Self-lubricating expansion mandrel for expandable tubular

Information

  • Patent Grant
  • 7571774
  • Patent Number
    7,571,774
  • Date Filed
    Monday, August 18, 2003
    22 years ago
  • Date Issued
    Tuesday, August 11, 2009
    16 years ago
Abstract
A self-lubricating expansion mandrel includes a system for lubricating the interface between the self-lubricating expansion mandrel and a tubular member during the radial expansion of the tubular member.
Description
BACKGROUND OF THE INVENTION

This invention relates generally to wellbore casings, and in particular to wellbore casings that are formed using expandable tubing.


Conventionally, when a wellbore is created, a number of casings are installed in the borehole to prevent collapse of the borehole wall and to prevent undesired outflow of drilling fluid into the formation or inflow of fluid from the formation into the borehole. The borehole is drilled in intervals whereby a casing which is to be installed in a lower borehole interval is lowered through a previously installed casing of an upper borehole interval. As a consequence of this procedure the casing of the lower interval is of smaller diameter than the casing of the upper interval. Thus, the casings are in a nested arrangement with casing diameters decreasing in downward direction. Cement annuli are provided between the outer surfaces of the casings and the borehole wall to seal the casings from the borehole wall. As a consequence of this nested arrangement a relatively large borehole diameter is required at the upper part of the wellbore. Such a large borehole diameter involves increased costs due to heavy casing handling equipment, large drill bits and increased volumes of drilling fluid and drill cuttings. Moreover, increased drilling rig time is involved due to required cement pumping, cement hardening, required equipment changes due to large variations in hole diameters drilled in the course of the well, and the large volume of cuttings drilled and removed.


Conventionally, at the surface end of the wellbore, a wellhead is formed that typically includes a surface casing, a number of production and/or drilling spools, valving, and a Christmas tree. Typically the wellhead further includes a concentric arrangement of casings including a production casing and one or more intermediate casings. The casings are typically supported using load bearing slips positioned above the ground. The conventional design and construction of wellheads is expensive and complex.


Conventionally, a wellbore casing cannot be formed during the drilling of a wellbore. Typically, the wellbore is drilled and then a wellbore casing is formed in the newly drilled section of the wellbore. This delays the completion of a well.


The present invention is directed to overcoming one or more of the limitations of the existing procedures for forming wellbores and wellheads.


SUMMARY OF THE INVENTION

According to one aspect of the present invention, a self-lubricating expansion mandrel for expanding a tubular member is provided that includes a housing having a tapered outer surface, one or more grooves formed in the tapered outer surface, and a solid lubricant deposited into one or more of the grooves.


According to one aspect of the present invention, a self-lubricating expansion mandrel for expanding a tubular member is provided that includes a housing having a tapered outer surface, one or more grooves formed in the tapered outer surface, and a self-lubricating film deposited onto the surface and into one or more of the grooves.


According to one aspect of the present invention, a self-lubricating expansion mandrel for expanding a tubular member is provided that includes a housing having a tapered outer surface, one or more grooves formed in the tapered outer surface, and a fluoropolymer coating deposited onto the surface and into one or more of the grooves.


According to one aspect of the present invention, a self-lubricating expansion mandrel for expanding a tubular member is provided that includes a housing having a tapered outer surface, one or more grooves formed in the tapered outer surface, and a thermo-sprayed coating deposited onto the surface and into one or more of the grooves.


According to one aspect of the present invention, a self-lubricating expansion mandrel for expanding a tubular member is provided that includes a housing having a tapered outer surface, a pattern of grooves formed in the tapered outer surface, and a solid lubricant deposited into the pattern of grooves.


According to one aspect of the present invention, a self-lubricating expansion mandrel for expanding a tubular member is provided that includes a housing having a tapered outer surface, a pattern of grooves formed in the tapered outer surface, and a self-lubricating film deposited onto the surface and into the a pattern of grooves.


According to one aspect of the present invention, a self-lubricating expansion mandrel for expanding a tubular member is provided that includes a housing having a tapered outer surface, a pattern of grooves formed in the tapered outer surface, and a fluoropolymer coating deposited onto the surface and into the pattern of grooves.


According to one aspect of the present invention, a self-lubricating expansion mandrel for expanding a tubular member is provided that includes a housing having a tapered outer surface, a pattern of grooves formed in the tapered outer surface, and a thermo-sprayed coating deposited onto the surface and into the pattern of grooves.


According to one aspect of the present invention, a self-lubricating expansion mandrel for expanding a tubular member is provided that includes a housing having a tapered outer surface, a textured surface formed in the tapered outer surface, and a solid lubricant deposited into the textured surface.


According to one aspect of the present invention, a self-lubricating expansion mandrel for expanding a tubular member is provided that includes a housing having a tapered outer surface, a textured surface formed in the tapered outer surface, and a self-lubricating film deposited onto the textured surface.


According to one aspect of the present invention, a self-lubricating expansion mandrel for expanding a tubular member is provided that includes a housing having a tapered outer surface, a textured surface formed in the tapered outer surface, and a fluoropolymer coating deposited onto the textured surface.


According to one aspect of the present invention, a self-lubricating expansion mandrel for expanding a tubular member is provided that includes a housing having a tapered outer surface, a textured surface formed in the tapered outer surface, and a thermo-sprayed coating deposited onto the textured surface.


According to another aspect of the invention the grooves, pattern or textured surface comprises with troughs to having depths of between 1 and 4 microns deep and the thin film is deposited into the troughs.


According to another aspect of the invention the grooves, pattern or textured surface comprises troughs to having depths of between 10 and 50 microns deep and the flouropolymer coating is deposited into the troughs.


According to another aspect of the invention the grooves, pattern or textured surface comprises troughs to having depths of between 50 and 150 microns deep and the thermo-sprayed coating is deposited into the troughs.


According to another aspect of the present invention, a method of expanding a tubular member in a wellbore is provided that includes forcing a lubricating grease from inside the expansion mandrel to the interface between the tubular member and the mandrel while the tubular member is being expanded by the mandrel within the wellbore.


According to one aspect of the present invention, a self-lubricating expansion mandrel for expanding a tubular member is provided that includes a housing having a tapered outer surface one or more grooves formed in the tapered outer surface, and one or more grease flow passages connected through the housing to one or more of the grooves.


According to one aspect of the present invention, a self-lubricating expansion mandrel for expanding a tubular member is provided that includes a housing having a tapered outer surface one or more grooves formed in the tapered outer surface, and one or more grease flow passages connected through the housing to one or more of the grooves and means for forcing a lubricating grease through the grease flow passages into the grooves formed on the tapered outer surface of the mandrel.


According to another aspect of the present invention, a self-lubricating expansion mandrel for expanding a tubular member is provided that includes a housing having an outer tapered surface including, one or more circumferential grooves formed in the outer surface of the tapered first end, and one or more grease flow passages connected through the mandrel housing to the grooves, and means for forcing a lubricating grease through the grease flow passages into the one or more circumferential grooves formed on the surface of the mandrel.


According to another aspect of the present invention, a self-lubricating expansion mandrel for expanding a tubular member is provided that includes a housing including an outer surface having one or more axial grooves formed in the outer surface of the tapered middle, and one or more grease flow passages connected through the mandrel housing to the grooves, and means for forcing a lubricating grease through the grease flow passages into the one or more axial grooves formed on the surface of the mandrel.


According to another aspect of the present invention, a self-lubricating expansion mandrel for expanding a tubular member is provided that includes a housing having an outer surface including one or more grooves formed in the outer tapered surface and further having a textured pattern comprising axial and circumferential components, and one or more grease flow passages connected to the grooves, and means for forcing a lubricating grease through the grease flow passages into grooves formed on the surface of the mandrel.


According to another aspect of the present invention, a method for manufacturing an expandable member used to complete a structure by radially expanding and plastically deforming the expandable member is provided that includes forming the expandable member from a steel alloy comprising a charpy energy of at least about 90 ft-lbs.


According to another aspect of the present invention, an expandable member for use in completing a structure by radially expanding and plastically deforming the expandable member is provided that includes a steel alloy comprising a charpy energy of at least about 90 ft-lbs.


According to another aspect of the present invention, a structural completion positioned within a structure is provided that includes one or more radially expanded and plastically deformed expandable members positioned within the structure; wherein one or more of the radially expanded and plastically deformed expandable members are fabricated from a steel alloy comprising a charpy energy of at least about 90 ft-lbs.


According to another aspect of the present invention, a method for manufacturing an expandable member used to complete a structure by radially expanding and plastically deforming the expandable member is provided that includes forming the expandable member from a steel alloy comprising a weight percentage of carbon of less than about 0.08%.


According to another aspect of the present invention, an expandable member for use in completing a wellbore by radially expanding and plastically deforming the expandable member at a downhole location in the wellbore is provided that includes a steel alloy comprising a weight percentage of carbon of less than about 0.08%.


According to another aspect of the present invention, a structural completion is provided that includes one or more radially expanded and plastically deformed expandable members positioned within the wellbore; wherein one or more of the radially expanded and plastically deformed expandable members are fabricated from a steel alloy comprising a weight percentage of carbon of less than about 0.08%.


According to another aspect of the present invention, a method for manufacturing an expandable member used to complete a structure by radially expanding and plastically deforming the expandable member is provided that includes forming the expandable member from a steel alloy comprising a weight percentage of carbon of less than about 0.20% and a charpy V-notch impact toughness of at least about 6 joules.


According to another aspect of the present invention, an expandable member for use in completing a structure by radially expanding and plastically deforming the expandable member is provided that includes a steel alloy comprising a weight percentage of carbon of less than about 0.20% and a charpy V-notch impact toughness of at least about 6 joules.


According to another aspect of the present invention, a structural completion is provided that includes one or more radially expanded and plastically deformed expandable members; wherein one or more of the radially expanded and plastically deformed expandable members are fabricated from a steel alloy comprising a weight percentage of carbon of less than about 0.20% and a charpy V-notch impact toughness of at least about 6 joules.


According to another aspect of the present invention, a method for manufacturing an expandable member used to complete a structure by radially expanding and plastically deforming the expandable member is provided that includes forming the expandable member from a steel alloy comprising the following ranges of weight percentages: C, from about 0.002 to about 0.08; Si, from about 0.009 to about 0.30; Mn, from about 0.10 to about 1.92; P, from about 0.004 to about 0.07; S, from about 0.0008 to about 0.006; Al, up to about 0.04; N, up to about 0.01; Cu, up to about 0.3; Cr, up to about 0.5; Ni, up to about 18; Nb, up to about 0.12; Ti, up to about 0.6; Co, up to about 9; and Mo, up to about 5.


According to another aspect of the present invention, an expandable member for use in completing a structure by radially expanding and plastically deforming the expandable member is provided that includes a steel alloy comprising the following ranges of weight percentages: C, from about 0.002 to about 0.08; Si, from about 0.009 to about 0.30; Mn, from about 0.10 to about 1.92; P, from about 0.004 to about 0.07; S, from about 0.0008 to about 0.006; Al, up to about 0.04; N, up to about 0.01; Cu, up to about 0.3; Cr, up to about 0.5; Ni, up to about 18; Nb, up to about 0.12; Ti, up to about 0.6; Co, up to about 9; and Mo, up to about 5.


According to another aspect of the present invention, a structural completion is provided that includes one or more radially expanded and plastically deformed expandable members; wherein one or more of the radially expanded and plastically deformed expandable members are fabricated from a steel alloy comprising the following ranges of weight percentages: C, from about 0.002 to about 0.08; Si, from about 0.009 to about 0.30; Mn, from about 0.10 to about 1.92; P, from about 0.004 to about 0.07; S, from about 0.0008 to about 0.006; Al, up to about 0.04; N, up to about 0.01; Cu, up to about 0.3; Cr, up to about 0.5; Ni, up to about 18; Nb, up to about 0.12; Ti, up to about 0.6; Co, up to about 9; and Mo, up to about 5.


According to another aspect of the present invention, a method for manufacturing an expandable tubular member used to complete a structure by radially expanding and plastically deforming the expandable member is provided that includes forming the expandable tubular member with a ratio of the of an outside diameter of the expandable tubular member to a wall thickness of the expandable tubular member ranging from about 12 to 22.


According to another aspect of the present invention, an expandable member for use in completing a structure by radially expanding and plastically deforming the expandable member is provided that includes an expandable tubular member with a ratio of the of an outside diameter of the expandable tubular member to a wall thickness of the expandable tubular member ranging from about 12 to 22.


According to another aspect of the present invention, a structural completion is provided that includes one or more radially expanded and plastically deformed expandable members positioned within the structure; wherein one or more of the radially expanded and plastically deformed expandable members are fabricated from an expandable tubular member with a ratio of the of an outside diameter of the expandable tubular member to a wall thickness of the expandable tubular member ranging from about 12 to 22.


According to another aspect of the present invention, a method of constructing a structure is provided that includes radially expanding and plastically deforming an expandable member; wherein an outer portion of the wall thickness of the radially expanded and plastically deformed expandable member comprises tensile residual stresses.


According to another aspect of the present invention, a structural completion is provided that includes one or more radially expanded and plastically deformed expandable members; wherein an outer portion of the wall thickness of one or more of the radially expanded and plastically deformed expandable members comprises tensile residual stresses.


According to another aspect of the present invention, a method of constructing a structure using an expandable tubular member is provided that includes strain aging the expandable member; and then radially expanding and plastically deforming the expandable member.


According to another aspect of the present invention, a method for manufacturing a tubular member used to complete a wellbore by radially expanding the tubular member at a downhole location in the wellbore comprising: forming a steel alloy comprising a concentration of carbon between approximately 0.002% and 0.08% by weight of the steel alloy.





BRIEF DESCRIPTION OF THE DRAWINGS


FIG. 1 is a fragmentary cross-sectional view illustrating the placement of an embodiment of an apparatus for creating a casing within a new tubular member section of a well borehole, an expansion mandrel and the injection of a fluidic material into a new tubular section of the well borehole for hydraulically moving the expansion mandrel through and thereby expanding the tubular member.



FIG. 2 is a fragmentary cross-sectional view of one alternative embodiment of a self lubricating expansion mandrel having a horizontal or circumferential groove for retaining grease, a flouropolymer, a thermo-sprayed coating, a thin self-lubricating film or another solid lubricant, according to certain aspects of the invention.



FIG. 3 is a fragmentary cross-sectional view of another alternative embodiment of a self-lubricating expansion mandrel according to certain aspects of the invention.



FIG. 4 is a fragmentary cross-sectional view of another alternative embodiment of a self-lubricating expansion mandrel according to certain aspects of the invention.



FIGS. 5A-E are examples of groove or texture patterns that may be used according to certain aspects of the present invention.



FIGS. 6A-B are examples of surface profiles that may be useful according to certain aspects of the present invention.



FIG. 7A-C is a schematic depiction a single exemplary trough or groove of a pattern or textured surface of a self-lubricating expansion mandrel subjected to a series of steps for: 7A forming the trough, 7B depositing a thin self-lubricating film, and 7C retaining the self-lubricating film in the trough for the self-lubricating expansion mandrel.



FIG. 8A-C is a schematic depiction a single exemplary trough or groove of a pattern or textured surface of a self-lubricating expansion mandrel subjected to a series of steps for: 8A forming the trough, 8B depositing a flouropolymer coating, and 8C retaining the flouropolymer coating in the trough for the self-lubricating expansion mandrel.



FIG. 9A-C is a schematic depiction a single exemplary trough or groove of a pattern or textured surface of a self-lubricating expansion mandrel subjected to a series of steps for: 9A forming the trough, 9B depositing a thermo-sprayed coating, and 9C retaining the thermo-sprayed coating in the trough for the self-lubricating expansion mandrel.



FIG. 10 is a fragmentary cross-sectional view of one alternative embodiment of a self lubricating expansion mandrel having a grease delivery mechanism, and a horizontal groove for receiving, retaining and providing grease to the surface of a self-lubricating expansion mandrel according to certain aspects of the invention.



FIG. 11 is a fragmentary cross-sectional view of one alternative embodiment of a self lubricating expansion mandrel having a grease delivery mechanism, and a groove pattern with circumferential and axial components for receiving, retaining and providing grease to the surface of a self-lubricating expansion mandrel according to certain aspects of the invention.



FIG. 12 is a fragmentary cross-sectional view of one alternative embodiment of a self lubricating expansion mandrel having a grease delivery mechanism, and a groove and a textured surface pattern for receiving, retaining and providing grease to the surface of a self-lubricating expansion mandrel according to certain aspects of the invention.





