylphosphoramidite, 5′-O-dimethoxytrityl-N4-acetyl-2′-t-butyldimethylsilyl-cytidine-3′-O—N,N′-diisopropyl-2-cyanoethylphosphoramidite, 5′-O-dimethoxytrityl-N2-isobutryl-2′-t-butyldimethylsilyl-guanosine-3′-O—N,N′-diisopropyl-2-cyanoethylphosphoramidite, and 5′-O-dimethoxytrityl-2′-t-butyldimethylsilyl-uridine-3′-O—N,N′-diisopropyl-2-cyanoethylphosphoramidite (Pierce Nucleic Acids Technologies) were used for the oligonucleotide synthesis. The 2′-F phosphoramidites, 5′-O-dimethoxytrityl-N4-acetyl-2′-fluro-cytidine-3′-O—N,N′-diisopropyl-2-cyanoethyl-phosphoramidite and 5′-O-dimethoxytrityl-2′-fluro-uridine-3′-O—N,N′-diisopropyl-2-cyanoethyl-phosphoramidite are purchased from (Promega). All phosphoramidites are used at a concentration of 0.2M in acetonitrile (CH3CN) except for guanosine which is used at 0.2M concentration in 10% THF/ANC (v/v). Coupling/recycling time of 16 minutes is used. The activator is 5-ethyl thiotetrazole (0.75M, American International Chemicals); for the PO-oxidation iodine/water/pyridine is used and for the PS-oxidation PADS (2%) in 2,6-lutidine/ACN (1:1 v/v) is used.


3′-ligand conjugated strands are synthesized using solid support containing the corresponding ligand. For example, the introduction of cholesterol unit in the sequence is performed from a hydroxyprolinol-cholesterol phosphoramidite. Cholesterol is tethered to trans-4-hydroxyprolinol via a 6-aminohexanoate linkage to obtain a hydroxyprolinol-cholesterol moiety. 5′-end Cy-3 and Cy-5.5 (fluorophore) labeled iRNAs are synthesized from the corresponding Quasar-570 (Cy-3) phosphoramidite are purchased from Biosearch Technologies. Conjugation of ligands to 5′-end and or internal position is achieved by using appropriately protected ligand-phosphoramidite building block. An extended 15 min coupling of 0.1 M solution of phosphoramidite in anhydrous CH3CN in the presence of 5-(ethylthio)-1H-tetrazole activator to a solid-support-bound oligonucleotide. Oxidation of the internucleotide phosphite to the phosphate is carried out using standard iodine-water as reported (1) or by treatment with tert-butyl hydroperoxide/acetonitrile/water (10:87:3) with 10 min oxidation wait time conjugated oligonucleotide. Phosphorothioate is introduced by the oxidation of phosphite to phosphorothioate by using a sulfur transfer reagent such as DDTT (purchased from AM Chemicals), PADS and or Beaucage reagent. The cholesterol phosphoramidite is synthesized in house and used at a concentration of 0.1 M in dichloromethane. Coupling time for the cholesterol phosphoramidite is 16 minutes.


Deprotection I (Nucleobase Deprotection)

After completion of synthesis, the support is transferred to a 100 mL glass bottle (VWR). The oligonucleotide is cleaved from the support with simultaneous deprotection of base and phosphate groups with 80 mL of a mixture of ethanolic ammonia [ammonia: ethanol (3:1)] for 6.5 h at 55° C. The bottle is cooled briefly on ice and then the ethanolic ammonia mixture is filtered into a new 250-mL bottle. The CPG is washed with 2×40 mL portions of ethanol/water (1:1 v/v). The volume of the mixture is then reduced to 30 mL by roto-vap. The mixture is then frozen on dry ice and dried under vacuum on a speed vac.


