Semiconductor package with fast power-up cycle and method of making same

Information

  • Patent Grant
  • 7768135
  • Patent Number
    7,768,135
  • Date Filed
    Thursday, April 17, 2008
    16 years ago
  • Date Issued
    Tuesday, August 3, 2010
    14 years ago
Abstract
In accordance with the present invention, there is provided multiple embodiments of a semiconductor package including at least two electronic components which are provided in a stacked arrangement, and are each electrically connected to an underlying substrate through the use of conductive wires. In accordance with one embodiment of the present invention, the electronic components are separated from each other by an intervening spacer which is typically fabricated from aluminum, or from silicon coated with aluminum. In this particular embodiment, the uppermost electronic component of the stack is electrically connected to at least one of the conductive wires through the use of a conductive paste layer which is also used to secure the uppermost electronic component to the underlying spacer. In this regard, one end of one of the conductive wires may be embedded in the conductive paste layer adjacent one side of the uppermost electronic component, or between the bottom surface of such electronic component and the spacer.
Description
CROSS-REFERENCE TO RELATED APPLICATIONS

Not Applicable


STATEMENT RE: FEDERALLY SPONSORED RESEARCH/DEVELOPMENT

Not Applicable


BACKGROUND OF THE INVENTION

1. Field of the Invention


The present invention relates generally to integrated circuit chip package technology and, more particularly, to a semiconductor package including stacked electronic components which are separated from each other by a spacer, both of the electronic components being electrically connected to an underlying substrate through the use of conductive wires, with the electrical connection of at least one of the conductive wires to the uppermost electronic component of the stack being facilitated by the use of a conductive paste and/or through the use of the spacer.


2. Description of the Related Art


There is currently known in the prior art a specific type of semiconductor package which comprises a substrate having a first electronic component such as an integrated circuit attached to the top surface thereof. Attached to the top surface of the integrated circuit is a spacer which is fabricated from Si coated with aluminum. Attached to the top surface of the spacer is a second electronic component.


In the prior art semiconductor package, conductive wires are used to electrically connect pads or terminals of the first electronic component to the substrate. Similarly, a conductive wire is used to electrically connect a pin disposed on the top surface of the second electronic component and serving as the emitter thereof to the substrate. In the prior art semiconductor package, the second electronic component also includes a collector disposed on the bottom surface thereof, opposite the top surface which includes the pin disposed thereon. Such collector typically has a layer of gold plating applied thereto. The proper operation of the second electronic component within the semiconductor package necessitates that the collector be placed into electrical connection with the substrate. In the prior art semiconductor package, such electrical connection is facilitated by attaching the bottom surface of the second electronic component, which defines the collector, to the aluminum-coated spacer through the use of a layer of a conductive paste. With the collector of the second electronic component being electrically connected thereto via the conductive paste layer, the spacer is in turn electrically connected to the substrate through the use of a conductive wire. In the prior art semiconductor package, a portion of the substrate, the first electronic component or integrated circuit, the spacer, the second electronic component, and the wires are each covered by a package body.


The prior art semiconductor package described above suffers from a substantial deficiency. More particularly, with regard to the aluminum-coated Si spacer integrated into the semiconductor package, such spacer normally has a native layer of aluminum oxide disposed on the top surface to which one end of the wire extending to the substrate is electrically connected and to which the collector of the second electronic component is electrically connected by the conductive paste layer. The native aluminum oxide layer is typically in the thickness range of from about ten to fifty angstroms. It is been determined that the aluminum oxide layer of the spacer acts as a dielectric layer of a capacitor, and that during the first time power-up of the prior art semiconductor package, causes a substantial time delay in such power-up.


Due to any first time power-up delay in the prior art semiconductor package being highly undesirable, attempts have been made in the prior art to eliminate such delay. Such solutions have included plasma cleaning the aluminum-coated spacer in an attempt to remove the native oxide layer and/or increasing the percentage of the area of the bottom surface of the second electronic component defining the collector thereof which is electrically connected to the spacer through the use of the conductive paste layer. However, none of the attempted solutions highlighted have proven to be effective in achieving acceptable start-up time parameters in the first power-up cycle of the prior art semiconductor package that are consistent to those which are typically measured in second and subsequent power-up cycles thereof. In this regard, despite increasing the percentage of that area of the second electronic component defining the collector electrically connected to the spacer through the use of the conductive paste layer and/or plasma cleaning the spacer, the adverse effect of the aluminum oxide layer of the spacer as a capacitor is still prevalent in the prior art semiconductor package.


The present invention provides a novel, unique solution to the power-up delay problem highlighted above. The solution provided by the present invention is discussed in detail below.


BRIEF SUMMARY OF THE INVENTION

In accordance with the present invention, there is provided multiple embodiments of a semiconductor package including at least two electronic components which are provided in a stacked arrangement, and are each electrically connected to an underlying substrate through the use of conductive wires. In accordance with one embodiment of the present invention, the electronic components are separated from each other by an intervening spacer which is typically fabricated from silicon coated with aluminum. In this particular embodiment, the uppermost electronic component of the stack is electrically connected to at least one of the conductive wires through the use of a conductive paste layer which is also used to secure the uppermost electronic component to the underlying spacer. In this regard, one end of one of the conductive wires may be embedded in the conductive paste layer adjacent to one side of the uppermost electronic component, or between the bottom surface of such electronic component and the spacer.


In accordance with an alternative embodiment of the present invention, the spacer may be eliminated in its entirety, with the conductive paste layer being used to attach the uppermost electronic component directly to the lowermost electronic component in the semiconductor package. In this regard, similar to the aforementioned embodiment, one end of one of the conductive wires may be embedded in the conductive paste layer adjacent to one side of the uppermost electronic component, or between the bottom surface of such electronic component and the lowermost electronic component.


The present invention is best understood by reference to the following detailed description when read in conjunction with the accompanying drawings.





BRIEF DESCRIPTION OF THE DRAWINGS

These, as well as other features of the present invention, will become more apparent upon reference to the drawings wherein:



FIG. 1 is a cross-sectional view of a semiconductor package constructed in accordance with a first embodiment of the present invention;



FIG. 2 is a partial cross-sectional view of the semiconductor package shown in FIG. 1;



FIG. 3 is a partial cross-sectional view of a semiconductor package constructed in accordance with a second embodiment of the present invention;



FIG. 4 is a partial cross-sectional view of a semiconductor package constructed in accordance with a third embodiment of the present invention; and



FIG. 5 is a partial cross-sectional view of a semiconductor package constructed in accordance with a fourth embodiment of the present invention.





Common reference numerals are used throughout the drawings and detailed description to indicate like elements.


DETAILED DESCRIPTION OF THE INVENTION

Referring now to the drawings wherein the showings are for purposes of illustrating various embodiments of the present invention only, and not for purposes of limiting the same, FIGS. 1 and 2 illustrate a semiconductor package 100 constructed in accordance with a first embodiment of the present invention. The semiconductor package 100 comprises a substrate 102 which functions to transmit electrical signals to and from the semiconductor package 100. The substrate 102 comprises an insulative layer 104 which defines a generally planar first (top) surface 106 and an opposed, generally planar second (bottom) surface 108. The insulative layer 104 further comprises a third (side) surface 110 which extends generally perpendicularly between the top and bottom surfaces 106 and 108. The insulative layer 104 may comprise a base film formed from a thermosetting resin, a polyimide, or an equivalent material.


