This invention relates to road surface removing machines that have been developed to remove a paved roadway surface by sawing, impacting, milling and direct excavation equipment with repairs to underground utilities. Such machines and combination of traditional excavation equipment typically requires multiple time-consuming steps involving the cutting, breaking up and removing of the paved surface then excavating with a backhoe down to the utility for repair.
Such prior art excavation therefore required on site piling or removal of the excavation debris from the site.
Examples of combined excavation machines can be seen in U.S. Pat. Nos. 4,262,966, 4,968,101, 5,803,661, 7,644,523 and U.S. Publication 2010/0095559.
U.S. Pat. No. 4,262,966 discloses a roadway surface removing machine having a rotating drum cutting head to break up and the surface and a vacuum to remove the debris.
U.S. Pat. No. 4,968,101 claims a vertical asphalt and concrete miller with rotating cutting head to cut the surface around a manhole for removal and replacement.
U.S. Pat. No. 5,803,661 illustrates a pot hole repair device utilizing abrading the surface of the pothole then removing debris by a vacuum so a filler patch can be applied.
U.S. Pat. No. 7,644,523 shows a mobile vacuum boring and excavation method having a vacuum container with a vacuum source and a hose that removes material from the boring head.
Applicant's own U.S. Pat. No. 8,011,851 on a manhole cutting and removal device is used in the present road penetration and excavation system having a rotating annular disk assembly with multiple depending cutters that cut a circle “donut” of pavement around the manhole and remove it. The U.S. Pat. No. 8,011,851 is hereby incorporated by reference in its entirety.
Patent Publication 2010/0095559 discloses a mobile vacuum excavation attachment for a vehicle.
An integrated pavement penetration and excavating system using a modified adjustable diameter pavement disk cutter of U.S. Pat. No. 8,011,851 for cutting a pavement “donut” which is engaged by a lifting device for excavation surface access. An extendable annular retainment box is used within the opening with a hydro high-pressure excavator and a mobile vacuum hose for removal and excavation the defined pavement opening while the wall retainment box is extended in sections, as needed.
A road surface excavation system of the invention can be seen in
The centering guide pin assembly 16 of the invention, best seen in
Correspondingly, a lower disk plate 21 of the centering guide pin assembly 16 is configured with four annularly spaced oppositely disposed tab portions 22, each with a central aligned apertured upstanding lug 23 thereon in aligned effacing relation to the hereinbefore described lug pairs 19A, 19B, 19C and 19D. An opposing end apertured support arms 24 are pivotally secured respectively between each of the said lug pairs 19 by pivot pins 25.
Correspondingly, pairs of opposite end apertured support arms 26 are pivotally secured from each of the mounting lugs 23 by pins 27. It will be seen therefore that with the arms pairs 26 from each lug 23 are pivotally secured at their ends to corresponding aligned depending apertured support arms 24 by pins 24A forming an interlinking pivoting multi-arm assembly between the respective upper and lower disk mounting plates 16 and 19 of the centering guide pin assemblies 16.
A guide pin 28 extends from the center of the lower disk plate 22 having an apertured pin receiving mounting plate 29 secured thereto. A spaced annular surface depth engagement disk 30 is positioned on the guide pin 28 to provide a pin stop once inserted into a predrilled excavating guide bore GB in the pavement surface PS by conventional means over the utility to be accessed.
