Rotating biopsy needle

Information

  • Patent Grant
  • 11116483
  • Patent Number
    11,116,483
  • Date Filed
    Thursday, May 17, 2018
    5 years ago
  • Date Issued
    Tuesday, September 14, 2021
    2 years ago
Abstract
A biopsy needle assembly configured for use with a tissue biopsy device is disclosed. The biopsy needle assembly may be configured to be advanced to a predetermined tissue sample, sever the tissue sample, and extract the tissue sample from a body tissue of a patient. The biopsy needle assembly may be further configured to minimize or eliminate the axial translation of the biopsy needle beyond a targeted location.
Description
TECHNICAL FIELD

The present disclosure relates generally to medical devices. More specifically, the present disclosure relates to biopsy needle assemblies configured for use with tissue biopsy devices, including needle assemblies configured to decrease, minimize, or eliminate axial translation impact at a tissue sample collection site.





BRIEF DESCRIPTION OF THE DRAWINGS

The embodiments disclosed herein will become more fully apparent from the following description and appended claims, taken in conjunction with the accompanying drawings. The drawings depict only typical embodiments, which embodiments will be described with additional specificity and detail in connection with the drawings in which:



FIG. 1 is a perspective view of a biopsy needle assembly.



FIG. 2 is a perspective view of a needle of the biopsy needle assembly of FIG. 1.



FIG. 2A is a detail view of the needle of FIG. 2 taken through detail section 2A.



FIG. 2B is a perspective cross-section view of the distal end portion of the needle of FIG. 2A taken through plane 2B.



FIG. 3 is a perspective view of a stylet of the biopsy needle assembly of FIG. 1.



FIG. 4 is a detail view of the stylet of FIG. 3 taken through detail section 4.



FIG. 5A is a perspective cross-section view of a portion of the stylet of FIG. 4 taken through plane 5A.



FIG. 5B is a perspective cross-section view of the stylet of FIG. 4 taken through plane 5B.



FIG. 5C is a perspective cross-section view the stylet of FIG. 4 taken through plane 5C.



FIG. 6A is a perspective view of the distal end portion of the biopsy needle assembly of FIG. 1 in a first configuration.



FIG. 6B is a perspective view of the distal end portion of the biopsy needle assembly of FIG. 1 in a second configuration.



FIG. 7A is a perspective cross-section view of the needle and the stylet of FIG. 6A through line 7A, with the needle and stylet in the configuration of 6A.



FIG. 7B is a perspective cross-section view of the needle and the stylet of FIG. 6B through plane 7B, with the needle and stylet in the configuration of 6B.



FIG. 8A is a schematic cross-sectional representation of portions of the needle and the stylet of the biopsy needle assembly of FIG. 1 in a first configuration.



FIG. 8B is a schematic cross-sectional representation of portions of the needle and the stylet of the biopsy needle assembly of FIG. 1 in a second configuration.



FIG. 8C is a schematic cross-sectional representation of the portions of the needle and the stylet of the biopsy needle assembly of FIG. 1 in a third configuration.





DETAILED DESCRIPTION

Tissue biopsy devices may be configured to retrieve tissue samples from various locations within a patient's body. For example, a biopsy device may comprise a biopsy needle assembly, or needle assembly, including tubular members, cutting styli, styli, cannula, and/or other components configured to access and sever a tissue sample in a medical procedure commonly referred to as Core Needle Biopsy. The needle assembly may be inserted into a location within the body through the skin of the patient (percutaneous access), through an open incision or may be advanced through a body lumen or other structure. Furthermore, a biopsy device may comprise a handle or actuator configured to axially displace or rotate at least a portion of the needle assembly such that the needle assembly severs the targeted tissue sample.


Medical devices and related components, as described in greater detail below, may be configured to facilitate a Core Needle Biopsy procedure. In some circumstances, the medical devices are designed to facilitate tissue biopsy utilizing a non-axial displacement technique.


Embodiments may be understood by reference to the drawings, wherein like parts are designated by like numerals throughout. It will be readily understood by one of ordinary skill in the art having the benefit of this disclosure that the components of the embodiments, as generally described and illustrated in the figures herein, could be arranged and designed in a wide variety of different configurations. Thus, the following more detailed description of various embodiments, as represented in the figures, is not intended to limit the scope of the disclosure, but is merely representative of various embodiments. While the various aspects of the embodiments are presented in drawings, the drawings are not necessarily drawn to scale unless specifically indicated.


It will be appreciated that various features are sometimes grouped together in a single embodiment, figure, or description thereof for the purpose of streamlining the disclosure. Many of these features may be used alone and/or in combination with one another.


The phrases “coupled to” and “in communication with” refer to any form of interaction between two or more entities, including mechanical, electrical, magnetic, electromagnetic, fluid, and thermal interaction. Two components may be coupled to or in communication with each other even though they are not in direct contact with each other. For example, two components may be coupled to or in communication with each other through an intermediate component.


The directional terms “distal” and “proximal” are given their ordinary meaning in the art. That is, the distal end of a medical device means the end of the device furthest from the practitioner during use. The proximal end refers to the opposite end, or the end nearest the practitioner during use. As specifically applied to the syringe portion of an inflation device, the proximal end of the syringe refers to the end nearest the handle and the distal end refers to the opposite end, the end nearest the inlet/outlet port of the syringe. Thus, if at one or more points in a procedure a physician changes the orientation of a syringe, as used herein, the term “proximal end” always refers to the handle end of the syringe (even if the distal end is temporarily closer to the physician).


“Tissue” is used in its broadest sense, to refer to any tissue or substance within the human body.



FIGS. 1-8C illustrate different views the biopsy needle device 100 and related components. In certain views each device may be coupled to, or shown with, additional components not included in every view. Further, in some views only selected components are illustrated, to provide detail into the relationship of the components. Some components may be shown in multiple views, but not discussed in connection with every view. Disclosure provided in connection with any figure is relevant and applicable to disclosure provided in connection with any other figure or embodiment.



FIG. 1 is a perspective view of a biopsy needle device 100. As illustrated, the device 100 may comprise an outer tubular member or needle 110, an inner elongate member or stylet 130 disposed within the needle and an actuator or handle 150 operably coupled to the proximal portions of the needle 110 and stylet 130.



FIG. 2 is a perspective view of the needle 110 of FIG. 1, FIG. 2A is a detail view of the distal end portion 112 of the needle 110 of FIG. 2 and FIG. 2B is a perspective cross-section view of the distal end portion of the needle of FIG. 2A taken through plane 2B. The needle 110 may comprise a distal end portion 112, proximal end portion 111 and a lumen 117. The needle 110 may range in diameter from 9 gauge to 22 gauge, including, from 14 gauge to 20 gauge, and from 14 ga to 17 ga. The length of the needle 110 may range from 2 cm to 20 cm, including, from 6 cm to 10 cm, from 2 cm to 16 cm, and from 4 cm to 12 cm. The lumen 117 may be sized to accommodate the stylet (130 of FIG. 3) such that the stylet 130 may be disposed within the lumen 117 and may rotate within the lumen 117 around a longitudinal axis. The needle 110 may be manufactured from a medical grade stainless steel material and formed with a thin wall 118.