The substrate 102 further comprises one or more electrically conductive lands 112 which are formed on the bottom surface 108 in a prescribed pattern or arrangement. Each of the lands 112 preferably has a generally circular configuration, though different shapes for the lands 112 are contemplated to be within the spirit and scope of the present invention. The substrate 102 also includes an electrically conductive pattern 114 which is formed on the top surface 106. The conductive pattern 114 may comprise various pads, lands, traces, or combinations thereof. In the substrate 102, the lands 112 and the conductive pattern 114 are electrically connected to each other in a prescribed pattern or arrangement through the use of conductive vias 116 which extend through the insulative layer 104 between the top and bottom surfaces 106, 108 thereof in the manner shown in FIG. 2. In the semiconductor package 100, it is contemplated that the lands 112, conductive pattern 114 and vias 116 will each be formed from copper or a suitable equivalent material having acceptable electrical conductivity. With particular regard to the vias 116, it is further contemplated that such vias 116 may be formed by coating the walls of cylindrical apertures extending through the insulative layer 104 with a conductive metal film which places the lands 112 into electrical connection with the conductive pattern 114 in a prescribed manner.


The substrate 102 further preferably includes a solder mask 118 which is formed on the bottom surface 108 of the insulative layer 104. As seen in FIG. 2, the solder mask 118 is formed to surround and cover a predetermined region of the periphery of each of the lands 112. As also seen in FIGS. 1 and 2, it is contemplated that in the substrate 102, solder balls 120 will be electrically coupled to respective ones of the lands 112, such solder balls 120 being used to transmit electrical signals between the semiconductor package 100 and an external device. The solder mask 118, which contacts each of the solder balls 120, electrically insulates each of the solder balls 120 from the adjacent lands 112 on which other solder balls 120 are formed. In the substrate 102, portions of the conductive pattern 114 of the substrate 102 may also be covered by a solder mask 122 which is included on the top surface 106 of the substrate 102 as shown in FIG. 2.


The semiconductor package 100 further comprises a first (lower) electronic component 124 which is attached to the substrate 102, and in particular to the solder mask 122 which is applied to portions of the top surface 106 of the insulative layer 104 and the conductive pattern 114. The attachment of the first electronic component 124 to the substrate 102 is preferably accomplished by a layer 126 of a suitable paste or film adhesive.


As best seen in FIG. 2, the first electronic component 124 further includes one or more bond pads or terminals disposed on the top surface thereof which is opposite the bottom surface contacting the adhesive layer 126. Each of the bond pads of the first electronic component 124 is electrically coupled or connected to a prescribed portion of the conductive pattern 114 through the use of an elongate, first conductive wire 128. One end of each first conductive wire 128 may be ball-bonded to a respective one of the bond pads of the first electronic component 124, with the opposed end of such first conductive wire 128 being electrically connected to the conductive pattern 114 through the use of, for example, a stitch-bonding technique. In this regard, each first conductive wire 128 may include a generally spherical ball bonding portion which is formed on a respective one of the bond pads of the first electronic component 124, and a stitch bonding portion which is formed on a prescribed portion of the conductive pattern 114. As will be recognized by those of ordinary skill in the art, the first conductive wires 128 electrically couple the first electronic component 124 to the conductive pattern 114, and hence the substrate 102. Each of the first conductive wires 128 is preferably formed through the use of a capillary and, as shown in FIG. 2, is formed in a forward loop mode. Though not shown, it is contemplated that each first conductive wire 128 may alternatively be formed in a reverse loop mode. More particularly, in the reverse loop mode, one end of each first conductive wire 128 may form a ball-bonding portion on a prescribed portion of the conductive pattern 114, with the other end of such first conductive wire 128 forming a stitch-bonding portion on a respective one of the bond pads of the first electronic component 124, such reverse loop mode of first conductive wires 128 also being formed through the use of a capillary. Each of the first conductive wires 128 is preferably fabricated from a material having adequate electrical conductivity, such as aluminum, copper, gold, or equivalent materials thereto. Though not shown, it is also contemplated that the first electronic component 124 may be electrically connected to the conductive pattern 114 through the use of flipchip bonding as an alternative to the use of the first conductive wires 128.


The semiconductor package 100 further comprises a spacer 130 which is attached to the top surface of the first electronic component 124, i.e., the surface opposite that affixed to the adhesive layer 126. The attachment of the bottom surface of the spacer 130 to the top surface of the first electronic component 124 is preferably accomplished through the use of a layer 132 of a suitable paste or film adhesive. The spacer 130 is typically fabricated from a silicon core 131 which coated or plated with an aluminum layer 133. As shown in FIGS. 1-3, the aluminum layer 133 is applied to only the top surface of the core 131, i.e., the surface opposite that attached to the adhesive layer 132. Though not shown, it is contemplated that spacer 130 may alternatively be configured such that a second aluminum layer like the aluminum layer 133 is applied to the bottom surface of the core 131, and thus disposed in contact with the adhesive layer 132. The spacer 130 may also be formed in a manner in which all sides or surfaces of the core 131 are covered with an aluminum layer. Still further, the spacer 130 may be formed entirely from aluminum. In any embodiment of the spacer 130, the aluminum plated thereon or from which it is fabricated typically has a native layer of aluminum oxide disposed thereon in a thickness in the range of from about ten to fifty angstroms. Additionally, as seen in FIG. 1, the spacer 130 is typically of a size which is smaller than that of the first electronic component 124, thus resulting in the peripheral side surface of the spacer 130 being disposed inward relative to the bond pads or terminals of the first electronic component 124. However, the spacer 130 may be larger than the first electronic component 124.


The semiconductor package 100 further comprises a second (upper) electronic component 134 which is attached to the generally planar top surface of the spacer 130. In the semiconductor package 100, the second electronic component 134 includes a pin 136 disposed on the top surface thereof, and a terminal 138 disposed on the bottom surface thereof, such terminal 138 typically having a layer 140 of gold plating applied thereto. In the semiconductor package 100, the attachment of the second electronic component 134 to the spacer 130 is facilitated by a layer 142 of conductive paste. As best seen in FIG. 2, the conductive paste layer 142 is interposed between the gold plating layer 140 and the top surface of the spacer 130. Additionally, the conductive paste layer 142 is formed so as to flow outward beyond the peripheral side surface 135 of the second electronic component 134. Along these lines, a portion of the conductive paste layer 142 also flows or migrates upwardly along a portion of the peripheral side surface 135 of the second electronic component 134.


In the semiconductor package 100, the proper operation of the second electronic component 134 necessitates that the terminal 138 thereof be placed into electrical connection with the conductive pattern 114 of the substrate 102. Such electrical connection is facilitated by the use of a second conductive wire 144. The second conductive wire 144 is preferably formed through the use of a capillary and, as shown in FIG. 2, may be formed in a reverse loop mode to minimize the loop height thereof. In this regard, one end of the second conductive wire 144 may be stitch-bonded to a prescribed location on the top surface of the spacer 130, with the opposed end of such second conductive wire 144 being electrically connected to the conductive pattern 114 through the use of, for example, a ball-bonding technique. More particularly, the second conductive wire 144 may include a stitch-bonding portion which is formed at a prescribed location on the top surface of the spacer 130, and generally spherical ball-bonding portion which is formed on a prescribed portion of the conductive pattern 114. The second conductive wire 144 electrically couples the terminal 138 of the second electronic component 134 to the conductive pattern 114, and hence the substrate 102, as will be described in more detail below. Though not shown, it is contemplated that the second conductive wire 144 may alternatively be formed in a forward loop mode. More particularly, in the forward loop mode, one end of the second conductive wire 144 may form a stitch-bonding portion on a prescribed portion of the conductive pattern 114, with the other end of such second conductive wire 144 forming a ball-bonding portion at a prescribed location on the top surface of the spacer 130, such forward loop mode second conductive wire 144 also being formed through the use of a capillary. The second conductive wire 144 may be fabricated from the same material as the first conductive wires 128 described above.


