1. Field of the Invention
This invention relates to a self-diagnostic audio system including a processor, such as a digital signal processor (DSP), to monitor a number of electronic components in an audio system.
2. Related Art
Speakers may be installed in remote areas that are difficult to get to and install a speaker. And even after installation, if a problem arises, fixing the speaker may be difficult as well. This is especially true for loudspeakers that are installed high above the floor to distribute the sound energy. If an actual problem with a speaker or an associated audio component exists, in many instances, technicians maintaining the equipment may not be well trained to diagnose the problem. Therefore, a technician may have a difficult task of getting to the speaker to diagnose the problem.
A speaker may not produce sound for a variety of reasons. For example, there may be an open circuit, a short within the speaker, or the amplifier may be damaged, just to name a few. With all of the problems the speaker could have, a technician may be slow to troubleshoot the problem. This can add to the repair cost. In some instances, a speaker that is producing poor quality sound may be difficult to detect because other speakers may drown out the problem speaker.
Therefore, there is a need for an audio system that can monitor itself to ensure that its electrical components are working properly; and, in particular, to be able to report back that there may be a problem with a particular electrical component and what that problem may be. This way, a technician can determine the particular audio component that may be malfunctioning.
This invention provides a method and system for diagnosing the condition of an audio system periodically or continuously to ensure that the audio system is functioning properly. The audio system includes a processor, such as a DSP, that monitors a plurality of electronic components in an audio or visual system. For example, the DSP may monitor a power supply, an amplifier, speaker(s), a memory, the DSP itself, and thermal temperature models. The DSP may monitor from each of the electrical components various information, such as whether a particular electrical component is on or off, whether a particular component is functional, and whether the voltage current is between the components. The DSP may have an internal memory that is stored with instructions for the DSP. That is, as the DSP is monitoring the plurality of electrical components, the DSP uses the monitored information to perform calculations in accordance with the stored instruction(s) in the memory, and use the memory to store the results.
The internal memory of the DSP may be stored with predetermined parameter(s) for each of the electrical components. For example, the DSP may monitor the current and voltage in between the amplifier and speaker, and compare the two values with a predetermined current level and a predetermined voltage level value that is stored in the memory. The two predetermined values stored in the memory may represent the ideal current and voltage the DSP should detect if everything is working properly between the speaker and amplifier. On the other hand, if the monitored values are outside of the predetermined values, then the DSP may recognize that there may be a problem. If so, the DSP communicates with a reporting device to alert the operator of the audio system that there may be a problem.
For example, the DSP may detect that there is no current between an amplifier and a speaker. The DSP may also check for a voltage between the amplifier and the speaker. If the DSP detects voltage to the speaker, but no current, then the DSP may send a message that the circuit for the speaker may be open. After the DSP has made a calculation for a particular electrical component, the DSP may compare the results of that calculation with a design parameter to determine whether the calculation result is within or outside of the design parameter. If the result is outside a particular design parameter, the microprocessor may communicate to a reporting device the condition for each of the electronic devices. For example, the DSP may detect that there is voltage but no current between a speaker and an amplifier, the microprocessor may communicate to the reporting device that the speaker is disconnected to the amplifier or is broken because the parameter stored indicates that there should be a predetermined amount of current flowing through the speaker. The reporting device then initiates some type of output such as a flashing red light to indicate a potential problem.
One of the advantages of using a DSP to monitor the components in the audio system is that only one communication medium may be needed between the detection system and the reporting device to monitor the plurality of components in the audio system. That is, a separate communication medium may not be required to each of the components with the invention. Alternatively, the DSP may monitor the temperature of the transducer to ensure that the transducer does not overheat. For example, if the transducer overheats because it is being driven too hard and for too long, then the DSP invention may reduce the power supplied to the transducer to prevent it from burning up.
Other systems, methods, features and advantages of the invention will be or will become apparent to one with skill in the art upon examination of the following figures and detailed description. It is intended that all such additional systems, methods, features and advantages be included within this description, be within the scope of the invention, and be protected by the accompanying claims.
The invention can be better understood with reference to the following figures. The components in the figures are not necessarily to scale, emphasis instead being placed upon illustrating the principles of the invention. Moreover, in the figures, like reference numerals designate corresponding parts throughout the different views.