In some embodiments the proximal end portion 111 of the needle 110 may be configured to be fixedly coupled to the actuator 150 through any suitable technique, including, boding, welding, insert molding, etc. Alternatively, the proximal end portion 111 of the needle 110 may be configured to be releasably coupled to the actuator 150. In some procedures, the needle 110 may be utilized as an introducer to facilitate removal of multiple samples from a single insertion of needle 110. For example, the needle 110 and stylet 130 may be inserted through a patient's skin and into the target tissue or lesion. An initial tissue sample may be taken and the stylet 130 may be removed from the proximal end portion 111 of the needle 110 and the tissue sample removed. Subsequently, the same stylet 130 (or a second stylet) may be inserted into the proximal end portion 111 of the needle 110 for a second tissue sample. This technique may be repeated until the practitioner has obtained the desired quantity and number of tissue samples.


In some embodiments the distal end portion 112 of the needle 110 may be configured facilitate penetration of the needle 110 to into body tissue. The distal end portion 112 of needle 110 may comprise a tissue penetration point 114. The penetration point 114 may comprise a sharp tip 115 and at least one facet 116. In some embodiments it comprises at least two facets 116 located on opposite sides of the penetration point 114 such that the penetration point 114 is configured to penetrate through tissue, including skin and/or a portion of the target tissue or lesion, without coring tissue restricting or preventing passage of tissue into the distal end of the lumen 117. Other embodiments of the penetration point 114 may be configured as needle tip configurations, such as, but not limited to, a pencil point, Greene point, Quincke, Hustead, or Toughy.


In certain embodiments, the distal end portion 112 of the needle 110 may comprise a cutout or window 113. The window 113 may extend along the longitudinal axis of the needle. The window may be generally rectangular in shape comprising longitudinal edges 119 and transverse edges 120. The depth d1 of the window 113 from the needle 110 outer surface to the longitudinal edge 119 may be approximately 50% of the needle 110 diameter. The longitudinal edge 119 may be generally parallel to the longitudinal axis of the needle 110. In some embodiments, the longitudinal edge 119 may be angled in an opposite direction from the angle of the stylet cutting blade 135. The angle may range from 1 degree to 5 degrees. A distal transverse edge 121 of the window 113 may be located approximately 0.5 cm to 1 cm from the penetration point 114 of the needle 110. The window 113 may have a length of at least 0.5 cm to at least 3 cm, including 1 cm to 2.5 cm. The window 113 may be formed by any suitable technique such as grinding, electrical discharge machining, chemical etching, etc.


In some embodiments, at least one longitudinal edge 119 of the window 113 may comprise a knife edge 122. The knife edge 122 may include a bevel 123 configured with a sharp edge 124. The angle of the bevel 123 may range from approximately 0 degrees to approximately 15 degrees from a horizontal plane lying across the longitudinal edges 119. The sharp edge 124 may be disposed on the inside of the wall 118 of needle. The bevel 123 may be formed by suitable manufacturing techniques known in the art such as, grinding, electrical discharge, chemical etching, etc. The knife edge 122 may be configured to cooperate with the cutting blade (135 of FIG. 3) in a manner analogous to the operation of scissor blades to cut or sever a tissue sample from surrounding tissue utilizing a shear force. This interaction is discussed in more detail in connection with FIGS. 6A-6C. For example, tissue may be caught between the knife edge 122 and the cutting blade 132 such that a sheering force may cut or sever the tissue.


In certain embodiments the needle 110 may comprise a plurality of indicia 125 configured to indicate to the practitioner a distance that the needle 110 has advanced into a body tissue (for clarity not all indicia 125 are labeled). For example, each indicium 125 may be positioned 1 cm apart; thus, if the practitioner displaces the needle 110 into a body tissue up to the third indicia 125 from the distal end portion 112 of the needle 110, it may indicate to the practitioner that approximately 3 cm of the needle 110 has been displaced into the body tissue. In some embodiments, the indicia 125 may comprise a plurality of substantially evenly spaced annular lines, marks, or grooves on an outside surface of the needle 110. In certain embodiments, the indicia 125 may comprise a plurality of tick marks or the indicia may not be evenly spaced.


In certain embodiments, a portion or portions of at least one of the components of the biopsy needle device 100, including, but not limited to, the needle penetration point 114, the indicia 125, and/or the stylet 130, may comprise a radiopaque material and/or an echogenic material. A radiopaque material (for example, in combination with a fluoroscope) may aid the practitioner in directing or displacing the needle assembly to a desired or predetermined position within the body tissue of the patient. Bismuth, gold, or other radiopaque materials alone, or in combination, may be used. An echogenic material or surface (for example, in combination with ultrasound) may analogously aid the practitioner in directing or displacing the needle assembly to a desired or predetermined position within the body tissue of the patient. Surface disruptions such as texturing, grooves, dimples, or a combination of materials may also be used.



FIGS. 3-5C are views of the stylet 130 of FIG. 1. FIG. 3 is a perspective view of the stylet 130. FIG. 4 is a detail view of the distal end portion 132 of the stylet 130 of FIG. 3 taken through detail view 4. FIGS. 5A-5C are perspective section views of the stylet notch 133 of FIG. 4 at planes 5A, 5B and 5C, respectively. The stylet 130 may comprise a distal end portion 132 including a distal end 136, a proximal end portion 131, and a shaft 137. In some embodiments, the distal end 136 may be blunted. For example, the distal end 136 may have a bullnose shape or be squared off. Alternatively, the distal end 136 may be beveled such that the bevel angle matches the angle of the penetration point 114 of the needle 110. The distal end 136 may be configured to occlude the distal end of needle lumen 117 such that tissue is restricted or prevented from entering the distal end of lumen 117. The proximal end portion 132 may be configured to couple with the actuator 150 such that the actuator may rotate the stylet 130 180 degrees in one direction to open the needle window 113 and allow for a tissue sample to collapse or prolapse through the window 113, further rotation the stylet 130 180 degrees in the opposite direction may cut or sever the tissue sample from surrounding tissue. The stylet 130 may be of unitary construction. The stylet 130 may be formed from a rod and made from a material such as stainless steel. In certain embodiments the stylet 130 may be disposed within the lumen 117 of needle 110 and be configured to rotate within the lumen 117, to provide flexural strength to the needle 110, and to cooperate with the needle window 113 to sever and capture a target tissue sample. The distal end 136 of the stylet 130 may be disposed adjacent the needle penetrating point 114 and may or may not extend beyond the needle penetrating point 114.