In addition to one end of the second conductive wire 144 being stitch-bonded or ball-bonded to a prescribed location on the top surface of the spacer 130, such end of the second conductive wire 144 is also covered or encapsulated by the conductive paste layer 142 used to attach the second electronic component 134 to the spacer 130. As a result of one end of the second conductive wire 144 being embedded within the conductive paste layer 142, electrical signals or current may be routed directly from the terminal 138 to the second conductive wire 144 via the conductive paste layer 142, thus bypassing the spacer 130. Thus, the transmission of electrical signals or current between the second electronic component 134 and the second conductive wire 144 is unaffected by any capacitance effect that could otherwise be imparted by the spacer 130. As is best seen in FIG. 2, the conductive paste layer 144 preferably covers or encapsulates the stitch-bonding or ball-bonding portion of the second conductive wire 144 disposed on the top surface of the spacer 130, and a small portion of the second conductive wire 144 extending from such stitch-bonding or ball-bonding portion. Additionally, as is further seen in FIG. 2, the covered or encapsulated portion of the second conductive wire 144 is preferably disposed slightly outward relative to the peripheral side surface 135 of the second electronic component 134. Since, in the semiconductor package 100, the conductive paste layer 142 is the vehicle which establishes the electrical connection between the second electronic component 134 and the second conductive wire 144, the spacer 130 is needed only to establish wire bond integrity attributable to the stitch-bonding or ball-bonding of one end of the second conductive wire 144 thereto.


As further seen in FIG. 2, the pin 136 of the second electronic component 134 is electrically connected to a prescribed portion of the conductive pattern 114 through the use of an elongate, third conductive wire 146. The third conductive wire 146 is also preferably formed through the use of a capillary and, as shown in FIG. 2, may also be formed in a reverse loop mode to minimize the loop height thereof. In this regard, one end of the third conductive wire 146 may be stitch-bonded to the pin 136, with the opposed end of such third conductive wire 146 being electrically connected to the conductive pattern 114 through the use of, for example, a ball-bonding technique. More particularly, the third conductive wire 146 may include a stitch-bonding portion which is formed on the pin 136, and a generally spherical ball-bonding portion which is formed on a prescribed portion of the conductive pattern 114. Though not shown, it is contemplated that the third conductive wire 146 may alternatively be formed in a forward loop mode. More particularly, in the forward loop mode, one end of the third conductive wire 146 may form a stitch-bonding portion on a prescribed portion of the conductive pattern 114, with the other end of such third conductive wire 146 forming a ball-bonding portion on the pin 136. Such forward loop mode third conductive wire 146 will also be fabricated from the same material as the first conductive wires 128 described above.


The semiconductor package 100 further comprises a package body 148 which is formed on the substrate 102 so as to effectively cover or encapsulate the first and second electronic components 124, 134 and the intervening spacer 130. The package body 148 also covers the exposed portions of the conductive pattern 114, the solder mask 122, and any exposed portion of the top surface 106 of the insulative layer 104. The package body 148 is further preferably formed such that the side surface thereof, which extends generally perpendicularly from the generally planar top surface thereof, is substantially flush or continuous with the peripheral side surface 110 of the insulative layer 104, as well as the peripheral edge of the solder mask 118 applied to the bottom surface 108 of the insulative layer 104. As will be recognized by those of ordinary skill in the art, the package body 148 effectively protects the internal elements of the semiconductor package 100 described above from the external environment. The package body 148 may be fabricated from a conventional epoxy resin, silicon resin, or an equivalent material thereto.


The configuration of the semiconductor package 100 as shown in FIGS. 1 and 2 achieves substantial consistency in the start-up delay parameters for the first power-up cycle of the semiconductor package 100 in comparison to the delay times measured in second and subsequent power-up cycles thereof. The consistency in these delays, which is well within acceptable delay parameters, is attributable to the effective bypass of the spacer 130 in transmitting electrical signals or current between the second electronic component 134 and the second conductive wire 144. In the semiconductor package 100, the first and second electronic components 124, 134 may each comprise an integrated circuit, a semiconductor die, a transistor, etc. By way of example only, the second electronic component 134 of the semiconductor package 100 may comprise a transistor wherein the pin 136 is an emitter which is electrically connected to the conductive pattern 114 by the third conductive wire 146, and the terminal 138 is a collector which is electrically connected to the second conductive wire 144 by the conductive paste layer 142. Additionally, the first electronic component 124 of the semiconductor package 100 may comprise a power management integrated circuit die (PMIC).


Referring now to FIG. 3, there is shown a semiconductor package 200 constructed in accordance with a second embodiment of the present invention. The semiconductor package 200 is substantially similar in structure and function to the above-described semiconductor package 100. Accordingly, only the distinctions between the semiconductor packages 200, 100 will be described below.


As explained above in relation to the semiconductor package 100, though one end of the second conductive wire 144 thereof may be stitch-bonded or ball-bonded to a prescribed location on the top surface of the spacer 130, the second conductive wire 144 is shown in FIG. 2 in a reverse loop mode wherein the end thereof attached to the spacer 130 is stitch-bonded to a prescribed location on the top surface of the spacer 130. Forming the second conductive wire 144 in the semiconductor package 100 in the reverse loop mode effectively lowers the profile or loop height thereof, in comparison to the first conductive wire 128 of the semiconductor package 100 which is shown in FIG. 2 as being formed in a forward loop mode, thus increasing the profile or loop height thereof.


As in the semiconductor package 100 of FIG. 2, the first, second and third conductive wires 128, 144, 146 may each be formed in either a forward loop or a reverse loop mode in the semiconductor package 200. The sole distinction between the semiconductor packages 100, 200 lies in the location of the bonded portion of the second conductive wire 144 of the semiconductor package 200 upon the top surface of the spacer 130 thereof, in comparison to the location of the bonded portion of the second conductive wire 144 of the semiconductor package 100 relative to the top surface of the spacer 130 thereof. More particularly, in the semiconductor package 200 as shown in FIG. 3, the bonded portion of the second conductive wire 144 used to facilitate the attachment thereof to the spacer 130 is disposed between the terminal 138 of the second electronic component 134 and the top surface of the spacer 130. This is in contrast to the semiconductor package 100 wherein, as described above, the bonded portion used to attach the second conductive wire 144 to the spacer 130 is disposed outward relative to the peripheral side surface 135 of the second electronic component 134. Since, in the semiconductor package 200, a portion of the second conductive wire 144, including the bonded portion thereof facilitating the attachment to the spacer 130, is sandwiched between the second electronic component 134 and the spacer 130, the second conductive wire 144 must necessarily be formed to have the low profile as described above. Additionally, the first and third conductive wires 128, 146 of the semiconductor package 200, like those described in relation to the semiconductor package 100, may each be formed in either a forward loop mode or a reverse loop mode.


Referring now to FIG. 4, there is shown a semiconductor package 300 constructed in accordance with a third embodiment of the present invention. The semiconductor package 300 comprises a substrate 302 which functions to transmit electrical signals to and from the semiconductor package 100. The substrate 302 comprises an insulative layer 304 which defines a generally planar first (top) surface 306 and an opposed, generally planar second (bottom) surface 308. The insulative layer 304 further comprises a third (side) surface 310 which extends generally perpendicularly between the top and bottom surfaces 306 and 308. The insulative layer 304 may comprise a base film formed from a thermosetting resin, a polyimide, or an equivalent material.


