The above and other features, aspects, and advantages of the present invention are considered in more detail, in relation to the following description of embodiments thereof shown in the accompanying drawings, in which:
a)-(b) shows sample scan patterns according to an embodiment of the present invention.
The invention summarized above may be better understood by referring to the following description, which should be read in conjunction with the accompanying drawings. This description of an embodiment, set out below to enable one to build and use an implementation of the invention, is not intended to limit the invention, but to serve as a particular example thereof. Those skilled in the art should appreciate that they may readily use the conception and specific embodiments disclosed as a basis for modifying or designing other methods and systems for carrying out the same purposes of the present invention. Those skilled in the art should also realize that such equivalent assemblies do not depart from the spirit and scope of the invention in its broadest form.
Referring to
The near infrared polarimeter beam at 1064 nm and the visible imaging beam at 532 nm are both expanded by laser beam expander 22 to about 3 mm diameter. The two beams are then separated by a dichroic beam splitter. The 532 nm beam is input to a Holographic Optical Element (HOE) 25, which creates a 10×10 array of quasi-uniform intensity spots in the far field of the LIDAR 10. Over 80% of the original laser energy is shared roughly equally within the 10×10 array of far field spots with the remainder lost to higher orders of the HOE 25 outside the receiver field of view (FOV). The orientation of the transmitted spots relative to the scan direction can be adjusted by rotating the HOE 25 in its holder about the transmitter optical axis. In the implementation of the present invention, the scan direction, which is at 45 degrees to the velocity vector of an aircraft carrying the LIDAR 10, is parallel to one axis of the 10×10 beam array, as in
The near infrared (polarimeter) beam at 1064 nm is reflected by a dichroic beam splitter 23 and, for the most efficient type II doubling crystals, is elliptically polarized. A quarter-wave plate 24 is used to linearize the polarization while a second half-wave plate 26 rotates the linearly polarized light to the desired orientation.
The transmitted beams are recombined at a second dichroic beam splitter and then passed with 100% efficiency through the central hole of an annular Transmit/Receive mirror 30, expanded by a shared afocal telescope 33, and passed through a dual wedge scanner 36 and a protective window 39 to the target area. Photons reflected from the target area pass through the scanner 36 and shared afocal telescope 33 and the majority are reflected by the annular mirror 30 into the receiver, shown generally as 40, having an imaging channel (532 nm leg) 45 and a polarimetry channel (1064 nm leg) 47. Spectral filters 42 and spatial filters 43 in both the imaging channel 45 and polarimetry channel 47 restrict the noise background.
In the imaging channel 45, a telephoto (long focal length) lens 51 images the 10×10 far field pattern onto the photocathode of a 10×10 Hamamatsu segmented anode microchannel plate photomultiplier (MCP/PMT) 54. Each of the 100 images on the photocathode is relayed by the internal microchannel plates to an individual anode in the 10×10 anode array. The orientation of the received image of the 10×10 spot array can be matched to that of the anode (or APD) array via a Dove prism (not shown) rotated about the optical axis in the 3D imaging receiver path 45. A 100 channel, multistop timing receiver (not shown), then records multiple single photon events in the multi-anode outputs.
In the polarimetry channel 47, the returning photons are separated by polarizer 57 into two paths based on polarization, and the signal amplitudes are recorded to determine the amount of depolarization caused by the target. This can be augmented to four channels for full recovery of the Stokes parameters if desired.
Referring to
As is shown in
In the preferred system configuration, the motors 71, 72 may directly support the wedges 61, 62 with their shaft axes that are preferably hollow (as in an annular ring motor), and this configuration is termed the “direct-drive” type system. In yet another design, termed the “indirect-drive” type, the motors 71, 72 may rotate the wedges 61, 62 indirectly by the use of a drive belt. In either case, the rotary position encoders are preferentially mounted directly to the optical wedge/bearing system, allowing a very precise and real-time measurement of the wedge position. Typically, rotary encoders are of the optical type, and include a relative position track consisting of lines that are etched on an encoder disc, and also a separate “index” track or a once-per-revolution marker, used to determine the absolute position of the encoder wheel with respect to a starting location.
An important and unique feature of the optical scanner of the present invention is that the motion control system 65 synchronizes the rotation rates of the wedge scanners 36 with high precision to the multi-kilohertz laser fire rate. This causes the beam pattern to be laid down in precisely the same way on each scan cycle, eliminating the need to record the orientations of the two wedges accurately on every laser fire, which typically occurs at multi-kHz rates. Instead, one can record the epoch times at which the wedges cross a programmable reference on each scan cycle (nominally about 20 Hz). This approach can also compensate for small drifts in the laser fire rate, which can occur in passively Q-switched lasers as described below. The stability of the scan can be further monitored by timing the reference output for each wedge relative to the next laser fire as described below.
The operational sequence of the system consists of the following steps:
Since a primary goal of this invention is to simplify the data acquisition requirements, it has been noted that there is an optimum for the value of n. Specifically, the ideal value of n is found to be a number that divides into the total number of encoder counts by an integer value. For example, the one encoder used in a prototype system has 72,000 encoder counts per revolution. The laser used for the demonstration prototype had a pulse rate of 8000 pulses per second. A desired wedge rotation rate was 20 cycles per second. This was accomplished by dividing the encoder counts per second at this speed (1,440,000 per second) by the shot rate, 8000, and the result, 180, then represented the desired value of n.
With this configuration, the number of laser shots fired for a single wedge rotation was 8000/20 or 400 shots per revolution. Thus, the wedge is rotated by exactly one revolution every 400 shots, and laser pulses 1 and 400 then are emitted at exactly the same angle by the system. Any variance, caused either by the shot-to-shot variance of the laser pulse time or small positioning errors of the motion control system, is small.
