None
1. Field of the Invention
The present invention relates to a pump driven by a hard drive type brushless direct current (DC) spindle-motor, suitable for use with liquid cooling systems.
2. Description of the Related Art
Liquid cooling is well known in the art of cooling electronics. As air cooling heat sinks continue to be pushed to new performance levels, so has their cost, complexity, and weight. Liquid cooling systems provide advantages over air cooling in terms of heat removal rates, component reliability and package size.
Liquid cooling removes energy from heat generating components through sensible or latent heat gains of a cooling fluid. The cooling fluid is continuously pressurized by a pump and may be delivered to a thermal management block. The cooling fluid may also be dispensed within a globally cooled enclosure. After the cooling fluid is heated by an electronic component to be cooled, the surplus energy of the fluid is removed by a heat exchanger, or condenser. The cooled fluid exits the heat exchanger and is delivered back to the pump, thus forming a closed loop system.
There are many different liquid cooling systems. Although each type of liquid cooling system may have a unique thermal management block, the closed loop cooling systems are likely to share the common need of pressurizing a supply of liquid coolant. For example: U.S. Pat. No. 6,234,240 discloses a single phase closed loop cooling system; a microchannel liquid cooling system is described by U.S. Pat. No. 4,450,472; an exemplary liquid cooling system is described by U.S. Pat. No. 5,220,804 for a two-phase spray cooling system utilizing a thermal management block; and a globally liquid cooled enclosure is described by U.S. Pat. No. 6,139,361. As described by the '804 patent, spray cooling is capable of absorbing high heat fluxes. Nozzles, or preferably atomizers, break up a supply of liquid coolant into numerous droplets that impinge the surface to be cooled. The size, velocity and resulting momentum of the droplets contributes to the ability of the thermal management unit to absorb heat. These characteristics, and thus the overall performance of the thermal management system are impacted by the performance of the pump. To achieve reliable system performance, it is important that the pump deliver accurate performance over a long life cycle. It is known that pumps driven by DC motors can be used with liquid cooling pumps. U.S. Pat. No. 6,447,270 describes a large scale DC brushless motor used for spray cooling. U.S. Pat. No. 6,193,760 describes a highly specialized DC brushless motor system wherein a rotor creates both the pumping and motor force. U.S. Pat. No. 5,731,954 describes a brushless motor mounted within a reservoir casing.
Desirable features of any liquid cooling system are low cost, high reliability and high performance. Optimization of the pump impacts all three features. Thus, there is a need for a pump that contains a motor with a proven history of high reliability. Thus, there is a need for a pump that contains a motor that can be produced for a low cost. Thus, there is a need for a pump that is compact in size. Furthermore, there is a need for a pump that is efficient in creating its output. Also furthermore, there is a need for a pump that is capable of producing significant pressures.
In order to solve the problems of the prior art, and to provide a highly reliable liquid pump that can produce significant pressures in a compact space for a low cost and with high reliability, a spindle-motor driven pump system has been developed.
The present invention is a compact pump that is powered by a brushless DC spindle-motor, as used in disk drives and CD-ROM drives. A hard drive type spindle-motor is a brushless DC motor that is highly balanced, very reliable, available at low cost, and is capable of significant rotational speeds. According to the present invention, a spindle-motor is mounted to a pump housing and to an impeller within the housing. The spindle-motor rotates the impeller causing movement of a fluid. Preferably for spray cooling, the pump is a turbine pump.
These and other features, aspects, and advantages of the present invention will become better understood with regard to the following description, and accompanying drawings.
In the course of the detailed description to follow, reference will be made to the attached drawings. These drawings show different aspects of the present invention and, where appropriate, reference numerals illustrating like structures, components, and/or elements in different figures are labeled similarly. It is understood that various combinations of the structures, components, and/or elements other than those specifically shown are contemplated and within the scope of the present invention:
Many of the fastening, connection, manufacturing and other means and components utilized in this invention are widely known and used in the field of the invention are described, and their exact nature or type is not necessary for a person of ordinary skill in the art or science to understand the invention; therefore they will not be discussed in detail.
The terms “a”, “an”, and “the” as used in the claims herein are used in conformance with long-standing claim drafting practice and not in a limiting way. Unless specifically set forth herein, the terms “a”, “an”, and “the” are not limited to one of such elements, but instead mean “at least one”.
Applicant hereby incorporates by reference U.S. Pat. No. 5,220,804 for a high heat flux evaporative cooling system. Although spray cooling is herein described as the preferred method of liquid cooling, the present invention is not limited to such a thermal management system. The discussion of spray cooling is only provided as a preferred use of the present invention.
