SMART NANPs: new molecular platform for communication with human immune system and modulation of therapeutic responses

Information

  • Research Project
  • 10086567
  • ApplicationId
    10086567
  • Core Project Number
    R35GM139587
  • Full Project Number
    1R35GM139587-01
  • Serial Number
    139587
  • FOA Number
    PAR-19-367
  • Sub Project Id
  • Project Start Date
    2/1/2021 - 3 years ago
  • Project End Date
    1/31/2026 - a year from now
  • Program Officer Name
    GARCIA, MARTHA
  • Budget Start Date
    2/1/2021 - 3 years ago
  • Budget End Date
    1/31/2022 - 2 years ago
  • Fiscal Year
    2021
  • Support Year
    01
  • Suffix
  • Award Notice Date
    1/22/2021 - 3 years ago

SMART NANPs: new molecular platform for communication with human immune system and modulation of therapeutic responses

Principal Investigator/Program Director (Last, First, Middle): Afonin, Kirill, A PROJECT SUMMARY What if healthcare providers were equipped with biocompatible, biodegradable, robust, and affordable treatment options that combine therapeutic modalities with controlled mechanisms of action? What if this versatile technology had learning capacity and could be educated to recognize patient-specific diseases and interfere with their progression by redirecting fundamental cellular processes? What if the very same formulation could offer an additional means of control over patients? immune responses and further advance favorable therapeutic outcomes with minimal toxicities? These next generation therapies would then become a game changer in helping to prevent, detect, diagnose, and treat diseases and disabilities at their source. With the support from MIRA (R35) funding, we envision a data-driven platform, SMART NANPs (specific, modular, adjustable, reproducible, and targeted nucleic acid nanoparticles), encoded by self-assembling nucleic acids. By controlling the flow of genetic information across all forms of life, nucleic acids have become instrumental in acquiring new knowledge about major cellular processes and origins of diseases. Besides their diverse biological roles, these biopolymers can be programmed into NANPs with specified physicochemical properties and functionalities that dictate NANPs? biological actions with endless possibilities for reprogramming cellular behavior through molecular signaling. We recently discovered that different architectural parameters and compositions of NANPs, delivered to primary human immune cells, can activate monocytes and dendritic cells to produce type I and type III interferons. This pioneering work on NANPs? immunorecognition highlighted an unforeseen clinical application for this technology in the field of vaccines and immunotherapy. A defined structure-function relationship for any given NANP would then allow conditional actuation of its immunorecognition or any other therapeutic activity through a set of embedded architectural codes. With this notion, we introduced two orthogonal concepts of therapeutic NANPs which can be conditionally activated in human cancer cells to release pre-programmed therapeutics. By uniting these breakthroughs and other preliminary findings from my lab, as highlighted in the current application, and integrating them into a unified network of SMART NANPs with programmable control of biodistribution, immunological activity, and therapeutic modules, we will advance the current repertoire of therapies against infectious diseases and cancers (through NANP-based vaccines and immunotherapies), cardiovascular diseases (through regulated coagulation by thrombin-targeting NANPs), and address drug overdose and safety issues (through the biodegradable nature of NANPs and their controlled deactivation). To maximize the successful translation of this technology, the proposed program will employ a multidisciplinary approach that spans the fields of nucleic acid nanotechnology, immunology, drug delivery, translational oncology, and machine learning. The long-term goal of this program is to elevate SMART NANPs to the level of clinical use.

IC Name
NATIONAL INSTITUTE OF GENERAL MEDICAL SCIENCES
  • Activity
    R35
  • Administering IC
    GM
  • Application Type
    1
  • Direct Cost Amount
    95445
  • Indirect Cost Amount
    46111
  • Total Cost
    141556
  • Sub Project Total Cost
  • ARRA Funded
    False
  • CFDA Code
    859
  • Ed Inst. Type
    SCHOOLS OF ARTS AND SCIENCES
  • Funding ICs
    NIGMS:141556\
  • Funding Mechanism
    Non-SBIR/STTR RPGs
  • Study Section
    ZRG1
  • Study Section Name
    Special Emphasis Panel
  • Organization Name
    UNIVERSITY OF NORTH CAROLINA CHARLOTTE
  • Organization Department
    CHEMISTRY
  • Organization DUNS
    066300096
  • Organization City
    CHARLOTTE
  • Organization State
    NC
  • Organization Country
    UNITED STATES
  • Organization Zip Code
    282230001
  • Organization District
    UNITED STATES