In some embodiments, the stylet distal end portion 131 may further comprise a cutout or notch 133. The notch 133 may be generally rectangular in shape with a longitudinal side 138 of the notch 133 extending along the longitudinal axis of the stylet 130. In some embodiments, the length of the notch 133 may be longer than the needle window 113 such that a distal end 139 of the notch 133 may be positioned distally of the distal transverse edge 121 of the window 113 and a proximal end 140 of the notch 133 may be positioned proximally of a proximal transverse edge 126 of the window 113 when the stylet 130 is disposed within the needle lumen 117.


In certain embodiments, the notch 133 may comprise a trough 134 configured to retain the cut or severed tissue sample. A transverse section of the trough 134 may be crescent shaped having a convex edge 127, a concave edge 128, and two tips 144 near the proximal end 140 of the notch 133 and form approximately 65% of a circle (γ of FIG. 5C). A side 148 of the crescent shaped trough 134 may be progressively truncated moving from the notch proximal end 140 to the notch distal end 139 such that the side 146 of the trough 134 may be shorter near the distal end 139 of the notch 133 than near the proximal end 140 of the notch 133. A second side 149 of the trough 134 may be configured with a constant height from the distal end 139 to the proximal end 140. The thickest portion of the trough wall 141 may be located at the bottom of the trough 134 and may be approximately 25% (d2 of FIG. 5A) of the diameter of the stylet 130.


In some embodiments, the notch 133 may comprise a cutting blade 135. The cutting blade 135 may comprise a bevel 143 and a cutting edge 142. The bevel 143 may have an angle β of from 25 degrees to 35 degrees, including approximately 30 degrees, from a horizontal plane across the tips 144 of the crescent shaped trough 134 and be angled downwards from the outside surface of the stylet 130 when the trough 134 is oriented upwards. The bevel 143 may progressively widen as the cutoff portion of the trough side 146 increases from the notch proximal end 140 to the notch distal end 139 at about a one to three degree angle. In other words, as the depth of the cutting blade 135 increases within the notch 133 from the proximal end 140 to the distal end 139, more material may be removed from the trough side 146 resulting in a wider bevel near the notch distal end 139 than near the notch proximal end 140.


The outer edge of the bevel 143 may be configured as a squared edge or cutting edge 142. The cutting edge 142 may be sharp. The cutting edge 142 may be curvilinear along the outer diameter of the stylet 130 and may be configured as a helical shape that may incline at approximately one to three degrees (γ of FIG. 4) from the notch distal end 139 to the notch proximal end 140. The helical shaped cutting edge 142 may be configured to make point contact with the knife edge 122 of the window 113 as the stylet 130 may be rotated relative to the needle 110.


Referring to FIGS. 6A-7B, in some embodiments, the knife edge 122 of the needle window 113 may be configured to contact the cutting edge 142 of the cutting blade 135 in a manner analogous to the operation of scissor blades. The inclined orientation of the cutting edge 142 and the level orientation of the knife edge 122 may provide an angel or from 1 degree to 3 degrees and facilitate a point contact 147 between the stylet cutting edge 132 and the knife edge 122 as the stylet cutting edge 132 rotates past the window knife edge 122. The single point contact 147 may facilitate a slicing or lancing of the tissue sample rather than a crushing cut of the tissue sample to sever the sample from the surrounding tissue. The slicing or lancing of the tissue may result in a tissue sample with minimal cell or architectural damage. The minimization of cell or architectural damage may provide a high quality tissue sample for analysis resulting in a more accurate diagnosis for the patient.


In some embodiments, the cutting edge 132 and the knife edge 122 are configured to make simultaneous contact over the full length of the cutting edge 132 and the knife edge 122 resulting in a complete severing of the longitudinal length of the sample tissue at once. For example, the knife edge 122 and the cutting edge 132 may be parallel resulting in an engagement of the full length of the knife edge 122 with the cutting edge 132. In other embodiments, the knife edge 122 may be longitudinally angled or inclined one to three degrees in the opposite direction from the longitudinal angle of the cutting edge 132. The opposing longitudinal angles of the knife edge 122 and the cutting edge 132 may create an increased angle of about 2 degrees to 6 degrees between the knife edge 122 and cutting edge 132. The increased angle of engagement may allow for cutting or severing of the tissue progressively along its longitudinal length. This, in turn, may result in a lower force resulting in less trauma to the tissue.



FIGS. 8A-8C are schematic in nature. In other words, the figures show the functional and operational relationships of a portion of the biopsy needle device 100 upon use in a patient, but the figures are not intended to indicate any particular structure or spatial disposition of any tissue, organ, body component, or group of body components in the patient. Additionally, the schematic representations herein may be drawn to show internal tissues and/or organs of the patient without explicitly designating cross-sections or cutaways of the tissues and/or organs. For example, a body tissue may be schematically shown with the biopsy needle assembly disposed therein without indicating a cross-section portion or cutaway of a portion of the body tissue. FIG. 8A is a schematic representation of a cross-sectional view of a portion of the biopsy needle device 100 of FIG. 1 in a first configuration. FIGS. 8B, and 8C are schematic representations of cross-sectional views of the portion of the needle device 100 of FIG. 1 in a second configuration and third configuration, respectively.



FIG. 8A illustrates portions of the needle 110 and the stylet 130 of the needle device 100 advanced into the target tissue or lesion 151 of a patient in a first configuration. In the configuration, needle window 113 may be closed or occluded by the stylet 130. The trough 134 of the stylet 130 may be oriented away from the window 113 such that trough 134 may not be exposed to the target tissue 151. FIG. 8B illustrates portions of the needle 110 and the stylet 130 in a second configuration. In the configuration of FIG. 8B, the stylet 130 may be rotated in the direction of the arrow, for example, a clockwise rotation, from the first configuration illustrated in FIG. 8A. Thus, the needle window 113 may be open and the trough 134 may be oriented toward the window 113. A tissue sample 152 may collapse or prolapse through the window 113 into the trough 134 such that tissue is disposed within the trough 134. In some embodiments, the trough 134 may be nearly filled with tissue. FIG. 8C illustrates portions of the needle and stylet in a third configuration. In the configuration of FIG. 8C, the stylet 130 may be rotated in the direction of the arrow, for example, a counter-clockwise rotation, from the second configuration illustrated in FIG. 8B. The needle window 113 may be closed and the trough 134 may be oriented away from the window 113. Due to the progression transition from the configuration of FIG. 8A to that of FIG. 8C, a tissue sample 152 may be cut or severed from the target tissue or lesion 151 and captured between the trough wall 141 and the needle wall 118.


Upon severing of the tissue sample 152, as illustrated in FIG. 8C, each of the stylet 130 and the needle 110 may be retracted from the body tissue 151 of the patient such that the tissue sample 152 may be extracted from the body tissue 151. In certain embodiments, the needle 110 may be maintained in position in the body tissue 151 and the stylet 130 may be substantially retracted from the needle 110 and body tissue 151.