Deprotection II (Removal of 2′-TBDMS Group)

The dried residue is resuspended in 26 mL of triethylamine, triethylamine trihydrofluoride (TEA.3HF) or pyridine-HF and DMSO (3:4:6) and heated at 60° C. for 90 minutes to remove the tert-butyldimethylsilyl (TBDMS) groups at the 2′ position. The reaction is then quenched with 50 mL of 20 mM sodium acetate and the pH is adjusted to 6.5. Oligonucleotide is stored in a freezer until purification.


Analysis

The oligonucleotides are analyzed by high-performance liquid chromatography (HPLC) prior to purification and selection of buffer and column depends on nature of the sequence and or conjugated ligand.


HPLC Purification

The ligand-conjugated oligonucleotides are purified by reverse-phase preparative HPLC. The unconjugated oligonucleotides are purified by anion-exchange HPLC on a TSK gel column packed in house. The buffers are 20 mM sodium phosphate (pH 8.5) in 10% CH3CN (buffer A) and 20 mM sodium phosphate (pH 8.5) in 10% CH3CN, 1M NaBr (buffer B). Fractions containing full-length oligonucleotides are pooled, desalted, and lyophilized. Approximately 0.15 OD of desalted oligonucleotides are diluted in water to 150 μL and then pipetted into special vials for CGE and LC/MS analysis. Compounds are then analyzed by LC-ESMS and CGE.


RNAi Preparation

For the general preparation of RNAi agents, specifically double-stranded siRNA and saRNAs, equimolar amounts of sense and antisense strands are heated in 1×PBS at 95° C. for 5 min and slowly cooled to room temperature. Integrity of the duplex is confirmed by HPLC analysis.


Nucleic acid sequences are represented below using standard nomenclature, and specifically the abbreviations of Table 2.









TABLE 2







Abbreviations of nucleotide monomers used in nucleic


acid sequence representation. It will be understood that these


monomers, when present in an oligonucleotide, are mutually linked


by 5′-3′-phosphodiester bonds unless otherwise noted.








Abbreviation
Nucleotide(s)





A
adenosine


C
cytidine


G
guanosine


T
thymidine


U
uridine


N
any nucleotide (G, A, C, T or U)


a
2′-O-methyladenosine


c
2′-O-methylcytidine


g
2′-O-methylguanosine


u
2′-O-methyluridine


dT
2′-deoxythymidine


s
phosphorothioate linkage









Synthesis of Sequences

Sequences are synthesized on a MerMade 192 synthesizer at 1 μmol scale.


For all the sequences in the list, ‘endolight’ chemistry may be applied as detailed below.


All pyrimidines (cytosine and uridine) in the sense strand contain 2′-O-Methyl bases (2′ O-Methyl C and 2′-O-Methyl U).


In the antisense strand, pyrimidines adjacent to (towards 5′ position) ribo A nucleoside are replaced with their corresponding 2-O-Methyl nucleosides.


A two base dTsdT extension at 3′ end of both sense and antisense sequences are introduced.


The sequence file is converted to a text file to make it compatible for loading in the MerMade 192 synthesis software.


Synthesis, Cleavage and Deprotection:

The synthesis of sequences uses solid supported oligonucleotide synthesis using phosphoramidite chemistry.


The synthesis of the above sequences are performed at 1 um scale in 96 well plates. The amidite solutions are prepared at 0.1M concentration and ethyl thio tetrazole (0.6M in Acetonitrile) is used as activator.


The synthesized sequences are cleaved and deprotected in 96 well plates, using methylamine in the first step and fluoride reagent in the second step. The crude sequences are precipitated using acetone:ethanol (80:20) mix and the pellet re-suspended in 0.02M sodium acetate buffer. Samples from each sequence are analyzed by LC-MS to confirm the identity, UV for quantification and a selected set of samples by IEX chromatography to determine purity.


Purification and Desalting:

RNAi agent sequences are purified on AKTA explorer purification system using Source 15Q column. A column temperature of 65 C is maintained during purification. Sample injection and collection is performed in 96 well (1.8 mL-deep well) plates. A single peak corresponding to the full length sequence is collected in the eluent. The purified sequences are desalted on a Sephadex G25 column using AKTA purifier. The desalted sequences are analyzed for concentration (by UV measurement at A260) and purity (by ion exchange HPLC). The single strands are then submitted for annealing.


