RTE/FDPM for optical imaging of cancer in small animal

Information

  • Research Project
  • 6934775
  • ApplicationId
    6934775
  • Core Project Number
    R41CA115028
  • Full Project Number
    1R41CA115028-01
  • Serial Number
    115028
  • FOA Number
    PA-04-94
  • Sub Project Id
  • Project Start Date
    3/1/2005 - 19 years ago
  • Project End Date
    8/31/2006 - 18 years ago
  • Program Officer Name
    NORDSTROM, ROBERT J.
  • Budget Start Date
    3/1/2005 - 19 years ago
  • Budget End Date
    8/31/2006 - 18 years ago
  • Fiscal Year
    2005
  • Support Year
    1
  • Suffix
  • Award Notice Date
    3/28/2005 - 19 years ago
Organizations

RTE/FDPM for optical imaging of cancer in small animal

DESCRIPTION (provided by applicant): In this Phase I application, we seek to establish the feasibility of an advanced deterministic approach for solving the radiative transport equation (RTE) for use within a commercially viable small animal optical imaging system. To date, small animal optical imaging using fluorescence and bioluminescence has been confined to non-tomographic planar imaging. However, internal heterogeneties and the non-geometrical propagation of light substantially reduce the effectiveness of these methods for imaging of intra-tissue sources of fluorescence or luminescence. While there have been attempts at predicting light propagation for tomographic small animal imaging using the diffusion approximation, the small volumes and heterogeneities present in mice provide conditions where diffusion theory is not valid. Realizing this, transport based solutions of the RTE have been idenfitied as a promising alternative. However, approaches to date have relied on numerical methods which do not possess the accuracy or efficiency required for effective small animal image reconstruction. In the proposed research, the capabilities and infrastructure of an established commercial radiation transport system provided by Radion Technologies will be leveraged for use in small animal tomographic image reconstruction. Through a combination of third order accurate spatial differencing, robust acceleration methods and the use of arbitrary tetrahedral elements, the proposed approach is well suited for accurately and efficiently modeling both transport and diffusive regimes. This technology will be applied towards modeling fluorescent light generation using frequency-domain photon migration (FDPM) measurements pioneered by the Photon Migration Laboratory at the Texas A&M University. The specific aims of this application are (1) to quantitatively evaluate performance of the proposed approach for forward predictions of FDPM measurements at the excitation and emission (fluorescent) wavelengths; (2) to adapt this approach for image reconstruction, including the extension of an existing adjoint solution method and development of a process control driver; (3) to reconstuct fluorophore absorption cross section mappings from FDPM measurements using (a) weighted back projection and (b) inverse optimization algorithms; and (4) to validate this approach through fluorophore concentration image reconstruction within cross sections of a mouse phantom. Success will be measured on the ability of the proposed approach to accurately reconstruct fluorophore concentrations while having a computational efficiency suitable for ultimate commercial implementation. If successful, Phase 2 will seek to further develop this process towards commercialization and to demonstrate RTE-based imaging of (i) peptide targeted fluorescent contrast agents in xenograft mice with metastatic cancer and (ii) GFR expression in transgenic mice.

IC Name
NATIONAL CANCER INSTITUTE
  • Activity
    R41
  • Administering IC
    CA
  • Application Type
    1
  • Direct Cost Amount
  • Indirect Cost Amount
  • Total Cost
    125604
  • Sub Project Total Cost
  • ARRA Funded
  • CFDA Code
    394
  • Ed Inst. Type
  • Funding ICs
    NCI:125604\
  • Funding Mechanism
  • Study Section
    ZRG1
  • Study Section Name
    Special Emphasis Panel
  • Organization Name
    TRANSPIRE, INC.
  • Organization Department
  • Organization DUNS
    141808183
  • Organization City
    GIG HARBOR
  • Organization State
    WA
  • Organization Country
    UNITED STATES
  • Organization Zip Code
    98335
  • Organization District
    UNITED STATES