For example, the DSP may monitor the overall power output level to be 50 watts, and compare this value to a predetermined ideal power output of 40 watts. Accordingly, the power output may be 10 watts too high. To indicate such, the output signal 30 may be a “red light” signal sent to the reporting device 24 to generate a red dot, for example. On the other hand, if the power output is substantially similar to the predetermined setting, the output signal 30 may be a “green light” signal so that the reporting device 24 generates a green dot, for example. The reporting device 24 may also contain a display output device such as an LCD so that it may generate a textual signal in response to the output 30 in order to instruct the operator to perform an action, such as “turn off” or “turn on” the power supply. The reporting device 24 may also contain a speaker output so that it may generate audible signals in response to the output 30 in order to instruct the operator to perform an action. The power supply check stage 27 of the algorithm may also check the levels of the individual power outputs from the power supply to the various components of the system.
The DSP may also check itself 28 and generate functional status information based upon the monitored information. The DSP may also monitor various internal parameters and then generate comparison information based upon the monitored information and some predetermined settings stored in the memory 20. The memory may be located inside the DSP or inside the microprocessor, which may be a separate unit as indicated in
The functional status information may be the functional state of various components of the DSP. The functional information may be forwarded to the microprocessor 16 that generates an output signal 30 based upon the functional information. For example, the DSP may monitor whether its acoustic processing is being performed or not. The functional status information may be an “everything functioning okay” associated with the acoustic processing, and the output signal 30 may be a “green light” signal which the reporting device 24 would use to generate a green dot, for example, indicating that the acoustic processing is functional. The DSP may also compare monitored information, such as the rate of processing, with some predetermined setting, generate comparison information, forward this information to the microprocessor, which then generates an output signal to the reporting device 24 to generate a message.
The DSP may then check the amplifier and speaker and generate functional status information based upon the monitored information 29. The DSP may also monitor the amplification level generated by the power amplifier and then generate comparison information based upon the monitored information and some predetermined settings stored in the memory 20. The functional status information may be the current and voltage levels at the wire connecting the speaker to the amplifier. The DSP is thus able to determine whether the speaker is functional and if the amplifier is functional. The functional information is forwarded to the microprocessor 16 to generate an output signal 30 based upon the functional information.
For example, the DSP may monitor the current and voltage at the wire and determine that the speaker is not functioning (no current) but the amplifier is functioning (voltage exists). Accordingly, the functional information may be an “on” associated with the amplifier and an “off” associated with the speaker. Both types of information may be sent to the reporting device 24 to generate a red dot for the speaker and a green dot for the amplifier.
This process can be repeated 31 at an arbitrary rate for an arbitrary number of different electronic components. For example, the self diagnosis routine may proceed 20 times per second, and monitor any number of amplifiers and speakers. Alternatively, the DSP itself can generate an output signal based upon the comparison information, as opposed to the microprocessor. Furthermore, there can be a myriad of monitoring parameters on the electronic components, including, but not limited to monitoring voltage levels, current levels, power levels, functional states, processing rates, acoustic levels, sound pressure levels, frequency responses, frequency center, frequency bandwidth, bass response, temperature, monitoring via thermal models, etc.
While various embodiments of the application have been described, it will be apparent to those of ordinary skill in the art that many more embodiments and implementations are possible within the scope of this invention. Accordingly, the invention is not to be restricted except in light of the attached claims and their equivalents.
This application is a non-provisional application claiming priority of U.S. provisional application Ser. No. 60,231,422 filed Sep. 8, 2000.
Number | Name | Date | Kind |
---|---|---|---|
5450624 | Porambo et al. | Sep 1995 | A |
5652542 | Fink | Jul 1997 | A |
5719526 | Fink | Feb 1998 | A |
6058195 | Klippel | May 2000 | A |
6104304 | Clark et al. | Aug 2000 | A |
6385739 | Barton et al. | May 2002 | B1 |
Number | Date | Country | |
---|---|---|---|
20020071568 A1 | Jun 2002 | US |
Number | Date | Country | |
---|---|---|---|
60231422 | Sep 2000 | US |