Structure of a free regulator of G-protein signaling (RGS4) and methods of identifying agonists and antagonists using same

Information

  • Patent Application
  • 20030186413
  • Publication Number
    20030186413
  • Date Filed
    August 29, 2001
    23 years ago
  • Date Published
    October 02, 2003
    21 years ago
Abstract
The present invention provides a solution structure of free RGS4 determined using NMR techniques. The structure includes a Gα binding site and an allosteric binding site. The structural information provided can be employed to identify, select or design agonists and antagonists of RGS4 activity. The invention includes two dimensional and three dimensional models and representations of the structure of free RGS4 based upon structural coordinates that are provided that are useful in the methods described.
Description


BACKGROUND OF THE INVENTION

[0001] A variety of biochemical processes, particularly those involving protein-protein interactions, are believed to be mediated by an induced conformational change in the protein target. The resulting structural change in the protein is then used to explain a modification in its function (e.g., enzymatic activity) or its affinity for another protein in the biological system. Conformational change has been proposed to occur in the cascade of steps associated with certain signal transduction pathways in eukaryotic cells. A ubiquitous component of such signal transduction pathways is a heterotrimeric guanine nucleotide-binding protein (G-protein) coupled to a cell surface receptor (for reviews see references 1-4 and 72). G-proteins relay signals initiated by various stimuli including photons, odorants, and a number of hormones and neurotransmitters. A variety of diseases are caused by defects in G-protein activity. G-proteins exist as heterotrimeric complexes of α, β, and γ subunits. The α-subunit (Gα) is weakly bound to a dimer (Gβγ) in which the β-subunit is tightly bound to the γ-subunit. Gα is also associated with the intracellular carboxy terminal tail of a seven-helical transmembrane receptor. G-proteins transfer signals from more than 1000 receptors with various Gα subtypes regulating a variety of distinct downstream signaling pathways. Guanine nucleotide binding and GTPase function within the Gα domain to regulate the activity of G-proteins.


[0002] The G-protein signaling process is typically initiated by the binding of an agonist to the cell surface receptor resulting in an induced conformational change in the G-protein. The G-protein structural chance affects the guanine nucleotide affinity of Gα, so that it preferentially binds GTP and Mg2+ over GDP. Numerous x-ray structures for Giα1 during the various stages of the GTPase cycle have been used to identify regions of induced conformational change (5-8). In particular, the Gα guanine nucleotide binding site is composed of three distinct “switch” regions: residues V179-V185 in switch I, residues Q204-H213 in switch II and residues A235-N237 in switch III, which undergo conformational changes upon GTP hydrolysis. The Gα surface that binds the Gβγ dimer contains switch I and switch II regions. In the active Gα-GTP-Mg2+ complex, a conformational change in switch I is associated with binding Mg2+, and switch II and switch III regions become well ordered due to ionic interactions between the two switch regions. As a result of the formation of the Gα-GTP-Mg2 complex, modifications in the structure of the three “switch” regions facilitate dissociation of Gα from Gβγ. The released subunits are then available to interact with a variety of target proteins to elicit the desired response. Termination of the signal results when the process is reversed by the hydrolysis of GTP bound to Gα. Reassociation of Gα with Gβγ results in the inactivation of the G-protein. Therefore the duration of the G-protein signal is directly dependent on the GTPase activity of the Gα protein.


[0003] Regulators of G-protein signaling (RGS) affect the intensity and duration of the G-protein signal cascade by binding to the active Gα-GTP-Mg2 complex and inducing a 50-fold increase in the rate of GTP hydrolysis (For reviews see references 9-13). Conversely, RGS proteins have little or no affinity for the inactive Gα-GDP complex. Thus, RGS proteins act as attenuators of the induced G-protein signal by increasing the rate of inactivation of the G-protein and termination of the signal. RGS proteins may exhibit additional biological function, e.g., RGS4 is reported to block activation of GTP-Gα by effectors (83). The RGS family, including RGS4, GAIP (human Gα-interacting protein), RGS1, RGS10, and RGS16, among others, contains more than 20 known members where specificity for Gα subtypes has been demonstrated and appears to be associated with subtle sequence differences (8, 14). The RGS family contains significant structural diversity, however, all RGS proteins are characterized by a conserved domain of about 130 amino acids which may be separated by linker regions of varying lengths. Recently, the RGS family has been reported to comprise at least six separate subfamilies designated A-F with unique structural features (Zheng, B. et al. (1999) (86). RGS4 exhibits structural features of RGS subfamily A. Subfamily-specific structural features may be associated with subfamily-specific functions, e.g., differences in Gα binding specificity among RGS proteins, membrane association of RGS protein, or functions exhibited by RGS proteins in addition to GAP activity. RGS4 is believed to function to attenuate induced G-protein by stabilizing the transition.


[0004] RGS proteins are widely expressed in eukaryotic cells, including human cells (13). At least one RGS protein is found in tissue of each human organ and many tissues express multiple RGS proteins. Additionally, members of the RGS family are specifically expressed in the human brain, where RGS4 is perhaps the most widely distributed and highly expressed RGS subtype (15, 16). RGS expression has been correlated with a response to induced seizures, which indicates that regulation of RGS expression is an adaptive response in the brain signal transduction pathway to compensate for desensitization and sensitization of G-protein-coupled receptor function (16). In addition to regulation of the response to neurotransmiters, RGS activity has been associated with a variety of cellular functions including: cell proliferation, cell differentiation, membrane trafficking and embryonic development (9, 10, 12, 17).


[0005] An x-ray structure of RGS4 bound to Giα [8], site-directed mutagenesis [18-20] and biochemical studies [17, 21] suggest that RGS4 binds preferentially to the Gα-GTP-Mg2+ complex and stabilizes the transition state structure of the switch regions facilitating hydrolysis of GTP. Since the functional result of RGS4 binding to Giα1 is induction of GTP hydrolysis by Giα1, it is reasonable to anticipate that the conformational change upon complex formation with RGS4 primarily occurs in Giα1. However, the x-ray crystal structure of Giα1 in the RGS4-Giα1 complex exhibits only a 0.6 Å rms difference from that of Giα1 in Giα1-AIF4 which is trapped in the proposed transition state for GTP hydrolysis. This comparison indicates that there is no significant conformational change in Giα1. On the other hand, analysis of the RGS4-Giα1 complex x-ray structure indicates that RGS4 binding to Giα1 induces a decrease in the mobility of the switch regions of Giα1. In these regions, critical interactions occur between N82 of RGS4 (employing the numbering of FIG. 1) with the switch regions I and II of Giα1 and between T182 of Giα1 with a Gα binding pocket on RGS4. The RGS4 residue N82 has been identified as critical for facilitating the intrinsic Giα1 GTPase activity presumably by stabilizing the switch regions and substrate binding (19, 20). Similar changes in the switch regions are observed between the Gα-GTP-Mg2 complex and the Gα-GDP complex (2), suggesting that a conformational change in RGS4 may contribute to regulation of G-protein signaling.


[0006] de Alba, E. et al. (1999) (87) reports the solution structure of human GAIP as determined by NMR techniques. The structure calculation used dipolar couplings of the oriented protein in two different liquid crystal media. The GAIP solution structure was compared to that of the rat RGS4-Giα1 x-ray structure (8). The reference suggests that GAIP-L187 participates in Gα-RGS binding and may also be important in the folding and stability of the RGS protein. It is also suggested that GAIP-S156 plays a role in GAIP stability. GAIP-S156 has been identified as a subfamily-specific residue for the RGS subfamily. A [GAIP, Ret-RGS1, RGS21] (86) and Wang et al. (89). In RGS subfamily B which includes RGS4, the core amino acid corresponding to GAIP S156 is RGS N82 (as numbered in FIG. 1 and N128 as numbered in Tesmer et al. (8)). The core region of GAIP is reported to have only 60% sequence identity to the core of RGS4. Any differences observed between these two structures are at least in part due to the differences in amino acid sequence.


[0007] It is thus desirable to provide structural information for free RGS4 to better understand the mechanism of the regulation of G-protein signaling. More specifically, such structural information allows a direct comparison between the solution structure of RGS4 and the x-ray structure of the RGS4-Gα complex to determine which conformational changes occur in RGS proteins on binding to Gα. The structural information and comparison can be employed to identify factors (chemical or biochemical species) that affect G-protein signaling by interaction with RGS proteins or their complexes with Gα. The structurally information can be of particular use in the identification and rational design of agonists and antagonists of free RGS and RGS/Gα complex activity.



SUMMARY OF THE INVENTION

[0008] The present invention provides the three-dimensional solution structure of a free (i.e., not complexed) RGS protein of subfamily B, specifically that of free RGS4, as determined by NMR (nuclear magnetic resonance) spectroscopy. Particularly, the invention provides the three-dimensional solution structure of a Gα binding site of an RGS subfamily B protein. The Gα binding site of RGS subfamily B is exemplified by the three-dimensional structure of the RGS4 Giα1 binding site comprising the RGS4 protein residues D117, S118 and R121. The invention also provides the three-dimensional structure of the α6-α7 region of a free RGS subclass B which region exhibits a significant conformational change on binding of RGS to Gα. Binding at the α6-α7 region of RGS protein can effect the function of RGS protein in G-protein signaling. Further, the invention identifies and provided the three-dimensional structure of an allosteric binding site in an RGS protein. Binding at this allosteric site can affect the regulation of G-protein signaling. An allosteric binding site in the RGS protein is exemplified by the allosteric binding site in RGS4 located in the α1 and α2 helical regions of free RGS4 and in the tight turn located between the two helical regions. More specifically, the allosteric binding site in RGS4 comprises the residues V10, W13, L17, 120, H23, E24, C25 and T132.


[0009] The three dimensional structure of free RGS4 in solution, including the Gα binding site, the C-terminus α67 region of free RGS4, and the allosteric binding site in free RGS4 are provided by the relative atomic structural coordinates given in Table 2 as obtained by NMR spectroscopy. Also provided are the 15N, 13C, 13CO and 1H NMR assignments for free RGS4 (Table 1) which are employed in the determination of its secondary and three-dimensional structure. These assignments are also useful in methods for identifying or detecting chemical and biochemical species that bind to RGS and which can affect RGS function or RGS-Gα function and are particularly useful for identifying or detecting species that bind to RGS subclass B which can affect its function or RGS subfamily B-Gα function.


[0010] The invention further provides a representation or model of all or part of the three-dimensional structure of a free RGS subfamily B protein comprising a data set of relative atomic structural coordinates embodying the three-dimensional structure of free RGS4 protein. The invention also provides a data set of relative atomic structural coordinates embodying the three-dimensional structure of the Gα binding site in an RGS subfamily B protein. The invention further provides a data set of relative atomic structural coordinates embodying the α67 region of an RGS subfamily protein. In addition, the invention provides a data set of relative atomic structural coordinates embodying an allosteric binding site in an RGS subfamily B protein. The data set and any structural representation or model of a free RGS subfamily B, its Gα binding site its α67 region or the allosteric binding site in RGS subfamily B created or generated using the data set provided herein can be employed to identify, select or rationally design factors, e.g., chemical or biochemical species, which affect RGS function or activity or RGS/Gα complex activity or function. Further, the data set, structural representation or model of the Gα binding site can also be used to identify, select or rationally design species which affect Gα function by binding to Gα. The data set and structural representations and models provided by this invention are particularly useful for the identification of agonists or antagonists of RGS function or RGS/Gα complex function or activity.


[0011] The data set, including subsets of data embodying the Gα binding site, the α6-α7 region and the allosteric binding site, provided herein was determined by NMR analysis. However, any known method can be employed to provide the structural data. In one embodiment, the data set embodies the structure of free RGS4 in solution. In certain embodiments, the data set comprises one or more portions, of the structure of free RGS4. Of particular interest are those portions of the structure of RSG4 which function in RSG-regulation of G-protein signaling or more specifically which affect binding of RGS to Gα or which affect the biological function or activity of the RGS-Gα complex. Also of interest are those portions of the structure of RSG4 to which candidate agonists and antagonists of RSG bind to affect its biological function.


[0012] Any available method may be used to construct a structural representation or model from the NMR—derived data disclosed herein or from data obtained from an independent structural analysis of free RGS4. Such a model or representation can be generated or constructed from the available analytical data points using software packages such as HKL, CHARMM, MOSFILM, XDS, CCP4, SHARP, PHASES, HEAVY, XPLOR, TNT, NMRCOMPASS, NMRPIPE, DIANA, NMRDRAW, FELIX, VNMR, MADIGRAS, QUANTA, BUSTER, SOLVE, O, FRODO, XPLOR, RASMOL, and CHAIN, all of which are well-known and available to those in the art. A structural representation or model can be generated from these data using available systems, including, for example, Silicon Graphics, Evans and Sutherland, SUN, Hewlett Packard, Apple Macintosh, DEC, IBM, and Compaq systems. The structural representation or model can be displayed or generated in any two-dimensional or three-dimensional form known in the art for viewing, analyzing, modeling or otherwise representing the structure. The structural representation can be transmitted, conveyed or stored in any known graphic, digital or analog form. Structural representations or models generated with the RGS data provided herein can be combined with structural representations of other chemical and biochemical species (e.g., candidate antagonists or agonists) including x-ray data of RGS-complexes, in order to analyze potential interactions between RGS, particularly RGS subfamily B proteins, and Gα and those species. The data provided herein may also be combined, as illustrated herein, with structural information (including x-ray data) of RGS-complexes, particularly RGS subclass B protein-complexes and particularly those complexes believed to be or believed to model biologically functional complexes.


[0013] The present invention relates to the structural data for free RGS4, the Gα binding site of RGS4, the α6-α7 region whose conformation changes on binding of RGS4 to Gα, and allosteric binding sites in RGS4 in any form (for example in digital, tabular, graphic, or pictorial form or as embodied in any representation or model or as embodied in a computer storage medium) and the use of the data (in whatever form) for generating a structural representation or model of free RGS particularly an RGS subfamily B protein, more particularly RGS4, or of the interaction of RGS, an RGS subfamily B protein, and RGS4, with any other chemical or biochemical species, including structural representations or models of RGS interaction with G-protein subunits and of RGS interaction with potential agonists or antagonists of RGS function.


[0014] The present invention also provides for a computer system which comprises the structural representation or model of the invention and hardware used for construction, processing and/or visualization of the model of the invention. The solution structural coordinates of RGS4 or portions thereof as provided herein can be stored in or on an appropriate medium for introduction into or use with any computer program or system for generating a representation or model of the structure of an RGS protein, an RGS subclass B protein or RGS4, or for analysis of the interaction of RGS with other chemical or biochemcial species.


[0015] The structural coordinates can be stored in a machine-readable form on a machine-readable storage medium, for example, a computer hard drive, diskette, DAT tape, etc., for display as a three-dimensional shape or for other uses involving computer-assisted manipulation of, or computation based on, the structural coordinates or the three-dimensional structures they define. By way of example, the data defining the three dimensional structure of RGS4 of the present invention, or of a portion of RGS4 as disclosed herein, may be stored in a machine-readable storage medium, and may be displayed as a graphical three-dimensional representation of the relevant structural coordinates, typically using a computer capable of reading the data from said storage medium and programmed with instructions for creating the representation from such data.


[0016] Accordingly, the present invention provides a machine, such as a computer, programmed in memory with the coordinates of the RGS4 or RGS subfamily B protein, or portions thereof (such as, by way of example, the coordinates of the RSG4 Gα binding site, the α6-α7 region of RGS4, or the allosteric binding site in the α1-α2 region of RGS4), together with a program capable of converting the coordinates into a three dimensional graphical representation of the structural coordinates on a display connected to the machine. A machine having a memory containing such data aids in the rational design or selection of inhibitors or activators of RGS, Gα or RGS-Gα complex activity, including the evaluation of the ability of a particular chemical or biochemical species to favorably associate with RGS, particularly an RGS subclass B protein, as well as in the modeling of compounds, proteins, complexes, etc. related by significant structural or sequence homology to RGS4 or other RGS proteins.