Now referring to
Pump system 20 is mainly comprised of a spindle-motor 30, a cap 50, a body 60, a base 70, and an impeller 40. Overall dimensions of the preferred embodiment of
Spindle-motor 30 is a commercially available DC brushless spindle motor as used with computer hard drives. Hard drive spindle-motors are typically available in the range of less than one-fifth horsepower. U.S. Pat. No. 5,006,943; U.S. Pat. No. 5,402,023; U.S. Pat. No. 6,543,781; and U.S. Pat. No. 5,942,820 all describe the construction and function of hard drive type spindle-motors applicable to the present invention, and are herein incorporated by reference to this application. Generally, DC brushless spindle-motor 30 is comprised of a stationary shaft 31 having high precision magnetic bearings which rotatably support an outer hub 32. One or both of ends of hub 32 may contain a magnetic seal which isolates the insides of spindle-motor 30 from the outside atmosphere. Typically, the magnetic seals will include a magnetic fluid for increased sealablity. Rare-earth magnets in combination with a controller and a stator assembly provide the means of rotating hub 32 around the stationary shaft according to well know electric motor principles. The rare-earth magnets contained within spindle-motor 30, typically constructed from neodymium-iron-boron or samarium-cobalt, provide a higher magnetic flux than alnico or ferrite permanent magnets common to standard DC brushless motors. The rare-earth magnets provide the means of faster motor start ups, faster rotations, more reliable performance and more compact systems, in comparison to standard DC brushless motors. With spindle-motors, such as spindle-motor 30 shown herein, hub 32 is provided in a fashion that allows it to be mounted to the disk like “platters” of a hard drive, very similar to the mounting of impeller 40 of the present invention. Because the exact configuration and construction of DC brushless spindle-motor 30 is not central to the present invention, hereinafter spindle-motor 30 will be described in general terms as warranted for a person skilled in the art to understand and appreciate the present invention. The attached drawings show only the features of spindle-motor 30 necessary to practice the invention.
Significant efforts have been expended in the development and progress of rare-earth spindle motors which make them ideal for liquid cooling pumps. First, because of the mass production rates associated with hard drives, spindle-motor 30 is available at low costs. Second, spindle-motor 30 is highly balanced and does not contain any significant wear parts resulting in very reliable performance. In fact, spindle-motor 30 is commonly available with average mean times between failures (MTBF's) in the range of 800,000 hours. Third, spindle-motor 30 is capable of fast rotational speeds. Rare-earth magnets within spindle-motor 30 provide the means of allowing hub 32 to achieve speeds ranging from 3600 rotations per minute, typical of laptops hard drives, to over 15,000 rpm's, as typical of high performance SCSI hard drives motors. Large rpm's allow the size of pump system 20 to be minimized. Fourth, the output power of hard drive spindle-motors coincide with the cooling needs of many electronic components. Fifth, because hard-drive motors are compact and well balanced they are efficient in creating their output. Efficiency is a desirable feature of liquid cooling systems.
Referring back to
Within the cavity created by cap 50, body 60 and base 70, is spindle-motor 30 and an impeller 40. Spindle-motor 30 may be secured to the assembly in multiple ways depending on the chosen motor type and manufacturer. A first securing method utilizes the input connector 33, which supplies electrical energy to the stator assembly. Input connector 33 may contain exterior threads that engage with interior threads of a ring 36. Another method of securing spindle-motor 30 to pump assembly 20 is through the use of a mounting thread 34 contained within stationary spindle 31 (
Best shown by
The rotational constraint of impeller 40 to hub 32 of spindle-motor 30 provides the means for moving impeller 40 with angular velocities over 3600 rpm's. As shown in
Body 60 has a first fluid fitting orifice 61 and a second fluid fitting orifice 62 each connected to the fluid cavity. Depending upon the rotational direction of spindle-motor 30, and the resulting rotational direction of impeller 40, the plurality of vanes 41 draw fluid in through first fluid fitting orifice 61 and push the fluid out second fluid fitting orifice 62, or vice-versa. Connected to both first orifice 61 and second orifice 62 are a fluid fitting 24. Although fluid fitting 24 is shown as a press-on barbed fitting, a number of widely known fittings may be employed including “quick-disconnect” fittings.
Pump performance characteristics, such as pressure and flow rates, are largely driven by the design of impeller 40. The diameter and speed of impeller 40 determine the tangential velocity of vanes 41. The tangential velocity of vanes 41 contribute to determining the resulting pressure and flow rate of pump system 20. For a given application that requires a particular pump performance and a resulting tangential speed of vanes 41, the large rpm's of spindle-motor 30, created by its at least one rare-earth magnet, provides the means of minimizing the diameter of impeller 40 and the overall package size of system 20.