Referring again to FIG. 1, in some embodiments, the biopsy needle device 100 may comprise a needle 110 and stylet 130 operatively coupled to a handle or actuator 150. For example, at least a portion of at least one of the proximal end portion 111 of the needle 110 and/or the proximal end portion 131 of the stylet 130 may be operatively coupled to the actuator 150. The actuator 150 may be configured to actuate at least one of the needle 110 and/or the stylet 130 to sever the tissue sample from the body of a patient. The actuator 150 may be configured to actuate the stylet 130 in a rotating motion relative the needle 110. In some embodiments, the activation may be triggered by two actions of the practitioner. For example, when the biopsy needle device may be prepped for use, the practitioner may cock the actuator 150. The cocking of the actuator 150 may cause the stylet 130 to be rotated 180 degrees in one direction to open the window 113 and to compress an activation mechanism such as a spring. The activation mechanism may lock in the cocked position. The practitioner may then wait for a period of time ranging from one second to five seconds to allow for the tissue sample 152 to collapse or prolapse through the window 113 into the trough 134. The practitioner may then activate the actuator 150. The spring of the activation mechanism may cause the stylet 130 to rotate approximately 180 degrees, in the opposite direction from the cocking rotation, relative to the needle window 113 resulting in cutting or severing of the tissue sample 152 from the surrounding tissue or lesion 151. The actuator 150 may also be configured to retract the needle 110 and stylet 130 from the body of a patient. The actuator 150 may include a mechanism that permits a manual reset of the actuation mechanism when additional tissues samples are desired. It is within the scope of this disclosure to couple components of the biopsy needle device 100, as described herein, to any type of handle or actuator 150. A handle or actuator 150 can have springs and can displace components of the biopsy needle device 100 relative to each other. Various handles or actuators may be used with the biopsy needle assemblies disclosed herein.


In some embodiments, an introducer cannula (not shown) may be used with the biopsy needle device 100 disclosed herein. The introducer cannula may comprise an outer cannula sized to permit passage of the biopsy needle 110, a trocar slidably disposed within the cannula and extending beyond the distal end of the cannula, and a depth stop to facilitate position of the introducer at the desired insertion depth. In use, the introducer cannula assembly may be inserted into a patient's tissue with the distal end of the cannula positioned adjacent to the targeted tissue 151. The depth stop may be used to restrict insertion depth to a predetermined depth. The trocar may be removed. The needle 110 and stylet 130 of the biopsy needle device 100 may be inserted through the introducer cannula and into the targeted tissue 151. A tissue sample 152 may be severed from the targeted tissue 151 and retained within the biopsy needle device 100. The biopsy needle device 100 may be withdrawn from the targeted tissue 151 and the introducer cannula. The tissue sample 152 may be extracted from the biopsy needle device 100. If additional tissue samples 152 are desired from the same target tissue 151, the process may be repeated. The introducer cannula may be removed from the patient when all desired tissue samples 152 have been collected.


The components of the present disclosure may be configured to minimize or eliminate translational impact of commonly used biopsy devices. Some biopsy devices may comprise a needle and a cutting stylet that are configured to translate axially into a target tissue of a patient. As such, a practitioner may advance the needle and stylet into a body tissue adjacent to the target tissue or lesion. The practitioner may then longitudinally advance components of the device to sever a sample. For example, rapid extension of a needle longitudinally over a previously extended stylet may cut or sever a sample tissue from the surrounding tissue. The longitudinal extension of the stylet and needle may be 2 to 3 cm (stroke length) and may be achieved via at least one spring mechanism within an actuator handle. The spring mechanism may cause rapid extension of the needle into the target tissue resulting in patient discomfort and potential undesired damage to surrounding tissue and/or organs.


In some instances, for example as described in the present disclosure, the structure and/or the form of the biopsy needle device 100 may be configured to minimize or eliminate a length (stroke length) of the device that rapidly penetrates tissue beyond the initial placement of the biopsy needle. As stated, embodiments of the biopsy needle device 100 of the current disclosure may be configured to minimize or eliminate translational movement of a portion of a biopsy needle during severing of a sample.


Minimizing or eliminating translational movement may increase the precision with which a practitioner can extract a tissue sample and thus limit unwanted trauma to tissue around the sample site. For example, in some instances, a practitioner may identify or locate a tissue sample for removal or extraction from a patient. The identified tissue sample, however, may be positioned at or adjacent to a body component, tissue, or organ that the practitioner may desire or need to avoid cutting, piercing, severing, etc. The body component may include, but is not limited to, a vessel. The biopsy needle assembly 100 of the present disclosure may be configured to minimize or eliminate translation movement may be utilized in such a circumstance or situation. At least a portion of a biopsy needle device 100, as disclosed herein, inserted into a patient and may be disposed within the target tissue to be sampled such that the window 113 and notch 133 are located at the targeted site. Confirmation may be achieved using imaging techniques such as ultrasound, magnetic resonance imaging, x-ray, fluoroscopy, etc. The practitioner may cock the actuator 150 resulting in a 180 degree rotation of the stylet 130 and opening of the needle window 113. Sample tissue 152 may collapse though the window 113 and into the trough 134. The practitioner may activate the actuator 150. The actuator may rotate the stylet 130 180 degrees in the direction opposite from the cocking rotation causing the knife edge 122 and the cutting edge 132 to cooperate to cut or sever the sample tissue 152 from the surrounding target tissue 151. The biopsy needle device may thus cut or sever without longitudinal translation of the needle and/or stylet. Therefore, the risk of cutting, piercing, or severing non-targeted body components, such as vessels, which may be positioned at or adjacent the target tissue may be minimized or reduced.


Without further elaboration, it is believed that one skilled in the art may use the preceding description to utilize the present disclosure to its fullest extent. The examples and embodiments disclosed herein are to be construed as merely illustrative and exemplary and not a limitation of the scope of the present disclosure in any way. It will be apparent to those having skill in the art, and having the benefit of this disclosure, that changes may be made to the details of the above-described embodiments without departing from the underlying principles of the disclosure herein.