The substrate 302 further comprises one or more electrically conductive lands 312 which are formed on the bottom surface 308 in a prescribed pattern or arrangement. Each of the lands 312 preferably has a generally circular configuration, though different shapes for the lands 312 are contemplated to be within the spirit and scope of the present invention. The substrate 302 also includes an electrically conductive pattern 314 which is formed on the top surface 306. The conductive pattern 314 may comprise various pads, traces, or combinations thereof. In the substrate 302, the lands 312 and the conductive pattern 314 are electrically connected to each other in a prescribed pattern or arrangement through the use of conductive vias 316 which extend through the insulative layer 304 between the top and bottom surfaces 306, 308 thereof in the manner shown in FIG. 4. In the semiconductor package 300, it is contemplated that the lands 312, conductive pattern 314 and vias 316 will each be formed from copper or a suitable equivalent material having acceptable electrical conductivity. With particular regard to the vias 316, it is further contemplated that such vias 316 may be formed by coating the walls of cylindrical apertures extending through the insulative layer 304 with a conductive metal film which places the lands 312 into electrical communication with the conductive pattern 314 in a prescribed manner.


The substrate 302 further preferably includes a solder mask 318 which is formed on the bottom surface 308 of the insulative layer 304. As seen in FIG. 4, the solder mask 318 is formed to surround and cover a predetermined region of the periphery of each of the lands 312. As also seen in FIG. 4, it is contemplated that in the substrate 302, solder balls 320 will be electrically coupled to respective ones of the lands 312, such solder balls 320 being used to transmit electrical signals between the semiconductor package 300 and an external device. The solder mask 318, which contacts each of the solder balls 320, electrically insulates each of the solder balls 320 from the adjacent lands 312 on which other solder balls 320 are formed. In the substrate 302, portions of the conductive pattern 314 of the substrate 302 may also be covered by a solder mask 322 as shown in FIG. 4.


The semiconductor package 300 further comprises a first (lower) electronic component 324 which is attached to the substrate 302, and in particular to the solder mask 322 which is applied to portions of the top surface 306 of the insulative layer 304 and the conductive pattern 314. The attachment of the first electronic component 324 to the substrate 302 is preferably accomplished by a layer 326 of a suitable paste or film adhesive.


As seen in FIG. 4, the first electronic component 324 further includes one or more bond pads or terminals disposed on the top surface thereof which is opposite the bottom surface contacting the adhesive layer 326. Each of the bond pads of the first electronic component 324 is electrically coupled or connected to a prescribed portion of the conductive pattern 314 through the use of an elongate, first conductive wire 328. One end of each first conductive wire 328 may be ball-bonded to a respective one of the bond pads of the first electronic component 324, with the opposed end of such first conductive wire 328 being electrically connected to the conductive pattern 314 through the use of, for example, a stitch-bonding technique. In this regard, each first conductive wire 328 may include a generally spherical ball bonding portion which is formed on a respective one of the bond pads of the first electronic component 324, and a stitch bonding portion which is formed on a prescribed portion of the conductive pattern 314. As will be recognized by those of ordinary skill in the art, the first conductive wires 328 electrically couple the first electronic component 324 to the conductive pattern 314, and hence the substrate 302. Each of the first conductive wires 328 is preferably formed through the use of a capillary and, as shown in FIG. 4, is formed in a forward loop mode. Though not shown, it is contemplated that each first conductive wire 328 may alternatively be formed in a reverse loop mode. More particularly, in the reverse loop mode, one end of each first conductive wire 328 may form a ball-bonding portion on a prescribed portion of the conductive pattern 314, with the other end of such first conductive wire 328 forming a stitch-bonding portion on a respective one of the bond pads of the first electronic component 324, such reverse loop mode of first conductive wires 328 also being formed through the use of a capillary. Each of the first conductive wires 328 is preferably fabricated from a material having acceptable electrical conductivity, such as aluminum, copper, gold, or equivalent materials thereto. Though not shown, it is also contemplated that the first electronic component 324 may be electrically connected to the conductive pattern 314 through the use of flipchip bonding as an alternative to the use of the first conductive wires 328.


The semiconductor package 300 further comprises a second (upper) electronic component 334 which is attached to the generally planar top surface of the first electronic component 324. As seen in FIG. 4, the second electronic component 334 is typically of a size which is smaller than that of the first electronic component 124, thus resulting in the peripheral side surface 335 of the second electronic component 334 being disposed inward relative to the bond pads or terminals of the first electronic component 324. In the semiconductor package 300, the second electronic component 334 typically includes a pin 336 disposed on the top surface thereof, and a terminal 338 disposed on the bottom surface thereof, such terminal 338 typically having a layer 340 of gold plating applied thereto. Additionally, in the semiconductor package 300, the attachment of the second electronic component 334 to the first electronic component 324 is facilitated by a layer 342 of conductive paste. As seen in FIG. 4, the conductive paste layer 342 is interposed between the gold plating layer 340 and the top surface of the first electronic component 324. Additionally, the conductive paste layer 342 is formed so as to flow outward beyond the peripheral side surface 335 of the second electronic component 334. Along these lines, a portion of the conductive paste layer 342 also flows or migrates upwardly along a portion of the peripheral side surface 335 of the second electronic component 334.


In the semiconductor package 300, the proper operation of the second electronic component 334 necessitates that the terminal 338 thereof be placed into electrical connection with the conductive pattern 314 of the substrate 302. Such electrical connection is facilitated by the use of a second conductive wire 344. The second conductive wire 344 is preferably formed through the use of a capillary and, as shown in FIG. 4, may be formed in a reverse loop mode to minimize the loop height thereof. In this regard, one end of the second conductive wire 344 may stitch-bonded to a prescribed location on the top surface of the first electronic component 324, with the opposed end of such second conductive wire 144 being electrically connected to the conductive pattern 314 through the use of, for example, a ball-bonding technique. More particularly, the second conductive wire 344 may include a stitch-bonding portion which is formed at a prescribed location on the top surface of the first electronic component 324, and generally spherical ball-bonding portion which is formed on a prescribed portion of the conductive pattern 314. In order for the stitch-bonding portion of the second conductive wire 344 to be properly secured to the underlying first electronic component 324, it is contemplated that the first electronic component 324 will be provided with a suitable opening in its passivation layer as needed to accommodate the corresponding end of the second conductive wire 344. The second conductive wire 344 electrically couples the terminal 338 of the second electronic component 334 to the conductive pattern 314, and hence the substrate 302, as will be described in more detail below. Though not shown, it is contemplated that the second conductive wire 344 may alternatively be formed in a forward loop mode. More particularly, in the forward loop mode, one end of the second conductive wire 344 may form a stitch-bonding portion on a prescribed portion of the conductive pattern 314, with the other end of such second conductive wire 344 forming a ball-bonding portion at the complimentary opening in the passivation layer of the first electronic component 324, such forward loop mode second conductive wire 344 also being formed through the use of a capillary. The second conductive wire 344 may be fabricated from the same material as the first conductive wires 328 described above.


