1. Field of the Invention
The present invention relates to a semiconductor integrated circuit device, and in particular to the semiconductor integrated circuit device including an overcurrent limitation circuit having an output voltage that varies according to a variation of a threshold value voltage of an MOS transistor for outputting.
2. Description of Related Art
In
The overcurrent detection circuit 105 includes resistance elements R3 and R4 that are connected to each other in series for detecting a voltage between a drain terminal and a source terminal of the NMOS transistor M1, and an NMOS transistor M2 for detecting an overcurrent whose gate electrode is connected to a connection point between the resistance elements R3 and R4.
A overcurrent limitation circuit 102 includes a resistance elements R1 and R2 for determining a gate voltage of the NMOS transistor M1 to restrict the overcurrent of the overcurrent detection circuit 105, and an NMOS transistor M3 including a dispersing layer formed in a same process as a base dispersing layer for determining a threshold value voltage of the NMOS transistor M1.
Such an overcurrent limitation circuit 102 functions as a circuit causing a control voltage to vary according to the variation of the threshold value of the NMOS transistor M1. And the overcurrent limitation circuit 102 decreases a variation of a current control value even if the threshold value of the NMOS transistor M1 varies. A gate control voltage Vg of the NMOS transistor M1 when the current is restricted is represented by an expression (1) as below, where Vt denotes a threshold value of the NMOS transistor M3, R1 denotes a resistance value of the resistance element R1, and R2 denotes a resistance value of the resistance element R2.
As illustrated by the expression (1), the threshold value voltage Vt of the NMOS transistor M3 works together with the gate control voltage Vg of the NMOS transistor M1 when the current is controlled so that a variation of the current limitation value can be decreased.
Analysis described below can be realized by the present invention.
Incidentally, in recent years, particularly for vehicle installation, since an enlargement of a range for a working temperature of a semiconductor integrated circuit device has been in a great demand, it has become necessary to inhibit a variation of a current control value over a wide range of a temperature. By conventional circuits, a certain effect has been obtained for inhibiting a variation of a threshold value voltage. However, in order to address further characteristics demanded by customers, a state necessary to consider temperature dependency has been created.
In
at 25° C., by an expression (1),
at −40° C.,
Vg=(100 kΩ+100 kΩ)/100 kΩ×(1.7 V+(0.002 V×65° C.))V=3.66 V
at 150° C.,
Vg=(100 kΩ+100 kΩ)/100 kΩ×(1.7 V+(0.002 V×125° C.))V=2.90 V
To a temperature variation of the gate control voltage Vg of the NMOS transistor M1 as described above, as illustrated in
A semiconductor integrated circuit device according to one aspect of the present invention includes an output field effect transistor formed on a main surface of a semiconductor substrate, an overcurrent detection circuit for detecting an overcurrent of the output field effect transistor, and an overcurrent limitation circuit that is connected between a gate electrode terminal and a source electrode terminal of the output field effect transistor, controls a detected current of the overcurrent detection circuit, and has an output voltage that varies according to a variation of a threshold value voltage of the output field effect transistor, the overcurrent detection circuit including a third resistance element and a fourth resistance element that detect the overcurrent of the output field effect transistor and are connected to each other in series, and a second field effect transistor whose gate electrode is connected to a connection point between the third resistance element and the fourth resistance element, the overcurrent limitation circuit including a first resistance element and a series circuit that are connected between the gate electrode terminal and the source electrode terminal of the output field effect transistor and are connected to each other in series, and a third field effect transistor whose gate electrode is connected to a connection point between the first resistance element and the series circuit and that is cascade connected to the second field effect transistor between the gate electrode terminal and the source electrode terminal of the output field effect transistor, and the series circuit including a second resistance element and “N” diodes (“N” is an integer of one or more) that is to be in a forward direction connected in a series form.
According to the present invention, a variation of a current limitation value of an output field effect transistor can be inhibited and a temperature dependency of the current limitation value can be decreased.