Furthermore, with this set up, it can be seen that as the laser firing rate drifts slowly with time, the effect is to increase or decrease the rotational rate of the wedges so that the laser fires at the same rotational phase angles.
Thus, with this system, a contiguous topographic map requiring several hours to complete will be created in such a way as to always have virtually identical exit angles for the laser on each 400 point scan, even though the pulse rate of the laser may vary slowly over the multi-hour mapping mission. This results in greatly reduced onboard data acquisition and storage requirements relating to scanner positioning as well as considerably simplified data geolocation and preprocessing procedures.
a) shows a one-dimensional linear scan pattern.
These are described as follows:
Slow Line Sweep Mode
It can be shown that the scan produced by the counter-rotating wedge system is essentially a nearly perfect line that rotates at a rate that is the difference between the two wedge velocities.
From this, it can be seen that it is possible to set up the system in a slow line sweep mode. For example, referring to the original set up, the electronic motion control system 65 can be set up such that wedge 61 moves by 180 encoder counts per laser shot, but wedge 62 is set up to move by an amount different from this value. For example, if the wedge 62 were set up to move 160 encoder counts per shot, with the 72,000 encoder count/revolution encoder, the rotation rate for the 8000 laser pulse per second laser would be such that 450 laser pulses were fired per wedge rotation for wedge 62. This would result in an angular rotation rate of 17.777 rotations per second. The result would be a line that rotates at a rate corresponding to the difference of the two wedge rotation rates, which is 20-17.778=2.222 cycles per second.
Conical Scan with Variable Angle Mode
It can be shown that the scan produced by the dual wedge scanner 36 may also be configured with the two wedges 61, 62 rotating in the same direction. For this orientation, a very different pattern results.
For the case where the wedges 61, 62 are set up to rotate at exactly the same speed, the result is a conical scan. Because the system is controlled by the motion control system 65, it is possible to vary the phase angle of the wedges to be any desired angle.
It can be shown that the deviation angle of the conical scan is a simple function that is related to the relative angle between the wedges 61, 62. For example, the wedges may be oriented so that they both deviate the beam in the same direction, i.e. such that the thickest portion of both wedges are in alignment. In this case, the phase angle is zero, and the result would be a conical scan with the maximum angular deviation.
If it is desired, the angle of deviation of the conical scan may be varied. This is done by varying the phase angle between the wedges. For example, if the phase angle between the wedges is around 90 degrees, the result is that the deviation angle is reduced by roughly 30%.
Spiral Scan Mode
It can be shown that, in the case where both wedges 61, 62 are rotating in the same direction and linked to the laser pulse motion as described above, any small variation in the rotation rate of wedge 61 and wedge 62 will result in the conical scan diameter changing with respect to time, collapsing to a point and then expanding to a conical scan with maximum diameter. The rate that the scan collapses and expands can be shown to be the difference between the angular rotation rates of the two wedges 61, 62.
In effect then, a spiral scan mode can be achieved with the system by setting up the synchronized rotation to result in a slightly different rotational “gear ratio”. In the case where, for example, wedge 61 has a gear ratio of 180, and wedge 62 is set up with a gear ratio of 160, the result will be a spiral scan with a rate of collapse of 2.222 cycles per second (see above analysis).
In
The holographic element 25 in the transmitter path breaks each Gaussian spot in
Additional features not disclosed in the prior art include:
In testing of the current embodiment, the aircraft velocity, combined with the optical scanner, should produce a contiguous three-dimensional image on a single overflight from an altitude of 1 km. At this altitude, the scanning system has a 200 m swath with a 15 cm horizontal resolution and few centimeter (less than 5) vertical ranging resolution.
The invention has been described with references to a preferred embodiment. While specific values, relationships, materials and steps have been set forth for purpose of describing concepts of the invention, it will be appreciated by persons skilled in the art that numerous variations and/or modifications may be made to the invention as shown in the specific embodiments without departing from the spirit or scope of the basic concepts and operating principles of the invention as broadly described. It should be recognized that, in the light of the above teachings, those skilled in the art can modify those specifics without departing from the invention taught herein. Having now fully set forth the preferred embodiments and certain modifications of the concept underlying the present invention, various other embodiments as well as certain variations and modifications of the embodiments herein shown and described will obviously occur to those skilled in the art upon becoming familiar with such underlying concept. It is intended to include all such modifications, alternatives and other embodiments insofar as they come within the scope of the appended claims or equivalents thereof. It should be understood, therefore, that the invention may be practiced otherwise than as specifically set forth herein. Consequently, the present embodiments are to be considered in all respects as illustrative and not restrictive.
This application is based upon and claims benefits of copendng and co-owned U.S. Provisional Patent Application Ser. No. 60/809,626 entitled “SCANNER/OPTICAL SYSTEM FOR THREE-DIMENSIONAL LIDAR IMAGING AND POLARIMETRY,” filed with the U.S. Patent and Trademark Office on May 31, 2006 by the inventors herein. Copendng and co-owned U.S. Provisional Patent Application Ser. No. 60/809,626 is incorporated herein bay reference.
This invention was made and reduced to practice using US government funding under the U.S. Airforce Contract No. FA8650-05-C-1817 entitled “A 3D IMAGING AND POLARIMETIC LIDAR APPLICABLE TO MINI/MICRO UAV'S PROGRAM”. The US government has certain rights in this invention.
Number | Date | Country | |
---|---|---|---|
60809626 | May 2006 | US |