In addition to one end of the second conductive wire 344 being stitch-bonded or ball-bonded to a prescribed location on the top surface of the first electronic component 324, such end of the second conductive wire 344 is also covered or encapsulated by the conductive paste layer 342 used to attach the second electronic component 334 to the first electronic component 324. As a result of one end of the second conductive wire 344 being embedded within the conductive paste layer 342, electrical signals or current may be routed directly from the terminal 338 to the second conductive wire 344 via the conductive paste layer 342. Thus, the transmission of electrical signals or current between the second electronic component 334 and the second conductive wire 344 is unaffected by any capacitance effect that could otherwise be imparted by the above-described spacer 130 due to the complete absence of such spacer in the semiconductor package 300. As seen in FIG. 4, the conductive paste layer 344 preferably covers or encapsulates the stitch-bonding or ball-bonding portion of the second conductive wire 344 disposed on the top surface of the first electronic component 324, and a small portion of the second conductive wire 344 extending from such stitch-bonding or ball-bonding portion. Additionally, the covered or encapsulated portion of the second conductive wire 344 is preferably disposed slightly outward relative to the peripheral side surface 335 of the second electronic component 334. Since, in the semiconductor package 300, the conductive paste layer 342 is the vehicle which establishes the electrical communication between the second electronic component 334 and the second conductive wire 344, the attachment of the second conductive wire 344 to the first electronic component 324 is needed only to establish wire bond integrity.


As further seen in FIG. 4, the pin 336 of the second electronic component 334 is electrically connected to a prescribed portion of the conductive pattern 314 through the use of an elongate, third conductive wire 346. The third conductive wire 346 is also preferably formed through the use of a capillary and, as shown in FIG. 4, may also be formed in a reverse loop mode to minimize the loop height thereof. In this regard, one end of the third conductive wire 346 may be stitch-bonded to the pin 336, with the opposed end of such third conductive wire 346 being electrically connected to the conductive pattern 314 through the use of, for example, a ball-bonding technique. More particularly, the third conductive wire 346 may include a stitch-bonding portion which is formed on the pin 336, and a generally spherical ball-bonding portion which is formed on a prescribed portion of the conductive pattern 314. Though not shown, it is contemplated that the third conductive wire 346 may alternatively be formed in a forward loop mode. More particularly, in the forward loop mode, one end of the third conductive wire 346 may form a stitch-bonding portion on a prescribed portion of the conductive pattern 314, with the other end of such third conductive wire 346 forming a ball-bonding portion on the pin 336. Such forward loop mode third conductive wire 346 will also be fabricated from the same material as the first conductive wires 328 described above.


The semiconductor package 300 further comprises a package body 348 which is formed on the substrate 302 so as to effectively cover or encapsulate the first and second electronic components 324, 334. The package body 348 also covers the exposed portions of the conductive pattern 314, the solder mask 322, and any exposed portion of the top surface 306 of the insulative layer 304. The package body 348 is further preferably formed such that the side surface thereof, which extends generally perpendicularly from the generally planar top surface thereof, is substantially flush or continuous with the peripheral side surface 310 of the insulative layer 304, as well as the peripheral edge of the solder mask 318 applied to the bottom surface 308 of the insulative layer 304. As will be recognized by those of ordinary skill in the art, the package body 348 effectively protects the internal elements of the semiconductor package 300 described above from the external environment. The package body 348 may be fabricated from a conventional epoxy resin, silicon resin, or an equivalent material thereto. By way of example only, the second electronic component 334 of the semiconductor package 300 may comprise a transistor wherein the pin 336 is an emitter which is electrically connected to the conductive pattern 314 by the third conductive wire 346, and the terminal 338 is a collector which is electrically connected to the second conductive wire 344 by the conductive paste layer 342. Additionally, the first electronic component 324 of the semiconductor package 300 may comprise a power management integrated circuit die (PMIC).


Referring now to FIG. 5, there is shown a semiconductor package 400 constructed in accordance with a fourth embodiment of the present invention. The semiconductor package 400 is substantially similar in structure and function to the above-described semiconductor package 300. Accordingly, only the distinctions between the semiconductor packages 400, 300 will be described below.


As explained above in relation to the semiconductor package 300, though one end of the second conductive wire 344 thereof may be stitch-bonded or ball-bonded to a prescribed location on the top surface of the first electronic component 324, the second conductive wire 344 is shown in FIG. 4 in a reverse loop mode wherein the end thereof attached to the first electronic component 324 is stitch-bonded to a prescribed location on the top surface of the first electronic component 324. Forming the second conductive wire 344 in the semiconductor package 300 in the reverse loop mode effectively lowers the profile or loop height thereof, in comparison to the first conductive wire 328 of the semiconductor package 300 which is shown in FIG. 4 as being formed in a forward loop mode, thus increasing the profile or loop height thereof.


As in the semiconductor package 300 of FIG. 4, the first, second and third conductive wires 328, 344, 346 may each be formed in either a forward loop or a reverse loop mode in the semiconductor package 400. The sole distinction between the semiconductor packages 300, 400 lies in the location of the bonded portion of the second conductive wire 344 of the semiconductor package 400 upon the top surface of the first electronic component 324 thereof, in comparison to the location of the bonded portion of the second conductive wire 344 of the semiconductor package 300 relative to the top surface of the first electronic component 324 thereof. More particularly, in the semiconductor package 400 as shown in FIG. 5, the bonded portion of the second conductive wire 344 used to facilitate the attachment thereof to the first electronic component 324 is disposed between the terminal 338 of the second electronic component 334 and the top surface of the first electronic component 324. This is in contrast to the semiconductor package 300 wherein, as described above, the bonded portion used to attach the second conductive wire 344 to the first electronic component 324 is disposed outward relative to the peripheral side surface 335 of the second electronic component 334. Since, in the semiconductor package 400, a portion of the second conductive wire 344, including the bonded portion thereof facilitating the attachment to the first electronic component 324, is sandwiched between the second electronic component 334 and the first electronic component 324, the second conductive wire 344 must necessarily be formed to have the low profile as described above. Additionally, the first and third conductive wires 328, 346 of the semiconductor package 400, like those described in relation to the semiconductor package 300, may each be formed in either a forward loop mode or a reverse loop mode.


This disclosure provides exemplary embodiments of the present invention. The scope of the present invention is not limited by these exemplary embodiments. Numerous variations, whether explicitly provided for by the specification or implied by the specification, such as variations in structure, dimension, type of material and manufacturing process may be implemented by one of skill in the art in view of this disclosure.