[0017] The present invention is additionally directed to a method of determining the three dimensional solution structure of a compound, e.g., a protein or peptide or other chemical or biochemical species (including RGS proteins or portions thereof, or more specifically, RGS subfamily B proteins or portions thereof that are not RGS4) whose structure is unknown, comprising the steps of first obtaining a solution of the protein or peptide whose structure is unknown, and then generating NMR data from this solution. The NMR data from the protein or peptide can then be compared with the known three dimensional structure of RGS4 (or portion thereof, e.g., the Gα binding site) as disclosed herein, and the three dimensional structure of the protein or peptide whose structure is unknown conformed to the known RGS4 structure using standard techniques, such as 2D, 3D and 4D isotope filtering, editing and triple resonance NMR techniques, computer homology modeling as well an adaptation of molecular replacement techniques as applied to NMR data. Alternatively, a three dimensional model of a protein or peptide of unknown structure, but related by sequence similarity to RGS4, may be generated by initial sequence alignment between RGS4 and the protein or peptide, based on any or all amino acid sequence identity, secondary structure elements or tertiary folds, and then generating by computer modeling a three dimensional structure for the molecule using the known three dimensional structure of, and sequence alignment with, RGS4.


[0018] Methods are also provided for identifying a species which is an agonist or antagonist of RGS activity, RGS binding to Gα, Gα binding to RGS, or RGS/Gα complex activity, particularly for RGS subfamily B proteins. The method comprises the steps of using a three dimensional structure of free RGS subfamily B protein or a portion (e.g., an RGS4 core protein) thereof as defined by the relative structural coordinates of amino acids encoding the RGS4-core protein to design or select a potential agonist or antagonist, and synthesizing or otherwise obtaining the potential agonist or antagonist. The potential agonist or antagonist may be selected by screening an appropriate database, may be designed de novo by analyzing the steric configurations and charge potentials of the RGS4 Gα binding site, the α67 region of RGS4, or an allosteric binding site of RGS4 in conjunction with the appropriate software programs, or may be designed using characteristics of known agonists or antagonists of RGS4, RGS subfamily B, or other RGS proteins in order to create “hybrid” agonists or antagonists. The method of the present invention is preferably used to design or select inhibitors of RGS subfamily B proteins, or RGS subclass B-Gα complex activity, and specifically RGS4 or RGS4-Giα1 complex activity. In a specific embodiment, the potential agonist or antagonist is identified, selected or designed by studying the interaction of candidate species with a three-dimensional model of RGS4 (or a portion thereof or a three-dimensional model of another RGS subfamily B protein (or model thereof) and selecting a species which is predicted by its interaction with the RGS protein or a portion of an RGS protein to act as an agonist or antagonist. Potential antagonists and agonists can be readily tested using various procedures disclosed herein or known in the art to confirm their antagonist or agonist function. Species identified in accordance with such methods are also provided.


[0019] Other specific embodiments provide: (1) a process of identifying a substance that inhibits RGS4 activity, RGS4 binding to Giα1, Giα1 binding to RGS4 or RGS4/Giα1 complex activity comprising determining the interaction between a candidate substance and a model of all of part of the structure of free RGS4, or (2) a process of identifying a substance that mimics or promotes RGS4 activity, RGS4 binding to Giα1, Giα1 binding to RGS4 or RGS4/Gα complex activity comprising determining the interaction between a candidate substance and a model of all or part of the structure of free RGS4 by analyzing the steric configuration and charge potential of free RGS4 and comparing these properties to those of a candidate substance. Substances identified in accordance with such processes are also provided.


[0020] Other embodiments provide a method of identifying antagonists or agonists of RGS activity, RGS binding to Gα, Gα binding to RGS or RGS/Gα complex activity by rational drug design comprising: (a) designing a potential antagonist or agonist that will form a reversible or non-reversible complex with one or more amino acids in the RGS Gα binding site based upon the structure coordinates of free RGS4; (b) synthesizing or otherwise obtaining the antagonist or agonist; and (c) determining whether the potential antagonist or agonist inhibits or promotes the activity or binding of RGS or the activity of the RGS-Gα complex. In other preferred embodiments, the antagonist or agonist is designed to interact with one or more atoms of one or more amino acids in the RGS4-Giα1 binding site. More specifically, the antagonist or agonist is designed to interact with amino acids selected from the group consisting of D117, S118, or R121 of RGS4, other amino acids associated with the Gα binding site and other amino acids revealed by the determined structure. Yet more specifically, the antagonist or agonist is designed to interact with amino acids selected from the group consisting of S39, E41, N42, L113, D117, S118, R121 or N82 of RGS4. Substances identified in accordance with such processes are also provided. The agonist or antagonist may form a covalent or non-covalent bond with an RGS protein. This method is specifically applicable to identifying antagonists or agonists of RGS subfamily B proteins.


[0021] Other specific embodiments provide a method of identifying antagonists or agonists of RGS activity or RGS/Gα complex activity by rational drug design comprising: (a) designing a potential antagonist or agonist that will form a reversible or non-reversible complex with one or more amino acids in a α6-α7 region of RGS based upon the structure co-ordinates of free RGS4; (b) synthesizing the antagonist or agonist; and (c) determining whether the potential antagonist or agonist inhibits or promotes the activity of RGS or RGS/Gα complex. In preferred embodiments, the antagonist or agonist is designed to prevent or facilitate conformation change in these regions on binding to Gα. This method is specifically applicable to identifying antagonists or agonists of RGS subfamily B protein activity or RGS subfamily B/Gα complex activity.


[0022] Other specific embodiments provide a method of identifying antagonists or agonists of RGS activity or RGS/Gα complex activity by rational drug design comprising: (a) designing a potential antagonist or agonist that will form a reversible or non-reversible complex with one or more amino acids in an RGS4 allosteric binding site based upon the structure co-ordinates of free RGS4; (b) synthesizing the antagonist or agonist; and (c) determining whether the potential antagonist or agonist inhibits or promotes the activity of RGS or RGS/Gα complex. In preferred embodiments, the antagonist or agonist is designed to interact with the allosteric binding site in the α12 region of RGS4. In yet other preferred embodiments, the antagonist or agonist is designed to interact with one or more atoms of one or more amino acids in the allosteric binding site in the α1 and α2 region of RGS4, and particularly with one or more atoms of amino acids V10, W13, L17, L20, H23, E24, C25, or T132 of RGS4. Substances identified in accordance with such processes are also provided. This method is specifically applicable to identifying antagonists or agonists of RGS subclass B protein activity or RGS subclass B/Gα complex activity.


[0023] Candidate agonists and antagonists of RGS, RGS-Gα complexes can be selected from any type of small molecule, dimer, multimer, oligomer, or polymer of natural or non-natural origin that is obtained from any source and may be isolated from a natural source or chemically or biologically synthesized. Candidate antagonists and agonists can include nucleic acids, peptides, polypeptides, proteins, and various small organic molecules.


[0024] The study of the interaction of the candidate species with the three-dimensional structure of RGS and/or portions of that structure can be performed using available software platforms, including QUANTA, RASMOL, O, CHAIN, FRODO, INSIGHT, DOCK, MCSS/HOOK, CHARMM, LEAPFROG, CAVEAT(UC Berkley), CAVEAT(MSI), MODELLER, CATALYST, and ISIS.


[0025] The invention also provides a method for identifying the presence of and determining the location of allosteric binding sites in RGS4. The method comprises the steps of contacting free RGS4-core in solution with test compounds that are members of a library of chemical species which encompass a range of structural features or which are known to inhibit RGS function; measuring the 1H, 15N, and/or 13C NMR spectra of the RGS4-core in the presence of test compounds of the library to detect any perturbations in the chemical shifts of RGS4-core that are induced by binding of a test compound to RGS4-core, and determining if binding of the test compound affects RGS activity. This can be done, for example, by assessing the affect of the test compound on RGS induced Gα GTPase activity. The amino acid residues of RGS4-core that are affected by binding of the test compound define the binding site of the test compound. If the test compound is found to affect RGS4-core activity and the location to which the test compound binds in RGS4-core is not the Gα binding site, then the location to which the test compound binds is an allosteric binding site. One such allosteric binding site in the α1-α2 region of RGS4-core has been identified using this method.


[0026] The three-dimensional structure of any allosteric binding site identified by this method can then be employed in methods described herein to identify, select and design candidate agonists and antagonists of RGS activity and specifically of RGS subclass B activity. Test compounds for assessing the presence of allosteric sites in RGS can be members of a library that exhibit a range of structural feature (e.g., alicyclic rings, heterocyclic rings, aromatic rings, aliphatic, alicyclic compounds or aromatic compounds displaying various substituent groups (e.g., OH,—CO—,—NHCO—, etc.). Test compounds can also be selected in screens for compounds that are known to exhibit an affect on RGS activity (e.g., that enhance or retard the rate of RGS4-induced Gα GTPase). Initial screens can be performed by assessing mixtures containing a plurality of test compounds for an affect on RGS activity. In cases in which an affect is observed with the mixture of test compounds, the individual compounds can be re-tested individually to determine which test compound(s) affect RGS activity.


[0027] In a specific embodiment, the invention provides a method in which the three dimensional structure of free RGS4-core is employed to identify chemical or biochemical species or fragments thereof capable of binding to an RGS protein. Once identified the species or fragments capable of binding to RGS are assembled (using well-known computer modeling techniques) into a single molecule to provide a structure of a potential antagonist or agonist. The molecule assembled can contain additional species or fragments (e.g., a backbone) for desired orientation of the species or fragments capable of binding to RGS. This method is particularly applicable to RGS subfamily B proteins.


[0028] The invention further provides a method for identifying mutants of RGS4 proteins in which the activity of the mutant protein is different from that of RGS4. In this method the three-dimensional structure of free RGS4 is employed to identify amino acids that are involved in the regulation of G-protein signaling. One or more of the amino acid residues identified are then modified to generate a mutant RGS4. Mutants identified in this method are expected to exhibit altered function in the regulation of G-protein signaling.


[0029] Other objects of the invention will be readily apparent from the following detailed description.







BRIEF DESCRIPTION OF THE DRAWINGS

[0030]
FIG. 1 illustrates the secondary structure of RGS4. The figure provides a summary of the sequential and medium range NOEs involving the NH, Hα and Hβ protons, the amide exchange and 3JHNα coupling constant data, and the 13Cα and 13Cβ secondary chemical shifts observed for RGS4 with the secondary structure deduced from this data. The thickness of the lines reflects the strength of the NOEs. Amide protons still present after exchange to D2O are indicated by closed circles. The open boxes represent potential sequential assignments NOEs which are obscured by resonance overlap and could therefore not be assigned unambiguously. The gay boxes on the same line as the Hα(i)—NH(i+1) NOEs represents the sequential NOE between the Hα proton of residue i and the CδH proton of the i+1 proline and is indicative of a trans proline. Seven alpha helical regions are indicated (α1-α7).


[0031]
FIGS. 2A and 2B are ribbon diagrams of the (A) x-ray structure of RGS4 from the RGS4-Giα1 complex, (B) NMR structure of free RGS4 for residues V5 to P134. The residues which exhibit a significant structural change between the RGS4-Giα1 x-ray structure and the free RGS4 NMR structure are numbered. Residues K116-Y119 correspond to key residues involved in the interaction with Giα1 and the location of a structural change between the free and complexed forms of RGS are indicated. The C- and N-terminal regions which exhibit a change in secondary structure and helical packing are also indicated. The RGS4-Giα1 x-ray structure is that of Tesmer et al. (8). The C- and N-terminal regions which incur a change in secondary structure and helical packing are indicated. The observed helical regions of the RGS4 structure are labeled.







DETAILED DESCRIPTION OF THE INVENTION

[0032] RGS proteins are regulators of G-protein signaling which affect the intensity and duration of the G-protein signal cascade by binding to the active Gα-GTP-Mg2 complex to increase the rate of GTP hydrolysis. RGS proteins act as attenuators of the induced G-protein signal by increasing the rate of inactivation of the G-protein and termination of the signal. RGS proteins have been identified in a wide range of eukaryotes, including humans. RGS proteins are highly diverse, multifunctional proteins characterized by the presence of a core region of approximately 130 amino acid residues (sometimes identified as having 120 amino acids), which may be separated by linker regions of varying lengths (79, 80, 9), that is conserved in all RGS proteins that have so far been identified. All RGS proteins that have been identified bind to members of the Giα class of G protein α subunits. The family of RGS proteins include RGS4, GAIP (human Gα-interacting protein), RGS 1, RGS 10, RGS 11, RGS12, RGS13, RGS14, and RGS16 (also called RGSr), Axin, Conductin, p115-RhoGEF, PD2-RhoGEF and LSC (86), among others, and contains more than 20 known members where specificity for Gα subtypes has been demonstrated and appears to be associated with subtle sequence differences (8, 14). RGS4 is believed to stabilize the transition state for GTP hydrolysis (17, 57, 21). The conserved region of RGS provides for binding to Gα and can thus be used to identify species that affect (as agonists or antagonists) RGS binding to Gα and the activity of RGS as an attenuator of G-protein signaling. RGS proteins of this invention function in G-protein regulation by binding to the Gα subunit of a G-protein. RGS proteins may, but need not, exhibit other biological functions. References 89 and 91 provided reviews of additional biological functions exhibited by RGS proteins.


[0033] The term “RGS protein” as used herein, including its use for specific RGS proteins and RGS protein subfamilies, includes native RGS proteins (and native RGS core proteins) isolated from or otherwise obtained from (e.g.,by expression of cloned genes) from any natural sources, recombinant RGS proteins which may contain portions of RGS sequence and non-RGS sequence (e.g., RGS-core sequence with the hexahis pro-tag), variant RGS proteins which contain conservative amino acid sequence differences from a native RGS protein or in which sequences non-functional in RGS activity are deleted, mutant RGS proteins in which one or more amino acids have been modified by expression from a mutant RGS coding sequence. Mutants include, among others, those having one or more site specific mutations, those having one or more deletions and those having one or more insertions compared to a native RGS protein (or RGS-core) or variant RGS (or variant RGS-core). The term mutant RGS refers in particular to those proteins having the described mutations, insertions or deletions in the RGS core region. Variant RGS proteins are expected to have biological function for G-protein regulation substantially the same as that of the native RGS protein from which they are derived. Mutant RGS proteins include those which have biological function substantially the same as or modified from that of a native or variant RGS protein from which they are derived. Variant, derivative, recombinant and mutant RGS proteins do not necessarily represent mutually exclusive subsets of proteins.


[0034] As noted herein, the RGS-core region is involved with RGS function in G-protein regulation, the term RGS proteins as used herein include RGS proteins in which non-functional regions are absent, e.g., RGS-core regions of native, recombinant, variant or mutant RGS proteins. The RGS core region of a native RGS has been found to retain full native RGS activity (8). The core region of RGS4 is approximately 130 amino acids in length. (References may also refer to conserved or core regions of RGS as having a length of approximately 120 amino acid) RGS cores from other RGS proteins can differ in length from that of RGS4. RGS proteins of this invention can be obtained by in vitro or in vivo expression of an RGS coding sequence by isolation from natural sources or any other means known in the art.