DETAILED DESCRIPTION OF THE ILLUSTRATIVE EMBODIMENTS

A self-lubricating expansion mandrel is provided. In a exemplary implementation, the self-lubricating expansion mandrel is used in conjunction with one or more methods for expanding tubular members. In this manner, the expansion of a plurality of tubular members coupled to one another using the self-lubricating expansion mandrel may be optimized.


Alternative embodiments of a self-lubricating expansion mandrel is also provided to form a self-lubricating expansion mandrel. In illustrative implementations, the self-lubricating expansion mandrel includes one or more circumferential grooves, one or more axial grooves, both circumferential and axial grooves, one or more patterns of grooves having circumferential and axial components of length and width, and/or surface textures for holding and providing a supply of grease, solid lubricant, thermo-sprayed coatings, fluoropolymer coatings, and/or self-lubricating films to surface of the self-lubricating expansion mandrel and to the interface between the tapered outer surface of the self-lubricating expansion mandrel and a tubular member during the radial expansion process. In this manner, the frictional forces created during the radial expansion process are reduced which results in a reduction in the required operating pressures for radially expanding the tubular member. The depth of the grooves, patterns, or textured surface is selected to facilitate maintaining the supply of lubrication through a period of the expansion process depending in part upon the type of lubrication whether grease, solid lubricant, thermo-sprayed coating, fluoropolymer coating or thin self-lubricating film.


In several alternative embodiments, the apparatus and methods are used to form and/or repair wellbore casings, pipelines, and/or structural supports.


Referring initially to FIGS. 1-4, embodiments of improved apparatus and method using a self-lubricating expansion mandrel for forming a wellbore casing within a subterranean formation will now be described.



FIG. 1 is a fragmentary cross-sectional view illustrating the placement of an embodiment of an apparatus for creating a casing within a new tubular member section of a well borehole, an expansion mandrel and the injection of a fluidic material into a new tubular section of the well borehole for hydraulically moving the expansion mandrel through and thereby expanding the tubular member. As illustrated, a wellbore 100 is positioned in a subterranean formation 105. The wellbore 100 includes an existing cased section 110 having a tubular casing 115 and an annular outer layer of cement 120.


In order to extend the wellbore 100 into the subterranean formation 105, a drill string 125 is used in a well known manner to drill out material from the subterranean formation 105 to form a new section 130.


As illustrated, an apparatus 200 for forming a wellbore casing in a subterranean formation is then positioned in the new section 130 of the wellbore 100. The apparatus 200 includes an expansion mandrel 205, a tubular member 210, a shoe 215, a lower cup seal 220, an upper cup seal 225, a fluid passage 230, a fluid passage 235, a fluid passage 240, seals 245, and a support member 250.


The expansion mandrel 205 is coupled to and supported by the support member 250. The expansion mandrel 205 is preferably adapted to controllably expand in a radial direction. The expansion mandrel 205 may comprise any number of conventional commercially available expansion mandrels modified in accordance with the teachings of the present disclosure to form a self-lubricating expansion mandrel 205. In an illustrative embodiment, the expansion mandrel 205 comprises a hydraulic expansion tool as disclosed in U.S. Pat. No. 5,348,095, the contents of which are incorporated herein by reference, modified in accordance with the teachings of the present disclosure.


The tubular member 210 is supported by the self-lubricating expansion mandrel 205. The tubular member 210 is expanded in the radial direction and extruded off of the self-lubricating expansion mandrel 205. The tubular member 210 may be fabricated from any number of conventional commercially available materials such as, for example, Oilfield Country Tubular Goods (OCTG), 13 chromium steel tubing/casing, or plastic tubing/casing. In a preferred embodiment, the tubular member 210 is fabricated from OCTG in order to maximize strength after expansion. The inner and outer diameters of the tubular member 210 may range, for example, from approximately 0.75 to 47 inches and 1.05 to 48 inches, respectively. In a preferred embodiment, the inner and outer diameters of the tubular member 210 range from about 3 to 15.5 inches and 3.5 to 16 inches, respectively in order to optimally provide minimal telescoping effect in the most commonly drilled wellbore sizes. The tubular member 210 preferably comprises a solid member.


In a preferred embodiment, the end portion 260 of the tubular member 210 is slotted, perforated, or otherwise modified to catch or slow down the mandrel 205 when it completes the extrusion of tubular member 210. In a preferred embodiment, the length of the tubular member 210 is limited to minimize the possibility of buckling. For typical tubular member 210 materials, the length of the tubular member 210 is preferably limited to between about 40 to 20,000 feet in length.


The shoe 215 is coupled to the self-lubricating expansion mandrel 205 and the tubular member 210. The shoe 215 includes fluid passage 240. The shoe 215 may comprise any number of conventional commercially available shoes such as, for example, Super Seal II float shoe, Super Seal II Down-Jet float shoe or a guide shoe with a sealing sleeve for a latch down plug modified in accordance with the teachings of the present disclosure. In a preferred embodiment, the shoe 215 comprises an aluminum down-jet guide shoe with a sealing sleeve for a latch-down plug available from Halliburton Energy Services in Dallas, Tex., modified in accordance with the teachings of the present disclosure, in order to optimally guide the tubular member 210 in the wellbore, optimally provide an adequate seal between the interior and exterior diameters of the overlapping joint between the tubular members, and to optimally allow the complete drill out of the shoe and plug after the completion of the cementing and expansion operations.


The shoe 215 illustrated in FIG. 1, includes one or more through and side outlet ports in fluidic communication with the fluid passage 240. In this manner, the shoe 215 optimally injects hardenable fluidic sealing material into the region outside the shoe 215 and tubular member 210.


In the embodiments as depicted in FIGS. 2-4, the fluid passage 240 comprising an inlet geometry that can receive a dart and/or a ball sealing member. In this manner, the fluid passage 240 can be optimally sealed off by introducing a plug, dart and/or ball sealing elements into the fluid passage 230.


In the illustrative embodiment depicted, a lower cup seal 220 is coupled to and supported by a support member 250. The lower cup seal 220 prevents foreign materials from entering the interior region of the tubular member 210 adjacent to the self-lubricating expansion mandrel 205. The lower cup seal 220 may comprise any number of conventional commercially available cup seals such as, for example, TP cups, or Selective Injection Packer (SIP) cups modified in accordance with the teachings of the present disclosure. In a preferred embodiment, the lower cup seal 220 comprises a SIP cup seal, available from Halliburton Energy Services in Dallas, Tex. in order to optimally block foreign material and might also contain a body of lubricant adjacent to the expansion mandrel.


The upper cup seal 225 is coupled to and supported by the support member 250. The upper cup seal 225 prevents foreign materials from entering the interior region of the tubular member 210. The upper cup seal 225 may comprise any number of conventional commercially available cup seals such as, for example, TP cups or SIP cups modified in accordance with the teachings of the present disclosure. In a preferred embodiment, the upper cup seal 225 comprises a SIP cup, available from Halliburton Energy Services in Dallas, Tex. in order to optimally block the entry of foreign materials and contain a body of lubricant.


The fluid passage 230 permits fluidic materials to be transported to and from the interior region of the tubular member 210 below the self-lubricating expansion mandrel 205. The fluid passage 230 is coupled to and positioned within the support member 250 and the self-lubricating expansion mandrel 205. The fluid passage 230 preferably extends from a position adjacent to the surface to the bottom of the self-lubricating expansion mandrel 205. The fluid passage 230 is preferably positioned along a centerline of the apparatus 200.


The fluid passage 240 permits fluidic materials to be transported to and from the region exterior to the tubular member 210 and shoe 215. The fluid passage 240 is coupled to and positioned within the shoe 215 in fluidic communication with the interior region of the tubular member 210 below the self-lubricating expansion mandrel 205. The fluid passage 240 preferably has a cross-sectional shape that permits a plug, or other similar device, to be placed in fluid passage 240 to thereby block further passage of fluidic materials. In this manner, the interior region of the tubular member 210 below the self-lubricating expansion mandrel 205 can be fluidicly isolated from the region exterior to the tubular member 210. This permits the interior region of the tubular member 210 below the self-lubricating expansion mandrel 205 to be pressurized. The fluid passage 240 is preferably positioned substantially along the centerline of the apparatus 200.


The fluid passage 240 is preferably selected to convey materials such as cement, drilling mud or epoxies at flow rates and pressures ranging from about 0 to 3,000 gallons/minute and 0 to 9,000 psi in order to optimally fill the annular region between the self-lubricating expansion mandrel and the tubular section so that the tapered or expansion conical surface of the mandrel is forced against the inside diameter of the tubular section to thereby expand the tubular member to the size of the maximum diameter of the self-lubricating expansion mandrel.


Pumping the fluid hydraulically forces the exterior tapered or conical surface of the self-lubricating expansion mandrel into direct sliding contact with the ID of the tubular member as the material of the tubular member is plastically deformed beyond the elastic limit of the tubular member thereby permanently deforming the tubular member to a larger diameter. Significant pressure and heat are generated at the interface between the tubular member and the surface of the self-lubricating expansion mandrel. The use of a self-lubricating expansion mandrel reduces the friction and facilitates the prevention of galling as a result of instantaneous surface to surface “welding” and subsequent relative movement that can occur when two metals slide under high pressure without lubrication.


The self-lubricating expansion mandrel provides grooves or troughs in a textured surface that are below the surface to surface interface contact area of the expansion mandrel. These troughs or grooves are filled with grease or with materials that are solid under normal heat and pressure conditions and that act as lubricants under high temperature and pressure conditions. Being solid or having a very high viscosity such as with grease, allows the lubricant to be retained within the groove or trough the relative motion and extreme pressure between the mandrel and the tubular member cause small quantities of the material to move between the interface contacting surfaces to act as a lubricant. The grooves or troughs act as relative low pressure areas on the interface surface so that a substantial quantity of the lubricant continues to be retained during the expansion. Only small quantities are required to avoid metal to metal contact at the solid lubricant until interface.


The self-lubricating expansion mandrel 205 preferably has a substantially annular cross section. The outside diameter of the self-lubricating expansion mandrel 205 is preferably tapered from a minimum diameter to a maximum diameter to provide a cone shape expansion surface. The wall thickness of the self-lubricating expansion mandrel 205 may range, for example, from about 0.125 to 3 inches. In a preferred embodiment, the wall thickness of the self-lubricating expansion mandrel 205 ranges from about 0.25 to 0.75 inches in order to optimally provide adequate compressive strength with minimal material. The maximum and minimum outside diameters of the expansion cone 928 may range, for example, from about 1 to 47 inches. In a preferred embodiment, the maximum and minimum outside diameters of the self-lubricating expansion mandrel range from about 3.5 to 19 in order to optimally provide expansion of generally available oilfield tubular members.


The self-lubricating expansion mandrel 205 may be fabricated from any number of conventional commercially available materials such as, for example, ceramic, tool steel, titanium or low alloy steel. In a preferred embodiment, the self-lubricating expansion mandrel 205 is fabricated from tool steel in order to optimally provide high strength and abrasion resistance. The surface hardness of the outer surface of the self-lubricating expansion mandrel may range, for example, from about 50 Rockwell C to 70 Rockwell C. In a preferred embodiment, the surface hardness of the outer surface of self-lubricating expansion mandrel 205 ranges from about 58 Rockwell C to 62 Rockwell C in order to optimally provide high yield strength. In a preferred embodiment, the self-lubricating expansion mandrel is heat treated to optimally provide a hard outer surface and a resilient interior body in order to optimally provide abrasion resistance and fracture toughness.



FIG. 2 is a fragmentary cross-sectional view of one alternative embodiment of a self lubricating expansion mandrel having one or more circumferential grooves 12 for retaining and distributing grease, or another solid lubricant, according to certain aspects of the invention. Large and deep grooves are desirable for retaining sufficient quantities of grease. Progressively smaller and more shallow grooves are desirable for retaining a fluoropolymer material, a thermo-sprayed coating, and a thin self-lubricating film.



FIG. 3 is a fragmentary cross-sectional view of another alternative embodiment of a self-lubricating expansion mandrel having one or more axially aligned grooves 14 for retaining and distributing grease, or another solid lubricant, according to certain aspects of the invention. Large and deep grooves are desirable for retaining sufficient quantities of grease. Progressively smaller and more shallow grooves are desirable for retaining a fluoropolymer material, a thermo-sprayed coating, and a thin self-lubricating film according to certain



FIG. 4 is a fragmentary cross-sectional view of another alternative embodiment of a self-lubricating expansion mandrel having a pattern of grooves 16 with circumferential and axial components for retaining and distributing grease, or another solid lubricant, according to certain aspects of the invention. Large and deep grooves are desirable for retaining sufficient quantities of grease. Progressively smaller and more shallow grooves are desirable for retaining a fluoropolymer material, a thermo-sprayed coating, and a thin self-lubricating film according to certain aspects of the invention.



FIGS. 5A-E are examples of groove or texture patterns 16A-16E that may be used according to certain aspects of the present invention.



FIGS. 6A and 6B are examples of surface profiles 18A and 18B that may be useful according to certain aspects of the present invention.



FIG. 6A depicts a surface profile that comprises large and small troughs 20 and 22, respectively, that may be regularly repeated to provide one of the patterns 16A-16E as in FIGS. 5A-E or other patterns.



FIG. 6B depicts a surface profile that comprises generally regular or uniform peaks 24 and troughs 26. The troughs 26 and peaks 24 are depicted as relatively equal in size and number, however it will be understood that many of the patterns 16 of grooves or troughs contemplated will provide significantly more contact surface area 28 than the total of all area covered by the troughs. The contact pressure is not significantly increased by the removal of metal contact area through the formation of grooves, a pattern or a textured surface.



FIGS. 7A-C schematically depict the formation of a single exemplary trough 30 or groove of a pattern 16 or textured surface comprising a plurality of such grooves or troughs to form the tapered outer expansion surface 32 of a self-lubricating expansion mandrel 205 where the solid lubrication is provided by the deposition of a thin self-lubricating film 34. Such films may comprise Balinic C or other diamond-like-coating (DLC) preferably deposited as a tightly bonding surface coating having a thicknesses of less than about 5 microns. The grooves or troughs 30 of FIGS. 7A-C are preferably in the range of from about 1 micron to 4 microns deep 36 and from about 1 micron to about 4 microns wide 38 to facilitate holding a quantity of the deposited thin self-lubricating film 34 within the grooves or troughs 30. A portion will be retained even with and below the metal contacting tapered surface 32. FIG. 7A depicts forming the trough 30 into the tapered surface 32. FIG. 7B depicts depositing a thin self-lubricating film 34 between about 1 and 4 microns thick 35 and in an exemplary embodiment are of even thickness with or slightly thicker than the trough 30 is deep 36. FIG. 7C depicts a quantity of the self-lubricating film 34 retained in the trough 30, after final machining of the tapered surface 32, for providing both the metal contacting areas 32 and a retained quantity of self-lubricating film material 34. During expansion of a tubular member 210, the lubrication is provided from the trough 30 to the tapered expansion surface 32 of the self-lubricating expansion mandrel 205.



FIG. 8A-C schematically depict the formation of a single exemplary trough 40 or groove of a pattern 16 or textured surface comprising a plurality of such grooves or troughs form into a tapered expansion surface 42 of a self-lubricating expansion mandrel 205 where the solid lubrication is provided by the deposition of a fluoropolymer coating 44. Fluoropolymer materials such as PTFE, molybdenum disulfide, or graphite, that are solid at ambient temperatures and soft relative to the metal tapered surface 42 of the self-lubricating expansion mandrel 205, may be used for this purpose. The deposit thickness 45 of such coatings 44 may be in the range of from 10 to 50 microns and in an exemplary embodiment are at least as thick as the grooves or troughs are deep 46. The grooves or troughs 40 of FIGS. 8A-C are preferably in the range of from about 10 micron to 50 microns deep 46 and from about 10 micron to about 50 microns wide 48 and thus designed for the deposition and retention of a fluoropolymer coating 44. FIG. 8A depicts forming the trough 40 into the tapered surface 42. FIG. 8B depicts depositing a fluoropolymer coating 44 between about 10 and 50 microns thick 45 and in an exemplary embodiment are at least as thick or thicker than the trough is deep 46. FIG. 8C depicts a quantity the fluoropolymer coating 44 retained in the trough 40, after final machining of the tapered surface 42, for providing both the metal contacting areas 42 and a retained quantity of fluoropolymer coating material 44. During expansion of a tubular member 210, the lubrication is provided from the trough 40 to the tapered expansion surface 42 of the self-lubricating expansion mandrel 205.