Claims
  • 1. A semiconductor package, comprising: a substrate having a conductive pattern disposed thereon;a first electronic component electrically connected to the conductive pattern of the substrate;a spacer attached to the first electronic component;a second electronic component attached to the spacer by a conductive paste layer and electrically connected to the conductive pattern of the substrate by at least one conductive wire which is partially encapsulated by the conductive paste layer; anda package body at least partially encapsulating the first and second electronic components, the spacer, the conductive wire, and the substrate.
  • 2. The semiconductor package of claim 1 wherein the substrate comprises: an insulative layer defining opposed first and second surfaces; anda plurality of lands disposed on the first surface;the conductive pattern being disposed on the second surface and electrically connected to the lands in a prescribed manner.
  • 3. The semiconductor package of claim 1 wherein the first electronic component is electrically connected to the conductive pattern by a conductive wire which is covered by the package body.
  • 4. The semiconductor package of claim 1 wherein the second electronic component is also electrically connected to the conductive pattern by another conductive wire which is covered by the package body.
  • 5. The semiconductor package of claim 4 wherein the conductive wire which is partially encapsulated by the conductive paste layer has a first end which is attached to a prescribed location on the spacer, and an opposed second end which is electrically connected to a prescribed portion of the conductive pattern.
  • 6. The semiconductor package of claim 5 wherein: the second electronic component defines a peripheral side surface; andthe first end of the conductive wire which is partially encapsulated by the conductive paste layer is attached to the spacer at a location which is disposed outward relative to the side surface of the second electronic component.
  • 7. The semiconductor package of claim 5 wherein the first end of the conductive wire which is partially encapsulated by the conductive paste layer is attached to the spacer at a location which is disposed between the spacer and the second electronic component.
  • 8. The semiconductor package of claim 7 wherein the first end of the conductive wire which is partially encapsulated by the conductive paste layer is attached to the spacer via a stitch-bond.
  • 9. The semiconductor package of claim 5 wherein the second electronic component comprises a transistor having an emitter which is electrically connected to the conductive pattern by the conductive wire which is covered by the package body and a collector which is electrically connected to the remaining conductive wire by the conductive paste layer.
  • 10. A semiconductor package, comprising: a substrate;a first electronic component attached to the substrate;a spacer attached to the first electronic component, the spacer comprising a core covered by an aluminum layer;a second electronic component attached to the aluminum layer of the spacer by a conductive paste layer; anda conductive wire which is partially encapsulated by the conductive paste layer.
  • 11. The semiconductor package of claim 10 wherein the substrate comprises: an insulative layer defining opposed first and second surfaces;a plurality of lands disposed on the first surface; anda conductive pattern disposed on the second surface and electrically connected to the lands in a prescribed manner.
  • 12. The semiconductor package of claim 10 further comprising a package body which at least partially encapsulates the first and second electronic components, the spacer, the conductive wire, and the substrate.
  • 13. The semiconductor package of claim 12 wherein the conductive wire which is partially encapsulated by the conductive paste layer is also partially covered by the package body.
  • 14. The semiconductor package of claim 13 wherein: the second electronic component defines a peripheral side surface; andthe conductive wire has a first end that is attached to the aluminum layer of the spacer at a location which is disposed outward relative to the side surface of the second electronic component.
  • 15. The semiconductor package of claim 13 wherein the conductive wire has a first end that is attached to the aluminum layer of the spacer at a location which is disposed between the spacer and the second electronic component.
  • 16. The semiconductor package of claim 15 wherein the first end of the conductive wire is attached to the aluminum layer of the spacer at via a stitch-bond.
  • 17. The semiconductor package of claim 11 wherein the second electronic component comprises a transistor having an emitter which is electrically connected to the conductive pattern and a collector which is electrically connected to the conductive wire by the conductive paste layer.
  • 18. A semiconductor package, comprising: a substrate having a conductive pattern disposed thereon;a first electronic component electrically connected to the conductive pattern of the substrate;a second electronic component attached to the first electronic component by a conductive paste layer and electrically connected to the conductive pattern of the substrate by at least one conductive wire which is partially encapsulated by the conductive paste layer; anda package body at least partially encapsulating the first and second electronic components, the conductive wire, and the substrate.
  • 19. The semiconductor package of claim 18 wherein: the second electronic component is electrically connected to the conductive pattern by one conductive wire which is partially encapsulated by the conductive paste layer and partially covered by the package body, and another conductive wire which is covered by the package body, the conductive wire which is partially encapsulated by the conductive paste layer having a first end which is attached to a prescribed location on the first electronic component, and an opposed second end which is electrically connected to a prescribed portion of the conductive pattern;the second electronic component defines a peripheral side surface; andthe first end of the conductive wire which is partially encapsulated by the conductive paste layer is attached to the first electronic component at a location which is disposed outward relative to the side surface of the second electronic component.