[0035] Known RGS proteins are categorized into six or seven subfamilies on the basis of a phylo-genetic analysis of 61 mammalian and invertebrate RGS proteins (86). Mammalian RGS proteins are composed of at least six subfamilies designated A-F as follows: A (GAIP, Ret-RGS1, RGS21); B (RGS1, RGS2, RGS3, RGS4, RGS5, RGS8, RGS13 and RGS16 [also called RGS-r]; C (RGS6, RGS7, RGS9 and RGS11); D (RGS12, RGS14); E (Axin and Conductin); and F (p115-RhoGEF, PD2-RhoGEF and Lsc). Two other RGS proteins TGS10 and D-AKAP2 are structurally diverse from those of subfamilies A-F and may represent a separate subfamily. Subfamilies B, C and D all have characteristic residue Asn (N82 in RGS4 as numbered herein, or N128 as numbered in Tesmer et al. [8]), which is associated with Gα binding at least in RGS subfamily B proteins. RGS proteins of subfamily A are substituted at this position in the RGS core with a serine (S156 in GAIP). Additionally, the B subfamily of RGS proteins is reported to have another characteristic residue, a serine (at position 57 in RGS4 as numbered herein and S103 as numbered in Tesmer et al. [8]). RGS4 represents the B subfamily of RGS proteins and is structurally more similar to and believed to have biological activity and function more similar to other members of the B subfamily, including RGS1, RGS2, RGS3, RGS5, RGS8, RGS13 and RGS16. GAIP, for example, is representative of the A subfamily of RGS proteins and is structurally more similar to and believed to have biological activity and function more similar to other members of the A subfamily including Ret-RGS1 and RGSZ1. Thus, the term RGS subfamily B refers to RGS1, RGS2, RGS3, RGS4, RGS5, RGS8, RGS13, RGS 16 and other, as yet uncharacterized, RGS proteins that exhibit structural features characteristic of the B subfamily and which are classifiable into the B subfamily by phylogenetic analysis as described in Zheng, B. et al. (1999) supra. Analogously, the term RGS subfamily A refers to GAIP, Ret-RGS1 and RGS21 and other RGS proteins as yet uncharacterized that exhibit structural characteristics of the A subfamily and which are classified as RGS subfamily A proteins by phylogenetic analysis. RGS subfamilies C-F have analogous definitions.


[0036] The term RGS4 refers to RGS4 exemplified by RGS4 of rat (Tesmer et al. (1997) supra) and homologs thereof including, among others, human RGS4 and mouse RGS4. The RGS core region of human, rat and mouse RGS4 differ from one another by 2-4 amino acids (representing about 97% or more sequence identify in the 130 amino acid core). Homologs of GAIP can exhibit as low as about 85% sequence identity in the RGS core region. An RGS4 homolog may, thus, exhibit RGS4 core sequence identify as low as about 85% with rat RGS4.


[0037] RGS protein NMR studies and structural determinations herein were performed using an RGS4-core protein consisting of the conserved region of RGS4 (specifically that derived from rat) with a N-terminal methionine and a C-terminal hexahistidine tail. The three-dimensional solution structure determined for the RGS4-core protein, assuming the possibility of conservative amino acids changes and within ± a root mean square deviation of the relative structural coordinates of the backbone atoms listed in Table 2 of not more than 1.5 Å (or more preferably, not more than 1.0 Å, or most preferably, not more than 0.5 Å), model the three-dimensional solution structures of other RGS4 proteins of any eukaryotic origin, including human RGS4. Further, because of the significant conservation of this domain among different RGS proteins, the three-dimensional structure of RGS4-core provided herein, again assuming conservative amino acids changes, and within ± a root mean square deviation of the relative structural coordinates of the backbone atoms of the structure of not more than 1.5 Å (or more preferably, not more than 1.0 Å, or most preferably, not more than 0.5 Å), models the structures of the conserved region in other RGS proteins of all origins.


[0038] “Structural coordinates” are the Cartesian coordinates corresponding to an atom's spatial relationship to other atoms in a molecule or molecular complex. Structural coordinates may be obtained using NMR techniques, as described herein or as known in the art, or using x-ray crystallography as is known in the art. Alternatively, structural coordinates can be derived using molecular replacement analysis or homology modeling. Various software programs allow for the graphical representation of a set of structural coordinates to obtain a three dimensional representation of a molecule or molecular complex. The structural coordinates of the present invention may be modified from the original sets provided in Table 2 by mathematical manipulation, such as by inversion or integer additions or subtractions. As such, it is recognized that the structural coordinates of the present invention are relative, and are in no way specifically limited by the actual x, y, z coordinates of Table 2. The structural coordinates of Table 2 ± a root mean square deviation from the conserved backbone atoms of the amino acids therein(or conservative substitutions thereof) of not more than 1.5 Å (or more preferably, not more than 1.0 Å, or most preferably, not more than 0.5 Å) define or embody the three-dimensional structure of free RGS4 (i.e., not complexed with another molecule) in solution. The RGS4 core conserved region contains a Gα binding site and an allosteric binding site. Amino acid sequences can be inserted between the helical regions of the RGS core region without significantly altering the biological function of the RGS protein. RGS proteins of lower eukaryotes contain such insertions.


[0039] “Root mean square deviation” is the square root of the arithmetic mean of the squares of the deviations from the mean, and is a way of expressing deviation or variation from the structural coordinates described herein.


[0040] As used herein, “RGS activity,” “activity of RGS” and other similar terms refer to the ability of RGS to bind to an active Gα-GTP-Mg2 complex and induce a change in the rate of GTP hydrolysis. Any other biological function or activity of an individual RGS protein will be specifically defined herein. References 89 and 91 are incorporated by reference herein for their review of the additional biological functions of certain RGS proteins. Any assay which measures the rate of GTP hydrolysis in a Gα-GTP-Mg2 complex in the presence and absence of RGS (or portions thereof) can be used to measure such activity. A preferred assay method measures precipitated radiolabeled phosphate that results from hydrolysis of Gα-[γ-32P]-GTP-Mg2 as described in the Examples herein.


[0041] Table 2 lists the atomic structure coordinates for the restrained minimized mean structure of free RSG4 as derived by NMR spectroscopy. The first two columns in Table 2 list atom number, the third column identifies the atom type using standard nomenclature, the fourth and fifth columns list the amino acid and its number in the sequence. The sixth, seventh and eighth columns of the table are relative coordinate values (in three dimensions).


[0042] It will be obvious to the skilled practitioner that the numbering of the amino acid residues in the RGS4 and other RSG proteins covered by the present invention may be different than that set forth herein. The RGS4 core protein used herein contains an RGS core domain with an N-terminal Met and a six residue histidine tag at the C-terminus. In FIG. 1 the amino acid sequence of the RGS4 core protein used is numbered beginning at the N-terminal Met. For comparison to the full-length RGS4 sequence (for example, as numbered in Tesmer et al. (1997) (8)) add 46 to the numbering used herein.


[0043] It will also be obvious to the skilled practitioner that RGS proteins and portions thereof covered by this invention may contain certain conservative amino acid substitutions that yield the same three dimensional structures as those defined by the structural coordinates provided herein ± a root mean square deviation from the conserved backbone atoms of the amino acids therein(or conservative substitutions thereof) of not more than 1.5 Å. Amino acids in other RGS proteins or peptides corresponding to those in RGS4 and conservative substitutions in other RGS proteins or peptides are readily identified by visual inspection of the relevant amino acid sequences or by using commercially available homology software programs. “Conservative substitutions” are those amino acid substitutions which are functionally equivalent to the substituted amino acid residue, either by way of having similar polarity, steric arrangement, or by belonging to the same class as the substituted residue (e.g., hydrophobic, acidic or basic), and includes substitutions having an inconsequential effect on the three dimensional structure of RGS with respect to the use of said structure for the identification and design of RGS antagonists or agonists, and for molecular replacement analyses and/or for homology modeling.


[0044] The structural coordinates of the present invention permit the use of various molecular design and analysis techniques in order to (i) solve the three dimensional structures of related RGS proteins, peptides or complexes thereof, and particularly RGS subfamily B proteins, peptides or complexes thereof and (ii) to select, design and synthesize or otherwise obtain chemical and biochemical species capable of associating, binding or interacting with RGS potentially having function as antagonists or agonists of an RGS, Gα or an RGS-Gα complex.


[0045] Molecular replacement analysis is a well-known technique employed in x-ray crystallography which uses the x-ray structure of a molecule having as a starting point to model a molecule whose crystal structure is unknown. This technique is based on the principle that two molecules which have similar structures, orientations and positions will diffract x-rays similarly. A corresponding approach to molecular replacement is applicable to modeling an unknown solution structure using NMR technology. The NMR spectra and resulting analysis of the NMR data for two similar structures will be essentially identical for regions of the molecules that are structurally conserved, where the NMR analysis consists of obtaining the NMR resonance assignments and the structural constraint assignments, which may contain hydrogen bond, distance, dihedral angle, coupling constant, chemical shift and dipolar coupling constant constraints. Appropriate NMR spectra are accumulated for a solution of the species of unknown structure and compared to NMR of the species of known structure. The observed differences in the NMR spectra of the two structures will highlight the differences (and similarities) between the two structures and identify the corresponding differences in the structural constraints. The structure determination process for the unknown structure is then based on modifying the NMR constraints from the known structure to be consistent with the observed spectral differences. This method is applicable to the determination of three-dimensional solution structures of any RGS protein or peptide using the structural information for RGS4 provided herein. The method is most appropriate for determining the structures of RGS proteins that are expected to have significant structural similarity with RGS4. For example, this invention specifically provides the three-dimensional structure of a rat RGS4-core region in solution. The replacement method described above can be employed to determine the three-dimensional structure of the human RGS4-core which differs from that of rat by 2 amino acids in the 130 RGS core (at positions 22 N (rat)>S(human), and 132 T(rat)>V(human), referring to the rat sequence given in FIG. 1.


[0046] Accordingly, in one nonlimiting embodiment of the invention, the NMR resonance assignments for RGS4 provide the starting point for resonance assignments of other RGS family proteins (or portions thereof), that are expected to be structurally similar to RGS4, e.g., RGS4 homologs from different organisms or more generally RGS proteins of the subfamily B. Chemical shift perturbations can be detected using one or two dimensional spectra (e.g.,15N/1H, 13C/1H spectra) or using other methods well known in the art and compared between RGS4 and another RGS protein. In this way, the affected residues may be correlated with the three dimensional structure of RGS4 as provided by the relevant residues of Table 2. This effectively identifies the region of the other RGS protein or peptide that has a structural change relative to the RGS4 protein. The 1H, 15N, 13C and 13CO NMR resonance assignments corresponding to both the sequential backbone and side-chain amino acid assignments of the other RGS protein, or portion thereof, can then be obtained and the three dimensional structure of this protein, or portion thereof, can be generated using standard 2D, 3D and 4D triple resonance NMR techniques and NMR assignment methodology, using the RGS4 structure, resonance assignments and structural constraints as a reference. Various computer fitting analyses of the other RGS protein or peptide with the three dimensional model of RGS4 can be performed in order to generate an initial three dimensional model of the other RGS protein or peptide, and the resulting three dimensional model may be refined using standard experimental constraints and energy minimization techniques in order to position and orient the other RGS in association with the three dimensional structure of RGS4.


[0047] The present invention further provides that the structural coordinates of the present invention can be used with standard homology modeling techniques in order to determine the unknown three-dimensional structure of an RGS protein or portion thereof. Homology modeling, as is known in the art, involves constructing a model of an unknown structure using structural coordinates of one or more related protein molecules, molecular complexes or parts thereof (i.e., active sites). Homology modeling may be conducted by fitting common or homologous portions of the protein whose three dimensional structure is to be solved to the three dimensional structure of homologous structural elements in the molecule of known three-dimensional structure, specifically using the relevant (i.e., homologous) structural coordinates provided by Table 2. Homology can be determined a variety of known methods, for example, using amino acid sequence identity, homologous secondary structure elements, and/or homologous tertiary folds. Tesmer et al. (1997) (8) and Druey and Kehrl (1997) (88) provide examples of multiple sequence alignments of RSG protein sequences. Homology modeling can include rebuilding part or all of a three dimensional structure with replacement of amino acids (or other components) by those of the related structure to be solved. Molecular replacement analysis as adapted and applied to NMR structural data (as discussed above) and homology modeling are techniques that are well known in the art which can be readily applied or adapted to the determination of the three dimensional structures of other proteins of the RGS family (and portions thereof, e.g., Gα binding sites and/or allosteric binding sites). These methods are particularly useful for determining RGS solution structure within the conserved region of the protein based on the RGS4 three-dimensional solution structure. These methods are applicable to presently known members of the RGS family of proteins as well as to proteins, particularly those of RGS sub-family B, as yet unidentified as RGS proteins, and particularly those that exhibit significant sequence identity above 60% or more, preferably 85% or more sequence identity in the RGS-core region. NMR assignments, structural coordinates and three-dimensional structures of RGS proteins or peptides, determined using molecular replacement analysis and homology modeling based on the structural coordinated and NMR assignments provided herein and optionally refined using a number of techniques well known in the art, can be employed in a similar fashion to the structural coordinates of Table 2 for identifying, selecting or designing chemical species that are antagonists or agonists of RGS, Gα or RGS Gα complexes.


[0048] Description of the Structure of RGS4


[0049] The primary amino acid sequence of several RGS4 proteins are known. The amino acid sequence of RGS4-core (from rat) with attached hexahis pro tail is listed in FIG. 1 (as SEQ ID No. 1). The regular secondary structure elements of free RGS4 were identified from a qualitative analysis of sequential and inter-strand NOEs, NH exchange rates, 3JHNα coupling constants and the 13Cα and 13Cβ secondary chemical shifts (47, 48). The sequential and medium NOEs were obtained from a qualitative analysis of the 15N-edited NOESY and 13C-edited NOESY spectra. 3JHNα coupling constants were obtained from the relative intensity of Hα crosspeaks to the NH diagonal in the HNHA experiment (18). Slowly exchanging NH protons were identified by recording an HSQC spectra two hours after exchanging an RGS4 sample from H2O to D2O. These data, together with the deduced secondary structure elements are summarized in FIG. 1.


[0050] The overall structure of RGS4 is composed of seven helical regions corresponding to residues 7-12 (α1); 17-36 (α2); 40-53 (α3); 61-71 (α4); 86-95 (α5); 105-125 (α6) and 128-132 (α7). A simple description of the RGS4 topology is that the protein consists of two pseudo 4-helix bundles with an up-down-up-down arrangement where helical region six is part of both bundles. An unusual feature of the RGS4 structure occurs in the second helical region. There is a one residue (H23) ˜90° bend in the helix which effectively divides this helical region into two separate helices (as described in the RGS4 x-ray structure (5)). This one residue bend was not obvious from the NMR analysis of the secondary structure data (FIG. 1) where it appears to be a continual helical stretch. The bend only became apparent during the structure refinement process. Some observable NOEs that contribute to the bend at H23 occur between residues L20, I21, and residues G26, L27,A29 and F30. The bend at H23 effectively allows for appropriate packing of these hydrophobic side-chains.


[0051] Additional bends or turns occur throughout the RGS4 structure. Helical regions α1 and α2 are connected by residue S16 that adopts an extended conformation allowing these two helices to be essentially parallel. This is very similar to the turns connecting helical regions α3 and α4 and helical regions α5 and α6. Conversely, helical regions α2 and α3 are connected by Y38 that has a positive Φ torsion angle, suggesting a β type turn. The conformation of Y38 results in an angle between helical regions α2 and α3 of ˜45°, which also represents a transition point between the two pseudo 4-helix bundles. The longest loop in the structure occurs between helical regions α4 and α5. This loop region is well ordered based on high order parameters (S2>0.6). The low mobility for this loop results from interactions with helical regions α3 and α6. The observed bend between the longest helical region α6 and the shortest helical region α7 is suggestive of a distortion in this helical segment to achieve an optimal packing interaction between helical regions α1 and α7. The end result of these local conformations on the overall topology of RGS4 is to create an elongated structure where the two pseudo 4-helix bundles are nearly perpendicular. The interface between these the two pseudo 4-helix bundles is predominately hydrophobic in nature (L17, I21, L27, F30, L34, W46, I47, I110, F111, L113, M114) consistent with the general packing of hydrophobic residues in the core of the protein with charged residues on the protein surface.


