Information
-
Patent Grant
-
6736054
-
Patent Number
6,736,054
-
Date Filed
Wednesday, January 10, 200124 years ago
-
Date Issued
Tuesday, May 18, 200420 years ago
-
Inventors
-
Original Assignees
-
Examiners
- Ostrager; Allen
- Nguyen; Jimmy T
Agents
-
CPC
-
US Classifications
Field of Search
US
- 100 112
- 100 117
- 100 127
- 100 145
- 100 110
-
International Classifications
-
Abstract
A screw press provided with a rear excess fluid outlet is described herein. The rear excess fluid outlet includes a circular screen provided at a longitudinal end of the screw press body, near a material inlet. Scraper blade assemblies are provided to prevent the screen from clogging. The efficiency of excess fluid removal is thereby increased by the increased screen surface near the material inlet of the screw press.
Description
FIELD OF THE INVENTION
The present invention relates to screw presses. More specifically, the present invention is concerned with a screw press provided with a rear excess fluid outlet.
BACKGROUND OF THE INVENTION
Screw presses are well known in the art. They are conventionally used for removing soluble and dispersible materials from products, for example, excess fluid from paper pulp. It is to be noted that, for concision purposes, the example of the paper pulp will be used throughout the present disclosure. This should not be construed as a limitation of the present invention.
The principle of operation of conventional screw presses is believed to be well known to those skilled in the art and will therefore only be briefly described herein.
A screw press is basically an endless screw provided with a conical shaft that compresses the pulp as it moves from an inlet to an outlet. The endless screw is enclosed in a body that is provided with a screened surface allowing the excess fluid to be expelled from the pulp.
The throughoutput of screw presses is usually controlled by the rotational speed of the endless screw. However, there are limits to this control since the rotational speed of the endless screw must be sufficiently slow to thereby allow the excess fluid to flow through the screened body. This is a drawback of the conventional screw presses since it lowers the efficiency of the unit by unduly limiting the top rotational speed of the endless screw.
OBJECTS OF THE INVENTION
An object of the present invention is therefore to provide an improved screw press capable of overcoming the drawback described above.
SUMMARY OF THE INVENTION
More specifically, in accordance with the present invention, there is provided a screw press for removing excess fluid from material comprising:
a generally tubular body having a meshed surface; said body having a material inlet provided near a proximate end thereof;
an endless screw mounted in said tubular body; said endless screw including a generally conical shaft and a helicoidal blade mounted to said shaft; and
a rear excess fluid outlet provided in said proximate end of said tubular body.
Other objects, advantages and features of the present invention will become more apparent upon reading of the following non restrictive description of preferred embodiments thereof, given by way of example only with reference to the accompanying drawings.
BRIEF DESCRIPTION OF THE DRAWINGS
In the appended drawings:
FIG. 1
is a side elevational sectional view of a screw press according to an embodiment of the present invention;
FIG. 2
is an enlarged sectional view of the inlet end of the screw press of
FIG. 1
;
FIG. 3
is a perspective view, partly sectional, of a portion of the inlet end of
FIG. 2
;
FIG. 4
is an end view of the endless screw of the screw press of
FIG. 1
; and
FIG. 5
is a sectional view taken along line
5
—
5
of FIG.
4
.
DESCRIPTION OF THE PREFERRED EMBODIMENT
Turning now to
FIG. 1
of the appended drawings, a screw press
10
according to an embodiment of the present invention will be described.
As discussed hereinabove, the principle of operation of screw presses is believed well known to those skilled in the art and will not be further discussed in details herein. Furthermore, for concision purposes, various elements and portions of the screw press
10
that do not have a direct impact on the present invention will not be described herein.
The screw press
10
includes an endless screw
12
, provided with a conical shaft
14
and an helicoidal blade
16
, and a generally tubular body
18
having a material inlet
20
near a first longitudinal end and a material outlet
22
near a second longitudinal end thereof. The tubular body
18
is provided with meshed elements
24
defining a meshed surface allowing excess fluid to egress therefrom and to be collected in a fluid receiving receptacle
26
.
As can be better seen from
FIG. 2
of the appended drawings, the material inlet
20
includes a raw material inlet
28
, a rear toroidal screen
30
defining a rear excess fluid outlet, a fluid expelling conduit
32
and three scraper blades assemblies
34
. It is to be noted that the number of scraper blades is not critical and could vary according to the surface of the rear excess fluid outlet.