  • 20. The semiconductor package of claim 18 wherein: the second electronic component is electrically connected to the conductive pattern by one conductive wire which is partially encapsulated by the conductive paste layer and partially covered by the package body, and another conductive wire which is covered by the package body, the conductive wire which is partially encapsulated by the conductive paste layer having a first end which is attached to a prescribed location on the first electronic component, and an opposed second end which is electrically connected to a prescribed portion of the conductive pattern; andthe first end of the conductive wire which is partially encapsulated by the conductive paste layer is attached to the first electronic component at a location which is disposed between the first electronic component and the second electronic component.
US Referenced Citations (324)
Number Name Date Kind
2596993 Gookin May 1952 A
3435815 Forcier Apr 1969 A
3734660 Davies et al. May 1973 A
3838984 Crane et al. Oct 1974 A
4054238 Lloyd et al. Oct 1977 A
4189342 Kock Feb 1980 A
4258381 Inaba Mar 1981 A
4289922 Devlin Sep 1981 A
4301464 Otsuki et al. Nov 1981 A
4332537 Slepcevic Jun 1982 A
4417266 Grabbe Nov 1983 A
4451224 Harding May 1984 A
4530152 Roche et al. Jul 1985 A
4541003 Otsuka et al. Sep 1985 A
4646710 Schmid et al. Mar 1987 A
4707724 Suzuki et al. Nov 1987 A
4727633 Herrick Mar 1988 A
4737839 Burt Apr 1988 A
4756080 Thorpe, Jr. et al. Jul 1988 A
4812896 Rothgery et al. Mar 1989 A
4862245 Pashby et al. Aug 1989 A
4862246 Masuda et al. Aug 1989 A
4907067 Derryberry Mar 1990 A
4920074 Shimizu et al. Apr 1990 A
4935803 Kalfus et al. Jun 1990 A
4942454 Mori et al. Jul 1990 A
4987475 Sclesinger et al. Jan 1991 A
5018003 Yasunaga May 1991 A
5029386 Chao et al. Jul 1991 A
5041902 McShane Aug 1991 A
5057900 Yamazaki Oct 1991 A
5059379 Tsutsumi et al. Oct 1991 A
5065223 Matsuki et al. Nov 1991 A
5070039 Johnson et al. Dec 1991 A
5087961 Long et al. Feb 1992 A
5091341 Asada et al. Feb 1992 A
5096852 Hobson et al. Mar 1992 A
5118298 Murphy Jun 1992 A
5122860 Kichuchi et al. Jun 1992 A
5134773 LeMaire et al. Aug 1992 A
5151039 Murphy Sep 1992 A
5157475 Yamaguchi Oct 1992 A
5157480 McShane et al. Oct 1992 A
5168368 Gow, 3rd et al. Dec 1992 A
5172213 Zimmerman Dec 1992 A
5172214 Casto Dec 1992 A
5175060 Enomoto et al. Dec 1992 A
5200362 Lin et al. Apr 1993 A
5200809 Kwon Apr 1993 A
5214845 King et al. Jun 1993 A
5216278 Lin et al. Jun 1993 A
5218231 Kudo Jun 1993 A
5221642 Burns Jun 1993 A
5250841 Sloan et al. Oct 1993 A
5252853 Michii Oct 1993 A
5258094 Furui et al. Nov 1993 A
5266834 Nishi et al. Nov 1993 A
5273938 Lin et al. Dec 1993 A
5277972 Sakumoto et al. Jan 1994 A
5278446 Nagaraj et al. Jan 1994 A
5279029 Burns Jan 1994 A
5281849 Singh Deo et al. Jan 1994 A
5285352 Pastore et al. Feb 1994 A
5294897 Notani et al. Mar 1994 A
5327008 Djennas et al. Jul 1994 A
5332864 Liang et al. Jul 1994 A
5335771 Murphy Aug 1994 A
5336931 Juskey et al. Aug 1994 A
5343076 Katayama et al. Aug 1994 A
5358905 Chiu Oct 1994 A
5365106 Watanabe Nov 1994 A
5381042 Lerner et al. Jan 1995 A
5391439 Tomita et al. Feb 1995 A
5406124 Morita et al. Apr 1995 A
5410180 Fujii et al. Apr 1995 A
5414299 Wang et al. May 1995 A
5417905 LeMaire et al. May 1995 A
5424576 Djennas et al. Jun 1995 A
5428248 Cha Jun 1995 A
5435057 Bindra et al. Jul 1995 A
5444301 Song et al. Aug 1995 A
5452511 Chang Sep 1995 A
5454905 Fogelson Oct 1995 A
5467032 Lee Nov 1995 A
5474958 Djennas et al. Dec 1995 A
5484274 Neu Jan 1996 A
5493151 Asada et al. Feb 1996 A
5508556 Lin Apr 1996 A
5517056 Bigler et al. May 1996 A
5521429 Aono et al. May 1996 A
5528076 Pavio Jun 1996 A
5534467 Rostoker Jul 1996 A
5539251 Iverson et al. Jul 1996 A
5543657 Diffenderfer et al. Aug 1996 A
5544412 Romero et al. Aug 1996 A
5545923 Barber Aug 1996 A
5581122 Chao et al. Dec 1996 A
5592019 Ueda et al. Jan 1997 A
5592025 Clark et al. Jan 1997 A
5594274 Suetaki Jan 1997 A
5595934 Kim Jan 1997 A
5604376 Hamburgen et al. Feb 1997 A
5608265 Kitano et al. Mar 1997 A
5608267 Mahulikar et al. Mar 1997 A
5625222 Yoneda et al. Apr 1997 A
5633528 Abbott et al. May 1997 A
5637922 Fillion et al. Jun 1997 A
5639990 Nishihara et al. Jun 1997 A
5640047 Nakashima Jun 1997 A
5641997 Ohta et al. Jun 1997 A
5643433 Fukase et al. Jul 1997 A
5644169 Chun Jul 1997 A
5646831 Manteghi Jul 1997 A
5650663 Parthasaranthi Jul 1997 A
5661088 Tessier et al. Aug 1997 A
5665996 Williams et al. Sep 1997 A
5673479 Hawthorne Oct 1997 A
5683806 Sakumoto et al. Nov 1997 A
5683943 Yamada Nov 1997 A
5689135 Ball Nov 1997 A
5696666 Miles et al. Dec 1997 A
5701034 Marrs Dec 1997 A
5703407 Hori Dec 1997 A
5710064 Song et al. Jan 1998 A
5723899 Shin Mar 1998 A
5724233 Honda et al. Mar 1998 A
5726493 Yamashita Mar 1998 A
5736432 Mackessy Apr 1998 A
5745984 Cole, Jr. et al. May 1998 A
5753532 Sim May 1998 A
5753977 Kusaka et al. May 1998 A
5766972 Takahashi et al. Jun 1998 A
5770888 Song et al. Jun 1998 A
5776798 Quan et al. Jul 1998 A
5783861 Son Jul 1998 A
5801440 Chu et al. Sep 1998 A
5814877 Diffenderfer et al. Sep 1998 A
5814881 Alagaratnam et al. Sep 1998 A
5814883 Sawai et al. Sep 1998 A
5814884 Davies et al. Sep 1998 A
5817540 Wark Oct 1998 A
5818105 Kouda Oct 1998 A
5821457 Mosley et al. Oct 1998 A
5821615 Lee Oct 1998 A
5834830 Cho Nov 1998 A
5835988 Ishii Nov 1998 A
5844306 Fujita et al. Dec 1998 A
5854512 Manteghi Dec 1998 A
5856911 Riley Jan 1999 A
5859471 Kuraishi et al. Jan 1999 A
5866939 Shin et al. Feb 1999 A
5866942 Suzuki et al. Feb 1999 A
5871782 Choi Feb 1999 A
5874784 Aoki et al. Feb 1999 A
5877043 Alcoe et al. Mar 1999 A
5886397 Ewer Mar 1999 A
5973935 Schoenfeld et al. Oct 1999 A
5977630 Woodworth et al. Nov 1999 A
RE36773 Nomi et al. Jul 2000 E
6107679 Noguchi Aug 2000 A
6143981 Glenn Nov 2000 A
6166430 Yamaguchi Dec 2000 A
6169329 Farnworth et al. Jan 2001 B1
6177718 Kozono Jan 2001 B1
6181002 Juso et al. Jan 2001 B1
6184465 Corisis Feb 2001 B1
6184573 Pu Feb 2001 B1
6194777 Abbott et al. Feb 2001 B1
6197615 Song et al. Mar 2001 B1
6198171 Huang et al. Mar 2001 B1
6201186 Daniels et al. Mar 2001 B1
6201292 Yagi et al. Mar 2001 B1
6204554 Ewer et al. Mar 2001 B1
6208020 Minamio et al. Mar 2001 B1
6208021 Ohuchi et al. Mar 2001 B1
6208023 Nakayama et al. Mar 2001 B1
6211462 Carter, Jr. et al. Apr 2001 B1
6218731 Huang et al. Apr 2001 B1
6222258 Asano et al. Apr 2001 B1