Claims
  • 1. A biopsy needle assembly comprising: a needle comprising a window; anda stylet disposed within the needle comprising a notch, wherein the notch comprises: a closed distal end and a closed proximal end; anda cutting blade disposed between the closed distal end and the closed proximal end, comprising a bevel wherein the bevel comprises a surface angled downward from an outside surface of the stylet, wherein the surface comprises a decreasing width from a distal end to a proximal end of the bevel.
  • 2. The biopsy needle assembly of claim 1, wherein the stylet is rotatably disposed within the needle.
  • 3. The biopsy needle assembly of claim 1, wherein the cutting blade is inclined from a distal end to a proximal end of the cutting blade and wherein the angle of the incline is from one degree to three degrees.
  • 4. The biopsy needle assembly of claim 1, wherein the window comprises at least one cutting edge.
  • 5. The biopsy needle assembly of claim 4, wherein the cutting blade is configured to cooperate with the cutting edge such that a shear force severs a sample tissue.
  • 6. The biopsy needle assembly of claim 1, wherein the stylet notch comprises a crescent shaped profile comprising a convex edge, a concave edge and two tips.
  • 7. The biopsy needle assembly of claim 6, wherein the stylet notch further comprises a trough defined by the concave edge and configured to retain a tissue sample.
  • 8. The biopsy needle assembly of claim 1, further comprising an actuator operably coupled to the needle and the stylet.
  • 9. A biopsy needle assembly configured for use with a tissue biopsy device, the biopsy needle assembly comprising: a needle comprising a window, wherein the window comprises a cutting edge; anda stylet rotatably disposed within the needle, wherein the stylet comprises a notch configured to cooperate with the cutting edge to sever a tissue sample, wherein the notch comprises: a closed distal end and a closed proximal end;a crescent shaped transverse profile comprising a convex edge, a concave edge and two tips; anda cutting blade disposed between the closed distal end and the closed proximal end on at least one side of the notch structured at an incline from a distal end to a proximal end of the cutting blade, wherein the cutting blade comprises a bevel comprising: a surface angled downward from a horizontal plane disposed across the two tips and from an outside surface of the stylet; anda decreasing width from a distal end to a proximal end of the cutting blade.
  • 10. The biopsy needle assembly of claim 9, wherein the notch further comprises a trough configured to retain the severed tissue sample.
  • 11. The biopsy needle assembly of claim 9, wherein the stylet comprises a bullnose shaped distal end.
  • 12. The biopsy needle assembly of claim 9, wherein the needle comprises a bevel configured to penetrate tissue.
  • 13. The biopsy needle assembly of claim 12, wherein the needle bevel comprises a sharp tip and tissue cutting facets.
  • 14. The biopsy needle assembly of claim 12, wherein the needle bevel is echogenic.
  • 15. The biopsy needle assembly of claim 12, wherein the stylet comprises a distal end configured to match the contour of the needle bevel.
  • 16. The biopsy needle assembly of claim 9, wherein the needle comprises at least one insertion depth indicium.
  • 17. The biopsy needle assembly of claim 9, wherein the bevel surface is angled at from 25 degrees to 35 degrees relative to a horizontal plane disposed across the two tips.
  • 18. A method of obtaining a tissue sample, comprising: advancing a needle and a stylet into a body tissue utilizing a handle;rotating the stylet in a first direction utilizing the handle, wherein the stylet comprises: a cutting blade comprising a bevel configured with a wide angled internal surface at a distal end and a narrow angled internal surface at a proximal end of the cutting blade; anda trough disposed such that the trough is opened to the window when the stylet is rotated in the first direction, wherein the trough comprises a closed distal end and a closed proximal end, and wherein the cutting blade is disposed between the closed distal end and the closed proximal end;permitting a tissue sample of the body tissue to collapse through the window and into the opened trough;rotating the stylet in a second direction with the handle such that the tissue sample is severed, the trough is closed to the window, and the tissue sample is retained within the trough; andremoving the needle and the stylet from the body tissue with the handle.
  • 19. The method of claim 18, further comprising introducing the needle and the stylet into the body tissue utilizing an introducer.
  • 20. The method of claim 18, further comprising: leaving the needle in the body tissue;retracting the stylet from the needle;removing the tissue sample; andre-inserting the stylet into the needle to retrieve a second tissue sample.
RELATED APPLICATIONS

This application claims priority to U.S. Provisional Application No. 62/508,882, filed on May 19, 2017 and titled, “Rotating Biopsy Needle,” which is hereby incorporated by reference in its entirety.