[0052] As previously described, the primary biological function for RGS4 is to bind Giα1 and stimulate its intrinsic GTPase activity. Key residues in the RGS4 structure that are involved in the interaction of RGS4 with Giα1 correspond to RGS4 residues S39, E41, N42, L113, D117, S118, and R121 that form the binding pocket for T182 from Giα1. Similarly, N82 from RGS4 binds into the Giα1 active site interacting with residues Q204, S206 and E207 (8) of G. RGS4 mutational work support the functional importance of these residues in the binding and activity of RGS4 with Giα1 while identifying N82 to be critical in facilitating GTP hydrolysis (18-20). RGS4 residues S39, E41 and N42 are located in the N-terminal end of helical region α3 while L113, D117, S118, and R121 are located directly opposite at the C-terminal end of helical region α6. N82 is located approximately in the center of the structured loop region between helical regions α4 and α5 which is positioned relatively above the T182 binding pocket on RGS4.


[0053] Another feature of the RGS4 structure is the observation that residues M1-S4 and P134-H166 are completely disordered and dynamically flexible. Structure coordinates for these atoms are not included in Table 2. This is evident by the sharp line-widths and the minimal number of observable NOEs. The flexible nature of these residues are further supported by 15N T1, T2 and NOE measurements which indicate low order-parameters (S2<0.6)


[0054] RGS4 Structure Determination


[0055] The final 30 simulated annealing structures were calculated on the basis of 2871 experimental NMR restraints consisting of 1960 approximate interproton distance restraints, 78 distance restraints for 39 backbone hydrogen bonds, 431 torsion angle restraints comprised of 151 Φ, 154 ψ, 97χ1, and 29χ2 torsion angle restraints, 132 3JNHα restraints and 136 Cα and 134 Cβ chemical shift restraints. Stereospecific assignments were obtained for 58 of the 125 residues with β-methylene protons, for the methyl groups of 3 of the 5 Val residues, and for the methyl groups of 9 of the 12 Leu residues. In addition, 7 out of the 8 Phe residues and 4 out of the 5 Tyr residues were well defined making it possible to assign NOE restraints to only one of the pair of CδH and CεH protons and to assign a χ2 torsion angle restraint.


[0056] Comparison of the Free RGS4 NMR Stricture with the RGS4 Giα1 Bound Structure


[0057]
FIGS. 2A and 2B are ribbon diagrams of (A) the x-ray structure of RGS4 complexed to Giα1 (8) and (B) the solution structure of RGS4 as determined by NMR methods. Residues that effect significant structural change between the two structures are indicated. An unexpected result from determining the solution structure of RGS4 in the absence of Giα1 was the observation of a significant change in the conformation for free RGS4 relative to RGS4 in the complex (5). A fundamental factor in the difference between the two structures is a perturbation in the secondary structure elements. Consistent with the RGS4-Giα1 x-ray structure, the NMR structure of free RGS4 is an a-helical protein comprised of two peudo 4-helix bundles. The NMR data shows that free RGS4 is composed of seven helical regions and a majority of this data is consistent with the RGS4-Giα1 x-ray structure. The significant difference between the two secondary structures occurs within the C-terminal helical regions α6 and α7. In the RGS4-Giα1 x-ray structure residues V5 to T132 are observed in (i.e., they are ordered) and residues 104-116 and 119-129 are helical. This contrasts with the free RGS4 NMR structure where residues 5-133, 105-125 (α6) and 128-132 (α7) are helical. There is a significant shift in the helical structure in this region containing residues 104-133.


[0058] The observed structural change between the free RGS4 NMR structure and the RGS4-Giα1 x-ray structure is a movement of a kink between helical regions α6 and α7 towards the C-terminus. The movement of this kink results in α6 being longer by nine residues and α7 being shorter by six residues in the free RGS4 NMR structure. Additionally, α7 of free RGS4 extends three residues beyond what was observed as a structural region in the RGS4-Giα1 x-ray structure.


[0059] The observed change in the secondary structure, although only involving a few C-terminal residues, has far-reaching effect, since it results in a significant modification in the overall fold for RGS4. This is evident from a 1.94 Å backbone rms difference between the RGS4-Giα1 x-ray structure and the free RGS4 NMR structure for residues 5-134. The major effect of the alteration in secondary structures is a reorganization of the packing of the N-terminal and C-terminal helix as is evident from per-residue backbone atomic rms differences between the free RGS4 NMR structure and the bound RGS4 x-ray structure. Therefore, the accuracy of the secondary structure interpretation is important for proper analysis of the free RGS4 structure. The reliability of the NMR secondary structure is demonstrated by the extensive data summarized in FIG. 1. Residues 105-125 and 128-132 show a continual stretch of NMR data consistent with an α-helical definition with an abrupt break in this information for residues 125-128. Furthermore, the significant differences between the - and C-terminal regions of the free RGS4 NMR structure and the bound RGS4 x-ray structure are indicated by a large number of interproton distance (145) and torsion angle (39) violations and by the corresponding very high values for the NOE and torsion angle restraint energies exhibited by the bound RGS4 x-ray structure. The self-consistency of the NMR data using NOEs, coupling constants, NH exchange rates and secondary carbon chemical shifts and the large number of restraint violations with the bound structure, demonstrate the accuracy of the RGS4 NMR structure provided. Comparisons of the free RGS4 structure of this invention with the structure of the RGS4-Giα1 complex should then provide an accurate description of the conformational changes that occur in on RGS4 on binding to Giα1.


[0060] Relevance to Activity for the RGS4 Conformational Change


[0061] RGS4 is involved in the regulation of the Giα1 GTPase cycle having a modest affinity for GTP-Gα, but not binding to GDP-Gα. It is believed that the observed conformational chances for free RGS4 are related to modulating its affinity to Giα1 to allow for perpetuation of the GTPase cycle. This role for the RGS4 conformational change is evident by the fact that the RGS4 Gα binding site is the location of the Giα1 induced structural perturbation. The pronounced kink between helical regions α6 and α7 observed in the bound RGS4 x-ray structure occurs at residues D117 and S118. RGS4 molecular surfaces for both the free RGS4 NMR structure and the RGS4-Giα1 x-ray structure in the vicinity of the Giα1 T182 binding pocket were calculated. A comparison of the two RGS4 molecular surfaces, shows that the Giα1 T182 binding pocket is larger and more accessible in the free RGS4 NMR structure. Also, in the RGS4-Giα1 x-ray structure there appears to be a molecular surface “wall” composed of the RGS4 sidechains from residues D117, S118 and R121 which surround the Giα1 T182 binding pocket. These residues form an important hydrogen-bonding network which is critical for the binding of RGS4 with Giα1 where D117 forms a hydrogen bond with R121 and the backbone nitrogen of Giα1 T182. The critical nature of these residues is further supported by mutagenesis. Alanine mutations of D117 and R121 diminishes RGS4 activity and binding to Giα1. Since the helical kink at residues D117 and S118 is less pronounced in the free RGS4 NMR structure and a disruption in the helix occurs instead between residues 125-128, the sidechains for D117, S118 and R121 are well beyond hydrogen-bonding distance. It is evident from the free RGS4 NMR structure that the network of sidechain interactions with Giα1 T182 in the absence of Giα1 is not pre-formed.


[0062] The observation that RGS4 undergoes a significant structural change in the presence of Giα1 where the focal point of this change occurs at key residues in the RGS4-Giα1 interface creates a different explanation for the process of RGS4 activation of Giα1 GTPase activity. This information suggests a two-stage process composed of a binding and locking step. Because the Giα1 T182 binding pocket is clearly more accessible in the free RGS4 NMR structure, the binding step appears to be driven by the fit of T182 into this pocket. The locking step then results from the induced conformational change in the RGS4 structure where the pronounced kink in the helix between residues D117 and S118 brings these residues into close contact with R121 and Giα1 T182 to form the hydrogen bonding network observed in the RGS4-Giα1 x-ray structure. T182 in the binding pocket induces the formation of a hydrogen bonding network and the resulting RGS4 conformational change as opposed to a pre-formed binding site suggested from the RGS4-Giα1 x-ray structure. The release of RGS4 from Giα1 would then require the removal of Giα1 T182 from the RGS4 binding pocket which presumably occurs during GTP hydrolysis. This mechanism is consistent with a local perturbation in the vicinity of T182 seen between the GDP-Giα1 (2)and RGS4-Giα1 x-ray structures where this localized movement appears to be sufficient to remove T182 from the RGS4 binding site and disrupt the hydrogen-bonding network resulting in dissociation of the complex. Comparison of the T182 Giα1 region between the RGS4-Giα1 and the GDP-AlF4-Giα1 x-ray structures (4) indicate that these two structures are essentially identical in this region of Giα1. Since the GDP-AlF4-Giα1 structure corresponds to the active form of GDP-AlF4-Giα1 as well as the conformation that RGS4 preferentially binds, the similarity between these two structures is also consistent with the proposed mechanism for the activity of RGS4.


[0063] The x-ray structure of RGS4 complexed with Giα1 in conjunction with other Gα conformers suggest that the role of RGS4 in stimulating Gα GTPase activity is accomplished by stabilizing the GTP hydrolysis transition state. The NMR structure of free RGS4 reported here expands this mechanism suggesting that the RGS4 induced conformation in the presence of Giα1 maybe related to its GTP-Giα1 specificity which facilitates binding turnover that is critical for perpetuating the GTPase cycle. The described structural change in RGS4 provides an elegant mechanism for the observed binding selectivity between the various Gα conformers despite the close similarity in these structures.


[0064] Detection of an Allosteric Binding Site in RGS4


[0065] Several small molecule inhibitors of the RGS4-Gα interaction were identified in a large scale screening based on detection of inhibition of Gα GTPase function which implies inhibition of the binding of RGS4 to Gα. One of these compounds (designated compound 1 for convenience) exhibited 100% inhibition of binding. The nature of the activity of compound 1 and its ability to inhibit RGS4 binding to Gα was further investigated by 1H-15N HSQC chemical shift perturbation experiments. A total of five compounds, three that had exhibited inhibition of RGS4 binding in the screen and two controls that showed no activity in the screen were examined. 2D 1H-15N HSQC spectra were collected for a 15N-enriched RGS4 sample and a series of 15N-enriched RGS4 samples titrated with one of the three test compounds and two controls. Comparison of the HSQC spectra of a free RGS4 sample and each of the samples titrated with a potential inhibitor allowed the identification of any chemical shift changes for RGS4 in the presence of the test and control compounds. In such an analysis the observation of a change in the position shape or intensity of a resonance indicates perturbation. With the NMR instrumentation employed a shift of half a line width in peak position could be reliably detected. Only in NMR spectra taken of RGS4 in the presence of compound 1 were any chemical shift perturbations observed indicating that compound 1 directly binds to RGS4. Employing the chemical shift assignments for free RGS4 (Table 1), the binding site of compound 1 in RGS4 was identified. RGS4 amino acid residues V10, W13, 117, 120, H23, E24, C25 and T125 exhibited a chemical shift perturbation in the presence of compound 1.


[0066] The observed chemical shift perturbations did not arise from a pH change caused by addition of compound 1 to the RGS4 solution. (1H-15N HSQC spectra of free RGS4 taken over a pH range of 5.5-6.5 indicate that none of the amino acid residues listed above was sensitive to pH changes over this range). The binding site for compound 1 corresponds to residues in the α1-α2 region of RGS4 (where the α1-α2 region includes the tight turn between the two helices). In the three-dimensional structure of RGS4, the binding region is positioned on the opposite surface from the Gα binding site. No amino acids residues associated with the Gα binding site exhibited any chemical shift perturbation in the presence of compound 1. This indicates that the structure of the RGS4 Gα binding site is unchanged in the presence of compound 1. Compound 1 was found to significantly decrease the expected GTPase activity of Gα which combined with the fact that compound 1 binds at a site distal from the Gα binding site indicates that compound 1 is an allosteric inhibitor of RGS4 and that there is an allosteric binding site in the α1-α2 region of RGS4. It is believed that binding of compound 1 at the allosteric binding site stabilizes RGS4 in the free form and effectively locks the RGS4 protein in free form. Compound 1 prevents the formation of a hydrogen-bonding network around the Gα T182 binding pocket.


[0067] The solution structural information provided herein, including the secondary and tertiary structure of RGS4-core, the RGS4 Gα binding site, the α6-α7 region, and the allosteric binding site in the α1-α2 region of RGS4 can all be employed in methods described herein and methods well known in the art to identify, select or design candidate agonists and antagonists of RGS4 activity which in turn affects G-protein signaling functions in various eukaryotic cells and organisms.


[0068] The following examples are provided to further illustrate the invention and are not intended to limit the invention.



EXAMPLES

[0069] The following abbreviations are used herein:


[0070] G-proteins, heterotrimeric guanine nucleotide-binding proteins; RGS4, Regulators of G-protein Signaling; Giα1, Gα subunit of heterotrimeric G proteins, Giα1-AIF4, Gα subunit of heterotrimeric G proteins complexed with Mg2+, GDP and AlF4 stabilized in the transition state for GTP hydrolysis, DTT, DL-1,4-Dithiothreitol; GTP, guanosine triphosphate; GDP, guanosine diphosphate; NMR, nuclear magnetic resonance; 2D, two-dimensional; 3D, three-dimensional; HSQC, heteronuclar single-quantum coherence spectroscopy; HMQC, heteronuclear multiple-quantum coherence spectroscopy; TPPI, time-proportional phase incrementation; NOE, nuclear Overhauser effect; NOESY, nuclear Overhauser enhanced spectroscopy; COSY, correlated spectroscopy; HNHA, amide proton to nitrogen to CαH proton correlation; HNHB, amide proton to nitrogen to CβH proton correlation; CT-HCACO, constant time CαH proton to α-carbon to carbonyl correlation; HACAHB, CαH proton to α-carbon to CβH proton correlation.



Example 1


Assignment of NMR Peaks and Secondary Structure Determination

[0071] The RGS core domain of RGS4 was expressed in Escherichia coli (J109) using the prokaryotic expression vector pQE50 (Qiagin, Valencia, Calif.). PCR was used to amplify and add a C-terminal hexahis -pro tag to the RGS core (here residues 51-206 of RGS4) and the product was ligated between the BamH1 and Sal1 sites of pQE50 to give plasmid pRGS4. E. coli (BL21(DE3)) containing pRGS4 were grown in LB broth supplemented with 100 μg/mL ampicillin. An overnight culture was diluted 1:20 and grown at 37° C. to an A600 of 0.6 -0.8 with vigorous shaking. Isopropyl β-D-galactoside (1PTG) was added to a final concentration of 1 mM and cultures were shaken for 3 h at 37° C. The cells were harvested by centrifugation (7000×g) for 15 min. at 4° C., washed with PBS and stored at −70° C.


[0072] Uniformly (>95%) 15- and 13C-labeled recombinant RGS4-core (containing the 166 amino acid core domain of RGS4 with an N-terminal methionine and C-terminal hexahis-pro tag) was obtained by growing BL21 (DE3) E. coli in defined medium containing 2.0 g/L [13C6, 98%+] D-glucose and 1.0 g/L [15N,98%+] ammonium chloride as sole carbon and nitrogen sources, respectively. In addition, the defined medium contained M9 salts, trace elements, vitamins and 100 μg/L ampicillin. Conditions for induction and growth are as described above. The recombinant RGS4-core protein was purified using affinity chromatography on a 10 mL Ni2+ column and purified to homogeneity following ion-exchange chromatography on Resource S at pH 5.5. Protein was desalted into appropriate buffer prior to use. N-terminal amino acid sequencing was performed to confirm protein identity and uniform labeling of RGS4-core was confirmed by MALDI-TO mass spectrometry (Perceptive Biosystems).