6222259 Park et al. Apr 2001 B1
6225146 Yamaguchi et al. May 2001 B1
6229200 McClellan et al. May 2001 B1
6229205 Jeong et al. May 2001 B1
6239367 Hsuan et al. May 2001 B1
6239384 Smith et al. May 2001 B1
6242281 McClellan et al. Jun 2001 B1
6256200 Lam et al. Jul 2001 B1
6258629 Niones et al. Jul 2001 B1
6281566 Magni Aug 2001 B1
6281568 Glenn et al. Aug 2001 B1
6282094 Lo et al. Aug 2001 B1
6282095 Houghton et al. Aug 2001 B1
6285075 Combs et al. Sep 2001 B1
6291271 Lee et al. Sep 2001 B1
6291273 Miyaki et al. Sep 2001 B1
6294100 Fan et al. Sep 2001 B1
6294830 Fjelstad Sep 2001 B1
6295977 Ripper et al. Oct 2001 B1
6297548 Moden et al. Oct 2001 B1
6303984 Corisis Oct 2001 B1
6303997 Lee Oct 2001 B1
6307272 Takahashi et al. Oct 2001 B1
6309909 Ohgiyama Oct 2001 B1
6316822 Vekateshwaran et al. Nov 2001 B1
6316838 Ozawa et al. Nov 2001 B1
6323550 Martin et al. Nov 2001 B1
6326243 Suzuya et al. Dec 2001 B1
6326244 Brooks et al. Dec 2001 B1
6326678 Karmezos et al. Dec 2001 B1
6335564 Pour Jan 2002 B1
6337510 Chun-Jen et al. Jan 2002 B1
6339255 Shin Jan 2002 B1
6348726 Bayan et al. Feb 2002 B1
6355502 Kang et al. Mar 2002 B1
6359221 Yamada et al. Mar 2002 B1
6362525 Rahim Mar 2002 B1
6369447 Mori Apr 2002 B2
6369454 Chung Apr 2002 B1
6373127 Baudouin et al. Apr 2002 B1
6377464 Hashemi et al. Apr 2002 B1
6380048 Boon et al. Apr 2002 B1
6384472 Huang May 2002 B1
6388336 Venkateshwaran et al. May 2002 B1
6395578 Shin et al. May 2002 B1
6399415 Bayan et al. Jun 2002 B1
6400004 Fan et al. Jun 2002 B1
6410979 Abe Jun 2002 B2
6414385 Huang et al. Jul 2002 B1
6420779 Sharma et al. Jul 2002 B1
6421013 Chung Jul 2002 B1
6429508 Gang Aug 2002 B1
6437429 Su et al. Aug 2002 B1
6444499 Swiss et al. Sep 2002 B1
6448633 Yee et al. Sep 2002 B1
6452279 Shimoda Sep 2002 B2
6459148 Chun-Jen et al. Oct 2002 B1
6464121 Reijinders Oct 2002 B2
6465883 Oloffsson Oct 2002 B2
6472735 Isaak Oct 2002 B2
6475646 Park et al. Nov 2002 B2
6476469 Huang et al. Nov 2002 B2
6476474 Hung Nov 2002 B1
6482680 Khor et al. Nov 2002 B1
6483178 Chuang Nov 2002 B1
6492718 Ohmori et al. Dec 2002 B2
6498099 McClellan et al. Dec 2002 B1
6498392 Azuma Dec 2002 B2
6507096 Gang Jan 2003 B2
6507120 Lo et al. Jan 2003 B2
6518089 Coyle Feb 2003 B2
6525942 Huang et al. Feb 2003 B2
6534849 Gang Mar 2003 B1
6545332 Huang Apr 2003 B2
6545345 Glenn et al. Apr 2003 B1
6552421 Kishimoto et al. Apr 2003 B2
6559525 Huang May 2003 B2
6566168 Gang May 2003 B2
6580161 Kobayakawa Jun 2003 B2
6583503 Akram et al. Jun 2003 B2
6603196 Lee et al. Aug 2003 B2
6624005 DiCaprio et al. Sep 2003 B1
6646339 Ku Nov 2003 B1
6667546 Huang et al. Dec 2003 B2
6677663 Ku et al. Jan 2004 B1
6686649 Matthews et al. Feb 2004 B1
6696752 Su et al. Feb 2004 B2
6700189 Shibata Mar 2004 B2
6713375 Shenoy Mar 2004 B2
6757178 Okabe et al. Jun 2004 B2
6794740 Edwards et al. Sep 2004 B1
6800936 Kosemura et al. Oct 2004 B2
6812552 Islam et al. Nov 2004 B2
6858919 Seo et al. Feb 2005 B2
6867492 Auburger et al. Mar 2005 B2
6878571 Isaak et al. Apr 2005 B2
6897552 Nakao May 2005 B2
6927478 Paek Aug 2005 B2
7002805 Lee et al. Feb 2006 B2
7005327 Kung et al. Feb 2006 B2
7015571 Chang et al. Mar 2006 B2
7053469 Koh et al. May 2006 B2
7091623 Tsai et al. Aug 2006 B2
7102209 Bayan et al. Sep 2006 B1
7185426 Hiner Mar 2007 B1
7211471 Foster May 2007 B1
7245007 Foster Jul 2007 B1
7253503 Fusaro et al. Aug 2007 B1
20010008305 McClellan et al. Jul 2001 A1
20010014538 Kwan et al. Aug 2001 A1
20020011654 Kimura Jan 2002 A1
20020024122 Jung et al. Feb 2002 A1
20020027297 Ikenaga et al. Mar 2002 A1
20020038873 Hiyoshi Apr 2002 A1
20020072147 Sayanagi et al. Jun 2002 A1
20020111009 Huang et al. Aug 2002 A1
20020140061 Lee Oct 2002 A1
20020140068 Lee et al. Oct 2002 A1
20020140081 Chou et al. Oct 2002 A1
20020158318 Chen Oct 2002 A1
20020163015 Lee et al. Nov 2002 A1
20020167060 Buijsman et al. Nov 2002 A1
20030006055 Chien-Hung et al. Jan 2003 A1
20030030131 Lee et al. Feb 2003 A1
20030059644 Datta et al. Mar 2003 A1
20030064548 Isaak Apr 2003 A1
20030073265 Hu et al. Apr 2003 A1
20030102537 McLellan et al. Jun 2003 A1
20030164554 Fee et al. Sep 2003 A1
20030168719 Cheng et al. Sep 2003 A1
20030198032 Collander et al. Oct 2003 A1
20040027788 Chiu et al. Feb 2004 A1
20040056277 Karnezos Mar 2004 A1
20040061212 Karnezos Apr 2004 A1
20040061213 Karnezos Apr 2004 A1
20040063242 Karnezos Apr 2004 A1
20040063246 Karnezos Apr 2004 A1
20040065963 Karnezos Apr 2004 A1
20040080025 Kasahara et al. Apr 2004 A1
20040089926 Hsu et al. May 2004 A1
20040164387 Ikenaga et al. Aug 2004 A1
20040253803 Tomono et al. Dec 2004 A1
20060087020 Hirano et al. Apr 2006 A1
20060157843 Hwang Jul 2006 A1
20060231939 Kawabata et al. Oct 2006 A1
Foreign Referenced Citations (84)
Number Date Country
19734794 Aug 1997 DE
0393997 Oct 1990 EP
0459493 Dec 1991 EP
0720225 Mar 1996 EP
0720234 Mar 1996 EP
0794572 Oct 1997 EP
0844665 May 1998 EP
0989608 Mar 2000 EP
1032037 Aug 2000 EP
55163868 Dec 1980 JP
5745959 Mar 1982 JP
58160096 Aug 1983 JP
59208756 Nov 1984 JP
59227143 Dec 1984 JP
60010756 Jan 1985 JP
60116239 Aug 1985 JP
60195957 Oct 1985 JP
60231349 Nov 1985 JP
6139555 Feb 1986 JP
61248541 Nov 1986 JP
629639 Jan 1987 JP
6333854 Feb 1988 JP
63067762 Mar 1988 JP
63188964 Aug 1988 JP
63205935 Aug 1988 JP
63233555 Sep 1988 JP
63249345 Oct 1988 JP
63289951 Nov 1988 JP
63316470 Dec 1988 JP
64054749 Mar 1989 JP
1106456 Apr 1989 JP
1175250 Jul 1989 JP
1205544 Aug 1989 JP
1251747 Oct 1989 JP
2129948 May 1990 JP
369248 Jul 1991 JP
3177060 Aug 1991 JP
3289162 Dec 1991 JP
4098864 Mar 1992 JP
5129473 May 1993 JP
5166992 Jul 1993 JP
5283460 Oct 1993 JP
6061401 Mar 1994 JP
692076 Apr 1994 JP
6140563 May 1994 JP
6252333 Sep 1994 JP
6260532 Sep 1994 JP
7297344 Nov 1995 JP
7312405 Nov 1995 JP
8064364 Mar 1996 JP
8083877 Mar 1996 JP
8125066 May 1996 JP
964284 Jun 1996 JP
8222682 Aug 1996 JP
8306853 Nov 1996 JP
98205 Jan 1997 JP
98206 Jan 1997 JP
98207 Jan 1997 JP
992775 Apr 1997 JP
9260568 Oct 1997 JP
9293822 Nov 1997 JP
10022447 Jan 1998 JP
10199934 Jul 1998 JP
10256240 Sep 1998 JP
11307675 Nov 1999 JP
2000150765 May 2000 JP
20010600648 Mar 2001 JP
2002519848 Jul 2002 JP
200203497 Aug 2002 JP
941979 Jan 1994 KR
19940010938 May 1994 KR
19950018924 Jun 1995 KR
19950041844 Nov 1995 KR
19950044554 Nov 1995 KR
19950052621 Dec 1995 KR
1996074111 Dec 1996 KR
9772358 Nov 1997 KR
100220154 Jun 1999 KR
20000072714 Dec 2000 KR
20000086238 Dec 2000 KR
20020049944 Jun 2002 KR
0936671 Aug 1999 WO
9956316 Nov 1999 WO
9967821 Dec 1999 WO