US Referenced Citations (426)
Number Name Date Kind
737293 Summerfeldt Aug 1903 A
1585934 Muir Dec 1923 A
1663761 Johnson Feb 1927 A
2953934 Sundt Sep 1960 A
3019733 Braid Feb 1962 A
3224434 Molomut et al. Dec 1965 A
3477423 Griffith Nov 1969 A
3512519 Hall May 1970 A
3561429 Jewett et al. Feb 1971 A
3565074 Foti Feb 1971 A
3606878 Kellogg Sep 1971 A
3727602 Hayden et al. Apr 1973 A
3732858 Banko May 1973 A
3800783 Jamshidi Apr 1974 A
3844272 Banko Oct 1974 A
3882849 Jamshidi May 1975 A
4275730 Hussein Jun 1981 A
4282884 Boebel Aug 1981 A
4306570 Matthews Dec 1981 A
4354092 Manabe et al. Oct 1982 A
4445509 Auth May 1984 A
4490137 Moukheibir Dec 1984 A
4549554 Markham Oct 1985 A
4557265 Anderson Dec 1985 A
4577629 Martinez Mar 1986 A
4589414 Yoshida et al. May 1986 A
4598710 Kleinberg et al. Jul 1986 A
4603694 Wheeler Aug 1986 A
4605011 Naslund Aug 1986 A
4617430 Bryant Oct 1986 A
4620539 Andrews et al. Nov 1986 A
4643197 Greene et al. Feb 1987 A
4645153 Granzow et al. Feb 1987 A
4662869 Wright May 1987 A
4678459 Onik et al. Jul 1987 A
4683885 Hutterer et al. Aug 1987 A
4696298 Higgins et al. Sep 1987 A
4702260 Wang Oct 1987 A
4708147 Haaga Nov 1987 A
4776346 Beraha et al. Oct 1988 A
4844087 Garg Jul 1989 A
4850354 McGurk-Burleson et al. Jul 1989 A
4893635 De Groot et al. Jan 1990 A
4907598 Bauer Mar 1990 A
RE33258 Onik et al. Jul 1990 E
4940061 Terwilliger et al. Jul 1990 A
4952817 Bolan et al. Aug 1990 A
4958625 Bates et al. Sep 1990 A
4967762 Devries Nov 1990 A
4986278 Ravid et al. Jan 1991 A
4986279 O'Neill Jan 1991 A
4986807 Farr Jan 1991 A
4989614 Dejter, Jr. et al. Feb 1991 A
5025797 Baran Jun 1991 A
5125413 Baran Jun 1992 A
5138245 Mattinger et al. Aug 1992 A
5146921 Terwilliger et al. Sep 1992 A
5158528 Walker et al. Oct 1992 A
5176628 Charles et al. Jan 1993 A
5225763 Krohn et al. Jul 1993 A
5226910 Kajiyama et al. Jul 1993 A
5234000 Hakky et al. Aug 1993 A
5236334 Bennett Aug 1993 A
5249583 Mallaby Oct 1993 A
5269791 Mayzels et al. Dec 1993 A
5282476 Terwilliger Feb 1994 A
5282477 Bauer Feb 1994 A
5284472 Sussman et al. Feb 1994 A
5292327 Dodd et al. Mar 1994 A
5324306 Makower et al. Jun 1994 A
5334183 Wuchinich Aug 1994 A
5336229 Noda Aug 1994 A
5368029 Holcombe et al. Nov 1994 A
5368045 Clement et al. Nov 1994 A
5395313 Naves et al. Mar 1995 A
5400798 Baran Mar 1995 A
5409013 Clement Apr 1995 A
5439474 Li Aug 1995 A
5441510 Simpson et al. Aug 1995 A
5458112 Weaver Oct 1995 A
5469860 De Santis Nov 1995 A
5479486 Saji Dec 1995 A
5485917 Early Jan 1996 A
5492130 Chiou Feb 1996 A
5505210 Clement Apr 1996 A
5511556 De Santis Apr 1996 A
5526822 Burbank et al. Jun 1996 A
5527322 Clement Jun 1996 A
5535755 Heske Jul 1996 A
5546957 Heske Aug 1996 A
5554151 Hinchliffe Sep 1996 A
5560373 De Santis Oct 1996 A
5562685 Mollenauer et al. Oct 1996 A
5564436 Hakky et al. Oct 1996 A
5569277 Evans et al. Oct 1996 A
5569284 Young et al. Oct 1996 A
5575293 Miller et al. Nov 1996 A
5582616 Bolduc et al. Dec 1996 A
5591170 Speivack et al. Jan 1997 A
5601585 Banik et al. Feb 1997 A
5602449 Krause et al. Feb 1997 A
5617874 Baran Apr 1997 A
5643304 Schechter et al. Jul 1997 A
5649547 Ritchart et al. Jul 1997 A
5655542 Weilandt Aug 1997 A
5655657 Roshdy Aug 1997 A
5665101 Becker et al. Sep 1997 A
5669394 Bergey Sep 1997 A
5699909 Foster Dec 1997 A
5700265 Romano Dec 1997 A
5709697 Ratcliff et al. Jan 1998 A
5720760 Becker et al. Feb 1998 A
5735264 Siczek et al. Apr 1998 A
5752923 Terwilliger May 1998 A
5755714 Murphy-Chutorian May 1998 A
5766135 Terwilliger Jun 1998 A
5769086 Ritchart et al. Jun 1998 A
5769795 Terwilliger Jun 1998 A
5775333 Burbank et al. Jul 1998 A
5788651 Weilandt Aug 1998 A
5792167 Kablik et al. Aug 1998 A
5807282 Fowler Sep 1998 A
5817033 De Santis et al. Oct 1998 A
5817034 Milliman et al. Oct 1998 A
5823970 Terwilliger Oct 1998 A
5827305 Gordon Oct 1998 A
5830219 Bird et al. Nov 1998 A
D403405 Terwilliger Dec 1998 S
5857982 Milliman et al. Jan 1999 A
5879365 Whitfield et al. Mar 1999 A
5908233 Heskett et al. Jun 1999 A
5913857 Ritchart et al. Jun 1999 A
5916198 Dillow Jun 1999 A
5916229 Evans Jun 1999 A
5928164 Burbank et al. Jul 1999 A
5944673 Gregoire et al. Aug 1999 A
5951490 Fowler Sep 1999 A
5951575 Bolduc et al. Sep 1999 A
5964716 Gregoire et al. Oct 1999 A
5971939 De Santis et al. Oct 1999 A
5976164 Bencini et al. Nov 1999 A
5980469 Burbank et al. Nov 1999 A
5980545 Pacala et al. Nov 1999 A
6007495 Matula Dec 1999 A
6007497 Huitema Dec 1999 A
6007556 Kablik et al. Dec 1999 A
6017316 Ritchart et al. Jan 2000 A
6018227 Kumar et al. Jan 2000 A
6019733 Farascioni Feb 2000 A
6022324 Skinner Feb 2000 A
6022325 Siczek et al. Feb 2000 A
6027458 Janssens Feb 2000 A
6036657 Milliman et al. Mar 2000 A
6050955 Bryan et al. Apr 2000 A
6077230 Gregoire et al. Jun 2000 A
6083176 Terwilliger Jul 2000 A
6083237 Huitema et al. Jul 2000 A
6086544 Hibner et al. Jul 2000 A
6106484 Terwilliger Aug 2000 A
6110129 Terwilliger Aug 2000 A
6120462 Hibner et al. Sep 2000 A
6123957 Jernberg Sep 2000 A
6126617 Weilandt et al. Oct 2000 A
6142955 Farascioni et al. Nov 2000 A
6162187 Buzzard et al. Dec 2000 A
6165136 Nishtala Dec 2000 A
6193673 Viola et al. Feb 2001 B1
6196978 Weilandt et al. Mar 2001 B1
6213957 Milliman et al. Apr 2001 B1
6220248 Voegele et al. Apr 2001 B1
6231522 Voegele et al. May 2001 B1
6241687 Voegele et al. Jun 2001 B1
6267759 Quick Jul 2001 B1
6273861 Bates et al. Aug 2001 B1
6273862 Privitera et al. Aug 2001 B1