[0073] The NMR samples contained 1 mM of RGS4 manually purified-core protein in a buffer containing 50 mM K2PO4, 2 mM NaN3, and 50 mM deuterated DTT, in either 90% H2O/10% D2O or 100% D2O at pH 6.0.


[0074] All spectra were recorded at 30-35° C. on a Brucker AMX-2 600 spectrometer using a gradient enhanced triple-resonance 1H/13C/15N probe. For spectra recorded in H2O, water suppression was achieved with the WATERGATE sequence and water-flip back pulses (23, 24). Quadrature detection in the indirectly detected dimensions were recorded with States-TPPI hypercomplex phase increment (25). Spectra were collected with appropriate refocusing delays to allow for 0,0 or −90,180 phase correction. Spectra were processed using the NMRPipe software package (28) and analyzed with PIPP (29), NMR Pipe and in a peak sorting program—on a Sun Ultra10 Workstation. When appropriate, data processing included a solvent filter, zero-padding data to a power of two, linear predicting back one data point of indirectly acquired data to obtain zero phase corrections, linear prediction of additional points for the indirectly acquired dimensions to increase resolution. linear prediction by the means of the mirror image technique was used only for constant-time experiments (38) In all cases data was processed with a skewed sine-bell apodization function and one zero-filling was used in all dimensions.


[0075] The assignments of the 1H, 15N, 13CO, and 13C resonances were based on the following experiments: CBCA(CO)NH (62), CBCANH (63), C(CO)NH (64), HC(CO)NH (64), HBHA(CO)NH (65), HNCO (66), HCACO (29), HNHA (26), HNCA (67), HCCH-COSY (68) and HCCH-TOCSY (69) (for reviews see: Bax et al 1994 and Clore and Gronenborm, 1994). The resonance assignments of RGS4 essentially followed the semi-automated protocol described previously (37, 70, 71). The accuracy of RGS4-core assignment was further confirmed by sequential NOEs in the 15N-edited NOESY-HMQC spectra. Because the RGS4 structure is exclusively α-helical, the sequential NH1—NHi+l NOEs were extremely useful in completing the RGS4 backbone assignments. 1H, 15N, 13C AND 13CO assignments for RGS4-core are summarized in Table 1.


[0076] The backbone 1H, 15N, 13CO, and 13C assignments in Table 1 are essentially complete for the RGS4-core As noted above, the native core sequence was appended to six histidines. The last five histidines were the only unassigned residues in the protein. The ability to obtain the complete assignments for RGS4-core implies a well-packed ordered structure. The side-chain assignments are also nearly complete; the majority of missing information is in residues with long side-chains which are potentially solvent exposed.


[0077] The secondary structure of the RGS4-core (summarized in FIG. 1) is based on characteristic NOE data involving the NH, Hα and Hβ protons from 15N-edited NOESY-HMQC and 13C-edited NOESY-HMQC spectra, 3JHNα coupling constants from HNHA, slowly exchanging NH protons and 13Cα and 13Cβ secondary chemical shifts (for reviews see: (56) and (78). It was determined that the RGS4-core solution NMR was composed of seven helical regions corresponding to residues 7-12(α1);17-36(α2); 40-53(α3); 61-71(α4); 86-95 (α5); 105-125 (α6); and 128-132 (α7). The RGS4-core overall fold is essentially comprised of two 4-helix bundles with the long helical region α6 part of both bundles. A distinct difference in the RGS4-core secondary structure in solution from the x-ray structure of the RGS4-Giα1 complex was unexpectedly observed at the C-terminus. The x-ray structure indicates that residues 104-116 and 119-129 are helical where only residues V5 to T132 are observed. The solution NMR structure indicates that residues 105-125 and 128-132 are helical and residues P134-H166 appear, in view of the sharp line-widths observed, to be extremely mobile. The differences in secondary structure between the x-ray crystal structure and that of free RGS4-core suggest a conformational change in RGS4 on binding to Gα.



Example 2


Three-Dimensional Structure Determination for RGS4-Core

[0078] RGS4-core was prepared, purified and uniformly labeled as in Example 1. NMR samples were prepared and spectral data accumulated as indicated in Example 1.


[0079] The RGS4 structure is based on the following series of spectra: HNHA (26), HNHB (27), 3D long-range 13C-13C correlation (28), coupled CT-HCACO (29, 30), HACAHB-COSY (31), 3D 15N- (32, 33) and 13C-edited NOESY (35, 37) experiments. The 15N-edited NOESY, and 13C-edited NOESY experiments were collected with 100 msec and 120 msec and mixing times, respectively.


[0080] Spectra were processed using the NMRPipe software package (36) and analyzed with PIPP (37) on a Sun Ultra10 Workstation. When appropriate, data processing included a solvent filter, zero-padding data to a power of two, linear predicting back one data point of indirectly acquired data to obtain zero phase corrections, linear prediction of additional points for the indirectly acquired dimensions to increase resolution. Linear prediction by the means of the mirror image technique was used only for constant-time experiments (38). In all cases, data were processed with a skewed sine-bell apodization function and one zero-filling was used in all dimensions.


[0081] Interproton Distance Restraints


[0082] The NOEs assigned from 3D 13C-edited NOESY and 3D 15N-edited NOESY experiments were classified into strong, medium, weak and very weak corresponding to interproton distance restraints of 1.8-2.7 Å (1.8-2.9 Å for NOEs involving NH protons), 1.8-3.3 Å (1.8-3.5 Å for NOEs involving NH protons), 1.8-5.0 Å, and 3.0-6.0 Å, respectively (39, 40). Upper distance limits for distances involving methyl protons and non-stereospecifically assigned methylene protons were corrected appropriately for center averaging (41).


[0083] Torsion Angle Restraints and Stereospecific Assignments


[0084] The β-methylene stereospecific assignments and χ1 torsion angle restraints were obtained primarily from a qualitative estimate of the magnitude of 3Jαβ coupling constants from the HACAHB-COSY experiment (31) and 3J coupling constants from the HNHB experiment (27). Further support for the assignments was obtained from approximate distance restraints for intraresidue NOEs involving NH, CαH, and CβH protons (42).


[0085] Theφ and ψ torsion angle restraints were obtained from 3JNHα coupling constants measured from the relative intensity of Hα crosspeaks to the NH diagonal in the HNHA experiment (26), from chemical shift analysis using the TALOS program (43) and from consistency with distance restraints for intraresidue and sequential NOEs involving NH, CαH, and CβH protons. 1JCαHα coupling constants obtained from a coupled 3D CT-HCACO spectrum were used to ascertain the presence of non-glycine residues with positive φ backbone torsion angles (30). The presence of a 1JCαHα coupling constant greater then 130 Hz allowed for a minimum φ restraint of −20 to −178°.


[0086] The Ile and Leu χ2 torsion angle restraints and the stereospecific assignments for leucine methyl groups were determined from 3JCαCδ coupling constants obtained from the relative intensity of Cα and Cδ cross peaks in a 3D long-range 13C-13C NMR correlation spectrum (44), in conjunction with the relative intensities of intraresidue NOEs (45). Stereospecific assignments for valine methyl groups were determined based on the relative intensity of intraresidue NH—CγH and CαH—CγH NOEs as described by Zuiderweg et al. (1985) (46). The minimum ranges employed for the φ, ψ, and χ torsion angle restraints were ±30°,±50°, and ±20° respectively (47)


[0087] Structure Calculations


[0088] The structures were calculated using the hybrid distance geometry-dynamical simulated annealing method of Niles et al. (1988) (48) with minor modifications (49) using the program XPLOR (50), adapted to incorporate pseudopotentials for 3JNHα coupling constants (51), secondary 13Cα/13Cβ chemical shift restraints (52) and a conformational database potential (53, 54). The target function that is minimized during restrained minimization and simulated annealing comprises only quadratic harmonic terms for covalent geometry, 3JNHα coupling constants and secondary 13Cα/13Cα chemical shift restraints, square-well quadratic potentials for the experimental distance and torsion angle restraints, and a quartic van der Waals term for non-bonded contacts. All peptide bonds were constrained to be planar and trans. There were no hydrogen-bonding, electrostatic, or 6-12 Lennard-Jones empirical potential energy terms in the target function.


[0089] Analysis of a T-182 Binding Site on RGS4-Core


[0090] The overall appearance of the NMR structure in the area of the proposed T182 (of Gα) binding site is one of great interest. To obtain a more quantitative measurement of the differences in accessibility between the free RGS4 NMR structure and the x-ray structure of the RGS4-Giα1 complex, MOLCAD (commercially available from TRIPOST) surfaces were calculated for both structures and the surface area of each was measured.


[0091] The x-ray structure of the RGS4-Giα1 complex (AGR1) was read into SYBYL (Tripos) and all substructures except chain E (RGS4) were deleted. Additionally, all waters were deleted. Polar hydrogens were added and optimized using the Kollman United Atom force field. This was followed by addition of all the remaining hydrogens. MOLCAD was then used to generate a surface for all residues thought to be involved in binding of T182 (Gα-binding site). These RGS4-core residues include, I21, I27, F30, F33, L34, E37, S39, N42, I43, W46, I110, L113, M114, D117, S118, R121. The surface area was calculated based on the MOLCAD surface. MOLCAD was also used to calculate the surface area for the identical residues of the free RGS4 NMR structure. The surface area for the free RGS4 NMR structure was calculated to be 404.56 Å2. The surface area for the crystal structure was calculated to be 321.88 Å2. The difference in surface area of 82.67 Å2, is an approximate 20% change in surface area between the two structures. A MOLCAD surface generated on the methyl and hydroxyl groups of T182 of Gα has a surface area of 57.72 Å2.



Example 3


Identification of an Allosteric Binding Site in RGS4-Core Bead Precipitation Assay for Inhibition of RGS Binding to Gα

[0092] Radiolabled [35S]-Gαi1 was synthesized in a rabbit reticulocyte lysate in vitro translation reaaction (Promega, Madison, Wis. Cat. NO. 14960) programmed with in vitro transcribed cRNA preparations (Promega, Cat. No. P1290). Affinity-purified GST-RGS4 core (100 μg, about 25 nM final concentration) is incubated with 17.5 μL glutathione-Sepharose 4B bead (Amersham Pharmacia, Piscataway, N.J., Cat. NO. 17-0756-01) slurry in 100 μL binding buffer (1×PBS, 1 mM MgCl2, 1 mM DTT, 1% BSA) in a 96-well microtube assay plate. Approximately 300 μM of test compound (about 0.1 mg/mL final concentration, either as a mixture or individual compound) is added to each well and incubated at 4° C. for 30 min. Approximately 50,000-100,000 cpm (?)35S]-Gαi1 in 100 μL assay buffer (1×PBS, 1 mM MgCl2,-10 μM GDP, 1 mM DTT, 30 μM AlCl3, 1% BSA, 500 μM NaF) is added to the reaction and incubated at 4° C. for 30 min. The resulting assay sample has a final concentration of about 1-3 nM activated Gαi1. Reaction plates were centrifuged at 1000×g for 3 min, and the supernatant aspirated. Beads were washed 2×by resuspension in 200 μL binding buffer followed by centrifugation. Bound [35S]-Gαi1 is eluted from the bead pellets by resuspending them in 100 μL 1% SDS. Elutates are either counted in 4 mL scintillation fluid or subjected to gel electrophoresis. Random small molecules can be evaluated in the assay described using a compressed library wherein a plurality of test compounds are combined in a single well (e.g., 10 compounds/well for 3000 primary assays tests 30,000 test compounds). Mixtures of test compounds that exhibited a greater than 50% decrease in precipitated radioactivity were confirmed by re-screening in an identical format. Combi-wells (here 10 test compounds/well) that tested positive in both assays were deconvoluted and the individual compounds were tested individually in an identical bead precipitation assay. Compounds that demonstrated the requisite decrease (about 50% or more) in precipitated radioactivity were further tested to confirm that the decrease in precipitated radioactivity was dependent on the RGS4-Gα interaction and not due to spurious activity of the test compound. In these cases, the assay precipitate was analyzed by gel electrophoresis to confirm the presence of RGS4 in the precipitate.


[0093]

1
H-15N HSQC Chemical Shift Perturbation


[0094] The RGS4 NMR samples contained 0.3 mM of RGS4-core protein in a sample buffer (50 mM KPO4, 2 mM NaN3, and 50 mM deuterated DTT in 90% H2O/10% D2O at pH 6.0). Test compounds were added to the sample in 10-fold molar excess. 2D 1H-15N HSQC spectra for free RGS4 and RGS4 in the presence of test compounds were collected over a pH titration range of 5.5-6.5. The spectral width in the indirectly detected 15N dimension was 30.00 ppm with the carrier position at 119.1 ppm. Spectral width in the acquisition dimension was 13.44 ppm with the carrier at the water frequency (4.73 ppm). The number of points acquired in the two dimensions was 256 complex in F1(15N) and 1024 real in F2(1H). All spectra were recorded at 35° C. on a Brucker AMX-2 600 spectrometer using a gradient enhanced triple resonance 1H/13C/15N probe. Water suppression was achieved in the indirectly detected dimension with the WATERGATE sequence and water-flip back pulses (23, 24). Quadrature detection in the indirectly detected dimensions were recorded with States-TPPI hypercomplex phase increment (25). Spectra were collected with appropriate refocusing delays to allow for 0,0 phase correction, processed using the NMRPipe software package (36)) and analyzed with PIPP (37) on a Sun Ultra 10 Workstation. Data processing included a solvent filter, a skewed sine-bell apodization function and one zero-filing in all dimensions.


[0095] GTPase Functional Assay A single-turnover GTP-ase assay of G-protein α subunits was used. In this assay GTPase-induced hydrolysis of [γ-32P]-GTP results in precipitation of radiolabel as 32Pi. Unhydrolyzed [γ-32P]-GTP is separated from precipitated label which is then counted. Precipitated label 32Pi is directly proportional to the amount of [γ-32P]-GTP hydrolyzed and to the activity of the Gα GTPase .


[0096] Purified [γ-32P]-GTP bound Gα is prepared by incubating Gα (2 μM) with [γ-32P]-GTP (2 μM) in a reaction buffer (total volume 30 μL), 10 mM Hepes (pH 8.0), 5 mM EDTA, 2 mM DTT, 0.05% C12E10 (Lubrol, ICN Biomedicals, Inc., Aurora, Ohio), 10 μg/mL BSA) for 30 min at 30° C. Unbound [γ-32P]GTP is removed using a gel filtration column (Centri-Sep, Princeton Separations, Princeton, N.J.) according to the manufacturers directions. The eluate containing [γ-32P]GTP bound Gα is collected and the protein is recovered (typically up to about 80-90%) after centrifugation at 2000 rpm for 2 min at 4° C.


[0097] All steps of the assay are performed at 4° C. The purified [γ-32P]GTP bound Gα obtained above is added to 500 μL of reaction buffer (as above) and separated in to eight 50 μL samples (a zero time control (no initiation) and seven assay time points). The reaction is initiated by adding 10 μL of 1M MgCl2 and 10 μL of 10 mM GTP to the seven assay samples. After 10, 20, 30, 40, 60, 90, and 120 seconds, respectively, 750 μL of stop buffer (50 mM NaPO4 (pH 3.0), 5% activated charcoal) is added to one of the assay samples. The control and samples are then centrifuged at 100,000 rpm for 10 min to precipitate the charcoal and 500 μL of supernatant is remove to assay radiolabel present. GTPase activity is expressed as the amount of free [32P]-phosphate released from [γ-32P]GTP. Phosphate release (fmol)=radioactivity (zero time control−time assay)(counts)/specific activity of [γ-32P]GTP.