As will be readily understood by one skilled in the art, the raw material that enters the screw press
10
through the raw material inlet
28
is formed of solid matter mixed with excess fluid. It is at the material inlet
20
that the proportion of solid material to excess fluid is the lowest. It is therefore at the material inlet that a great portion of the excess fluid will egress the screw press
10
(see arrows
36
) through the meshed elements
24
. The added rear toroidal screen
30
allows excess water to egress faster from the material inlet
20
of the screw press
10
(see arrows
38
) since the meshed surface is increased near the material inlet
20
, thereby increasing the available top rotational speed of the endless screw
12
.
Indeed, it has been found that the limitation of the top rotational speed of the endless screw
12
is mainly due to the inefficiency of conventional screw presses to allow the excess fluid to egress the material inlet
20
thereof quickly enough. By increasing the screened surface in the material inlet
20
, it is possible to significantly increase the flow of excess fluid out of the material inlet to thereby increase the available top rotational speed of the endless screw
12
.
The fluid
32
allows the egressing fluid to flow in the fluid receptacle
26
.
As will be apparent to one skilled in the art, it is advantageous to prevent solid matter from clogging the screened surfaces of the body
18
since it would decrease the efficiency of fluid removal.
The scraper blades assemblies
34
, which may be better seen from
FIG. 3
of the appended drawings, are so mounted to the end of the endless screw
12
as to contact the rear toroidal screen
30
in such a manner that the rotation of the endless screw
12
induces a scraping action against the screen
30
. Of course, this contact is not necessary since a near-contact is generally sufficient to prevent the clogging of the toroidal screen
30
. Clogging of the circular screen
30
is therefore prevented by the scraper blade assemblies
34
.
Turning now more specifically to
FIGS. 4 and 5
of the appended drawings, the scraper blade assemblies
34
will be described in greater detail.
As can be seen from
FIG. 4
, each scraper blade assembly
34
includes a support
40
mounted to the endless screw
12
and a movable scraper blade
42
mounted to a corresponding support
40
.
FIG. 5
illustrates a sectional portion of one of the scraper blade assemblies
34
. As can be seen from this figure, the movable scraper blade
42
is mounted to the support
40
via three machine screw fasteners
44
(only one shown in
FIG. 5
) that are inserted in oblong apertures
46
of the scraper blade
42
. The oblong shape of the apertures
46
thereby allow the adjustment of the scraper blade
42
to ensure an adequate cleaning of the rear toroidal screen
30
.
Although the present invention has been described hereinabove by way of preferred embodiments thereof, it can be modified, without departing from the spirit and nature of the subject invention as defined in the appended claims.
Claims
- 1. A generally horizontal screw press for removing excess fluid from material, comprising:a generally tubular body having a meshed surface; said body having a material inlet provided near a proximate end thereof; an endless screw mounted in said tubular body; said endless screw including a generally conical shaft and a helicoidal blade mounted to said shaft; a rear excess fluid outlet provided in said proximate end of said tubular body, said rear excess fluid outlet includes a toroidal screen; and a proximate end of said endless screw includes at least one scraper blade assembly that is so mounted thereto as to contact said toroidal screen; whereby rotation of said endless screw induces a scraping action of said at least one blade assembly against said toroidal screen to thereby prevent said screen from becoming clogged.
- 2. A screw press as recited in claim 1, wherein said rear excess fluid outlet includes a meshed surface to allow the excess fluid to egress the screw press.
- 3. A screw press as recited in claim 1, wherein said rear excess fluid outlet is toroidal.
- 4. A screw press as recited in claim 1, wherein said at least one scraper blade assembly includes a support mounted to the endless screw and a scraper blade movably mounted to said support.
- 5. A screw press as recited in claim 1, wherein said at least one scraper blade assembly includes three scraper blade assemblies.
Priority Claims (1)
Number |
Date |
Country |
Kind |
2298235 |
Feb 2000 |
CA |
|
US Referenced Citations (19)
Foreign Referenced Citations (4)
Number |
Date |
Country |
43543 |
Nov 1888 |
DE |
412694 |
Apr 1925 |
DE |
07204895 |
Aug 1995 |
JP |
2000000695 |
Jul 2000 |
JP |