Additional benefits come from using spindle-motor 30 within pump system 20. One such benefit is that the dielectric fluid commonly used as a liquid coolant further improves the performance of spindle-motor 30 in comparison to its use with hard drives. As previously described, spindle-motor 30 may contain a magnetic fluid for improved sealiblity. Although this feature is needed for disk drive applications, as to keep contaminants away from the sensitive magnetic memory disks, this feature is not needed for liquid cooling. In fact, with the addition of the dielectric fluid into the present invention, the less viscous cooling fluid displaces the magnetic fluid and results in less friction acting against spindle-motor 30. Pump system 20, according to the present invention, is figured to be 8% efficient. In addition, it has been shown that the cooling fluid provides cooling of spindle-motor 30 which may increase its life and reliability.
The use of pump system 20 is typical of pumping systems. Preferably a common “sensorless” hard drive motor control system delivers power to a series of input pins of connector 33 which correspond to a plurality of groups of coils within spindle-motor 30. Depending upon the size of motor 30 and the desired speed, input powers can typically be between 5 and 12 volts, and with a current of one-half to 3 amperes. The input power is transferred into a magnetic field which causes hub 32 to rotate according to well known electric motor practice. The rotation of hub 32 causes impeller 40 to rotate which results in movement of vanes 41. Vanes 41 draw a supply of low pressure fluid and transform it into a higher pressure supply of fluid. The flow of fluid is directed by connecting tubes to fittings 24.
Other embodiments of the present invention are possible. One such embodiment is shown in
While the low spindle motor driven pump herein described constitute preferred embodiments of the invention, it is to be understood that the invention is not limited to these precise form of assemblies, and that changes may be made therein with out departing from the scope and spirit of the invention.
This invention was made with Government support under contract #N68335-00-D-0451 awarded by the Defense Microelectronics Activity. The Government has certain rights in this invention.
Number | Name | Date | Kind |
---|---|---|---|
1865396 | Claypool | Mar 1930 | A |
1893616 | Ferguson | Jan 1933 | A |
3658444 | Rhodes et al. | Apr 1972 | A |
3802804 | Zimmermann | Apr 1974 | A |
4101945 | Butsch | Jul 1978 | A |
4403910 | Watanabe et al. | Sep 1983 | A |
4438542 | Schuh | Mar 1984 | A |
4450472 | Tuckerman et al. | May 1984 | A |
4633149 | Welterlin | Dec 1986 | A |
5006943 | Elsasser et al. | Apr 1991 | A |
5028218 | Jensen et al. | Jul 1991 | A |
5047677 | Mineta et al. | Sep 1991 | A |
5096390 | Sevrain et al. | Mar 1992 | A |
5138209 | Chuta et al. | Aug 1992 | A |
5220804 | Tilton | Jun 1993 | A |
5269664 | Buse | Dec 1993 | A |
5443413 | Pflager et al. | Aug 1995 | A |
5731954 | Cheon | Mar 1998 | A |
5798596 | Lordo | Aug 1998 | A |
5818131 | Zhang | Oct 1998 | A |
5942820 | Yoshida | Aug 1999 | A |
5997261 | Kershaw et al. | Dec 1999 | A |
6049149 | Lin et al. | Apr 2000 | A |
6056518 | Allen et al. | May 2000 | A |
6082974 | Takemoto et al. | Jul 2000 | A |
6094912 | Williford | Aug 2000 | A |
6139361 | Przilas et al. | Oct 2000 | A |
6211587 | Enomoto et al. | Apr 2001 | B1 |
6234240 | Cheon | May 2001 | B1 |
6247429 | Hara et al. | Jun 2001 | B1 |
6293760 | Pais et al. | Sep 2001 | B1 |
6377458 | Morris et al. | Apr 2002 | B1 |
6439845 | Veres | Aug 2002 | B1 |
6447270 | Schmidt et al. | Sep 2002 | B1 |
6543781 | Rehm et al. | Apr 2003 | B1 |
6612815 | Pawellek et al. | Sep 2003 | B1 |
6666672 | Steffens | Dec 2003 | B1 |
6672818 | Terracol et al. | Jan 2004 | B1 |
6688861 | Wampler | Feb 2004 | B1 |
6873069 | Odagiri et al. | Mar 2005 | B1 |
20020094281 | Khanwilkar et al. | Jul 2002 | A1 |
20050023927 | Inayama et al. | Feb 2005 | A1 |
20050118044 | Inoue et al. | Jun 2005 | A1 |
20050214135 | Shibuya et al. | Sep 2005 | A1 |
Number | Date | Country | |
---|---|---|---|
20050168079 A1 | Aug 2005 | US |