[0098] GTPase activity of Gαi in the presence of RGS4-GST fusion protein was determined as described above where GTP hydrolysis by 100 nM Gαi was initiated by the addition of MgCl2 in the presence and absence of 100 nM RGS4-GST protein. GTP hydrolysis at the indicated time points was calculated as the amount of 32Pi released (in fmol). The dose-dependent effect of RGS4-GST protein on the hydrolysis of GTP-Gαi was measured as described above in the presence or absence of 10 nM or 100 nM RGS4-GST protein.


[0099] The effects of test compounds are evaluated for modification of the activity of the RGS4 core domain. The RGS4 core protein was generated as a GST-RGS4core fusion using standard molecular techniques. Briefly, the core region of RGS4 was obtained using PCR to generate a cDNA fragment encoding amino acid 51 (val) to the C-terminal end of the protein, amino acid 206 (ala). The 5′ forward amplification primer contained an embedded BamHI restriction site, followed by nucleotides encoding a flexible linker, Gly-Ser-Gly-Ser, prior to the Val residue of rat RGS4. The 3′ reverse amplification primer contained a stop codon, followed by an embedded BamHI site. The amplimers were used with pWE2RGS4 (Shuey et al., 1998 (84) ) as template to generate a PCR product of approximately 625 base pairs. This PCR product was BamHI digested, purified and ligated in the BamHI site of pGEX-2T (Ammersham Pharmacia, Piscataway N.J.) to generate pGST-RGS4c recombinant plasmid. Plasmid was tranfected into bacterial cells, and DNA prepared by standard methods, and confirmed by sequence analysis. GST-RGS4c fusion protein was generated and purified according to manufacturer suggestions for expression using the pGEX-2T vector.


[0100] To measure the effect of test compounds on the activity of RGS4 core domain, RGS4-GST fusion protein (1.6 μM) is incubated with test compound (or mixtures of test compounds) (30 μM-40 μM each) or DMSO for 1 hr at 30° C. Thereafter, GTPase activity of Gαi (100 nM) is measured in the presence or absence of the RGS4-GST treated with the test compound (100 nM). Each assay is replicated at least three-times. RGS4-GST was treated with Compound 1 at 30 μM and inhibited the GTPase activity of RGS by 30%; while RGS4-GST treated with Compound 1 at 300 μM inhibited GTPase activity in comparison to a DMSO control.


[0101] Those of ordinary skill in the art will appreciate that reagents, methods, procedures and techniques other than those specifically disclosed herein are known in the art and can be readily employed or adapted to the practice of this invention to achieve the results of this invention. All such art-known functionally equivalent reagents, methods, procedures and techniques are intended to be encompassed by this invention. All references cited herein are incorporated by reference herein in their entirety to the extent that they are not inconsistent with the disclosure herein.
1TABLE 115N, 13C, 13CO and 1H resonance assignments for RGS4 at pH 6.0 and 30° C.aResidueNCOOthersM1—(—)176.155.9 (4.30)29.4 (2.10, 2.00)Cγ33.9 (2.38); Cε21.7 (0.36)R2123.0 (8.34)177.256.7 (4.29)33.0 (1.84, 1.77)Cγ24.8 (1.45); Cδ29.2 (1.71); Cε42.2 (3.00)G3110.4 (8.40)173.745.3 (4.00)S4115.7 (8.23)174.058.1 (4.59)64.2 (3.90)V5121.6 (8.20)174.961.2 (4.38)33.6 (1.99)Cγ21.7 (0.98); 21.9 (0.89)S6122.3 (8.56)175.157.5 (4.51)65.3 (4.33, 4.02)Q7121.5 (8.95)178.258.5 (3.80)28.3 (2.02)Cγ34.3 (2.39)E8118.9 (8.48)178.859.7 (3.85)29.1 (2.01, 1.94)Cγ36.6 (2.29)E9120.5 (7.43)177.058.9 (3.77)29.4 (2.04, 1.72)Cγ36.4 (2.23)V10116.8 (7.16)180.865.0 (3.89)31.4 (1.54)Cγ22.1 (0.34); 22.6 (0.34)K11122.0 (7.86)179.659.9 (3.92)32.1 (1.82)Cγ25.4 (1.52, 1.37); Cδ29.4 (1.62);Cε42.1 (2.91, 2.79)K12120.0 (7.39)180.459.1 (4.09)31.7 (2.12, 1.93)Cγ25.4 (1.52, 1.45); Cδ29.2 (1.68);Cε42.0 (2.99)W13120.7 (7.84)176.757.2 (4.63)29.8 (3.46)Cδ1 126.4 (6.67); Nε1 129.3 (9.69);Cζ2 113.9 (6.25); Cη2 124.0 (6.81);Cζ3 121.3 (7.18)A14117.5 (7.48)176.952.3 (4.36)18.6 (1.52)E15117.5 (7.80)177.157.6 (4.29)30.9 (2.16)Cγ36.6 (2.48, 2.25)S16111.6 (7.02)173.657.5 (4.50)65.0 (4.22, 3.93)L17125.4 (8.36)177.557.1 (3.17)39.5 (0.97)Cγ26.2 (0.65); Cδ25.9 (−0.48); 23.9 (−0.08)E18117.2 (8.68)177.760.1 (3.63)29.3 (1.98, 1.91)Cγ36.5 (2.19)N19116.0 (7.53)176.955.3 (4.37)38.4 (3.20, 2.78)L20119.5 (7.01)176.458.2 (3.50)41.8 (1.79, 1.63)Cγ24.7 (0.52); Cδ26.9 (−0.03); 24.9 (0.33)I21105.6 (7.37)175.163.3 (3.65)37.1 (1.61)Cγm 19.2 (0.33); Cγ(0.70, 0.81);Cδ12.3 (−0.62)N22115.7 (7.10)173.853.9 (4.76)39.5 (2.88)H23121.6 (7.32)176.056.4 (4.71)33.9 (3.31, 2.98)Cδ2 138.6 (8.15)E24128.2 (9.04)179.560.6 (4.07)29.8 (2.09)Cγ36.1 (2.44, 2.34)C25121.4 (10.57)176.961.8 (4.46)27.3 (3.37)G26114.1 (7.36)46.6 (2.86, 2.45)L27122.8 (8.66)178.358.2 (3.76)41.4 (1.72, 1.65)Cγ27.1 (1.60); Cδ25.6 (1.05); 23.5 (1.04)A28118.3 (7.29)180.855.3 (4.06)18.4 (1.60)A29122.8 (7.85)178.955.3 (4.51)18.2 (1.84)F30120.0 (8.51)177.859.1 (3.94)39.5 (2.62, 2.38)Cδ- (6.34)K31118.9 (9.02)177.560.6 (3.59)32.4 (1.94, 1.74)Cγ26.0 (1.70, 1.44); Cδ- (1.63); Cε- (2.96)A32121.6 (7.82)180.355.3 (3.98)17.8 (1.61)F33121.5 (7.82)177.859.9 (4.39)39.2 (3.18, 2.00)Cδ- (6.78); Cε- (7.18)L34122.0 (8.57)180.057.6 (3.34)40.2 (0.88)Cγ26.2 (1.01); Cδ21.8 (0.57); 26.3 (0.19)K35120.9 (8.60)180.159.6 (3.90)32.1 (1.79)Cγ24.9 (1.54, 1.39); Cε- (2.93)S36116.7 (7.43)174.161.1 (4.09)63.1 (4.04, 2.38)E37118.0 (6.86)175.355.3 (4.28)29.9 (1.98, 1.45)Cγ35.9 (1.66)Y38118.8 (7.60)175.858.7 (4.37)35.5 (3.27, 3.09)Cδ133.4 (7.04); Cε118.2 (6.84)S39113.0 (8.05)175.557.0 (5.04)64.5 (3.83, 3.71)E40122.2 (9.07)175.958.2 (3.86)30.2 (1.96, 1.75)Cγ36.9 (2.20)E41122.3 (10.22)177.260.9 (4.25)27.7 (2.13, 1.98)Cγ35.6 (2.37)N42116.4 (7.67)176.956.7 (4.52)38.8 (2.68)I43117.6 (6.99)176.258.9 (4.52)38.3 (1.58)Cγm 20.7 (1.05); Cδ14.6 (0.92)D44126.2 (8.38)179.657.6 (4.59)39.1 (2.85)F45123.8 (8.40)176.560.2 (4.37)39.0 (2.98, 2.50)Cδ- (6.67)W46122.3 (7.98)177.764.9 (4.39)29.9 (3.78, 3.21)Nε1 130.7 (10.68); Cζ2 115.1 (7.25);Cη2 125.8 (7.01); Cζ3 122.9 (7.01);Cε3 119.9 (7.35)I47118.2 (9.04)178.465.1 (3.37)38.6 (2.02)Cγm 17.0 (0.95); Cγ29.4 (2.24, 1.46);Cδ14.3 (1.07)S48117.4 (7.91)176.662.8 (4.22)—(3.89, 3.67)C49120.4 (7.53)179.664.0 (3.90)—(3.61)E50120.1 (7.39)179.158.8 (3.58)29.0 (1.65)Cγ35.2 (—)E51118.3 (7.93)180.059.0 (3.84)29.7 (2.21, 1.95)Cγ36.3 (2.15)Y52123.0 (8.11)175.661.2 (3.95)38.7 (3.30, 2.95)Cδ- (7.03); Cε118.5 (7.15)K53112.6 (7.43)177.158.2 (3.89)32.2 (1.86, 1.76)Cγ- (1.54, 1.39)K54117.5 (7.18)176.956.1 (4.17)33.1 (1.98, 1.71)Cγ25.4 (—); Cδ29.4 (1.60); Cε42.2 (—)I55123.1 (7.39)176.864.0 (3.58)37.2 (1.74)Cγm 19.4 (0.75); Cγ23.3 (0.35)K56126.5 (8.39)176.756.3 (4.34)33.6 (1.95, 1.72)Cγ24.6 (1.40); Cδ28.7 (1.64); Cε42.1 (3.00)S57116.2 (7.35)54.6 (4.98)64.0 (3.79)P58—(—)178.865.0 (4.19)32.1 (2.45, 2.06)Cγ27.5 (2.17, 2.06); Cδ51.4 (4.11, 3.98)S59112.3 (8.15)175.560.5 (4.32)62.7 (3.90)K60119.7 (7.77)177.656.3 (4.36)33.2 (2.03, 1.89)Cγ25.7 (—); Cδ29.0 (—); Cε42.4 (—)L61120.4 (7.49)178.558.7 (4.12)41.3 (1.82, 1.71)Cγ26.8 (1.67); Cδ25.9 (0.74); 23.2 (0.35)S62112.7 (8.67)64.0 (4.38)60.8 (4.08)P63—(—)180.066.0 (4.39)30.8 (2.42, 1.95)K64118.0 (7.08)178.057.9 (4.36)31.9 (2.26)A65122.5 (9.23)179.955.5 (4.19)17.7 (1.76)K66116.9 (8.40)178.460.2 (3.99)32.4 (1.93)Cγ25.8 (1.43); Cδ29.2 (1.68); Cε42.1 (3.00)K67119.5 (7.52)179.659.9 (4.14)32.7 (2.09)Cγ25.2 (1.66, 1.52)I68120.9 (8.24)178.465.9 (3.87)38.3 (2.08)Cγm 18.3 (0.93); Cδ- 0.30Y69120.8 (9.15)178.662.4 (3.99)39.5 (3.52, 3.26)Cδ133.4 (7.07); Cε117.9 (6.78)N70117.5 (8.77)176.055.7 (4.42)38.4 (2.99, 2.78)Nγ112.0 (7.59, 6.97)E71118.4 (7.88)176.458.8 (4.00)30.6 (1.76, 1.37)Cγ35.9 (1.80, 1.09)F72110.4 (7.76)175.158.5 (4.95)43.4 (2.77)Cδ133.6 (7.75); Cε133.1 (7.19); Cζ - (6.89)I73116.5 (7.59)175.361.3 (4.05)38.0 (1.59)Cγ27.2 (1.43, 1.03); Cγm 18.5 (0.79);Cδ12.0 (0.76)S74113.4 (7.43)174.657.7 (3.89)64.1 (3.44)V75120.6 (8.20)177.164.4 (3.99)31.3 (2.18)Cγ20.3 (1.02); 21.1 (1.02)Q76118.6 (8.10)175.455.7 (4.29)28.2 (2.23, 1.87)Cγ34.6 (2.30)A77124.1 (7.54)178.752.8 (4.11)18.8 (1.10)T78114.8 (7.99)175.664.0 (4.05)68.8 (4.11)Cγ22.6 (1.27)K79123.8 (7.89)173.454.6 (4.47)33.1 (1.76, 1.39)Cγ25.2 (1.27); Cδ29.7 (1.64, 1.51);Cε42.0 (2.84)E80117.8 (7.16)176.256.6 (3.97)30.0 (1.82)Cγ34.5 (2.69, 2.19)V81119.3 (8.22)176.359.5 (4.56)33.4 (2.01)Cγ22.5 (0.89); 17.5 (0.34)N82122.5 (9.09)173.753.2 (4.64)37.5 (2.89, 2.63)L83122.7 (7.43)176.153.1 (4.52)46.3 (1.49, 1.34)Cγ26.4 (—); Cδ24.3 (0.94) - (0.73)D84120.3 (8.27)176.353.2 (4.66)41.7 (3.03, 2.79)S85116.6 (8.93)176.762.5 (4.00)—(4.01)C86121.4 (8.36)177.962.4 (4.30)26.1 (3.07)T87120.2 (8.35)178.567.0 (4.06)67.0 (4.06)Cγ22.7 (1.22)R88125.5 (8.55)178.261.6 (3.73)29.9 (1.98, 1.91)Cγ- (1.51, 1.67); Cδ43.3 (3.10)E89121.1 (8.49)179.559.6 (4.12)29.2 (2.17, 2.08)Cγ36.2 (2.39)E90121.2 (8.44)178.559.5 (4.01)29.4 (2.17)Cγ35.6 (2.40)T91115.1 (8.10)175.867.8 (3.91)68.4 (4.42)Cγ22.3 (1.43)S92116.6 (8.32)176.662.4 (3.90)62.7 (4.09, 3.99)R93122.3 (7.84)179.659.3 (4.05)29.9 (1.95, 1.91)Cγ27.9 (1.82, 1.60); Cδ43.5 (3.23)N94121.6 (8.10)176.754.9 (4.33)38.6 (3.18)M95115.7 (7.40)176.955.1 (4.07)31.3 (1.83, 1.77)Cγ31.7 (2.29, 1.94); Cε15.3 (1.67)L96119.8 (7.29)178.457.7 (4.02)41.5 (1.80, 1.55)Cγ27.0 (1.80); Cδ23.0 (0.85); 24.8 (0.95)E97116.6 (7.20)53.8 (4.52)30.1 (1.92, 1.85)Cγ36.1 (2.10)P98—(—)176.964.4 (4.34)32.1 (2.26, 1.93)Cγ27.9 (2.08); Cδ49.9 (3.59)T99113.7 (8.43)179.159.6 (4.79)72.5 (4.60)Cγ21.1 (1.30)I100123.2 (9.19)176.163.2 (4.22)39.6 (1.97)Cγm 19.1 (1.04); Cγ28.5 (1.47, 1.39);Cδ14.8 (0.90)T101109.8 (7.61)176.261.5 (4.57)69.3 (4.63)Cγ21.7 (1.20)C102122.7 (7.48)174.562.6 (3.85)28.9 (3.15, 2.31)F103112.8 (8.78)175.257.8 (4.95)40.7 (3.71, 2.57)Cδ- (6.76)D104122.0 (7.72)179.158.9 (4.28)39.8 (2.82, 2.59)E105119.9 (8.75)175.059.4 (4.16)28.6 (2.44, 2.12)Cγ35.9 (2.42)A106122.9 (8.66)178.855.4 (4.03)18.6 (1.65)Q107118.7 (9.58)178.360.3 (3.90)27.9 (—)Cγ35.2 (—)K108120.1 (8.11)179.359.6 (4.21)32.4 (2.18, 2.02)Cγ25.2 (1.46); Cδ29.8 (1.69); Cε42.2 (3.00)K109118.8 (8.08)180.459.0 (4.27)31.8 (2.22, 2.04)Cγ24.9 (1.44); Cδ29.1 (1.71, 1.81);Cε42.0 (3.00)I110121.3 (8.30)177.961.5 (4.22)36.0 (2.44)Cγ29.0 (2.06, 1.43); Cγm 19.6 (1.38);Cδ10.0 (0.76)F111124.5 (9.22)176.863.2 (3.80)39.2 (3.51, 3.21)Cδ131.9 (6.87); Cε- (7.04)N112117.2 (8.51)177.556.3 (4.50)38.6 (3.08, 2.90)L113121.5 (7.95)180.358.3 (4.21)42.3 (1.99)Cγ27.1 (1.83); Cδ24.9 (1.06)M11411.8.6 (8.22)177.060.0 (4.28)35.0 (1.82, 1.68)Cγ32.0 (2.38, 2.26); Cε15.9 (1.73)E115120.2 (8.46)177.360.4 (3.49)29.6 (1.58)Cγ37.3 (2.07)K116113.5 (7.57)176.957.5 (4.26)33.1 (1.98)Cγ24.7 (1.59); Cδ29.5 (1.72); Cε42.3 (3.04)D117116.6 (7.62)176.655.8 (5.08)42.8 (2.92, 2.84)S118117.2 (8.45)176.263.0 (4.52)63.6 (4.33, 4.02)Y119121.8 (8.95)175.560.4 (4.27)39.2 (2.81, 2.00)Cδ- (6.72); Cε117.2 (6.58)R120114.4 (7.11)179.858.3 (3.52)28.7 (1.96, 1.80)Cγ27.0 (1.87, 1.64); Cδ42.9 (3.16, 3.10)R121117.5 (7.63)179.459.6 (3.97)30.3 (2.07)Cδ43.1 (—)F122124.0 (8.57)178.460.0 (3.32)38.3 (2.89, 2.76)Cδ- (6.77)L123117.7 (7.05)176.356.3 (3.27)41.4 (1.11, 1.06)Cγ25.6 (1.31); Cδ25.2 (0.32); 19.6 (−0.09)K124114.3 (6.72)175.554.8 (4.42)33.0 (2.09, 1.63)Cγ24.8 (1.46); Cδ28.9 (1.70); Cε42.2 (2.97)S125118.2 (7.83)175.657.9 (4.79)67.1 (4.52)R126121.1 (9.39)176.558.2 (3.92)28.4 (1.81)Cγ25.5 (1.60, 1.43); Cδ42.5 (3.05, 2.97)F127115.5 (7.47)176.060.7 (4.21)39.5 (3.42, 3.27)Cδ- (7.18)Y128114.2 (6.68)177.259.3 (4.40)39.8 (2.39)Cδ133.0 (7.17); Cε117.6 (6.91)L129116.8 (8.34)180.457.6 (3.71)41.7 (1.41, 1.37)Cγ26.8 (1.76); Cδ25.6 (0.74); 22.4 (0.89)D130119.0 (8.61)177.856.8 (4.38)39.8 (2.63)L131117.5 (7.46)177.855.7 (4.18)42.1 (1.83, 1.43)Cγ22.9 (1.27); Cδ22.4 (0.94); 22.6 (0.33)T132108.3 (7.24)173.961.6 (4.26)70.1 (4.09)Cγ21.6 (0.73)N133119.8 (7.60)173.051.3 (4.95)38.8 (2.78, 2.62)P134—(—)177.463.7 (4.43)32.1 (2.27, 1.96)Cγ27.2 (1.97); Cδ50.6 (3.67, 3.50)S135115.5 (8.32)174.958.8 (4.44)63.7 (4.42, 3.88)S136117.6 (8.22)174.758.5 (4.47)63.8 (3.90, 3.13)C137120.7 (8.27)175.158.7 (4.55)28.1 (2.95)G138111.5 (8.43)173.845.4 (3.96)—(—)A139124.0 (8.10)178.052.6 (4.30)19.4 (1.43)E140120.0 (8.48)176.857.0 (4.22)30.0 (2.01)Cγ36.2 (2.28)K141122.1 (8.23)176.756.5 (4.27)32.9 (1.80)Cγ24.9 (1.44); Cδ29.0 (1.71); Cε42.2 (3.00)Q142121.1 (8.27)173.155.0 (4.16)33.1 (2.21)Cγ30.9 (2.64)K143120.7 (8.27)176.356.7 (4.42)30.8 (1.92, 1.86)Cγ24.7 (—); Cδ27.1 (1.71); Cε43.5 (3.25)G144111.1 (8.57)176.145.4 (3.97)—(—)A145124.0 (8.15)177.952.7 (4.30)19.5 (1.43)K146120.9 (8.35)179.956.3 (4.35)33.1 (1.81, 1.45)Cγ24.8 (1.46); Cδ29.1 (1.71, 1.84);Cε42.2 (3.01)S147117.3 (8.39)174.858.2 (3.94)64.1 (4.50, 3.90)S148118.3 (8.39)174.558.5 (4.47)63.9 (3.90)A149125.7 (8.30)177.552.8 (4.29)19.3 (1.38)D150119.3 (8.18)176.554.4 (4.61)41.2 (2.70)C151119.8 (8.28)175.158.8 (4.58)27.9 (2.98)T152116.4 (8.28)174.762.5 (4.33)69.7 (4.27)Cγ21.7 (1.24)S153118.0 (8.20)174.258.4 (4.47)63.8 (3.93, 3.87)L154124.3 (8.18)177.055.2 (4.37)42.4 (1.61)Cγ27.0 (1.61); Cδ23.5 (0.86); 24.9 (0.90)V155122.4 (8.01)174.459.9 (4.39)32.6 (2.06)Cγ21.0 (0.94); 20.4 (0.94)P156—(—)177.063.3 (4.39)32.2 (2.30, 1.90)Cγ27.5 (2.03, 1.94); Cδ51.1 (3.86, 3.69)Q157120.9 (8.49)176.156.1 (4.29)29.5 (2.06, 2.00)Cγ33.9 (2.41)C158120.2 (8.31)174.158.2 (4.45)28.2 (2.88)A159126.3 (8.32)177.352.6 (4.25)19.3 (1.30)H160117.9 (8.24)55.5 (4.62)29.8 (3.15, 3.06)Cδ2 119.5 (7.13)Footnotes to Table S1 aIn each column, 15N and 13C shifts are listed first, and the corresponding 1H shifts are given in parentheses. 1H and 13C chemical shifts are reported relative to 3-(trimethylsily)propionic-d4 acid and 15N shifts relative to external liguid NH3.