Example 2: In Vitro Screening
Cell Culture and Transfections:

Cell culture and transfection conditions are well known in the art and are chosen according to the necessary experimental conditions for study. In one non limiting example, RKO or Hep3B (ATCC, Manassas, Va.) cells are grown to near confluence at 37° C. in an atmosphere of 5% C02 in McCoy's or EMEM (respectively) (ATCC) supplemented with 10% FBS, streptomycin, and glutamine (ATCC) before being released from the plate by trypsinization. Reverse transfection is carried out by adding 5 μl of Opti-MEM to 5 μl of siRNA duplexes per well into a 96-well plate along with 10 μl of Opti-MEM plus 0.2 μl of Lipofectamine RNAiMax per well (Invitrogen, Carlsbad Calif. cat #13778-150) and incubated at room temperature for 15 minutes. 80 μl of complete growth media without antibiotic containing 2.0×104 Hela cells is then added. Cells are incubated for 24 hours prior to RNA purification. Experiments are performed at 0.1 or 10 nM final duplex concentration for single dose screens with each of the RNAi agents. The subset duplexes that show robust silencing or activation in the preliminary screens are assayed over a range of concentrations using serial dilutions to determine their IC50.


Total RNA Isolation Using MagMAX-96 Total RNA Isolation Kit (Applied Biosystem, Forer City Calif., part #: AM1830):


Cells are harvested and lysed in 140 μl of Lysis/Binding Solution then mixed for 1 minute at 850 rpm using and Eppendorf Thermomixer (the mixing speed was the same throughout the process). Twenty micro liters of magnetic beads and Lysis/Binding Enhancer mixture are added into cell-lysate and mixed for 5 minutes. Magnetic beads were captured using magnetic stand and the supernatant was removed without disturbing the beads. After removing supernatant, magnetic beads are washed with Wash Solution 1 (isopropanol added) and mixed for 1 minute. Beads are capture again and supernatant removed. Beads are then washed with 150 μl Wash Solution 2 (Ethanol added), captured and supernatant removed. 50 ul of DNase mixture (MagMax turbo DNase Buffer and Turbo DNase) is then added to the beads and they are mixed for 10 to 15 minutes. After mixing, 100 μl of RNA Rebinding Solution is added and mixed for 3 minutes. Supernatant is removed and magnetic beads are washed again with 150 μl Wash Solution 2 and mixed for 1 minute and supernatant is removed completely. The magnetic beads are mixed for 2 minutes to dry before RNA was eluted with 50 μl of water. cDNA synthesis using ABI High capacity cDNA reverse transcription kit (Applied Biosystems, Foster City, Calif., Cat #4368813):


A master mix of 2 μl 10× Buffer, 0.8 μl 25×dNTPs, 2 μl Random primers, 1 μl Reverse Transcriptase, 1 μl RNase inhibitor and 3.2 μl of H2O per reaction are added into 10 μl total RNA. cDNA is generated using a Bio-Rad C-1000 or S-1000 thermal cycler (Hercules, Calif.) through the following steps: 25° C. 10 min, 37° C. 120 min, 85° C. 5 sec, 4° C. hold.


Real Time PCR:

2 μl of cDNA are added to a master mix containing 0.5l GAPDH TaqMan Probe (Applied Biosystems Cat #4326317E), 0.5 μl CD274 (PD-L1) TaqMan probe (Applied Biosystems cat # Hs01125301_ml) and 5 μl Roche Probes Master Mix (Roche Cat #04887301001) in a total of 10 μl per well in a LightCycler 480 384 well plate (Roche cat #0472974001). Real time PCR is done in a LightCycler 480 Real Time PCR machine (Roche). Each duplex is tested in at least two independent transfections. Each transfection is assayed by qPCR in duplicate.