FIG. 9A-C schematically depict the formation of a single exemplary trough 50 or groove of a pattern 16 or textured surface comprising a plurality of such grooves or troughs formed into a tapered expansion surface 52 of a self-lubricating expansion mandrel 205 where the solid lubrication is provided by the deposition of a fluoropolymer coating 54. The grooves or troughs 50 of FIGS. 9A-C are, in an exemplary embodiment, in the range of from about 50 micron to 150 microns deep 56 and from about 50 micron to about 150 microns wide 58 thus designed for the deposition and retention of a thermo-sprayed coating 54. FIG. 9A depict forming the trough 50 into the tapered surface 52. FIG. 9B depicts depositing a thermo-sprayed coating (as by detonation spray) between about 50 and 150 microns thick and, in an exemplary embodiment, are at least as thick or thicker than the trough is deep. FIG. 9C depicts a quantity the thermo-sprayed coating 54 retained in the trough 50, after final machining of the tapered surface 52, for providing both the metal contacting areas 52 and a retained quantity of the thermo-sprayed coating material 54. During expansion of a tubular member 210, the lubrication is provided from the trough 50 or groove to the tapered expansion surface 52 of the self-lubricating expansion mandrel 205.



FIG. 10 is a fragmentary cross-sectional view of one alternative embodiment of a self lubricating expansion mandrel having a grease delivery mechanism, and a circumferential groove 12 for receiving, retaining and providing grease 61 to the surface 62 of a self-lubricating expansion mandrel 205 according to certain aspects of the invention. The grease delivery mechanism 60 comprises a grease supply chamber 64 within the housing of the self lubricating expansion mandrel and one or more grease passages 68 from the grease supply chamber 64 to the outer tapered surface 62 of the self lubricating expansion mandrel 205. Pressure within passage 230 may communicate with the grease supply chamber 64 to force grease into the grooves 12 when the self lubricating expansion mandrel 205 is acting, by the hydraulic forces as described with regard to FIG. 1 above, to expand the tubular member 210.



FIG. 11 is a fragmentary cross-sectional view of one alternative embodiment of a self lubricating expansion mandrel 205 having a grease delivery mechanism 70, and a groove pattern 16 with circumferential and axial components for receiving, retaining and providing grease to the surface 72 of a self-lubricating expansion mandrel 205 according to certain aspects of the invention. The grease delivery mechanism 70 comprises a grease supply chamber 74 within the housing of the self lubricating expansion mandrel and one or more grease passages 78 from the grease supply chamber 74 to the pattern of grooves 16 formed in the outer tapered surface 72 of the self lubricating expansion mandrel 205. In this alternative embodiment, pressure 86 may be separately supplied through a separate pressure line 80 to actuate a mechanism 84 such as a piston within the grease supply chamber 74 and to force grease through the one or more grease passages 78 into the grooves 16. The pressure 84 in the separate pressure line may be controlled to increase or decrease the amount of grease 71 delivered to the tapered surface 72 and to overcome pressures as might be created at the interface of the tapered surface 72 of the mandrel and the tubular member 210 when the self lubricating expansion mandrel 205 is acting to expand the tubular members 210.



FIG. 12 is a fragmentary cross-sectional view of one alternative embodiment of a self lubricating expansion mandrel having a grease delivery mechanism 90, and a groove 12 and a textured surface pattern 16 for receiving, retaining and providing grease to the tapered surface 92 of a self-lubricating expansion mandrel 205 according to certain aspects of the invention. The combination of grease delivery mechanism 90, groove 12 at the leading edge 94 of the tapered surface 92 and the textured pattern 16 extending from the groove 12 toward the trailing edge 96 of the tapered surface of the self-lubricating expansion mandrel 205 facilitates movement of lubrication to the area on the tapered surface where the clearance between tubular and mandrel is minimum and expansion contact forces are found to by the greatest, thereby reducing friction and reducing seizing or galling.


The lubrication of the interface between a self-lubricating expansion mandrel and a tubular member during the radial expansion process will now be described. During the radial expansion process, a self-lubricating expansion mandrel radially expands a tubular member by moving in an axial direction relative to the tubular member. The interface between the outer surface of the tapered portion of the expansion cone and the inner surface of the tubular member includes a leading edge portion and a trailing edge portion.


During the radial expansion process, the leading edge portion is lubricated by the presence of lubrication provided on the surface of the expansion cone. However, because the radial clearance between the expansion cone and the tubular member in the trailing edge portion during the radial expansion process is typically extremely small, and the operating contact pressures between the tubular member and the self-lubricating expansion mandrel are extremely high, the quantity of lubricating fluid provided to the trailing edge portion is typically greatly reduced. In typical radial expansion operations, this reduction in lubrication in the trailing edge portion increases the forces required to radially expand the tubular member. However the retained solid lubrication continues to provide a small quantity of lubrication to keep the metal to metal interface separated and to reduce the friction.


In an exemplary embodiment, a tribological system is used to reduce friction and thereby minimize the expansion forces required during the radial expansion and plastic deformation of the tubular member 210 that includes one or more of the following: (1) a tubular tribology system; (2) a drilling mud tribology system; (3) a lubrication tribology system; and (4) an expansion device tribology system.


In an exemplary embodiment, the tubular tribology system includes the application of coatings of lubricant to the interior surface of the tubular member 210.


In an exemplary embodiment, the drilling mud tribology system includes the addition of lubricating additives to the drilling mud.


In an exemplary embodiment, the lubrication tribology system includes the use of lubricating greases, self-lubricating expansion devices, automated injection/delivery of lubricating greases into the interface between the expansion device 205 and the expandable tubular member 210, surfaces within the interface between the expansion device and the expandable tubular member that are self-lubricating, surfaces within the interface between the expansion device and the expandable tubular member that are textured, self-lubricating surfaces within the interface between the expansion device and the expandable tubular member that include diamond and/or ceramic inserts, thermosprayed coatings, fluoropolymer coatings, PVD films, and/or CVD films.


In an exemplary embodiment, the expandable tubular member 210 includes one or more of the following characteristics: high burst and collapse, the ability to be radially expanded more than about 40%, high fracture toughness, defect tolerance, strain recovery @ 150 F, good bending fatigue, optimal residual stresses, and corrosion resistance to H2S in order to provide optimal characteristics during and after radial expansion and plastic deformation.


In an exemplary embodiment, the expandable tubular member 210 is fabricated from a steel alloy having a charpy energy of at least about 90 ft-lbs in order to provided enhanced characteristics during and after radial expansion and plastic deformation of the expandable tubular member.


In an exemplary embodiment, the expandable tubular member 210 is fabricated from a steel alloy having a weight percentage of carbon of less than about 0.08% in order to provide enhanced characteristics during and after radial expansion and plastic deformation of the expandable tubular member.


In an exemplary embodiment, the expandable tubular member 210 is fabricated from a steel alloy having reduced sulfur content in order to minimize hydrogen induced cracking.


In an exemplary embodiment, the expandable tubular member 210 is fabricated from a steel alloy having a weight percentage of carbon of less than about 0.20% and a charpy-V-notch impact toughness of at least about 6 joules in order to provide enhanced characteristics during and after radial expansion and plastic deformation of the expandable tubular member.


In an exemplary embodiment, the expandable tubular member 210 is fabricated from a steel alloy having a low weight percentage of carbon in order to enhance toughness, ductility, weldability, shelf energy, and hydrogen induced cracking resistance.


In several exemplary embodiments, expandable tubular member 210 is fabricated from a steel alloy having the following percentage compositions in order to provide enhanced characteristics during and after radial expansion and plastic deformation of the expandable tubular member




























C
Si
Mn
P
S
Al
N
Cu
Cr
Ni
Nb
Ti
Co
Mo






























Example A
0.030
0.22
1.74
0.005
0.0005
0.028
0.0037
0.30
0.26
0.15
0.095
0.014
0.0034



Example B Min
0.020
0.23
1.70
0.004
0.0005
0.026
0.0030
0.27
0.26
0.16
0.096
0.012
0.0021


Example B Max
0.032
0.26
1.92
0.009
0.0010
0.035
0.0047
0.32
0.29
0.18
0.120
0.016
0.0050


Example C
0.028
0.24
1.77
0.007
0.0008
0.030
0.0035
0.29
0.27
0.17
0.101
0.014
0.0028
0.0020


Example D
0.08
0.30
0.5
0.07
0.005

0.010
0.10
0.50
0.10


Example E
0.0028
0.009
0.17
0.011
0.006
0.027
0.0029

0.029
0.014
0.035
0.007


Example F
0.03
0.1
0.1
0.015
0.005




18.0

0.6
9
5


Example G
0.002
0.01
0.15
0.07
0.005
0.04
0.0025



0.015
0.010









In an exemplary embodiment, the ratio of the outside diameter D of the expandable tubular member 210 to the wall thickness t of the expandable tubular member ranges from about 12 to 22 in order to enhance the collapse strength of the radially expanded and plastically deformed tubular member.


In an exemplary embodiment, the outer portion of the wall thickness of the radially expanded and plastically deformed expandable tubular member 210 includes tensile residual stresses in order to enhance the collapse strength following radial expansion and plastic deformation.


In several exemplary experimental embodiments, reducing residual stresses in samples of the expandable tubular member 210 prior to radial expansion and plastic deformation increased the collapse strength of the radially expanded and plastically deformed tubular member


In several exemplary experimental embodiments, the collapse strength of radially expanded and plastically deformed samples of the expandable tubular 210 were determined on an as-received basis, after strain aging at 250 F for 5 hours to reduce residual stresses, and after strain aging at 350 F for 14 days to reduce residual stresses as follows:

















Collapse Strength



Expandable Tubular Sample
After 10% Radial Expansion









Expandable Tubular Sample 1 -
4000 psi



as received from manufacturer



Expandable Tubular Sample 1 -
4800 psi



strain aged at 250 F. for 5



hours to reduce residual stresses



Expandable Tubular Sample 1 -
5000 psi



strain aged at 350 F. for 14



days to reduce residual stresses










As indicated by the above table, reducing residual stresses in the expandable tubular member 210, prior to radial expansion and plastic deformation, significantly increased the resulting collapse strength—post expansion.


An improved self-lubricating expansion mandrel may be useful for permitting a wellbore casing to be formed in a subterranean formation by placing a tubular member and a self-lubricating expansion mandrel in a new section of a wellbore, and then extruding the tubular member off of the self-lubricating expansion mandrel by pressurizing an interior portion of the tubular member. The apparatus and method further permits adjacent tubular members in the wellbore to be joined using an overlapping joint that prevents fluid and or gas passage. The apparatus and method further permits a new tubular member to be supported by an existing tubular member by expanding the new tubular member into engagement with the existing tubular member. The apparatus and method further minimizes the reduction in the hole size of the wellbore casing necessitated by the addition of new sections of wellbore casing.


An improved self-lubricating expansion mandrel may be useful for permitting a tie-back liner to be created by extruding a tubular member off of a mandrel by pressurizing and interior portion of the tubular member. In this manner, a tie-back liner is produced. The apparatus and method further permits adjacent tubular members in the wellbore to be joined using an overlapping joint that prevents fluid and/or gas passage. The apparatus and method further permits a new tubular member to be supported by an existing tubular member by expanding the new tubular member into engagement with the existing tubular member.


An apparatus and method for expanding a tubular member is also provided that includes an expandable tubular member, self-lubricating expansion mandrel and a shoe. In one embodiment, the interior portions of the apparatus is composed of materials that permit the interior portions to be removed using a conventional drilling apparatus. In this manner, in the event of a malfunction in a downhole region, the apparatus may be easily removed.


An improved self-lubricating expansion mandrel may be useful for permitting a tubular liner to be attached to an existing section of casing. The apparatus and method further have application to the joining of tubular members in general.


An improved self-lubricating expansion mandrel may be useful for permitting a wellhead to be formed including a number of expandable tubular members positioned in a concentric arrangement. The wellhead preferably includes an outer casing that supports a plurality of concentric casings using contact pressure between the inner casings and the outer casing.


An improved self-lubricating expansion mandrel may be useful for permitting for forming a mono-diameter well casing. The apparatus and method permit the creation of a well casing in a wellbore having a substantially constant internal diameter. In this manner, the operation of an oil or gas well is greatly simplified.


An improved self-lubricating expansion mandrel may be useful for isolating one or more subterranean zones from one or more other subterranean zones is also provided. The apparatus and method permits a producing zone to be isolated from a nonproducing zone using a combination of solid and slotted tubulars. In the production mode, the teachings of the present disclosure may be used in combination with conventional, well known, production completion equipment and methods using a series of packers, solid tubing, perforated tubing, and sliding sleeves, which will be inserted into the disclosed apparatus to permit the commingling and/or isolation of the subterranean zones from each other.


An improved self-lubricating expansion mandrel maybe useful for forming a wellbore casing while the wellbore is drilled is also provided. In this manner, a wellbore casing can be formed simultaneous with the drilling out of a new section of the wellbore. Such an apparatus and method may be used in combination with one or more of the apparatus and methods disclosed in the present disclosure for forming wellbore casings using expandable tubulars. Alternatively, the method and apparatus can be used to create a pipeline or tunnel in a time efficient manner.


A method for manufacturing an expandable member used to complete a structure by radially expanding and plastically deforming the expandable member has been described that includes forming the expandable member from a steel alloy comprising a charpy energy of at least about 90 ft-lbs.


An expandable member for use in completing a structure by radially expanding and plastically deforming the expandable member has been described that includes a steel alloy comprising a charpy energy of at least about 90 ft-lbs.


A structural completion positioned within a structure has been described that includes one or more radially expanded and plastically deformed expandable members positioned within the structure; wherein one or more of the radially expanded and plastically deformed expandable members are fabricated from a steel alloy comprising a charpy energy of at least about 90 ft-lbs.


A method for manufacturing an expandable member used to complete a structure by radially expanding and plastically deforming the expandable member has been described that includes forming the expandable member from a steel alloy comprising a weight percentage of carbon of less than about 0.08%.


An expandable member for use in completing a wellbore by radially expanding and plastically deforming the expandable member at a downhole location in the wellbore has been described that includes a steel alloy comprising a weight percentage of carbon of less than about 0.08%.


A structural completion has been described that includes one or more radially expanded and plastically deformed expandable members positioned within the wellbore; wherein one or more of the radially expanded and plastically deformed expandable members are fabricated from a steel alloy comprising a weight percentage of carbon of less than about 0.08%.


A method for manufacturing an expandable member used to complete a structure by radially expanding and plastically deforming the expandable member has been described that includes forming the expandable member from a steel alloy comprising a weight percentage of carbon of less than about 0.20% and a charpy V-notch impact toughness of at least about 6 joules.


An expandable member for use in completing a structure by radially expanding and plastically deforming the expandable member has been described that includes a steel alloy comprising a weight percentage of carbon of less than about 0.20% and a charpy V-notch impact toughness of at least about 6 joules.


A structural completion has been described that includes one or more radially expanded and plastically deformed expandable members; wherein one or more of the radially expanded and plastically deformed expandable members are fabricated from a steel alloy comprising a weight percentage of carbon of less than about 0.20% and a charpy V-notch impact toughness of at least about 6 joules.


A method for manufacturing an expandable member used to complete a structure by radially expanding and plastically deforming the expandable member has been described that includes forming the expandable member from a steel alloy comprising the following ranges of weight percentages: C, from about 0.002 to about 0.08; Si, from about 0.009 to about 0.30; Mn, from about 0.10 to about 1.92; P, from about 0.004 to about 0.07; S, from about 0.0008 to about 0.006; Al, up to about 0.04; N, up to about 0.01; Cu, up to about 0.3; Cr, up to about 0.5; Ni, up to about 18; Nb, up to about 0.12; Ti, up to about 0.6; Co, up to about 9; and Mo, up to about 5.


An expandable member for use in completing a structure by radially expanding and plastically deforming the expandable member has been described that includes a steel alloy comprising the following ranges of weight percentages: C, from about 0.002 to about 0.08; Si, from about 0.009 to about 0.30; Mn, from about 0.10 to about 1.92; P, from about 0.004 to about 0.07; S, from about 0.0008 to about 0.006; Al, up to about 0.04; N, up to about 0.01; Cu, up to about 0.3; Cr, up to about 0.5; Ni, up to about 18; Nb, up to about 0.12; Ti, up to about 0.6; Co, up to about 9; and Mo, up to about 5.