6280398 Ritchart et al. Aug 2001 B1
6283925 Terwilliger Sep 2001 B1
6322523 Weilandt et al. Nov 2001 B2
6328701 Terwilliger Dec 2001 B1
6331166 Burbank et al. Dec 2001 B1
6358217 Bourassa Mar 2002 B1
6361504 Shin Mar 2002 B1
6402701 Kaplan et al. Jun 2002 B1
6419641 Mark et al. Jul 2002 B1
6428486 Ritchart et al. Aug 2002 B2
6428487 Burdorff et al. Aug 2002 B1
6432064 Hibner et al. Aug 2002 B1
6432065 Burdorff et al. Aug 2002 B1
6436054 Viola et al. Aug 2002 B1
6482158 Mault Nov 2002 B2
6485436 Truckai et al. Nov 2002 B1
6488636 Bryan et al. Dec 2002 B2
6527736 Attinger et al. Mar 2003 B1
6540694 Van Bladel et al. Apr 2003 B1
6540761 Houser Apr 2003 B2
6551255 Van Bladel et al. Apr 2003 B2
6554779 Viola et al. Apr 2003 B2
6585664 Burdoff et al. Jul 2003 B2
6585694 Smith et al. Jul 2003 B1
6638235 Miller et al. Oct 2003 B2
6656133 Voegele et al. Dec 2003 B2
6659105 Burbank et al. Dec 2003 B2
6659338 Dittmann et al. Dec 2003 B1
6683439 Takano et al. Jan 2004 B2
6689072 Kaplan et al. Feb 2004 B2
6695786 Wang et al. Feb 2004 B2
6712773 Viola Mar 2004 B1
6712774 Voegele et al. Mar 2004 B2
6752768 Burdorff et al. Jun 2004 B2
6753671 Harvey Jun 2004 B1
6758824 Miller et al. Jul 2004 B1
6764495 Lee et al. Jul 2004 B2
6832990 Kortenbach et al. Dec 2004 B2
6849080 Lee et al. Feb 2005 B2
6908440 Fisher Jun 2005 B2
D508458 Solland et al. Aug 2005 S
6926676 Turturro et al. Aug 2005 B2
6984213 Horner et al. Jan 2006 B2
7025732 Thompson et al. Apr 2006 B2
7048694 Mark et al. May 2006 B2
D525583 Vu Jul 2006 S
7153274 Stephens et al. Dec 2006 B2
7189206 Quick et al. Mar 2007 B2
7189207 Viola Mar 2007 B2
7219867 Kalis et al. May 2007 B2
7226424 Ritchart et al. Jun 2007 B2
7276032 Hibner et al. Oct 2007 B2
7328794 Lubs et al. Feb 2008 B2
7347829 Mark et al. Mar 2008 B2
7374544 Freeman et al. May 2008 B2
7397654 Mori Jul 2008 B2
7402140 Spero et al. Jul 2008 B2
7405536 Watts Jul 2008 B2
7407054 Seiler et al. Aug 2008 B2
7432813 Postma Oct 2008 B2
7452367 Rassman et al. Nov 2008 B2
7464040 Joao Dec 2008 B2
7473232 Teague Jan 2009 B2
7481775 Weikel, Jr. et al. Jan 2009 B2
7490048 Joao Feb 2009 B2
7513877 Viola Apr 2009 B2
7517321 McCullough et al. Apr 2009 B2
7517322 Weikel, Jr. et al. Apr 2009 B2
7648466 Stephens et al. Jan 2010 B2
7670299 Beckman et al. Mar 2010 B2
7717861 Weikel et al. May 2010 B2
7727164 Cicenas et al. Jun 2010 B2
7740594 Hibner Jun 2010 B2
7740596 Hibner Jun 2010 B2
7740597 Cicenas et al. Jun 2010 B2
7762961 Heske et al. Jul 2010 B2
7828746 Teague Nov 2010 B2
7854706 Hibner Dec 2010 B2
7883476 Miller et al. Feb 2011 B2
8251917 Almazan Aug 2012 B2
20010005778 Ouchi Jun 2001 A1
20010007925 Ritchart et al. Jul 2001 A1
20010011156 Viola et al. Aug 2001 A1
20010012919 Terwilliger Aug 2001 A1
20010014779 Burbank et al. Aug 2001 A1
20010034530 Malackowski et al. Oct 2001 A1
20010044595 Reydel et al. Nov 2001 A1
20010047183 Privitera et al. Nov 2001 A1
20020045840 Voegele et al. Apr 2002 A1
20020065474 Viola May 2002 A1
20020067151 Tanishita Jun 2002 A1
20020068878 Jasonni et al. Jun 2002 A1
20020077646 Truwit et al. Jun 2002 A1
20020082518 Weiss et al. Jun 2002 A1
20020107043 Adamson et al. Aug 2002 A1
20020120212 Ritchart et al. Aug 2002 A1
20020151822 Brudorff et al. Oct 2002 A1
20020156395 Stephens et al. Oct 2002 A1
20030114875 Sjostrom Jun 2003 A1
20030130593 Gonzalez Jul 2003 A1
20030130677 Whitman et al. Jul 2003 A1
20030163142 Paltieli et al. Aug 2003 A1
20030229293 Hibner et al. Dec 2003 A1
20030233101 Lubock et al. Dec 2003 A1
20040015079 Berger et al. Jan 2004 A1
20040019297 Angel Jan 2004 A1
20040030367 Yamaki et al. Feb 2004 A1
20040049128 Miller et al. Mar 2004 A1
20040054299 Burdorff et al. Mar 2004 A1
20040092992 Adams et al. May 2004 A1
20040167427 Quick et al. Aug 2004 A1
20040186393 Leigh et al. Sep 2004 A1
20040215103 Mueller et al. Oct 2004 A1
20040220495 Cahir et al. Nov 2004 A1
20040249278 Krause Dec 2004 A1
20040267157 Miller et al. Dec 2004 A1
20050004492 Burbank et al. Jan 2005 A1
20050004559 Quick et al. Jan 2005 A1
20050010131 Burbank et al. Jan 2005 A1
20050020909 Moctezuma De La Barrera et al. Jan 2005 A1
20050027210 Miller Feb 2005 A1
20050049489 Foerster et al. Mar 2005 A1
20050049521 Miller et al. Mar 2005 A1
20050080355 Mark Apr 2005 A1
20050085838 Thompson et al. Apr 2005 A1
20050101879 Shidham et al. May 2005 A1
20050113715 Scwindt et al. May 2005 A1
20050113716 Mueller, Jr. et al. May 2005 A1
20050124914 Dicarlo et al. Jun 2005 A1
20050124915 Eggers et al. Jun 2005 A1
20050165328 Heske et al. Jul 2005 A1
20050177117 Crocker et al. Aug 2005 A1
20050193451 Quistgaard et al. Sep 2005 A1
20050203439 Heske et al. Sep 2005 A1
20050209530 Pflueger Sep 2005 A1
20050275378 Canino et al. Dec 2005 A1
20050277829 Tsonton et al. Dec 2005 A1
20050277871 Selis Dec 2005 A1
20060030784 Miller et al. Feb 2006 A1
20060074344 Hibner Apr 2006 A1
20060074345 Hibner Apr 2006 A1
20060074346 Hibner Apr 2006 A1
20060113958 Lobert et al. Jun 2006 A1
20060116603 Shibazaki et al. Jun 2006 A1
20060129063 Thompson et al. Jun 2006 A1
20060173377 McCullough et al. Aug 2006 A1
20060178666 Cosman et al. Aug 2006 A1
20060184063 Miller Aug 2006 A1
20060241515 Jones et al. Oct 2006 A1
20060258953 Lee Nov 2006 A1
20060258956 Haberstich et al. Nov 2006 A1
20070016101 Feldman et al. Jan 2007 A1
20070027407 Miller Feb 2007 A1
20070032741 Hibner et al. Feb 2007 A1
20070073326 Miller et al. Mar 2007 A1