Real time data are analyzed using the AACt method. Each sample is normalized to GAPDH expression and knockdown assessed relative to cells transfected with a non-targeting duplex. IC50s are defined using a 4 parameter fit model in XLfit.

Claims
  • 1. A conjugate comprising an RNA interference (RNAi) agent coupled to a targeting moiety by a linker, wherein the RNAi agent is a small interfering RNA (siRNA) and wherein the targeting moiety is an Hsp90 inhibitor.
  • 2. The conjugate of claim 1, wherein the conjugate comprises a formula selected from the group X—Y—Z, X—Y—Z—Y—X, X—(Y—Z)n, (X—Y)n—Z, X—Y—Zn, and (X—Y—Z—Y)n—Z; wherein X is the targeting moiety,Y is the linker,Z is the RNAi agent, andn is an integer between 2 and 1,000.
  • 3. The conjugate of claim 1, wherein the conjugate comprises the formula X—Y—Z; wherein X is the targeting moiety,Y is the linker, andZ is the RNAi agent.
  • 4. The conjugate of claim 1, wherein the linker is not a cleavable linker.
  • 5. The conjugate of claim 1, wherein the linker is a cleavable linker.
  • 6. The conjugate of claim 5, wherein the linker is cleavable in cytoplasm, endosome or lysosome.
  • 7. The conjugate of claim 1, wherein the linker comprises an ester bond, disulfide, amide, acylhydrazone, ether, carbamate, carbonate, or urea.
  • 8. The conjugate of claim 1, wherein the linker comprises a cell-penetrating peptide.
  • 9. The conjugate of claim 1, wherein the RNAi agent is a double-stranded RNA (dsRNA).
  • 10. The conjugate of claim 1, wherein the targeting moiety is selected from peptides, antibody mimetics, aptamers, antibodies, glycoproteins, small molecules, carbohydrates, or lipids.
  • 11. The conjugate of claim 1, wherein the conjugate has a molecular weight of less than 50,000 Da.
  • 12. A polymeric particle comprising the conjugate of claim 1 and at least one polymeric matrix.
  • 13. The particle of claim 12, wherein the polymeric matrix comprises one or more polymers selected from the group consisting of hydrophobic polymers, hydrophilic polymers, and copolymers thereof.
  • 14. The particle of claim 12, wherein the polymeric matrix comprises one or more polymers selected from the group consisting of poly(lactic acid), poly(glycolic acid), poly(lactic-co-glycolic acid), poly(ethylene oxide), poly(ethylene glycol), poly(propylene glycol), and copolymers thereof.
  • 15. The particle of claim 12, wherein the particle has a diameter between 10 nm and 5000 nm.
  • 16. The particle of claim 12, wherein the conjugate is present in an amount between 0.05% and 50% (w/w) based upon the weight of the particle.
  • 17. A pharmaceutical formulation comprising the conjugate of claim 1 and at least one pharmaceutically acceptable excipient.
  • 18. A method of treating a subject in need thereof comprising administering a therapeutically effective amount of the formulation of claim 17.
  • 19. A method of making a particle of claim 12, comprising the steps of: A. forming the conjugate, andB. forming the particle comprising a polymeric matrix encapsulating the conjugate.
REFERENCE TO RELATED APPLICATIONS

The present application is a continuation application of U.S. patent application Ser. No. 15/762,635, filed Mar. 23, 2018, entitled RNAi CONJUGATES, PARTICLES AND FORMULATIONS THEREOF, which claims priority to U.S. Provisional Patent Application No. 62/232,627, filed Sep. 25, 2015, entitled RNAi CONJUGATES, PARTICLES AND FORMULATIONS THEREOF, the contents of each of which are herein incorporated by reference in its entirety.

Provisional Applications (1)
Number Date Country
62232627 Sep 2015 US
Continuations (1)
Number Date Country
Parent 15762635 Mar 2018 US
Child 16921390 US