A structural completion has been described that includes one or more radially expanded and plastically deformed expandable members; wherein one or more of the radially expanded and plastically deformed expandable members are fabricated from a steel alloy comprising the following ranges of weight percentages: C, from about 0.002 to about 0.08; Si, from about 0.009 to about 0.30; Mn, from about 0.10 to about 1.92; P, from about 0.004 to about 0.07; S, from about 0.0008 to about 0.006; Al, up to about 0.04; N, up to about 0.01; Cu, up to about 0.3; Cr, up to about 0.5; Ni, up to about 18; Nb, up to about 0.12; Ti, up to about 0.6; Co, up to about 9; and Mo, up to about 5.


A method for manufacturing an expandable tubular member used to complete a structure by radially expanding and plastically deforming the expandable member has been described that includes forming the expandable tubular member with a ratio of the of an outside diameter of the expandable tubular member to a wall thickness of the expandable tubular member ranging from about 12 to 22.


An expandable member for use in completing a structure by radially expanding and plastically deforming the expandable member has been described that includes an expandable tubular member with a ratio of the of an outside diameter of the expandable tubular member to a wall thickness of the expandable tubular member ranging from about 12 to 22.


A structural completion has been described that includes one or more radially expanded and plastically deformed expandable members positioned within the structure; wherein one or more of the radially expanded and plastically deformed expandable members are fabricated from an expandable tubular member with a ratio of the of an outside diameter of the expandable tubular member to a wall thickness of the expandable tubular member ranging from about 12 to 22.


A method of constructing a structure has been described that includes radially expanding and plastically deforming an expandable member; wherein an outer portion of the wall thickness of the radially expanded and plastically deformed expandable member comprises tensile residual stresses.


A structural completion has been described that includes one or more radially expanded and plastically deformed expandable members; wherein an outer portion of the wall thickness of one or more of the radially expanded and plastically deformed expandable members comprises tensile residual stresses.


A method of constructing a structure using an expandable tubular member has been described that includes strain aging the expandable member; and then radially expanding and plastically deforming the expandable member.


A method for manufacturing a tubular member used to complete a wellbore by radially expanding the tubular member at a downhole location in the wellbore has been described that includes forming a steel alloy comprising a concentration of carbon between approximately 0.002% and 0.08% by weight of the steel alloy.


It is understood that variations may be made to the foregoing without departing from the spirit of the invention. For example, the teachings of the present disclosure may be used to form and/or repair a wellbore casing, a pipeline, or a structural support. Furthermore, the various teachings of the present disclosure may combined, in whole or in part, with various of the teachings of the present disclosure.


Although illustrative embodiments of the invention have been shown and described, a wide range of modification, changes and substitution is contemplated in the foregoing disclosure. In some instances, some features of the present invention may be employed without a corresponding use of the other features. Accordingly, it is appropriate that the appended claims be construed broadly and in a manner consistent with the scope of the invention.

Claims
  • 1. A self-lubricating expansion mandrel for expanding a tubular member, comprising: a housing that defines a lubrication supply chamber including a tapered outer surface;a supply of a lubricant material within the lubrication supply chamber;one or more grooves formed in the tapered outer surface;solid lubricant retained in one or more of the grooves; andmeans for forcing the lubricant material from the lubrication supply chamber to one or more of the grooves.
  • 2. The self-lubricating expansion mandrel of claim 1, wherein the grooves comprise circumferential grooves.
  • 3. The self-lubricating expansion mandrel of claim 1, wherein the grooves comprise axial grooves.
  • 4. The self-lubricating expansion mandrel of claim 1, wherein the grooves comprise a pattern of grooves with both an axial and a circumferential component.
  • 5. The self-lubricating expansion mandrel of claim 4, wherein the pattern of grooves comprises a textured surface.
  • 6. The self-lubricating expansion mandrel of claim 1, wherein the solid lubricant retained in one or more of the grooves comprises a self lubricating film.
  • 7. The self-lubricating expansion mandrel of claim 6, wherein the depth of the grooves is in a range of between about 1 and 4 microns.
  • 8. The self-lubricating expansion mandrel of claim 1, wherein the solid lubricant retained in one or more of the grooves comprises a fluoropolymer coating.
  • 9. The self-lubricating expansion mandrel of claim 8, wherein the depth of the grooves is in a range of between about 10 and 50 microns.
  • 10. The self-lubricating expansion mandrel of claim 1, wherein the solid lubricant retained in one or more of the grooves comprises a thermo-sprayed coating.
  • 11. The self-lubricating expansion mandrel of claim 10, wherein the depth of the grooves is in a range of between about 50 and 150 microns.
  • 12. A self-lubricating expansion mandrel for expanding a tubular member, comprising: a housing that defines a lubricant supply chamber including a tapered outer surface;a quantity of a lubricant material within the lubricant supply chamber;a textured pattern formed in the tapered outer surface;solid lubricant retained in a plurality of troughs formed in the textured pattern; andmeans for forcing the lubricant material from the lubrication supply chamber to one or more of the troughs.
  • 13. The self-lubricating expansion mandrel of claim 12, wherein the solid lubricant retained in the plurality of troughs formed in a textured pattern comprises a self-lubricating film.
  • 14. The self-lubricating expansion mandrel of claim 13, wherein the depth of the plurality of troughs formed in a textured pattern is in a range of between about 1 and 4 microns.
  • 15. The self-lubricating expansion mandrel of claim 12, wherein the solid lubricant retained in the plurality of troughs formed in a textured pattern comprises a fluoropolymer coating.
  • 16. The self-lubricating expansion mandrel of claim 15, wherein the depth of the plurality of troughs formed in a textured pattern is in a range of between about 10 and 50 microns.
  • 17. The self-lubricating expansion mandrel of claim 12, wherein the solid lubricant retained in the plurality of troughs formed in a textured pattern comprises a thermo-sprayed coating.
  • 18. The self-lubricating expansion mandrel of claim 12, wherein the depth of the plurality of troughs formed in a textured pattern is in a range of between about 50 and 150 microns.
  • 19. A self-lubricating expansion mandrel for expanding a tubular member, comprising: a housing including a tapered outer surface;one or more grooves formed in the taped outer surface; anda grease supply chamber in the housing;a conduit from the grease supply chamber to one or more of the grooves; andmeans for forcing grease from the grease supply chamber trough the conduit to one or more of the grooves.
  • 20. The self-lubricating expansion mandrel of claim 19, wherein the one or more grooves comprise circumferential grooves.
  • 21. The self-lubricating expansion mandrel of claim 19, wherein the grooves comprise axial grooves.
  • 22. The self-lubricating expansion mandrel of claim 19, wherein the grooves comprise a pattern of grooves with both an axial and a circumferential component.
  • 23. The self-lubricating expansion mandrel of claim 22, wherein the pattern of grooves comprises a textured surface.
  • 24. A self-lubricating expansion mandrel for expanding a tubular member, comprising: a housing defining a lubricant supply chamber including a tapered outer surface;one or more grooves formed in the tapered outer surface;a quantity of a lubricant material within the lubricant supply chamber;solid lubricant retained in one or more of the grooves; andmeans for forcing the lubricant material from the lubricant supply chamber to one or more of the grooves;wherein the grooves comprise circumferential grooves.
  • 25. A self-lubricating expansion mandrel for expanding a tubular member, comprising: a housing defining a lubricant supply chamber including a tapered outer surface;one or more grooves formed in the tapered outer surface;a quantity of a lubricant material within the lubricant supply chamber;solid lubricant retained in one or more of the grooves; andmeans for forcing the lubricant material from the lubricant supply to one or more of the grooves;wherein the grooves comprise axial grooves.
  • 26. A self-lubricating expansion mandrel for expanding a tubular member, comprising: a housing defining a lubricant supply chamber including a tapered outer surface;one or more grooves formed in the tapered outer surface;a quantity of a lubrication material within the lubricant supply chamber;solid lubricant retained in one or more of the grooves; andmeans for forcing the lubrication material from the lubricant supply chamber to one or more of the grooves;wherein the grooves comprise a pattern of grooves with both an axial and a circumferential component.
  • 27. A self-lubricating expansion mandrel for expanding a tubular member, comprising: a housing that defines a lubricant supply chamber including a tapered outer surface;a quantity of a lubricating material within the lubricant supply chamber;a pattern of grooves formed in the tapered outer surface;solid lubricant retained in the pattern of grooves; andmeans for forcing the lubricating material from the lubricant supply chamber to one or more of the pattern of grooves;wherein the pattern of grooves comprises a textured surface.
  • 28. A self-lubricating expansion mandrel for expanding a tubular member, comprising: a housing that defines a lubricant supply chamber including a tapered outer surface;a quantity of a lubricating material within the lubricant supply chamber;one or more grooves formed in the tapered outer surface;solid lubricant retained in one or more of the grooves; andmeans for forcing the lubricating material from the lubricant supply chamber to one or more of the grooves;wherein the depth of the grooves is in a range of between about 1 and 4 microns.
  • 29. A self-lubricating expansion mandrel for expanding a tubular member, comprising: a housing that defines a lubricant supply chamber including a tapered outer surface;a quantity of a lubrication material within the lubricant supply chamber;one or more grooves formed in the tapered outer surface;solid lubricant retained in one or more of the grooves; andmeans for forcing the lubrication material from the lubricant supply chamber to one or more of the grooves;wherein the depth of the grooves is in a range of between about 10 and 50 microns.
  • 30. A self-lubricating expansion mandrel for expanding a tubular member, comprising: a housing that defines a lubricant supply chamber including a tapered outer surface;a quantity of a lubrication material within the lubricant supply chamber;one or more grooves formed in the tapered outer surface;solid lubricant retained in one or more of the grooves; andmeans for forcing the lubrication material from the lubricant supply chamber to one or more of the grooves;wherein the solid lubricant retained in one or more of the grooves comprises a thermo-sprayed coating.
  • 31. A self-lubricating expansion mandrel for expanding a tubular member, comprising: a housing that defines a lubricant supply chamber including a tapered outer surface;a quantity of a lubrication material within the lubricant supply chamber;one or more grooves formed in the tapered outer surface;solid lubricant retained in one or more of the grooves; andmeans for forcing the lubricating material from the lubricant supply chamber to one or more of the grooves;wherein the depth of the grooves is in a range of between about 50 and 150 microns.
  • 32. A self-lubricating expansion device for expanding a tubular member, comprising: a housing including a tapered outer surface;one or more depressions formed in the tapered outer surface; anda lubricant supply chamber defined in the housing;a conduit from the lubricant supply chamber to one or more of the depressions; andmeans for forcing lubricant from the lubricant supply chamber through the conduit to one or more of the depressions.
  • 33. The self-lubricating expansion mandrel of claim 32, wherein the one or more depressions comprise circumferential grooves.
  • 34. The self-lubricating expansion mandrel of claim 32, wherein the depressions comprise axial grooves.
  • 35. The self-lubricating expansion mandrel of claim 32, wherein the depressions comprise a pattern of grooves with both an axial and a circumferential component.
  • 36. The self-lubricating expansion mandrel of claim 35, wherein the pattern of grooves comprises a textured surface.
  • 37. A self-lubricating expansion device for expanding a tubular member, wherein the interface between the expansion device and the tubular member, during the expansion process, includes a leading edge portion and a trailing edge portion, comprising: a housing including a tapered outer surface;one or more first depressions formed in the leading edge portion of the tapered outer surface; anda lubricant supply chamber in the housing;a conduit from the lubricant supply chamber to one or more of the first depressions;means for forcing lubricant from the lubricant supply chamber trough the conduit to one or more of the depressions;one or more second depressions formed in the trailing edge portion of the tapered outer surface; anda solid lubricant provided within one or more of the second depressions.
  • 38. The self-lubricating expansion mandrel of claim 37, wherein one or more of the first and second depressions comprise circumferential grooves.
  • 39. The self-lubricating expansion mandrel of claim 37, wherein one or more of the first and second depressions comprise axial grooves.
  • 40. The self-lubricating expansion mandrel of claim 37, wherein one or more of the first and second depressions comprise a pattern of grooves with both an axial and a circumferential component.
  • 41. The self-lubricating expansion mandrel of claim 40, wherein the pattern of grooves comprises a textured surface.
  • 42. A method of lubricating the interface between an expansion device and a tubular member during an expansion of the tubular member using the expansion device, wherein the interface between the expansion device and the tubular member comprises a leading edge portion and a trailing edge portion, comprising: injecting a fluid lubricant into the leading edge portion; andproviding a solid lubricant in the trailing edge portion.
  • 43. A system for lubricating the interface between an expansion device and a tubular member during an expansion of the tubular member using the expansion device, wherein the interface between the expansion device and the tubular member comprises a leading edge portion and a trailing edge portion, comprising: means for injecting a fluid lubricant into the leading edge portion; andmeans for providing a solid lubricant in the trailing edge portion.
  • 44. A method of lubricating the interface between an expansion device and a tubular member during an expansion of the tubular member using the expansion device, wherein the interface between the expansion device and the tubular member comprises a leading edge portion and a trailing edge portion, comprising: providing a supply of a fluid lubricant within the expansion device; andinjecting the fluid lubricant into the leading edge portion.
  • 45. A system for lubricating the interface between an expansion device and a tubular member during an expansion of the tubular member using the expansion device, wherein the interface between the expansion device and the tubular member comprises a leading edge portion and a trailing edge portion, comprising: means for providing a supply of a fluid lubricant within the expansion device; andmeans for injecting the fluid lubricant into the leading edge portion.
CROSS REFERENCE TO RELATED APPLICATIONS

The present application is the National Stage patent application for PCT patent application serial number PCT/US2003/025675, filed on Aug. 18, 2003, which claimed the benefit of the filing dates of (1) U.S. provisional patent application Ser. No. 60/412,544, filed on Sep. 20, 2002, the disclosures of which are incorporated herein by reference. The present application is a continuation in part of U.S. utility patent application Ser. No. 10/382,325, filed on Mar. 5, 2003, which was a continuation of U.S. utility patent application Ser. No. 09/588,946, filed on Jun. 7, 2000 (now U.S. Pat. No. 6,557,640 issued May 6, 2003) The present application is related to the following: (1) U.S. patent application Ser. No. 09/454,139, filed on Dec. 3, 1999, (2) U.S. patent application Ser. No. 09/510,913, filed on Feb. 23, 2000, (3) U.S. patent application Ser. No. 09/502,350, filed on Feb. 10, 2000, (4) U.S. Pat. No. 6,328,113, (5) U.S. patent application Ser. No. 09/523,460, filed on Mar. 10, 2000, (6) U.S. patent application Ser. No. 09/512,895, filed on Feb. 24, 2000, (7) U.S. patent application Ser. No. 09/511,941, filed on Feb. 24, 2000, (8) U.S. patent application Ser. No. 09/588,946, filed on Jun. 7, 2000, (9) U.S. patent application Ser. No. 09/559,122, filed on Apr. 26, 2000, (10) PCT patent application serial no. PCT/US00/18635, filed on Jul. 9, 2000, (11) U.S. provisional patent application Ser. No. 60/162,671, filed on Nov. 1, 1999, (12) U.S. provisional patent application Ser. No. 60/154,047, filed on Sep. 16, 1999, (13) U.S. provisional patent application Ser. No. 60/159,082, filed on Oct. 12, 1999, (14) U.S. provisional patent application Ser. No. 60/159,039, filed on Oct. 12, 1999, (15) U.S. provisional patent application Ser. No. 60/159,033, filed on Oct. 12, 1999, (16) U.S. provisional patent application Ser. No. 60/212,359, filed on Jun. 19, 2000, (17) U.S. provisional patent application Ser. No. 60/165,228, filed on Nov. 12, 1999, (18) U.S. provisional patent application Ser. No. 60/221,443, filed on Jul. 28, 2000, (19) U.S. provisional patent application Ser. No. 60/221,645, filed on Jul. 28, 2000, (20) U.S. provisional patent application Ser. No. 60/233,638, filed on Sep. 18, 2000, (21) U.S. provisional patent application Ser. No. 60/237,334, filed on Oct. 2, 2000, (22) U.S. provisional patent application Ser. No. 60/270,007, filed on Feb. 20, 2001, (23) U.S. provisional patent application Ser. No. 60/262,434, filed on Jan. 17, 2001, (24) U.S. provisional patent application Ser. No. 60/259,486, filed on Jan. 3, 2001, (25) U.S. provisional patent application Ser. No. 60/303,740, filed on Jul. 6, 2001, (26) U.S. provisional patent application Ser. No. 60/313,453, filed on Aug. 20, 2001, (27) U.S. provisional patent application Ser. No. 60/317,985, filed on Sep. 6, 2001, (28) U.S. provisional patent application Ser. No. 60/3318,386, filed on Sep. 10, 2001, (29) U.S. utility patent application Ser. No. 09/969,922, filed on Oct. 3, 2001, (30) U.S. utility patent application Ser. No. 10/016,467, filed on Dec. 10, 2001, (31) U.S. provisional patent application Ser. No. 60/343,674, filed on Dec. 27, 2001, (32) U.S. provisional patent application Ser. No. 60/346,309, filed on Jan. 7, 2002, (33) U.S. provisional patent application Ser. No. 60/372,048, filed on Apr. 12, 2002, (34) U.S. provisional patent application Ser. No. 60/380,147, filed on May 6, 2002, (35) U.S. provisional patent application Ser. No. 60/387,486, filed on Jun. 10, 2002, (36) U.S. provisional patent application Ser. No. 60/387,961, filed on Jun. 12, 2002, (37) U.S. provisional patent application Ser. No. 60/394,703, filed on Jun. 26, 2002, (38) U.S. provisional patent application Ser. No. 60/397,284, filed on Jul. 19, 2002, (39) U.S. provisional patent application Ser. No. 60/398,061, filed on Jul. 24, 2002, (40) U.S. provisional patent application Ser. No, 60/405,610, filed on Aug. 23, 2002, (41) U.S. provisional patent application Ser. No. 60/405,394, filed on Aug. 23, 2002, (42) U.S. provisional patent application Ser. No. 60/412,542, filed on Sep. 20, 2002, (43) U.S. provisional patent application Ser. No. 60/412,487, filed on Sep. 20, 2002, (44) U.S. provisional patent application Ser. No. 60/412,488, filed on Sep. 20, 2002, (45) U.S. provisional patent application Ser. No. 60/412,177, filed on Sep. 20, 2002, (46) U.S. provisional patent application Ser. No. 60/412,653, filed on Sep. 20, 2002, (47) U.S. provisional patent application Ser. No. 60/412,544, filed on Sep. 20, 2002, (48) U.S. provisional patent application Ser. No. 60/412,196, filed on Sep. 20, 2002, (49) U.S. provisional patent application Ser. No. 60/412,187, filed on Sep. 20, 2002, and (50) U.S. provisional patent application Ser. No. 60/412,371, filed on Sep. 20, 2002, the disclosures of which are incorporated herein by reference.