20070090788 Hansford et al. Apr 2007 A1
20070106176 Mark et al. May 2007 A1
20070118049 Viola May 2007 A1
20070149894 Heske et al. Jun 2007 A1
20070161925 Quick et al. Jul 2007 A1
20070167782 Callahan et al. Jul 2007 A1
20070179401 Hibner Aug 2007 A1
20070213590 Squicciarina Sep 2007 A1
20070213630 Beckman et al. Sep 2007 A1
20070213632 Okazaki et al. Sep 2007 A1
20070219572 Deck et al. Sep 2007 A1
20070236180 Rodgers Oct 2007 A1
20070239067 Hibner et al. Oct 2007 A1
20070255173 Hibner Nov 2007 A1
20070270710 Frass et al. Nov 2007 A1
20070276288 Khaw Nov 2007 A1
20070287933 Phan et al. Dec 2007 A1
20070293788 Entrekin et al. Dec 2007 A1
20080004545 Garrison Jan 2008 A1
20080007217 Riley Jan 2008 A1
20080015429 Tsonton et al. Jan 2008 A1
20080021487 Heisler Jan 2008 A1
20080021488 Berberich Jan 2008 A1
20080030170 Dacquay et al. Feb 2008 A1
20080064925 Gill et al. Mar 2008 A1
20080064984 Pflueger Mar 2008 A1
20080071193 Reuber et al. Mar 2008 A1
20080079391 Schroeck et al. Apr 2008 A1
20080110261 Randall et al. May 2008 A1
20080135443 Frojd et al. Jun 2008 A1
20080146962 Ritchie et al. Jun 2008 A1
20080146965 Privitera et al. Jun 2008 A1
20080154151 Ritchart et al. Jun 2008 A1
20080161682 Kendrick et al. Jul 2008 A1
20080161718 Schwindt Jul 2008 A1
20080161719 Miller et al. Jul 2008 A1
20080161720 Nicoson Jul 2008 A1
20080183099 Jorgensen et al. Jul 2008 A1
20080195066 Speeg et al. Aug 2008 A1
20080200833 Hardin et al. Aug 2008 A1
20080200836 Speeg et al. Aug 2008 A1
20080208194 Bichenbach Aug 2008 A1
20080215056 Miller et al. Sep 2008 A1
20080221443 Ritchie et al. Sep 2008 A1
20080221444 Ritchie et al. Sep 2008 A1
20080221478 Ritchie et al. Sep 2008 A1
20080221479 Ritchie et al. Sep 2008 A1
20080221480 Hibner et al. Sep 2008 A1
20080223904 Marczyk Sep 2008 A1
20080228104 Uber et al. Sep 2008 A1
20080232604 Dufresne et al. Sep 2008 A1
20080234715 Pescue et al. Sep 2008 A1
20080281225 Spero et al. Nov 2008 A1
20080287826 Videbaek et al. Nov 2008 A1
20080306404 Ronald Dec 2008 A1
20080306406 Thompson et al. Dec 2008 A1
20080308607 Timm et al. Dec 2008 A1
20080312554 Garrison Dec 2008 A1
20080319341 Taylor et al. Dec 2008 A1
20090030405 Quick et al. Jan 2009 A1
20090062624 Neville Mar 2009 A1
20090088666 Miller et al. Apr 2009 A1
20090125062 Arnin May 2009 A1
20090137927 Miller May 2009 A1
20090171243 Hibner et al. Jul 2009 A1
20090204021 Shabaz et al. Aug 2009 A1
20090082695 Whitehead Sep 2009 A1
20090227893 Coonahan et al. Sep 2009 A1
20100030020 Sanders et al. Feb 2010 A1
20100063416 Cicenas et al. Mar 2010 A1
20100152611 Parihar et al. Jun 2010 A1
20100160820 Weikel, Jr. et al. Jun 2010 A1
20100210966 Videbaek Aug 2010 A1
20100234760 Almazan Sep 2010 A1
20100292607 Moore et al. Nov 2010 A1
20100312140 Smith et al. Dec 2010 A1
20100317995 Hibner et al. Dec 2010 A1
20100317997 Hibner et al. Dec 2010 A1
20100317998 Hibner et al. Dec 2010 A1
20110071391 Speeg Mar 2011 A1
20110152715 Delap et al. Jun 2011 A1
20110160611 Ritchart et al. Jun 2011 A1
20110224577 Park Sep 2011 A1
20110313316 Ranpura et al. Dec 2011 A1
20120116248 McWeeney May 2012 A1
20120130274 Persat May 2012 A1
20120197157 Ryan Aug 2012 A1
20120253228 Schembre et al. Oct 2012 A1
20140100448 Neilan Apr 2014 A1
20140207021 Snow Jul 2014 A1
20140276205 Miller et al. Sep 2014 A1
20160030016 McWeeney Feb 2016 A1
20160081678 Kappel et al. Mar 2016 A1
20180333145 Snow Nov 2018 A1
20180333147 Snow et al. Nov 2018 A1
20210093305 Peliks et al. Apr 2021 A1
Foreign Referenced Citations (56)
Number Date Country
2848314 Oct 1979 DE
3924291 Jan 1991 DE
4120329 Jan 1992 DE
4041614 Oct 1992 DE
2453058 May 1996 DE
10034297 Apr 2001 DE
10026303 Feb 2002 DE
20209525 Nov 2002 DE
10235480 Feb 2004 DE
0433717 Jun 1991 EP
541377 May 1993 EP
0890339 Jan 1999 EP
0995400 Apr 2000 EP
1074271 Feb 2001 EP
1520518 Apr 2005 EP
1579809 Sep 2005 EP
1665958 Jun 2006 EP
2095772 Feb 2009 EP
2106750 Oct 2009 EP
1345429 Dec 1963 FR
2739293 Apr 1997 FR
2018601 Oct 1979 GB
2038640 Dec 1979 GB
H10508504 Aug 1998 JP
2005530554 Oct 2005 JP
2006509545 Mar 2006 JP
2006528907 Dec 2006 JP
2007502159 Feb 2007 JP
1454457 Jan 1989 RU
199314700 Aug 1993 WO
199416181 Jul 1994 WO
199428801 Dec 1994 WO
199628097 Sep 1996 WO
199825522 Jun 1998 WO
199831285 Jul 1998 WO
199835615 Aug 1998 WO
199846290 Oct 1998 WO
199933501 Jul 1999 WO
200004832 Feb 2000 WO
200030546 Jun 2000 WO
200059378 Oct 2000 WO
200172230 Oct 2001 WO
200222023 Mar 2002 WO
200232318 Apr 2002 WO
2002069808 Sep 2002 WO
20040757719 Sep 2004 WO
2005013830 Feb 2005 WO
2006015302 Feb 2006 WO
2007047128 Apr 2007 WO
2007095330 Aug 2007 WO
2007112751 Oct 2007 WO
2008021687 Feb 2008 WO
2008024684 Feb 2008 WO
200804812 Apr 2008 WO
2008131362 Oct 2008 WO
2010107424 Sep 2010 WO
Non-Patent Literature Citations (7)
Entry
International Search Report and Written Opinion dated Jul. 2, 2009 for PCT/KR2009/006741.
International Search Report and Written Opinion dated Sep. 4, 2018 for PCT/US2018/033188.
Office Action dated Jul. 1, 2020 for U.S. Appl. No. 15/980,116.
Office Action dated May 12, 2020 for U.S. Appl. No. 15/982,777.
European Search Report dated Feb. 1, 2021 for EP18802126.5.
Office Action dated Nov. 27, 2020 for U.S. Appl. No. 15/982,777.
Office Action dated Mar. 24, 2021 for U.S. Appl. No. 15/980,116.
Related Publications (1)
Number Date Country
20180333146 A1 Nov 2018 US
Provisional Applications (1)
Number Date Country
62508882 May 2017 US