In sequence, the road surface excavation system, in use, once the guide pin 28 has been positioned within the predrilled excavating guide bore GB thereby centering the modified pavement cutter 11 which is rotated thereby engaging its multiple depending blade assemblies 14 cutting a circular path into and through the paving surface PS shown in broken lines in
The lifting bracket 31 has a pair of oppositely disposed Y-shape arms 33 and 34 that each have pairs of angularly disposed end fittings 35 thereon with respective adjustable pavement disk engagement pins 35A. Cross arm support bars 32 are positioned between each end fitting 35 for stabilizing. It will be seen that the respective arms 34 are joined together and have a pair of spaced parallel arm extensions 36 extending from their adjoining point 36A an upstanding lifting limit tab 36B extends from one of the arms. The arms 33 are joined together at 33A and have a single arm extension portion 37 which extends between the arm extensions 36 with an upstanding slotted lifting tab 37A on its free end aligned with the lifting limit tab 36B. The apertured arm extensions 36 are pivoted at their respective free ends to the arm extension portion 37 by a pivot pin 38 so that when the lifting bracket 31 is lifted by its central lifting tab 37A the arm pairs 33 and 34 will pivot and apply oppositely disposed wedging engagement pressure WP to the respective pin fittings 35 with their depending pins 35A on the now defined cut out pavement portion 15 allowing same to be held in frictional engagement there between and lifted for removal as seen in
Referring now to
The hook fitting 44 has a center support plate 45 with a cylindrical adapter 46 secured thereto extending partially therefrom, best seen in
The cylinder adapter 46 is apertured at A for receiving a retainment pin 46A shown in broken lines for registration through a corresponding inserted drive shaft 47 of the hydraulic power rotator HPR mounted on mobile lifting power equipment, such as a skip loader, not shown, as will be understood by those skilled in the art.
A lift bracket engagement pin 48 extends through the support plate 45 with oppositely disposed upstanding end lift tabs 49A and 49B positioned thereon in spaced relation to the planar surface of the central support plate 45. The engagement pin 48 has an extension of reduced diameter at 48A extending beyond the corresponding end lift tab 49A.
A pair of guide plates 50 are secured on the oppositely disposed parallel plate edges 45A and 45B for positional alignment of the hook fitting 44 as will be described hereinafter.
In use, the lifting bracket 31 is engaged with the hook fitting 44 by the upstanding slotted arm tab 37A shown in broken lines in
The engagement pin extension 48A is provided to limit the respective arm pivot action of the lifting bracket 31 when not engaged on a pavement portion 15 by its registration within the lift limit tab 36B as seen in broken lines in
Once the pavement portion 15 is removed, a vertically segmented annular retainment box 39, as seen in
To begin excavation, a high pressure water injection excavation rod 40 which supplies water under high pressure from an auxiliary pump, not shown, as will be well understood by those skilled in the art, is then used in conjunction with a mobile vacuum excavator 41 to excavate and remove substrate within the retainment box designated area 42 as will be evident to those in the art.
As the excavation progresses, additional retainment box sections 39A, shown in broken lines, are added by position on top of one another by conventional nuts and bolts through aligned apertured mounting flanges 42 on each of the sections. It is evident that this process is continued until the utility, which in this example is a pipe 43 is exposed for repair or replacement.
The vacuum excavator 41 gathers and retains the excavated debris providing a safe, clean and effective removal and thereby access to the underground utility element as noted.
It will be evident that the above referred to method and application device of the invention has been illustrated and described and it will be apparent to those skilled in the art that various changes and modifications may be made therein without departing from the spirit of the invention.
Number | Name | Date | Kind |
---|---|---|---|
4262966 | Bouplon | Apr 1981 | A |
4683684 | Yie | Aug 1987 | A |
4968101 | Bossow | Nov 1990 | A |
5470131 | Nolan | Nov 1995 | A |
5803661 | Lemelson | Sep 1998 | A |
6464020 | Wills | Oct 2002 | B1 |
7494191 | Crites | Feb 2009 | B1 |
7644523 | Buckner | Jan 2010 | B2 |
7740415 | Crites | Jun 2010 | B1 |
8011851 | Crites | Sep 2011 | B1 |
8096367 | McGivery | Jan 2012 | B2 |
8646847 | Cochran | Feb 2014 | B2 |
9816250 | Maybury | Nov 2017 | B2 |
10280573 | Knapp | May 2019 | B1 |
10801265 | Russo | Oct 2020 | B1 |
20030007835 | Jurshak | Jan 2003 | A1 |
20090064544 | Rajewski | Mar 2009 | A1 |
20100095559 | Buckner | Apr 2010 | A1 |
Number | Date | Country |
---|---|---|
WO 2013027754 | Feb 2013 | WO |