PCT Information
Filing Document Filing Date Country Kind 371c Date
PCT/US03/25675 8/18/2003 WO 00 11/8/2005
Publishing Document Publishing Date Country Kind
WO2004/026500 4/1/2004 WO A
US Referenced Citations (848)
Number Name Date Kind
46818 Patterson Mar 1865 A
331940 Bole Dec 1885 A
332184 Bole Dec 1885 A
341237 Healey May 1886 A
519805 Bavier May 1894 A
802880 Phillips, Jr. Oct 1905 A
806156 Marshall Dec 1905 A
958517 Mettler May 1910 A
984449 Stewart Feb 1911 A
1166040 Burlingham Dec 1915 A
1233888 Leonard Jul 1917 A
1494128 Primrose May 1924 A
1589781 Anderson Jun 1926 A
1590357 Feisthamel Jun 1926 A
1597212 Spengler Aug 1926 A
1613461 Johnson Jan 1927 A
1756531 Aldeen et al. Apr 1930 A
1880218 Simmons Oct 1932 A
1981525 Price Nov 1934 A
2046870 Clasen et al. Jul 1936 A
2087185 Dillom Jul 1937 A
2122757 Scott Jul 1938 A
2145168 Flagg Jan 1939 A
2160263 Fletcher May 1939 A
2187275 McLennan Jan 1940 A
2204586 Grau Jun 1940 A
2211173 Shaffer Aug 1940 A
2214226 English Sep 1940 A
2226804 Carroll Dec 1940 A
2246038 Graham Jun 1941 A
2273017 Boynton Feb 1942 A
2301495 Abegg Nov 1942 A
2305282 Taylor, Jr. et al. Dec 1942 A
2371840 Otis Mar 1945 A
2383214 Prout Aug 1945 A
2447629 Beissinger et al. Aug 1948 A
2500276 Church Mar 1950 A
2546295 Boice Mar 1951 A
2583316 Bannister Jan 1952 A
2609258 Taylor, Jr. et al. Nov 1952 A
2627891 Clark Feb 1953 A
2647847 Black et al. Aug 1953 A
2664952 Losey Jan 1954 A
2691418 Connolly Oct 1954 A
2723721 Corsette Nov 1955 A
2734580 Layne Feb 1956 A
2796134 Binkley Jun 1957 A
2812025 Teague et al. Nov 1957 A
2877822 Buck Mar 1959 A
2907589 Knox Oct 1959 A
2919741 Strock et al. Jan 1960 A
2929741 Strock et al. Jan 1960 A
3015362 Moosman Jan 1962 A
3015500 Barnett Jan 1962 A
3018547 Marskell Jan 1962 A
3039530 Condra Jun 1962 A
3067801 Sortor Dec 1962 A
3067819 Gore Dec 1962 A
3068563 Reverman Dec 1962 A
3104703 Rike et al. Sep 1963 A
3111991 O'Neal Nov 1963 A
3167122 Lang Jan 1965 A
3175618 Lang et al. Mar 1965 A
3179168 Vincent Apr 1965 A
3188816 Koch Jun 1965 A
3191677 Kinley Jun 1965 A
3191680 Vincent Jun 1965 A
3203451 Vincent Aug 1965 A
3203483 Vincent Aug 1965 A
3209546 Lawton Oct 1965 A
3210102 Joslin Oct 1965 A
3233315 Levake Feb 1966 A
3245471 Howard Apr 1966 A
3270817 Papaila Sep 1966 A
3297092 Jennings Jan 1967 A
3326293 Skipper Jun 1967 A
3343252 Reesor Sep 1967 A
3353599 Swift Nov 1967 A
3354955 Berry Nov 1967 A
3358760 Blagg Dec 1967 A
3358769 Berry Dec 1967 A
3364993 Skipper Jan 1968 A
3371717 Chenoweth Mar 1968 A
3397745 Owens et al. Aug 1968 A
3412565 Lindsey et al. Nov 1968 A
3419080 Lebourg Dec 1968 A
3422902 Bouchillon Jan 1969 A
3424244 Kinley Jan 1969 A
3427707 Nowosadko Feb 1969 A
3463228 Hearn Aug 1969 A
3477506 Malone Nov 1969 A
3489220 Kinley Jan 1970 A
3489437 Duret Jan 1970 A
3498376 Sizer et al. Mar 1970 A
3504515 Reardon Apr 1970 A
3508771 Duret Apr 1970 A
3520049 Lysenko et al. Jul 1970 A
3528498 Carothers Sep 1970 A
3532174 Diamantides et al. Oct 1970 A
3568773 Chancellor Mar 1971 A
3574357 Alexandru et al. Apr 1971 A
3578081 Bodine May 1971 A
3579805 Kast May 1971 A
3581817 Kammerer, Jr. Jun 1971 A
3605887 Lambie Sep 1971 A
3631926 Young Jan 1972 A
3665591 Kowal May 1972 A
3667547 Ahlstone Jun 1972 A
3669190 Sizer et al. Jun 1972 A
3678727 Jackson Jul 1972 A
3682256 Stuart Aug 1972 A
3687196 Mullins Aug 1972 A
3691624 Kinley Sep 1972 A
3693717 Wuenschel Sep 1972 A
3704730 Witzig Dec 1972 A
3709306 Curington Jan 1973 A
3711123 Arnold Jan 1973 A
3712376 Owen et al. Jan 1973 A
3746068 Deckert et al. Jul 1973 A
3746091 Owen et al. Jul 1973 A
3746092 Land Jul 1973 A
3764168 Kisling, III et al. Oct 1973 A
3776307 Young Dec 1973 A
3779025 Godley et al. Dec 1973 A
3780562 Kinley Dec 1973 A
3781966 Lieberman Jan 1974 A
3785193 Kinley et al. Jan 1974 A
3797259 Kammerer, Jr. Mar 1974 A
3805567 Agius-Sincero Apr 1974 A
3812912 Wuenschel May 1974 A
3818734 Bateman Jun 1974 A
3826124 Baksay Jul 1974 A
3830294 Swanson Aug 1974 A
3830295 Crowe Aug 1974 A
3834742 McPhillips Sep 1974 A
3848668 Sizer et al. Nov 1974 A
3866954 Slator et al. Feb 1975 A
3874446 Crowe Apr 1975 A
3885298 Pogonowski May 1975 A
3887006 Pitts Jun 1975 A
3893718 Powell Jul 1975 A
3898163 Mott Aug 1975 A
3915478 Al et al. Oct 1975 A
3915763 Jennings et al. Oct 1975 A
3935910 Gaudy et al. Feb 1976 A
3942824 Sable Mar 1976 A
3945444 Knudson Mar 1976 A
3948321 Owen et al. Apr 1976 A
3963076 Winslow Jun 1976 A
3970336 O'Sickey et al. Jul 1976 A
3977473 Page, Jr. Aug 1976 A
3989280 Schwarz Nov 1976 A
3997193 Tsuda et al. Dec 1976 A
3999605 Braddick Dec 1976 A
4011652 Black Mar 1977 A
4018634 Fenci Apr 1977 A
4019579 Thuse Apr 1977 A
4026583 Gottlieb May 1977 A
4053247 Marsh, Jr. Oct 1977 A
4069573 Rogers, Jr. et al. Jan 1978 A
4076287 Bill et al. Feb 1978 A
4096913 Kenneday et al. Jun 1978 A
4098334 Crowe Jul 1978 A
4099563 Hutchison et al. Jul 1978 A
4125937 Brown et al. Nov 1978 A
4152821 Scott May 1979 A
4168747 Youmans Sep 1979 A
4190108 Webber Feb 1980 A
4204312 Tooker May 1980 A
4205422 Hardwick Jun 1980 A
4226449 Cole Oct 1980 A
4253687 Maples Mar 1981 A
4257155 Hunter Mar 1981 A
4274665 Marsh, Jr. Jun 1981 A
RE30802 Rogers, Jr. Nov 1981 E
4304428 Grigorian et al. Dec 1981 A
4328983 Gibson May 1982 A
4355664 Cook et al. Oct 1982 A
4359889 Kelly Nov 1982 A
4363358 Ellis Dec 1982 A
4366971 Lula Jan 1983 A
4368571 Cooper, Jr. Jan 1983 A
4379471 Kuenzel Apr 1983 A
4380347 Sable Apr 1983 A
4384625 Roper et al. May 1983 A
4388752 Vinciguerra et al. Jun 1983 A
4391325 Baker et al. Jul 1983 A
4393931 Muse et al. Jul 1983 A
4396061 Tamplen et al. Aug 1983 A
4397484 Miller Aug 1983 A
4401325 Tsuchiya et al. Aug 1983 A
4402372 Cherrington Sep 1983 A
4407681 Ina et al. Oct 1983 A
4411435 McStravick Oct 1983 A
4413395 Garnier Nov 1983 A
4413682 Callihan et al. Nov 1983 A
4420866 Mueller Dec 1983 A
4421169 Dearth et al. Dec 1983 A
4422317 Mueller Dec 1983 A
4422507 Reimert Dec 1983 A
4423889 Weise Jan 1984 A
4423986 Skogberg Jan 1984 A
4424865 Payton, Jr. Jan 1984 A
4429741 Hyland Feb 1984 A
4440233 Baugh et al. Apr 1984 A
4442586 Ridenour Apr 1984 A
4444250 Keithahn et al. Apr 1984 A
4449713 Ishido et al. May 1984 A
4458925 Raulins et al. Jul 1984 A
4462471 Hipp Jul 1984 A
4467630 Kelly Aug 1984 A
4468309 White Aug 1984 A
4469356 Duret et al. Sep 1984 A
4473245 Raulins et al. Sep 1984 A
4483399 Colgate Nov 1984 A
4485847 Wentzell Dec 1984 A
4491001 Yoshida Jan 1985 A
4495073 Beimgraben Jan 1985 A
4501327 Retz Feb 1985 A
4505017 Schukei Mar 1985 A
4505987 Yamada et al. Mar 1985 A
4506432 Smith Mar 1985 A
4507019 Thompson Mar 1985 A
4508129 Brown Apr 1985 A
4508167 Weinberg et al. Apr 1985 A
4511289 Herron Apr 1985 A
4513995 Niehaus et al. Apr 1985 A
4519456 Cochran May 1985 A
4526232 Hughson et al. Jul 1985 A
4526839 Herman et al. Jul 1985 A
4527815 Frick Jul 1985 A
4530231 Main Jul 1985 A
4531552 Kim Jul 1985 A
4537429 Landriault Aug 1985 A
4538442 Reed Sep 1985 A
4538840 DeLange Sep 1985 A
4541655 Hunter Sep 1985 A
4550782 Lawson Nov 1985 A
4550937 Duret Nov 1985 A
4553776 Dodd Nov 1985 A
4573248 Hackett Mar 1986 A
4576386 Benson et al. Mar 1986 A
4581817 Kelly Apr 1986 A
4582348 Dearden et al. Apr 1986 A
4590227 Nakamura et al. May 1986 A
4590995 Evans May 1986 A
4592577 Ayres et al. Jun 1986 A
4595063 Jennings et al. Jun 1986 A
4596913 Takechi Jun 1986 A
4601343 Lindsey, Jr. et al. Jul 1986 A
4603889 Welsh Aug 1986 A
4605063 Ross Aug 1986 A
4611662 Harrington Sep 1986 A
4614233 Menard Sep 1986 A
4629218 Dubois Dec 1986 A
4629224 Lanriault Dec 1986 A
4630849 Fukui et al. Dec 1986 A
4632944 Thompson Dec 1986 A
4634317 Skogberg et al. Jan 1987 A
4635333 Finch Jan 1987 A
4637436 Stewart, Jr. et al. Jan 1987 A
4646787 Rush et al. Mar 1987 A
4649492 Sinha et al. Mar 1987 A
4651836 Richards Mar 1987 A
4656779 Fedeli Apr 1987 A
4660863 Bailey et al. Apr 1987 A
4662446 Brisco et al. May 1987 A
4669541 Bissonnette Jun 1987 A
4674572 Gallus Jun 1987 A
4676563 Curlett et al. Jun 1987 A
4682797 Hildner Jul 1987 A
4685191 Mueller et al. Aug 1987 A
4685834 Jordan Aug 1987 A
4693498 Baugh et al. Sep 1987 A
4711474 Patrick Dec 1987 A
4714117 Dech Dec 1987 A
4730851 Watts Mar 1988 A
4732416 Dearden et al. Mar 1988 A
4735444 Skipper Apr 1988 A
4739654 Pilkington et al. Apr 1988 A
4739916 Ayres et al. Apr 1988 A
4754781 Putter Jul 1988 A
4758025 Frick Jul 1988 A
4762344 Perkins et al. Aug 1988 A
4776394 Lynde et al. Oct 1988 A
4778088 Miller Oct 1988 A
4779445 Rabe Oct 1988 A
4793382 Szalvay Dec 1988 A
4796668 Depret Jan 1989 A
4799544 Curlett Jan 1989 A
4817710 Edwards et al. Apr 1989 A
4817712 Bodine Apr 1989 A
4817716 Taylor et al. Apr 1989 A
4822081 Blose Apr 1989 A
4825674 Tanaka et al. May 1989 A
4826347 Baril et al. May 1989 A
4827594 Cartry et al. May 1989 A
4828033 Frison May 1989 A
4830109 Wedel May 1989 A
4832382 Kapgan May 1989 A
4836278 Stone et al. Jun 1989 A
4836579 Wester et al. Jun 1989 A
4838349 Berzin Jun 1989 A
4842082 Springer Jun 1989 A
4848459 Blackwell et al. Jul 1989 A
4854338 Grantham Aug 1989 A
4856592 Van Bilderbeek et al. Aug 1989 A
4865127 Koster Sep 1989 A
4871199 Ridenour et al. Oct 1989 A
4872253 Carstensen Oct 1989 A
4887646 Groves Dec 1989 A
4888975 Soward et al. Dec 1989 A
4892337 Gunderson et al. Jan 1990 A
4893658 Kimura et al. Jan 1990 A
4904136 Matsumoto Feb 1990 A
4907828 Change Mar 1990 A
4911237 Melenyzer Mar 1990 A
4913758 Koster Apr 1990 A
4915177 Claycomb Apr 1990 A
4915426 Skipper Apr 1990 A
4917409 Reeves Apr 1990 A
4919989 Colangelo Apr 1990 A
4921045 Richardson May 1990 A
4924949 Curlett May 1990 A
4930573 Lane et al. Jun 1990 A
4934038 Caudill Jun 1990 A
4934312 Koster et al. Jun 1990 A
4938291 Lynde et al. Jul 1990 A
4941512 McParland Jul 1990 A
4941532 Hurt et al. Jul 1990 A
4942925 Themig Jul 1990 A
4942926 Lessi Jul 1990 A
4958691 Hipp Sep 1990 A
4968184 Reid Nov 1990 A
4971152 Koster et al. Nov 1990 A
4976322 Abdrakhmanov et al. Dec 1990 A
4981250 Persson Jan 1991 A
4995464 Watkins et al. Feb 1991 A
5014779 Meling et al. May 1991 A
5015017 Geary May 1991 A
5026074 Hoes et al. Jun 1991 A
5031370 Jewett Jul 1991 A
5031699 Artynov et al. Jul 1991 A
