SBIR Phase II: Novel Device for monitoring brain hemorrhage using radio waves.

Information

  • NSF Award
  • 1632270
Owner
  • Award Id
    1632270
  • Award Effective Date
    9/15/2016 - 8 years ago
  • Award Expiration Date
    8/31/2018 - 6 years ago
  • Award Amount
    $ 750,000.00
  • Award Instrument
    Standard Grant

SBIR Phase II: Novel Device for monitoring brain hemorrhage using radio waves.

The broader impact/commercial potential of this Small Business Innovation Research Phase II project is the reduction of deaths and long-term disabilities in people suffering from bleeding in the brain caused by intracerebral hemorrhage (ICH) or traumatic brain injury. Currently, physicians detect worsening bleeding through a clinical exam where a patient shows outward signs of deterioration in their neurological status. By the time these signs of additional bleeding appear, much of the damage to the brain has already occurred. About a third of people who suffer a severe traumatic brain injury either die or are left disabled. For hemorrhagic stroke, 60% die and 70% of survivors are left with significant disabilities. A device which transmits and receives very low power radiofrequency signals has been created that can be put on a patients head. The presence of blood outside of the brain's vessels and arteries creates a characteristic change in the radio signal used by the device. Using radio waves to non-invasively detect brain bleeds will allow treatment to start sooner, which will save lives, reduce disabilities and lower the cost of treating severe brain injuries.<br/><br/>The proposed project tests (i) the ability of the device to detect and characterize small changes in ICH size and location over time and (ii) the ability to display changes in the bleed in a meaningful way to physicians. An algorithm for determining the size and location of the hemorrhage will be tested using both a phantom model that mimics the human brain and an IACUC-approved pig ICH model. Multiple hemorrhage volumes and locations will be used to test the algorithm's ability to detect hemorrhage volume changes within 1 mL, location within 1 cm, and distinguish changes due to the hemorrhage from physiological changes in a living pig's brain. Signal measurements taken before, during, and after infusion of blood will be captured at each time point to test the accuracy of the algorithm. Software will be developed to display the information from the algorithm in three-dimensions while giving doctors and nurses control over thresholds for triggering an alarm and how often the device scans. To test the software, the data collected during the pig experiments will be used to determine how accurate the display matches the location and size of the hemorrhage from CT images collected during testing.

  • Program Officer
    Jesus Soriano Molla
  • Min Amd Letter Date
    9/6/2016 - 8 years ago
  • Max Amd Letter Date
    9/6/2016 - 8 years ago
  • ARRA Amount

Institutions

  • Name
    Sense Diagnostics, LLC
  • City
    Cincinnati
  • State
    OH
  • Country
    United States
  • Address
    1776 Mentor Ave.
  • Postal Code
    452123576
  • Phone Number
    5137020376

Investigators

  • First Name
    Joseph
  • Last Name
    Korfhagen
  • Email Address
    joekorf3@gmail.com
  • Start Date
    9/6/2016 12:00:00 AM

Program Element

  • Text
    SMALL BUSINESS PHASE II
  • Code
    5373

Program Reference

  • Text
    Neuro-photonics
  • Text
    SMALL BUSINESS PHASE II
  • Code
    5373
  • Text
    Hardware Devices
  • Code
    8035
  • Text
    Health and Safety
  • Code
    8042
  • Text
    BRAIN Initiative Res Support
  • Code
    8091