The above and other exemplary aspects, advantages and features of the present invention will be more apparent from the following description of certain exemplary embodiments taken in conjunction with the accompanying drawings, in which:
A semiconductor integrated circuit device according to an exemplary embodiment of the present invention includes an output field effect transistor (M1 in
In a semiconductor integrated circuit device according to the exemplary embodiment of the present invention, it is preferred that “N” is 1. It is preferred that the output field effect transistor, and the second and third field effect transistors are n-type field effect transistors, and one end of the second resistance element is connected to the gate electrode of the third field effect transistor, the other end thereof is connected to an anode of the diode, and a cathode of the diode is connected to the source electrode of the second field effect transistor.
According to the exemplary embodiment of the present invention, the variation of the current limitation value of the output field effect transistor can be inhibited. Further, since the temperature coefficient for decreasing the voltage in the forward direction of the diode and the temperature coefficient of the threshold value voltage of the third field effect transistor function to off set each other, the temperature dependency of the variation of the current limitation value for the output field effect transistor can be decreased.
When the diode D1 is inserted, a gate control voltage Vg of the NMOS transistor M1 when a current is limited can be described by an expression (2) as below. Here, a Vt denotes a threshold value voltage of NMOS transistor M3, an IR denotes a current value of each current flowing through resistance elements R1 and R2, and the diode D1, an R1 denotes a resistance value of the resistance element R1, an R2 denotes a resistance value of the resistance element R2, a VF denotes decreasing voltage in the forward direction of the diode D1.
Vt=IRR2+VF
Vg=IR(R1+R2)+VF
Thus, Vg=IRR1+Vt=(Vt−VF)R1/R2+Vt (2)
In an expression (2), as similarly to the conventional device, defining as Vg=3.4 V, Vt=1.7 V, and VF=0.6 V,
R1/R2=1.7/1.1=1.55
Thus, Vg=1.55(Vt−VF)+Vt
At 25° C., to Vg=3.4 V
at 150° C., 0.002×(150−25)=0.25 V is decreased, and
Vg=3.4−0.25=3.15 (V)
Further, at −40° C., 0.002×(25+40)=0.13 V is increased, and
Vg=3.4+0.13=3.53 (V)
To the temperature variation of the gate control voltage Vg of the NMOS transistor M1 as described above, as illustrated in
In
Referring to the expression (2), since the resistance elements R1 and R2 have different contribution levels to Vt, VF, and Vg owing to resistance ratios of the resistance elements, a plurality of diodes to be inserted between the resistance elements R2 and the GND can be provided in the forward direction such that the temperature dependency can be further improved.
The disclosure of the patent document as described above is incorporated by citing herein. Within a framework of all disclosure (including claims) of the present invention, and further based on the fundamental technological ideas, the exemplary embodiments or the examples can be modified or adjusted. Further, within the framework of the claims of the present invention, a variety of disclosure elements can be combined and selected in various ways. That is, it is needless to say that the present invention can include various modifications and corrections that can be realized by those skilled in the art according to all disclosures and technological ideas including the claims.
Further, it is noted that Applicant's intent is to encompass equivalents of all claim elements, even if amended later during prosecution.
Number | Date | Country | Kind |
---|---|---|---|
2008-071908 | Mar 2008 | JP | national |
Number | Name | Date | Kind |
---|---|---|---|
5303110 | Kumagai | Apr 1994 | A |
6538480 | Takada et al. | Mar 2003 | B2 |
7012792 | Yoshida | Mar 2006 | B2 |
7158359 | Bertele et al. | Jan 2007 | B2 |
20030117758 | Yoshida | Jun 2003 | A1 |
Number | Date | Country |
---|---|---|
2003-197913 | Jul 2003 | JP |
Number | Date | Country | |
---|---|---|---|
20090237851 A1 | Sep 2009 | US |