5040283 Pelgrom Aug 1991 A
5044676 Burton et al. Sep 1991 A
5048871 Pfeiffer et al. Sep 1991 A
5052483 Hudson Oct 1991 A
5059043 Kuhne Oct 1991 A
5064004 Lundel Nov 1991 A
5079837 Vanselow Jan 1992 A
5083608 Abdrakhmanov et al. Jan 1992 A
5093015 Oldiges Mar 1992 A
5095991 Milberger Mar 1992 A
5097710 Palynchuk Mar 1992 A
5101653 Hermes et al. Apr 1992 A
5105888 Pollock et al. Apr 1992 A
5107221 N'Guyen et al. Apr 1992 A
5119661 Abdrakhmanov et al. Jun 1992 A
5134891 Canevet Aug 1992 A
5150755 Cassel et al. Sep 1992 A
5156043 Ose Oct 1992 A
5156213 George et al. Oct 1992 A
5156223 Hipp Oct 1992 A
5174340 Peterson et al. Dec 1992 A
5174376 Singeetham Dec 1992 A
5181571 Mueller et al. Jan 1993 A
5195583 Toon et al. Mar 1993 A
5197553 Leturno Mar 1993 A
5209600 Koster May 1993 A
5226492 Solaeche et al. Jul 1993 A
5242017 Hailey Sep 1993 A
5249628 Surjaatmadja Oct 1993 A
5253713 Gregg et al. Oct 1993 A
RE34467 Reeves Dec 1993 E
5275242 Payne Jan 1994 A
5282508 Ellingsen et al. Feb 1994 A
5286393 Oldiges et al. Feb 1994 A
5306101 Rockower et al. Apr 1994 A
5309621 O'Donnell et al. May 1994 A
5314014 Tucker May 1994 A
5314209 Kuhne May 1994 A
5318122 Murray et al. Jun 1994 A
5318131 Baker Jun 1994 A
5325923 Surjaatmadja et al. Jul 1994 A
5326137 Lorenz et al. Jul 1994 A
5327964 O'Donnell et al. Jul 1994 A
5330850 Suzuki et al. Jul 1994 A
5332038 Tapp et al. Jul 1994 A
5332049 Tew Jul 1994 A
5333692 Baugh et al. Aug 1994 A
5335736 Windsor Aug 1994 A
5337808 Graham Aug 1994 A
5337823 Nobileau Aug 1994 A
5337827 Hromas et al. Aug 1994 A
5339894 Stotler Aug 1994 A
5343949 Ross et al. Sep 1994 A
5346007 Dillon et al. Sep 1994 A
5348087 Williamson, Jr. Sep 1994 A
5348093 Wood et al. Sep 1994 A
5348095 Worrall et al. Sep 1994 A
5348668 Oldiges et al. Sep 1994 A
5351752 Wood et al. Oct 1994 A
5360239 Klementich Nov 1994 A
5360292 Allen et al. Nov 1994 A
5361836 Sorem et al. Nov 1994 A
5361843 Shy et al. Nov 1994 A
5366010 Zwart Nov 1994 A
5366012 Lohbeck Nov 1994 A
5368075 Bäro et al. Nov 1994 A
5370425 Dougherty et al. Dec 1994 A
5375661 Daneshy et al. Dec 1994 A
5388648 Jordan, Jr. Feb 1995 A
5390735 Williamson, Jr. Feb 1995 A
5390742 Dines et al. Feb 1995 A
5396957 Surjaatmadja et al. Mar 1995 A
5400827 Baro et al. Mar 1995 A
5405171 Allen et al. Apr 1995 A
5411301 Moyer et al. May 1995 A
5413180 Ross et al. May 1995 A
5419595 Yamamoto et al. May 1995 A
5425559 Nobileau Jun 1995 A
5426130 Thurder et al. Jun 1995 A
5431831 Vincent Jul 1995 A
5435395 Connell Jul 1995 A
5439320 Abrams Aug 1995 A
5443129 Bailey et al. Aug 1995 A
5447201 Mohn Sep 1995 A
5454419 Vloedman Oct 1995 A
5456319 Schmidt et al. Oct 1995 A
5458194 Brooks Oct 1995 A
5462120 Gondouin Oct 1995 A
5467822 Zwart Nov 1995 A
5472055 Simson et al. Dec 1995 A
5474334 Eppink Dec 1995 A
5492173 Kilgore et al. Feb 1996 A
5494106 Gueguen et al. Feb 1996 A
5507343 Carlton et al. Apr 1996 A
5511620 Baugh et al. Apr 1996 A
5524937 Sides, III et al. Jun 1996 A
5535824 Hudson Jul 1996 A
5536422 Oldiges et al. Jul 1996 A
5540281 Round Jul 1996 A
5554244 Ruggles et al. Sep 1996 A
5566772 Coone et al. Oct 1996 A
5567335 Baessler et al. Oct 1996 A
5576485 Serata Nov 1996 A
5584512 Carstensen Dec 1996 A
5606792 Schafer Mar 1997 A
5611399 Richard et al. Mar 1997 A
5613557 Blount et al. Mar 1997 A
5617918 Cooksey et al. Apr 1997 A
5642560 Tabuchi et al. Jul 1997 A
5642781 Richard Jul 1997 A
5662180 Coffman et al. Sep 1997 A
5664327 Swars Sep 1997 A
5667011 Gill et al. Sep 1997 A
5667252 Schafer et al. Sep 1997 A
5678609 Washburn Oct 1997 A
5685369 Ellis et al. Nov 1997 A
5689871 Carstensen Nov 1997 A
5695008 Bertet et al. Dec 1997 A
5695009 Hipp Dec 1997 A
5697442 Baldridge Dec 1997 A
5697449 Hennig et al. Dec 1997 A
5718288 Bertet et al. Feb 1998 A
5738146 Abe Apr 1998 A
5743335 Bussear Apr 1998 A
5749419 Coronado et al. May 1998 A
5749585 Lembcke May 1998 A
5755895 Tamehiro et al. May 1998 A
5775422 Wong et al. Jul 1998 A
5785120 Smalley et al. Jul 1998 A
5787933 Russ et al. Aug 1998 A
5791419 Valisalo Aug 1998 A
5794702 Nobileau Aug 1998 A
5797454 Hipp Aug 1998 A
5829520 Johnson Nov 1998 A
5829524 Flanders et al. Nov 1998 A
5829797 Yamamoto et al. Nov 1998 A
5833001 Song et al. Nov 1998 A
5845945 Carstensen Dec 1998 A
5849188 Voll et al. Dec 1998 A
5857524 Harris Jan 1999 A
5862866 Springer Jan 1999 A
5875851 Vick, Jr. et al. Mar 1999 A
5885941 Sateva et al. Mar 1999 A
5895079 Carstensen et al. Apr 1999 A
5901789 Donnelly et al. May 1999 A
5918677 Head Jul 1999 A
5924745 Campbell Jul 1999 A
5931511 DeLange et al. Aug 1999 A
5933945 Thomeer et al. Aug 1999 A
5944100 Hipp Aug 1999 A
5944107 Ohmer Aug 1999 A
5944108 Baugh et al. Aug 1999 A
5951207 Chen Sep 1999 A
5957195 Bailey et al. Sep 1999 A
5964288 Leighton et al. Oct 1999 A
5971443 Noel et al. Oct 1999 A
5975587 Wood et al. Nov 1999 A
5979560 Nobileau Nov 1999 A
5984369 Crook et al. Nov 1999 A
5984568 Lohbeck Nov 1999 A
6012521 Zunkel et al. Jan 2000 A
6012522 Donnelly et al. Jan 2000 A
6012523 Campbell et al. Jan 2000 A
6012874 Groneck et al. Jan 2000 A
6015012 Reddick Jan 2000 A
6017168 Fraser et al. Jan 2000 A
6021850 Woo et al. Feb 2000 A
6024181 Richardson et al. Feb 2000 A
6027145 Tsuru et al. Feb 2000 A
6029748 Forsyth et al. Feb 2000 A
6035954 Hipp Mar 2000 A
6044906 Saltel Apr 2000 A
6047505 Willow Apr 2000 A
6047774 Allen Apr 2000 A
6050341 Metcalf Apr 2000 A
6050346 Hipp Apr 2000 A
6056059 Ohmer May 2000 A
6056324 Reimert et al. May 2000 A
6062324 Hipp May 2000 A
6065500 Metcalfe May 2000 A
6070671 Cumming et al. Jun 2000 A
6073332 Turner Jun 2000 A
6073692 Wood et al. Jun 2000 A
6073698 Schultz et al. Jun 2000 A
6074133 Kelsey Jun 2000 A
6078031 Bliault et al. Jun 2000 A
6079495 Ohmer Jun 2000 A
6085838 Vercaemer et al. Jul 2000 A
6089320 LaGrange Jul 2000 A
6098717 Bailey et al. Aug 2000 A
6102119 Raines Aug 2000 A
6109355 Reid Aug 2000 A
6112818 Campbell Sep 2000 A
6131265 Bird Oct 2000 A
6135208 Gano et al. Oct 2000 A
6138761 Freeman et al. Oct 2000 A
6142230 Smalley et al. Nov 2000 A
6155613 Quadflieg et al. Dec 2000 A
6158785 Beaulier et al. Dec 2000 A
6158963 Hollis Dec 2000 A
6167970 Stout Jan 2001 B1
6182775 Hipp Feb 2001 B1
6183013 Mackenzie et al. Feb 2001 B1
6183573 Fujiwara et al. Feb 2001 B1
6196336 Fincher et al. Mar 2001 B1
6216509 Lotspaih et al. Apr 2001 B1
6220306 Omura et al. Apr 2001 B1
6226855 Maine May 2001 B1
6231086 Tierling May 2001 B1
6237967 Yamamoto et al. May 2001 B1
6250385 Montaron Jun 2001 B1
6253846 Nazzai et al. Jul 2001 B1
6253850 Nazzai et al. Jul 2001 B1
6263966 Haut et al. Jul 2001 B1
6263968 Freeman et al. Jul 2001 B1
6263972 Richard et al. Jul 2001 B1
6267181 Rhein-Knudsen et al. Jul 2001 B1
6273634 Lohbeck Aug 2001 B1
6275556 Kinney et al. Aug 2001 B1
6283211 Vloedman Sep 2001 B1
6286558 Quigley et al. Sep 2001 B1
6302211 Nelson et al. Oct 2001 B1
6311792 Scott et al. Nov 2001 B1
6315040 Donnelly Nov 2001 B1
6315043 Farrant et al. Nov 2001 B1
6318457 Den Boer et al. Nov 2001 B1
6318465 Coon et al. Nov 2001 B1
6322109 Campbell et al. Nov 2001 B1
6325148 Trahan et al. Dec 2001 B1
6328113 Cook Dec 2001 B1
6334351 Tsuchiya Jan 2002 B1
6343495 Cheppe et al. Feb 2002 B1
6343657 Baugh et al. Feb 2002 B1
6345373 Chakradhar et al. Feb 2002 B1
6345431 Greig Feb 2002 B1
6349521 McKeon et al. Feb 2002 B1
6352112 Mills Mar 2002 B1
6354373 Vercaemer et al. Mar 2002 B1
6390720 LeBegue et al. May 2002 B1
6405761 Shimizu et al. Jun 2002 B1
6406063 Pfeiffer Jun 2002 B1
6409175 Evans et al. Jun 2002 B1
6419025 Lohbeck et al. Jul 2002 B1
6419026 MacKenzie et al. Jul 2002 B1
6419033 Hahn et al. Jul 2002 B1
6419147 Daniel Jul 2002 B1
6425444 Metcalfe et al. Jul 2002 B1
6431277 Cox et al. Aug 2002 B1
6443247 Wardley Sep 2002 B1
6446724 Baugh et al. Sep 2002 B2
6447025 Smith Sep 2002 B1
6450261 Baugh Sep 2002 B1
6454013 Metcalfe Sep 2002 B1
6454024 Nackerud Sep 2002 B1
6457532 Simpson Oct 2002 B1
6457533 Metcalfe Oct 2002 B1
6457749 Heijnen Oct 2002 B1
6460615 Heijnen Oct 2002 B1
6464008 Roddy et al. Oct 2002 B1
6464014 Bernat Oct 2002 B1
6470966 Cook et al. Oct 2002 B2
6470996 Kyle et al. Oct 2002 B1
6478092 Voll et al. Nov 2002 B2
6491108 Slup et al. Dec 2002 B1
6497289 Cook et al. Dec 2002 B1
6513243 Bignucolo et al. Feb 2003 B1
6516887 Nguyen et al. Feb 2003 B2
6517126 Peterson et al. Feb 2003 B1
6527049 Metcalfe et al. Mar 2003 B2
6543545 Chatterji et al. Apr 2003 B1
6543552 Metcalfe et al. Apr 2003 B1
6550539 Maguire et al. Apr 2003 B2
6550821 DeLange et al. Apr 2003 B2
6557640 Cook et al. May 2003 B1
6557906 Carcagno May 2003 B1
6561227 Cook et al. May 2003 B2
6561279 MacKenzie et al. May 2003 B2
6564875 Bullock May 2003 B1
6568471 Cook et al. May 2003 B1
6568488 Wentworth et al. May 2003 B2
6575240 Cook et al. Jun 2003 B1
6578630 Simpson et al. Jun 2003 B2
6585053 Coon Jul 2003 B2
6585299 Quadflieg et al. Jul 2003 B1
6591905 Coon Jul 2003 B2
6598677 Baugh et al. Jul 2003 B1
6598678 Simpson Jul 2003 B1
6604763 Cook et al. Aug 2003 B1
6607220 Sivley, IV Aug 2003 B2
6609735 DeLange et al. Aug 2003 B1
6619696 Baugh et al. Sep 2003 B2
6622797 Sivley, IV Sep 2003 B2
6629567 Lauritzen et al. Oct 2003 B2
6631759 Cook et al. Oct 2003 B2
6631760 Cook et al. Oct 2003 B2
6631765 Baugh et al. Oct 2003 B2
6631769 Cook et al. Oct 2003 B2
6634431 Cook et al. Oct 2003 B2
6640895 Murray Nov 2003 B2
6640903 Cook et al. Nov 2003 B1
6648075 Badrak et al. Nov 2003 B2
6659509 Goto et al. Dec 2003 B2
6662876 Lauritzen Dec 2003 B2
6668937 Murray Dec 2003 B1
6672759 Feger Jan 2004 B2
6679328 Davis et al. Jan 2004 B2
6681862 Freeman Jan 2004 B2
6684947 Cook et al. Feb 2004 B2
6688397 McClurkin et al. Feb 2004 B2
6695012 Ring et al. Feb 2004 B1
6695065 Simpson et al. Feb 2004 B2
6698517 Simpson Mar 2004 B2
6701598 Chen et al. Mar 2004 B2
6702030 Simpson Mar 2004 B2
6705395 Cook et al. Mar 2004 B2
6708767 Harrall et al. Mar 2004 B2
6712154 Cook et al. Mar 2004 B2
6712401 Coulon et al. Mar 2004 B2
6719064 Price-Smith et al. Apr 2004 B2
6722427 Gano et al. Apr 2004 B2
6722437 Vercaemer et al. Apr 2004 B2
6722443 Metcalfe Apr 2004 B1
6725917 Metcalfe Apr 2004 B2
6725919 Cook et al. Apr 2004 B2