[0102]

2





TABLE 2








Restrained Minimized NMR Coordinates for Free RGS4


Pages 42-70


The structural coordinates herein are deposited with Brookhaven


Protein Database.(Brookhaven National Laboratory)


Deposit No.            
























ATOM
1
N
VAL
5
−8.546
2.447
−13.971
1.00
0.99


ATOM
2
HN
VAL
5
−8.477
3.418
−14.081
1.00
1.07


ATOM
3
CA
VAL
5
−9.109
1.878
−12.714
1.00
0.86


ATOM
4
HA
VAL
5
−8.922
0.815
−12.685
1.00
0.89


ATOM
5
CB
VAL
5
−8.442
2.546
−11.509
1.00
0.82


ATOM
6
HB
VAL
5
−8.686
3.599
−11.500
1.00
1.23


ATOM
7
CG1
VAL
5
−8.941
1.895
−10.217
1.00
1.02


ATOM
8
HG11
VAL
5
−10.011
2.014
−10.143
1.00
1.62


ATOM
9
HG12
VAL
5
−8.467
2.368
−9.370
1.00
1.48


ATOM
10
HG13
VAL
5
−8.695
0.844
−10.226
1.00
1.53


ATOM
11
CG2
VAL
5
−6.925
2.373
−11.609
1.00
1.37


ATOM
12
HG21
VAL
5
−6.540
2.024
−10.663
1.00
1.93


ATOM
13
HG22
VAL
5
−6.470
3.321
−11.855
1.00
1.76


ATOM
14
HG23
VAL
5
−6.696
1.652
−12.380
1.00
1.88


ATOM
15
C
VAL
5
−10.617
2.132
−12.671
1.00
0.82


ATOM
16
O
VAL
5
−11.079
3.227
−12.927
1.00
0.84


ATOM
17
N
SER
6
−11.389
1.130
−12.350
1.00
0.82


ATOM
18
HN
SER
6
−10.997
0.255
−12.147
1.00
0.83


ATOM
19
CA
SER
6
−12.866
1.318
−12.292
1.00
0.83


ATOM
20
HA
SER
6
−13.194
1.870
−13.160
1.00
0.89


ATOM
21
CB
SER
6
−13.550
−0.049
−12.268
1.00
0.89


ATOM
22
HB1
SER
6
−13.181
−0.650
−13.089
1.00
0.95


ATOM
23
HB2
SER
6
−14.615
0.077
−12.370
1.00
0.93


ATOM
24
OG
SER
6
−13.271
−0.692
−11.031
1.00
0.87


ATOM
25
HG
SER
6
−12.543
−0.228
−10.613
1.00
1.20


ATOM
26
C
SER
6
−13.234
2.093
−11.025
1.00
0.74


ATOM
27
O
SER
6
−12.494
2.113
−10.061
1.00
0.68


ATOM
28
N
GLN
7
−14.375
2.727
−11.017
1.00
0.75


ATOM
29
HN
GLN
7
−14.960
2.695
−11.803
1.00
0.82


ATOM
30
CA
GLN
7
−14.792
3.496
−9.810
1.00
0.70


ATOM
31
HA
GLN
7
−13.973
4.129
−9.505
1.00
0.66


ATOM
32
CB
GLN
7
−15.999
4.376
−10.139
1.00
0.76


ATOM
33
HB1
GLN
7
−16.404
4.793
−9.230
1.00
0.75


ATOM
34
HB2
GLN
7
−16.754
3.780
−10.633
1.00
0.82


ATOM
35
CG
GLN
7
−15.551
5.508
−11.067
1.00
0.83


ATOM
36
HG1
GLN
7
−15.175
5.090
−11.988
1.00
1.37


ATOM
37
HG2
GLN
7
−14.768
6.077
−10.585
1.00
1.26


ATOM
38
CD
GLN
7
−16.733
6.428
−11.375
1.00
1.51


ATOM
39
OE1
GLN
7
−17.840
5.972
−11.578
1.00
2.25


ATOM
40
NE2
GLN
7
−16.540
7.720
−11.412
1.00
2.18


ATOM
41
HE21
GLN
7
−15.646
8.086
−11.243
1.00
2.33


ATOM
42
HE22
GLN
7
−17.288
8.322
−11.606
1.00
2.90


ATOM
43
C
GLN
7
−15.130
2.533
−8.666
1.00
0.66


ATOM
44
O
GLN
7
−15.090
2.888
−7.507
1.00
0.65


ATOM
45
N
GLU
8
−15.470
1.317
−8.979
1.00
0.69


ATOM
46
HN
GLU
8
−15.504
1.043
−9.919
1.00
0.73


ATOM
47
CA
GLU
8
−15.800
0.339
−7.904
1.00
0.69


ATOM
48
HA
GLU
8
−16.529
0.773
−7.237
1.00
0.71


ATOM
49
CB
GLU
8
−16.377
−0.935
−8.526
1.00
0.78


ATOM
50
HB1
GLU
8
−16.450
−1.702
−7.770
1.00
0.81


ATOM
51
HB2
GLU
8
−15.725
−1.273
−9.319
1.00
0.79


ATOM
52
CG
GLU
8
−17.768
−0.652
−9.096
1.00
0.87


ATOM
53
HG1
GLU
8
−17.707
0.150
−9.816
1.00
1.11


ATOM
54
HG2
GLU
8
−18.435
−0.368
−8.294
1.00
1.22


ATOM
55
CD
GLU
8
−18.300
−1.912
−9.781
1.00
1.57


ATOM
56
OE1
GLU
8
−19.406
−1.864
−10.292
1.00
2.30


ATOM
57
OE2
GLU
8
−17.590
−2.905
−9.784
1.00
2.12


ATOM
58
C
GLU
8
−14.535
−0.020
−7.113
1.00
0.62


ATOM
59
O
GLU
8
−14.569
−0.196
−5.911
1.00
0.61


ATOM
60
N
GLU
9
−13.429
−0.178
−7.793
1.00
0.61


ATOM
61
HN
GLU
9
−13.439
−0.064
−8.766
1.00
0.64


ATOM
62
CA
GLU
9
−12.163
−0.582
−7.106
1.00
0.59


ATOM
63
HA
GLU
9
−12.353
−1.452
−6.496
1.00
0.63


ATOM
64
CB
GLU
9
−11.123
−0.939
−8.169
1.00
0.67


ATOM
65
HB1
GLU
9
−10.158
−1.063
−7.701
1.00
0.68


ATOM
66
HB2
GLU
9
−11.069
−0.145
−8.900
1.00
0.67


ATOM
67
CG
GLU
9
−11.524
−2.244
−8.860
1.00
0.81


ATOM
68
HG1
GLU
9
−12.552
−2.179
−9.180
1.00
1.46


ATOM
69
HG2
GLU
9
−11.411
−3.068
−8.170
1.00
1.11


ATOM
70
CD
GLU
9
−10.628
−2.471
−10.080
1.00
1.55


ATOM
71
OE1
GLU
9
−10.815
−3.474
−10.749
1.00
2.28


ATOM
72
OE2
GLU
9
−9.772
−1.636
−10.325
1.00
2.22


ATOM
73
C
GLU
9
−11.603
0.542
−6.221
1.00
0.52


ATOM
74
O
GLU
9
−11.118
0.290
−5.135
1.00
0.51


ATOM
75
N
VAL
10
−11.644
1.770
−6.659
1.00
0.50


ATOM
76
HN
VAL
10
−12.027
1.971
−7.539
1.00
0.53


ATOM
77
CA
VAL
10
−11.087
2.865
−5.808
1.00
0.47


ATOM
78
HA
VAL
10
−10.061
2.627
−5.566
1.00
0.50


ATOM
79
CB
VAL
10
−11.126
4.202
−6.559
1.00
0.50


ATOM
80
HB
VAL
10
−10.787
4.993
−5.906
1.00
0.53


ATOM
81
CG1
VAL
10
−10.216
4.132
−7.790
1.00
0.67


ATOM
82
HG11
VAL
10
−9.970
5.133
−8.114
1.00
1.32


ATOM
83
HG12
VAL
10
−10.729
3.613
−8.587
1.00
1.27


ATOM
84
HG13
VAL
10
−9.309
3.602
−7.542
1.00
1.13


ATOM
85
CG2
VAL
10
−12.552
4.486
−7.011
1.00
0.58


ATOM
86
HG21
VAL
10
−13.164
4.719
−6.153
1.00
1.12


ATOM
87
HG22
VAL
10
−12.938
3.615
−7.506
1.00
1.22


ATOM
88
HG23
VAL
10
−12.556
5.321
−7.695
1.00
1.18


ATOM
89
C
VAL
10
−11.887
2.964
−4.504
1.00
0.45


ATOM
90
O
VAL
10
−11.340
3.243
−3.457
1.00
0.46


ATOM
91
N
LYS
11
−13.173
2.730
−4.545
1.00
0.47


ATOM
92
HN
LYS
11
−13.607
2.498
−5.393
1.00
0.48


ATOM
93
CA
LYS
11
−13.973
2.807
−3.285
1.00
0.50


ATOM
94
HA
LYS
11
−13.867
3.795
−2.864
1.00
0.52


ATOM
95
CB
LYS
11
−15.456
2.528
−3.561
1.00
0.56


ATOM
96
HB1
LYS
11
−15.979
2.413
−2.623
1.00
0.59


ATOM
97
HB2
LYS
11
−15.547
1.618
−4.135
1.00
0.56


ATOM
98
CG
LYS
11
−16.077
3.690
−4.348
1.00
0.63


ATOM
99
HG1
LYS
11
−15.820
3.597
−5.391
1.00
0.93


ATOM
100
HG2
LYS
11
−15.705
4.631
−3.967
1.00
1.22


ATOM
101
CD
LYS
11
−17.599
3.646
−4.195
1.00
1.17


ATOM
102
HD1
LYS
11
−17.870
4.006
−3.214
1.00
1.77


ATOM
103
HD2
LYS
11
−17.942
2.628
−4.311
1.00
1.80


ATOM
104
CE
LYS
11
−18.255
4.531
−5.257
1.00
1.66


ATOM
105
HE1
LYS
11
−19.306
4.640
−5.034
1.00
2.16


ATOM
106
HE2
LYS
11
−18.140
4.073
−6.228
1.00
2.08


ATOM
107
NZ
LYS
11
−17.608
5.874
−5.261
1.00
2.39


ATOM
108
HZ1
LYS
11
−16.668
5.805
−5.699
1.00
2.84


ATOM
109
HZ2
LYS
11
−17.512
6.215
−4.282
1.00
2.78


ATOM
110
HZ3
LYS
11
−18.193
6.539
−5.805
1.00
2.81


ATOM
111
C
LYS
11
−13.432
1.788
−2.279
1.00
0.48


ATOM
112
O
LYS
11
−13.402
2.035
−1.090
1.00
0.50


ATOM
113
N
LYS
12
−12.989
0.650
−2.743
1.00
0.47


ATOM
114
HN
LYS
12
−13.009
0.470
−3.705
1.00
0.47


ATOM
115
CA
LYS
12
−12.436
−0.366
−1.802
1.00
0.49


ATOM
116
HA
LYS
12
−13.193
−0.650
−1.084
1.00
0.55


ATOM
117
CB
LYS
12
−11.966
−1.601
−2.576
1.00
0.51


ATOM
118
HB1
LYS
12
−11.411
−2.249
−1.913
1.00
0.52


ATOM
119
HB2
LYS
12
−11.328
−1.292
−3.390
1.00
0.51


ATOM
120
CG
LYS
12
−13.169
−2.363
−3.135
1.00
0.64


ATOM
121
HG1
LYS
12
−13.724
−1.723
−3.803
1.00
1.06


ATOM
122
HG2
LYS
12
−13.807
−2.679
−2.321
1.00
1.06


ATOM
123
CD
LYS
12
−12.669
−3.590
−3.902
1.00
0.82


ATOM
124
HD1
LYS
12
−12.111
−4.229
−3.234
1.00
1.47