6725934 Coronado et al. Apr 2004 B2
6725939 Richard Apr 2004 B2
6732806 Mauldin et al. May 2004 B2
6739392 Cook et al. May 2004 B2
6745845 Cook et al. Jun 2004 B2
6755447 Galle, Jr. et al. Jun 2004 B2
6758278 Cook et al. Jul 2004 B2
6772841 Gano Aug 2004 B2
6796380 Xu Sep 2004 B2
6814147 Baugh Nov 2004 B2
6817633 Brill et al. Nov 2004 B2
6820690 Vercaemer et al. Nov 2004 B2
6823937 Cook et al. Nov 2004 B1
6832649 Bode et al. Dec 2004 B2
6834725 Whanger et al. Dec 2004 B2
6843322 Burtner et al. Jan 2005 B2
6857473 Cook et al. Feb 2005 B2
6880632 Tom et al. Apr 2005 B2
6892819 Cook et al. May 2005 B2
6902000 Simpson et al. Jun 2005 B2
6902652 Martin Jun 2005 B2
6907652 Heijnen Jun 2005 B1
6923261 Metcalfe et al. Aug 2005 B2
6935429 Badrack Aug 2005 B2
6935430 Harrall et al. Aug 2005 B2
6966370 Cook et al. Nov 2005 B2
6976539 Metcalfe et al. Dec 2005 B2
6976541 Brisco et al. Dec 2005 B2
7000953 Berghaus Feb 2006 B2
7007760 Lohbeck Mar 2006 B2
7021390 Cook et al. Apr 2006 B2
7036582 Cook et al. May 2006 B2
7044221 Cook et al. May 2006 B2
7048062 Ring et al. May 2006 B2
7066284 Wylie et al. Jun 2006 B2
7077211 Cook et al. Jul 2006 B2
7077213 Cook et al. Jul 2006 B2
7086475 Cook Aug 2006 B2
7100685 Cook et al. Sep 2006 B2
7121337 Cook et al. Oct 2006 B2
7121352 Cook et al. Oct 2006 B2
7124821 Metcalfe et al. Oct 2006 B2
7124823 Oosterling Oct 2006 B2
7124826 Simpson Oct 2006 B2
20010002626 Frank et al. Jun 2001 A1
20010020532 Baugh et al. Sep 2001 A1
20010045284 Simpson et al. Nov 2001 A1
20010045289 Cook et al. Nov 2001 A1
20010047870 Cook et al. Dec 2001 A1
20020011339 Murray Jan 2002 A1
20020014339 Ross Feb 2002 A1
20020020524 Gano Feb 2002 A1
20020020531 Ohmer Feb 2002 A1
20020033261 Metcalfe Mar 2002 A1
20020060068 Cook et al. May 2002 A1
20020062956 Murray et al. May 2002 A1
20020066576 Cook et al. Jun 2002 A1
20020066578 Broome Jun 2002 A1
20020070023 Turner et al. Jun 2002 A1
20020070031 Voll et al. Jun 2002 A1
20020079101 Baugh et al. Jun 2002 A1
20020084070 Voll et al. Jul 2002 A1
20020092654 Coronado et al. Jul 2002 A1
20020108756 Harrall et al. Aug 2002 A1
20020139540 Lauritzen Oct 2002 A1
20020144822 Hackworth et al. Oct 2002 A1
20020148612 Cook et al. Oct 2002 A1
20020185274 Simpson et al. Dec 2002 A1
20020189816 Cook et al. Dec 2002 A1
20020195252 Maguire et al. Dec 2002 A1
20020195256 Metcalfe et al. Dec 2002 A1
20030024708 Ring et al. Feb 2003 A1
20030024711 Simpson et al. Feb 2003 A1
20030034177 Chitwood et al. Feb 2003 A1
20030042022 Lauritzen et al. Mar 2003 A1
20030047322 Maguire et al. Mar 2003 A1
20030047323 Jackson et al. Mar 2003 A1
20030056991 Hahn et al. Mar 2003 A1
20030066655 Cook et al. Apr 2003 A1
20030067166 Sivley et al. Apr 2003 A1
20030075337 Maguire Apr 2003 A1
20030075338 Sivley, IV Apr 2003 A1
20030075339 Gano et al. Apr 2003 A1
20030094277 Cook et al. May 2003 A1
20030094278 Cook et al. May 2003 A1
20030094279 Ring et al. May 2003 A1
20030098154 Cook et al. May 2003 A1
20030098162 Cook May 2003 A1
20030107217 Daigle et al. Jun 2003 A1
20030111234 McClurkin et al. Jun 2003 A1
20030116318 Metcalfe Jun 2003 A1
20030116325 Cook et al. Jun 2003 A1
20030121558 Cook et al. Jul 2003 A1
20030121655 Lauritzen et al. Jul 2003 A1
20030121669 Cook et al. Jul 2003 A1
20030140673 Marr et al. Jul 2003 A1
20030150608 Smith, Jr. et al. Aug 2003 A1
20030168222 Maguire et al. Sep 2003 A1
20030173090 Cook et al. Sep 2003 A1
20030192705 Cook et al. Oct 2003 A1
20030221841 Burtner et al. Dec 2003 A1
20030222455 Cook et al. Dec 2003 A1
20040011534 Simonds et al. Jan 2004 A1
20040045616 Cook et al. Mar 2004 A1
20040045718 Brisco et al. Mar 2004 A1
20040060706 Stephenson Apr 2004 A1
20040065446 Tran et al. Apr 2004 A1
20040069499 Cook et al. Apr 2004 A1
20040112589 Cook et al. Jun 2004 A1
20040112606 Lewis et al. Jun 2004 A1
20040118574 Cook et al. Jun 2004 A1
20040123983 Cook et al. Jul 2004 A1
20040123988 Cook et al. Jul 2004 A1
20040129431 Jackson Jul 2004 A1
20040159446 Haugen et al. Aug 2004 A1
20040188099 Cook et al. Sep 2004 A1
20040216873 Frost, Jr. et al. Nov 2004 A1
20040221996 Burge Nov 2004 A1
20040231839 Ellington et al. Nov 2004 A1
20040231855 Cook et al. Nov 2004 A1
20040238181 Cook et al. Dec 2004 A1
20040244968 Cook et al. Dec 2004 A1
20040262014 Cook et al. Dec 2004 A1
20050011641 Cook et al. Jan 2005 A1
20050015963 Costa et al. Jan 2005 A1
20050028988 Cook et al. Feb 2005 A1
20050039910 Lohbeck Feb 2005 A1
20050039928 Cook et al. Feb 2005 A1
20050045324 Cook et al. Mar 2005 A1
20050045341 Cook et al. Mar 2005 A1
20050045342 Luke et al. Mar 2005 A1
20050056433 Watson et al. Mar 2005 A1
20050056434 Watson et al. Mar 2005 A1
20050077051 Cook et al. Apr 2005 A1
20050081358 Cook et al. Apr 2005 A1
20050087337 Brisco et al. Apr 2005 A1
20050098323 Cook et al. May 2005 A1
20050103502 Watson et al. May 2005 A1
20050123639 Ring et al. Jun 2005 A1
20050133225 Oosterling Jun 2005 A1
20050138790 Cook et al. Jun 2005 A1
20050144771 Cook et al. Jul 2005 A1
20050144772 Cook et al. Jul 2005 A1
20050144777 Cook et al. Jul 2005 A1
20050150098 Cook et al. Jul 2005 A1
20050150660 Cook et al. Jul 2005 A1
20050161228 Cook et al. Jul 2005 A1
20050166387 Cook et al. Aug 2005 A1
20050166388 Cook et al. Aug 2005 A1
20050173108 Cook et al. Aug 2005 A1
20050175473 Park et al. Aug 2005 A1
20050183863 Cook et al. Aug 2005 A1
20050205253 Cook et al. Sep 2005 A1
20050217768 Asahi et al. Oct 2005 A1
20050217865 Ring et al. Oct 2005 A1
20050217866 Watson et al. Oct 2005 A1
20050223535 Cook et al. Oct 2005 A1
20050224225 Cook et al. Oct 2005 A1
20050230102 Cook et al. Oct 2005 A1
20050230103 Cook et al. Oct 2005 A1
20050230104 Cook et al. Oct 2005 A1
20050230123 Waddell et al. Oct 2005 A1
20050236159 Ring et al. Oct 2005 A1
20050236163 Cook et al. Oct 2005 A1
20050244578 Van Egmond et al. Nov 2005 A1
20050246883 Alliot et al. Nov 2005 A1
20050247453 Shuster et al. Nov 2005 A1
20050265788 Renkema Dec 2005 A1
20050269107 Cook et al. Dec 2005 A1
20060027371 Gorrara Feb 2006 A1
20060032640 Costa et al. Feb 2006 A1
20060048948 Noel Mar 2006 A1
20060054330 Ring et al. Mar 2006 A1
20060065403 Watson et al. Mar 2006 A1
20060065406 Shuster et al. Mar 2006 A1
20060096762 Brisco May 2006 A1
20060102360 Brisco et al. May 2006 A1
20060112768 Shuster et al. Jun 2006 A1
20060113086 Costa et al. Jun 2006 A1
20060266537 Izumisawa Nov 2006 A1
20060272826 Shuster et al. Dec 2006 A1
Foreign Referenced Citations (644)
Number Date Country
767364 Feb 2004 AU
770008 Jul 2004 AU
770359 Jul 2004 AU
771884 Aug 2004 AU
776580 Jan 2005 AU
780123 Mar 2005 AU
2001269810 Aug 2005 AU
782901 Sep 2005 AU
783245 Oct 2005 AU
2001294802 Oct 2005 AU
2001283026 Jul 2006 AU
2002239857 Aug 2006 AU
2001292695 Oct 2006 AU
736288 Jun 1966 CA
771462 Nov 1967 CA
1171310 Jul 1984 CA
2292171 Jun 2000 CA
2298139 Aug 2000 CA
2234386 Mar 2003 CA
2414449 Sep 2006 CA
2289811 Jan 2007 CA
174521 Apr 1953 DE
2458188 Jun 1975 DE
203767 Nov 1983 DE
233607 Mar 1986 DE
278517 May 1990 DE
0084940 Aug 1983 EP
0272511 Dec 1987 EP
0294264 May 1988 EP
0553566 Dec 1992 EP
0633391 Jan 1995 EP
0713953 Nov 1995 EP
0823534 Feb 1998 EP
0881354 Dec 1998 EP
0881359 Dec 1998 EP
0899420 Mar 1999 EP
0937861 Aug 1999 EP
0952305 Oct 1999 EP
0952306 Oct 1999 EP
1141515 Oct 2001 EP
1152120 Nov 2001 EP
1152120 Nov 2001 EP
1235972 Sep 2002 EP
1555386 Jul 2005 EP
1325596 Jun 1962 FR
2583398 Dec 1986 FR
2717855 Sep 1995 FR
2741907 Jun 1997 FR
2771133 May 1999 FR
2780751 Jan 2000 FR
2841626 Jan 2004 FR
557823 Dec 1943 GB
788150 Dec 1957 GB
851096 Oct 1960 GB
1008383 Jul 1962 GB
961750 Jun 1964 GB
1000383 Oct 1965 GB
1062610 Mar 1967 GB
1111536 May 1968 GB
1448304 Sep 1976 GB
1460864 Jan 1977 GB
1542847 Mar 1979 GB
1563740 Mar 1980 GB
2058877 Apr 1981 GB
2108228 May 1983 GB
2115860 Sep 1983 GB
2125876 Mar 1984 GB
2211573 Jul 1989 GB
2216926 Oct 1989 GB
2243191 Oct 1991 GB
2256910 Dec 1992 GB
2257184 Jun 1993 GB
2305682 Apr 1997 GB
2325949 May 1998 GB
2322655 Sep 1998 GB
2326896 Jan 1999 GB
2329916 Apr 1999 GB
2329918 Apr 1999 GB
2331103 May 1999 GB
2336383 Oct 1999 GB
2355738 Apr 2000 GB
2343691 May 2000 GB
2344606 Jun 2000 GB
2345308 Jul 2000 GB
2368865 Jul 2000 GB
2346165 Aug 2000 GB
2346632 Aug 2000 GB
2347445 Sep 2000 GB
2347446 Sep 2000 GB
2347950 Sep 2000 GB
2347952 Sep 2000 GB
2348223 Sep 2000 GB
2348657 Oct 2000 GB
2357099 Dec 2000 GB
2356651 May 2001 GB
2350137 Aug 2001 GB
2361724 Oct 2001 GB
2365898 Feb 2002 GB
2359837 Apr 2002 GB
2370301 Jun 2002 GB
2371064 Jul 2002 GB
2371574 Jul 2002 GB
2373524 Sep 2002 GB
2367842 Oct 2002 GB
2374098 Oct 2002 GB
2374622 Oct 2002 GB
2375560 Nov 2002 GB
2380213 Apr 2003 GB
2380503 Apr 2003 GB
2381019 Apr 2003 GB
2343691 May 2003 GB
2382364 May 2003 GB
2382828 Jun 2003 GB
2344606 Aug 2003 GB
2347950 Aug 2003 GB
2380213 Aug 2003 GB
2380214 Aug 2003 GB
2380215 Aug 2003 GB
2348223 Sep 2003 GB
2347952 Oct 2003 GB
2348657 Oct 2003 GB
2384800 Oct 2003 GB
2384801 Oct 2003 GB
2384802 Oct 2003 GB
2384803 Oct 2003 GB
2384804 Oct 2003 GB
2384805 Oct 2003 GB
2384806 Oct 2003 GB
2384807 Oct 2003 GB
2384808 Oct 2003 GB
2385353 Oct 2003 GB
2385354 Oct 2003 GB
2385355 Oct 2003 GB
2385356 Oct 2003 GB
2385357 Oct 2003 GB
2385358 Oct 2003 GB
2385359 Oct 2003 GB
2385360 Oct 2003 GB
2385361 Oct 2003 GB
2385362 Oct 2003 GB
2385363 Oct 2003 GB
2385619 Oct 2003 GB
2385620 Oct 2003 GB
2385621 Oct 2003 GB
2385622 Oct 2003 GB
2385623 Oct 2003 GB
2387405 Oct 2003 GB
2387861 Oct 2003 GB
2388134 Nov 2003 GB
2388860 Nov 2003 GB
2355738 Dec 2003 GB
2374622 Dec 2003 GB
2388391 Dec 2003 GB
2388392 Dec 2003 GB
2388393 Dec 2003 GB
2388394 Dec 2003 GB
2388395 Dec 2003 GB
2356651 Feb 2004 GB
2368865 Feb 2004 GB
2388860 Feb 2004 GB
2388861 Feb 2004 GB
2388862 Feb 2004 GB
2391886 Feb 2004 GB
2390628 Mar 2004 GB
2391033 Mar 2004 GB
2392686 Mar 2004 GB
2393199 Mar 2004 GB
2373524 Apr 2004 GB
2390387 Apr 2004 GB
2392686 Apr 2004 GB
2392691 Apr 2004 GB
2391575 May 2004 GB
2394979 May 2004 GB
2395506 May 2004 GB
2392932 Jun 2004 GB
2395734 Jun 2004 GB
2396635 Jun 2004 GB
2396639 Jun 2004 GB
2396640 Jun 2004 GB
2396641 Jun 2004 GB
2396642 Jun 2004 GB
2396643 Jun 2004 GB
2396644 Jun 2004 GB
2396646 Jun 2004 GB
2373468 Jul 2004 GB
2397261 Jul 2004 GB
2397262 Jul 2004 GB
2397263 Jul 2004 GB
2397264 Jul 2004 GB
2397265 Jul 2004 GB
2390622 Aug 2004 GB
2398087 Aug 2004 GB
2398317 Aug 2004 GB
2398318 Aug 2004 GB
2398319 Aug 2004 GB
2398320 Aug 2004 GB
2398321 Aug 2004 GB
2398322 Aug 2004 GB
2398323 Aug 2004 GB
2398326 Aug 2004 GB
2382367 Sep 2004 GB
2396641 Sep 2004 GB
2396643 Sep 2004 GB
2397261 Sep 2004 GB
2397262 Sep 2004 GB
2397263 Sep 2004 GB
2397264 Sep 2004 GB
2397265 Sep 2004 GB
2399120 Sep 2004 GB
2399579 Sep 2004 GB
2399580 Sep 2004 GB
2399848 Sep 2004 GB
2399849 Sep 2004 GB
2399850 Sep 2004 GB
2384502 Oct 2004 GB
2396644 Oct 2004 GB
2400126 Oct 2004 GB
2400393 Oct 2004 GB
2400624 Oct 2004 GB
2396640 Nov 2004 GB
2396642 Nov 2004 GB
2401136 Nov 2004 GB
2401137 Nov 2004 GB
2401138 Nov 2004 GB
2401630 Nov 2004 GB
2401631 Nov 2004 GB
2401632 Nov 2004 GB
2401633 Nov 2004 GB
2401634 Nov 2004 GB
2401635 Nov 2004 GB
2401636 Nov 2004 GB
2401637 Nov 2004 GB
2401638 Nov 2004 GB
2401639 Nov 2004 GB
2381019 Dec 2004 GB
2382368 Dec 2004 GB
2394979 Dec 2004 GB
2401136 Dec 2004 GB
2401137 Dec 2004 GB
2401138 Dec 2004 GB
2403970 Jan 2005 GB
2403971 Jan 2005 GB
2403972 Jan 2005 GB
2400624 Feb 2005 GB
2404402 Feb 2005 GB
2404676 Feb 2005 GB
2404680 Feb 2005 GB
2384807 Mar 2005 GB
2388134 Mar 2005 GB
2398320 Mar 2005 GB
2398323 Mar 2005 GB
2399120 Mar 2005 GB
2399848 Mar 2005 GB
2399849 Mar 2005 GB
2405893 Mar 2005 GB
2406117 Mar 2005 GB
2406118 Mar 2005 GB
2406119 Mar 2005 GB
2406120 Mar 2005 GB
2406125 Mar 2005 GB
2406126 Mar 2005 GB
2410518 Mar 2005 GB
2406599 Apr 2005 GB
2389597 May 2005 GB
2399119 May 2005 GB
2399580 May 2005 GB
2401630 May 2005 GB
2401631 May 2005 GB
2401632 May 2005 GB
2401633 May 2005 GB
2401634 May 2005 GB
2401635 May 2005 GB
2401636 May 2005 GB
2401637 May 2005 GB
2401638 May 2005 GB
2401639 May 2005 GB
2408278 May 2005 GB
2399579 Jun 2005 GB
2409216 Jun 2005 GB
2409218 Jun 2005 GB
2401893 Jul 2005 GB
2414749 Jul 2005 GB
2414750 Jul 2005 GB
2414751 Jul 2005 GB
2398326 Aug 2005 GB
2403970 Aug 2005 GB
2403971 Aug 2005 GB
2403972 Aug 2005 GB
2380503 Oct 2005 GB
2382828 Oct 2005 GB
2398317 Oct 2005 GB
2398318 Oct 2005 GB
2398319 Oct 2005 GB
2398321 Oct 2005 GB
2398322 Oct 2005 GB
2412681 Oct 2005 GB
2412682 Oct 2005 GB
2413136 Oct 2005 GB
2414493 Nov 2005 GB
2409217 Dec 2005 GB
2410518 Dec 2005 GB
2415003 Dec 2005 GB
2415219 Dec 2005 GB
2395506 Jan 2006 GB
2412681 Jan 2006 GB
2412682 Jan 2006 GB
2415797 Jan 2006 GB
2415983 Jan 2006 GB
2415987 Jan 2006 GB
2415988 Jan 2006 GB
2416177 Jan 2006 GB
2416361 Jan 2006 GB
2416556 Feb 2006 GB
2416794 Feb 2006 GB
2416795 Feb 2006 GB
2417273 Feb 2006 GB
2417275 Feb 2006 GB
2418216 Mar 2006 GB
2418217 Mar 2006 GB
2418690 Apr 2006 GB
2418941 Apr 2006 GB
2418942 Apr 2006 GB
2418943 Apr 2006 GB
2418944 Apr 2006 GB
2419907 May 2006 GB
2419913 May 2006 GB
2400126 Jun 2006 GB
2414749 Jun 2006 GB
2420810 Jun 2006 GB
2421257 Jun 2006 GB
2421258 Jun 2006 GB
2421259 Jun 2006 GB
2421262 Jun 2006 GB
2421529 Jun 2006 GB
2422164 Jul 2006 GB
2406599 Aug 2006 GB
2418690 Aug 2006 GB
2421257 Aug 2006 GB
2421258 Aug 2006 GB
2422859 Aug 2006 GB
2422860 Aug 2006 GB
2423317 Aug 2006 GB
2424077 Aug 2006 GB
2404676 Sep 2006 GB
2414493 Sep 2006 GB
2408277 May 2008 GB
208458 Oct 1985 JP
6475715 Mar 1989 JP
102875 Apr 1995 JP
11-169975 Jun 1999 JP
94068 Apr 2000 JP
107870 Apr 2000 JP
162192 Jun 2000 JP
2001-47161 Feb 2001 JP
9001081 Dec 1991 NL
113267 May 1998 RO
1786241 Jan 1993 RU
1804543 Mar 1993 RU
1810482 Apr 1993 RU
1818459 May 1993 RU
2016345 Jul 1994 RU
2039214 Jul 1995 RU
2056201 Mar 1996 RU
2064357 Jul 1996 RU
2068940 Nov 1996 RU
2068943 Nov 1996 RU
2079633 May 1997 RU
2083798 Jul 1997 RU
2091655 Sep 1997 RU
2095179 Nov 1997 RU
2105128 Feb 1998 RU
2108445 Apr 1998 RU
2144128 Jan 2000 RU
350833 Sep 1972 SU
511468 Sep 1976 SU
607950 May 1978 SU
612004 May 1978 SU
620582 Jul 1978 SU
641070 Jan 1979 SU
909114 May 1979 SU
832049 May 1981 SU
853089 Aug 1981 SU
874952 Oct 1981 SU
894169 Jan 1982 SU
899850 Jan 1982 SU
907220 Feb 1982 SU
953172 Aug 1982 SU
959878 Sep 1982 SU
976019 Nov 1982 SU
976020 Nov 1982 SU
989038 Jan 1983 SU
1002514 Mar 1983 SU
1041671 Sep 1983 SU
1051222 Oct 1983 SU
1086118 Apr 1984 SU
1077803 Jul 1984 SU
1158400 May 1985 SU
1212575 Feb 1986 SU
1250637 Aug 1986 SU
1324722 Jul 1987 SU
1324722 Jul 1987 SU
1411434 Jul 1988 SU
1430498 Oct 1988 SU
1432190 Oct 1988 SU
1601330 Oct 1990 SU
1627663 Feb 1991 SU
1659621 Jun 1991 SU
1663179 Jul 1991 SU
1663180 Jul 1991 SU
1677225 Sep 1991 SU
1677248 Sep 1991 SU
1686123 Oct 1991 SU
1686124 Oct 1991 SU
1686125 Oct 1991 SU
1698413 Dec 1991 SU
1710694 Feb 1992 SU
1730429 Apr 1992 SU
1745873 Jul 1992 SU
1747673 Jul 1992 SU
1749267 Jul 1992 SU
1295799 Feb 1995 SU
WO8100132 Jan 1981 WO
WO9005598 Mar 1990 WO
WO9201859 Feb 1992 WO
WO9208875 May 1992 WO
WO9325799 Dec 1993 WO
WO9325800 Dec 1993 WO
WO9421887 Sep 1994 WO
WO9425655 Nov 1994 WO
WO9503476 Feb 1995 WO
WO9601937 Jan 1996 WO
WO9621083 Jul 1996 WO
WO9626350 Aug 1996 WO
WO9637681 Nov 1996 WO
WO9706346 Feb 1997 WO
WO9711306 Mar 1997 WO
WO9717524 May 1997 WO
WO9717526 May 1997 WO
WO9717527 May 1997 WO
WO9720130 Jun 1997 WO
WO9721901 Jun 1997 WO
WO9735084 Sep 1997 WO
WO9800626 Jan 1998 WO
WO9807957 Feb 1998 WO
WO9809053 Mar 1998 WO
WO9822690 May 1998 WO
WO9826152 Jun 1998 WO
WO9824947 Oct 1998 WO
WO9842947 Oct 1998 WO
WO9849423 Nov 1998 WO
WO9902818 Jan 1999 WO
WO9904135 Jan 1999 WO
WO9906670 Feb 1999 WO
WO9908827 Feb 1999 WO
WO9908828 Feb 1999 WO
WO9918328 Apr 1999 WO
WO9923354 May 1999 WO
WO9925524 May 1999 WO
WO9925951 May 1999 WO
WO9935368 Jul 1999 WO
WO9943923 Sep 1999 WO
WO0001926 Jan 2000 WO
WO0004271 Jan 2000 WO
WO0008301 Feb 2000 WO
WO0026500 May 2000 WO
WO0026501 May 2000 WO
WO0026502 May 2000 WO
WO0031375 Jun 2000 WO
WO0037766 Jun 2000 WO
WO0037767 Jun 2000 WO
WO0037768 Jun 2000 WO
WO0037771 Jun 2000 WO
WO0037772 Jun 2000 WO
WO0039432 Jul 2000 WO
WO0046484 Aug 2000 WO
WO0050727 Aug 2000 WO
WO0050732 Aug 2000 WO
WO0050733 Aug 2000 WO
WO0077431 Dec 2000 WO
WO0104520 Jan 2001 WO
WO0104535 Jan 2001 WO
WO0118354 Mar 2001 WO
WO0121929 Mar 2001 WO
WO0126860 Apr 2001 WO
WO0133037 May 2001 WO
WO0138693 May 2001 WO
WO0160545 Aug 2001 WO
WO0183943 Nov 2001 WO
WO0198623 Dec 2001 WO
WO0201102 Jan 2002 WO
WO0210550 Feb 2002 WO
WO0210551 Feb 2002 WO
WO 0220941 Mar 2002 WO
WO0223007 Mar 2002 WO
WO0225059 Mar 2002 WO
WO0229199 Apr 2002 WO
WO0240825 May 2002 WO
WO02053867 Jul 2002 WO
WO02053867 Jul 2002 WO
WO02059456 Aug 2002 WO
WO02066783 Aug 2002 WO
WO02068792 Sep 2002 WO
WO02073000 Sep 2002 WO
WO02075107 Sep 2002 WO
WO02077411 Oct 2002 WO
WO02081863 Oct 2002 WO
WO02081864 Oct 2002 WO
WO02086285 Oct 2002 WO
WO02086286 Oct 2002 WO
WO02090713 Nov 2002 WO
WO02095181 Nov 2002 WO
WO02103150 Dec 2002 WO
WO03004819 Jan 2003 WO
WO03004819 Jan 2003 WO
WO03004820 Jan 2003 WO
WO03004820 Jan 2003 WO
WO03008756 Jan 2003 WO
WO03012255 Feb 2003 WO
WO03016669 Feb 2003 WO
WO03016669 Feb 2003 WO
WO03023178 Mar 2003 WO
WO03023178 Mar 2003 WO
WO03023179 Mar 2003 WO
WO03023179 Mar 2003 WO
WO03029607 Apr 2003 WO
WO03029608 Apr 2003 WO
WO03036018 May 2003 WO
WO03042486 May 2003 WO
WO03042486 May 2003 WO
WO03042487 May 2003 WO
WO03042487 May 2003 WO
WO03042489 May 2003 WO
WO03048520 Jun 2003 WO
WO03048521 Jun 2003 WO
WO03055616 Jul 2003 WO
WO03058022 Jul 2003 WO
WO03058022 Jul 2003 WO
WO03059549 Jul 2003 WO
WO03064813 Aug 2003 WO
WO03069115 Aug 2003 WO
WO03071086 Aug 2003 WO
WO03071086 Aug 2003 WO
WO03078785 Sep 2003 WO
WO03078785 Sep 2003 WO
WO03086675 Oct 2003 WO
WO03086675 Oct 2003 WO
WO03089161 Oct 2003 WO
WO03089161 Oct 2003 WO
WO03093623 Nov 2003 WO
WO03093623 Nov 2003 WO
WO03102365 Dec 2003 WO
WO03104601 Dec 2003 WO
WO03104601 Dec 2003 WO
WO03106130 Dec 2003 WO
WO03106130 Dec 2003 WO
WO2004003337 Jan 2004 WO
WO2004009950 Jan 2004 WO
WO2004010039 Jan 2004 WO
WO2004010039 Jan 2004 WO
WO2004011776 Feb 2004 WO
WO2004011776 Feb 2004 WO
WO2004018823 Mar 2004 WO
WO2004018823 Mar 2004 WO
WO2004018824 Mar 2004 WO
WO2004018824 Mar 2004 WO
WO2004020895 Mar 2004 WO
WO2004020895 Mar 2004 WO
WO2004023014 Mar 2004 WO
WO2004023014 Mar 2004 WO
WO2004026017 Apr 2004 WO
WO2004026017 Apr 2004 WO
WO2004026073 Apr 2004 WO
WO2004026073 Apr 2004 WO
WO2004026500 Apr 2004 WO
WO2004026500 Apr 2004 WO
WO2004027200 Apr 2004 WO
WO2004027200 Apr 2004 WO
WO2004027204 Apr 2004 WO
WO2004027204 Apr 2004 WO
WO2004027205 Apr 2004 WO
WO2004027205 Apr 2004 WO
WO2004027392 Apr 2004 WO
WO2004027786 Apr 2004 WO
WO2004027786 Apr 2004 WO
WO2004053434 Jun 2004 WO
WO2004053434 Jun 2004 WO
WO2004057715 Jul 2004 WO
WO2004057715 Jul 2004 WO
WO2004067961 Aug 2004 WO
WO2004067961 Aug 2004 WO
WO2004072436 Aug 2004 WO
WO2004074622 Sep 2004 WO
WO2004074622 Sep 2004 WO
WO2004076798 Sep 2004 WO
WO2004076798 Sep 2004 WO
WO2004081346 Sep 2004 WO
WO2004083591 Sep 2004 WO
WO2004083591 Sep 2004 WO
WO2004083592 Sep 2004 WO
WO2004083592 Sep 2004 WO
WO2004083593 Sep 2004 WO
WO2004083594 Sep 2004 WO
WO2004083594 Sep 2004 WO
WO2004085790 Oct 2004 WO
WO2004089608 Oct 2004 WO
WO2004092527 Oct 2004 WO
WO2004092528 Oct 2004 WO
WO2004092528 Oct 2004 WO
WO2004092530 Oct 2004 WO
WO2004092530 Oct 2004 WO
WO2004094766 Nov 2004 WO
WO2004094766 Nov 2004 WO
WO2005017303 Feb 2005 WO
WO2005021921 Mar 2005 WO
WO2005021921 Mar 2005 WO
WO2005021922 Mar 2005 WO
WO2005021922 Mar 2005 WO
WO2005024170 Mar 2005 WO
WO2005024170 Mar 2005 WO
WO2005024171 Mar 2005 WO
WO2005028803 Mar 2005 WO
WO2005071212 Apr 2005 WO
WO2005079186 Sep 2005 WO
WO2005079186 Sep 2005 WO
WO2005081803 Sep 2005 WO
WO2005086614 Sep 2005 WO
WO2006014333 Feb 2006 WO
WO2006020723 Feb 2006 WO
WO2006020726 Feb 2006 WO
WO2006020734 Feb 2006 WO
WO2006020809 Feb 2006 WO
WO2006020810 Feb 2006 WO
WO2006020810 Feb 2006 WO
WO2006020827 Feb 2006 WO
WO2006020827 Feb 2006 WO
WO2006020913 Feb 2006 WO
WO2006020913 Feb 2006 WO
WO2006020960 Feb 2006 WO
WO2006033720 Mar 2006 WO
WO2004089608 Jul 2006 WO
WO2006079072 Jul 2006 WO
WO2006088743 Aug 2006 WO
WO2006102171 Sep 2006 WO
WO2006102556 Sep 2006 WO
Related Publications (1)
Number Date Country
20070131431 A1 Jun 2007 US
Provisional Applications (1)
Number Date Country
60412544 Sep 2002 US