ATOM
125
HD2
LYS
12
−12.029
−3.270
−4.711
1.00
1.51


ATOM
126
CE
LYS
12
−13.858
−4.367
−4.469
1.00
1.39


ATOM
127
HE1
LYS
12
−13.611
−4.733
−5.455
1.00
1.89


ATOM
128
HE2
LYS
12
−14.718
−3.717
−4.531
1.00
1.86


ATOM
129
NZ
LYS
12
−14.168
−5.517
−3.574
1.00
2.37


ATOM
130
HZ1
LYS
12
−14.867
−5.226
−2.863
1.00
2.74


ATOM
131
HZ2
LYS
12
−13.297
−5.829
−3.097
1.00
2.90


ATOM
132
HZ3
LYS
12
−14.555
−6.301
−4.137
1.00
2.83


ATOM
133
C
LYS
12
−11.244
0.252
−1.076
1.00
0.43


ATOM
134
O
LYS
12
−11.026
0.019
0.097
1.00
0.45


ATOM
135
N
TRP
13
−10.476
1.049
−1.766
1.00
0.39


ATOM
136
HN
TRP
13
−10.677
1.228
−2.708
1.00
0.41


ATOM
137
CA
TRP
13
−9.305
1.696
−1.119
1.00
0.37


ATOM
138
HA
TRP
13
−8.624
0.943
−0.750
1.00
0.37


ATOM
139
CB
TRP
13
−8.587
2.598
−2.125
1.00
0.38


ATOM
140
HB1
TRP
13
−7.711
3.023
−1.656
1.00
0.41


ATOM
141
HB2
TRP
13
−9.248
3.395
−2.426
1.00
0.39


ATOM
142
CG
TRP
13
−8.172
1.813
−3.333
1.00
0.41


ATOM
143
CD1
TRP
13
−8.276
0.468
−3.480
1.00
0.44


ATOM
144
HD1
TRP
13
−8.672
−0.220
−2.749
1.00
0.44


ATOM
145
CD2
TRP
13
−7.587
2.312
−4.571
1.00
0.47


ATOM
146
NE1
TRP
13
−7.788
0.117
−4.726
1.00
0.50


ATOM
147
HE1
TRP
13
−7.748
−0.796
−5.080
1.00
0.54


ATOM
148
CE2
TRP
13
−7.353
1.217
−5.435
1.00
0.52


ATOM
149
CE3
TRP
13
−7.240
3.599
−5.022
1.00
0.51


ATOM
150
HE3
TRP
13
−7.408
4.454
−4.384
1.00
0.50


ATOM
151
CZ2
TRP
13
−6.793
1.392
−6.702
1.00
0.61


ATOM
152
HZ2
TRP
13
−6.623
0.540
−7.343
1.00
0.67


ATOM
153
CZ3
TRP
13
−6.677
3.779
−6.296
1.00
0.60


ATOM
154
HZ3
TRP
13
−6.414
4.771
−6.632
1.00
0.65


ATOM
155
CH2
TRP
13
−6.454
2.677
−7.134
1.00
0.65


ATOM
156
HH2
TRP
13
6.021
2.821
−8.112
1.00
0.73


ATOM
157
C
TRP
13
−9.803
2.548
0.044
1.00
0.38


ATOM
158
O
TRP
13
−9.119
2.739
1.021
1.00
0.39


ATOM
159
N
ALA
14
−10.994
3.061
−0.050
1.00
0.42


ATOM
160
HN
ALA
14
−11.540
2.896
−0.847
1.00
0.45


ATOM
161
CA
ALA
14
−11.527
3.892
1.062
1.00
0.48


ATOM
162
HA
ALA
14
−10.739
4.509
1.466
1.00
0.48


ATOM
163
CB
ALA
14
−12.658
4.779
0.536
1.00
0.55


ATOM
164
HB1
ALA
14
−12.555
5.774
0.943
1.00
1.11


ATOM
165
HB2
ALA
14
−13.610
4.365
0.835
1.00
1.21


ATOM
166
HB3
ALA
14
−12.608
4.824
−0.542
1.00
1.14


ATOM
167
C
ALA
14
−12.072
2.970
2.156
1.00
0.49


ATOM
168
O
ALA
14
−12.450
3.412
3.223
1.00
0.55


ATOM
169
N
GLU
15
−12.134
1.691
1.886
1.00
0.47


ATOM
170
HN
GLU
15
−11.839
1.362
1.011
1.00
0.45


ATOM
171
CA
GLU
15
−12.679
0.736
2.894
1.00
0.52


ATOM
172
HA
GLU
15
−13.328
1.268
3.572
1.00
0.58


ATOM
173
CB
GLU
15
−13.494
−0.334
2.168
1.00
0.58


ATOM
174
HB1
GLU
15
−13.766
−1.114
2.863
1.00
0.64


ATOM
175
HB2
GLU
15
−12.904
−0.753
1.365
1.00
0.55


ATOM
176
CO
GLU
15
−14.762
0.302
1.596
1.00
0.70


ATOM
177
HG1
GLU
15
−14.491
1.108
0.930
1.00
1.24


ATOM
178
HG2
GLU
15
−15.365
0.691
2.404
1.00
1.12


ATOM
179
CD
GLU
15
−15.560
−0.748
0.823
1.00
1.35


ATOM
180
OE1
GLU
15
−16.609
−0.403
0.305
1.00
1.94


ATOM
181
OE2
GLU
15
−15.108
−1.880
0.763
1.00
2.17


ATOM
182
C
GLU
15
−11.556
0.062
3.698
1.00
0.47


ATOM
183
O
GLU
15
−11.765
−0.345
4.824
1.00
0.51


ATOM
184
N
SER
16
−10.375
−0.080
3.150
1.00
0.42


ATOM
185
HN
SER
16
−10.207
0.238
2.238
1.00
0.42


ATOM
186
CA
SER
16
−9.291
−0.751
3.933
1.00
0.42


ATOM
187
HA
SER
16
−9.188
−0.259
4.889
1.00
0.44


ATOM
188
CB
SER
16
−9.670
−2.214
4.165
1.00
0.48


ATOM
189
HB1
SER
16
−10.416
−2.272
4.947
1.00
0.54


ATOM
190
HB2
SER
16
−8.798
−2.771
4.462
1.00
0.50


ATOM
191
OG
SER
16
−10.186
−2.761
2.959
1.00
0.53


ATOM
192
HG
SER
16
−9.619
−2.476
2.238
1.00
0.96


ATOM
193
C
SER
16
−7.949
−0.693
3.192
1.00
0.38


ATOM
194
O
SER
16
−7.879
−0.820
1.986
1.00
0.37


ATOM
195
N
LEU
17
−6.884
−0.511
3.930
1.00
0.37


ATOM
196
HN
LEU
17
−6.984
−0.421
4.901
1.00
0.40


ATOM
197
CA
LEU
17
−5.518
−0.442
3.327
1.00
0.37


ATOM
198
HA
LEU
17
−5.470
0.385
2.639
1.00
0.36


ATOM
199
CB
LEU
17
−4.507
−0.218
4.456
1.00
0.40


ATOM
200
HB1
LEU
17
−4.570
−1.038
5.156
1.00
0.44


ATOM
201
HB2
LEU
17
−4.743
0.704
4.967
1.00
0.43


ATOM
202
CG
LEU
17
−3.082
−0.138
3.902
1.00
0.45


ATOM
203
HG
LEU
17
−2.848
−1.047
3.375
1.00
0.54


ATOM
204
CD1
LEU
17
−2.945
1.053
2.952
1.00
0.57


ATOM
205
HD11
LEU
17
−3.281
0.771
1.966
1.00
1.30


ATOM
206
HD12
LEU
17
−1.909
1.356
2.905
1.00
1.08


ATOM
207
HD13
LEU
17
−3.542
1.874
3.318
1.00
1.17


ATOM
208
CD2
LEU
17
−2.109
0.039
5.066
1.00
0.49


ATOM
209
HD21
LEU
17
−2.302
−0.716
5.809
1.00
1.13


ATOM
210
HD22
LEU
17
−2.248
1.014
5.503
1.00
1.06


ATOM
211
HD23
LEU
17
−1.095
−0.057
4.708
1.00
1.17


ATOM
212
C
LEU
17
−5.184
−1.744
2.587
1.00
0.38


ATOM
213
O
LEU
17
−4.592
−1.725
1.526
1.00
0.39


ATOM
214
N
GLU
18
−5.533
−2.872
3.141
1.00
0.40


ATOM
215
HN
GLU
18
−5.986
−2.874
4.007
1.00
0.41


ATOM
216
CA
GLU
18
−5.205
−4.162
2.470
1.00
0.43


ATOM
217
HA
GLU
18
−4.136
−4.299
2.461
1.00
0.45


ATOM
218
CB
GLU
18
−5.860
−5.314
3.239
1.00
0.49


ATOM
219
HB1
GLU
18
−5.772
−6.225
2.665
1.00
0.53


ATOM
220
HB2
GLU
18
−6.904
−5.091
3.402
1.00
0.48


ATOM
221
CG
GLU
18
−5.159
−5.495
4.587
1.00
0.53


ATOM
222
HG1
GLU
18
−5.243
−4.586
5.163
1.00
0.76


ATOM
223
HG2
GLU
18
−4.116
−5.721
4.419
1.00
0.70


ATOM
224
CD
GLU
18
−5.812
−6.646
5.355
1.00
0.92


ATOM
225
OE1
GLU
18
−6.853
−7.108
4.920
1.00
1.64


ATOM
226
OE2
GLU
18
−5.260
−7.044
6.368
1.00
1.49


ATOM
227
C
GLU
18
−5.730
−4.151
1.034
1.00
0.42


ATOM
228
O
GLU
18
−5.077
−4.625
0.126
1.00
0.44


ATOM
229
N
ASN
19
−6.896
−3.618
0.813
1.00
0.41


ATOM
230
HN
ASN
19
−7.412
−3.238
1.554
1.00
0.41


ATOM
231
CA
ASN
19
−7.439
−3.588
−0.575
1.00
0.41


ATOM
232
HA
ASN
19
−7.504
−4.595
−0.959
1.00
0.45


ATOM
233
CB
ASN
19
−8.832
−2.957
−0.560
1.00
0.42


ATOM
234
HB1
ASN
19
−9.146
−2.755
−1.573
1.00
0.42


ATOM
235
HB2
ASN
19
−8.801
−2.032
−0.001
1.00
0.41


ATOM
236
CG
ASN
19
−9.822
−3.918
0.097
1.00
0.48


ATOM
237
OD1
ASN
19
−9.650
−4.301
1.237
1.00
1.22


ATOM
238
ND2
ASN
19
−10.862
−4.324
−0.578
1.00
1.19


ATOM
239
HD21
ASN
19
−11.003
−4.011
−1.496
1.00
1.98


ATOM
240
HD22
ASN
19
−11.503
−4.941
−0.167
1.00
1.21


ATOM
241
C
ASN
19
−6.518
−2.755
−1.470
1.00
0.38


ATOM
242
O
ASN
19
−6.220
−3.127
−2.589
1.00
0.40


ATOM
243
N
LEU
20
−6.061
−1.633
−0.986
1.00
0.35


ATOM
244
HN
LEU
20
−6.312
−1.353
−0.080
1.00
0.35


ATOM
245
CA
LEU
20
−5.159
−0.777
−1.807
1.00
0.34


ATOM
246
HA
LEU
20
−5.655
−0.512
−2.728
1.00
0.37


ATOM
247
CB
LEU
20
−4.827
0.494
−1.013
1.00
0.34


ATOM
248
HB1
LEU
20
−4.340
0.215
−0.090
1.00
0.35


ATOM
249
HB2
LEU
20
−5.742
1.019
−0.783
1.00
0.37


ATOM
250
CG
LEU
20
−3.896
1.418
−1.814
1.00
0.35


ATOM
251
HG
LEU
20
−3.027
0.870
−2.147
1.00
0.38


ATOM
252
CD1
LEU
20
−4.633
1.986
−3.032
1.00
0.39


ATOM
253
HD11
LEU
20
−4.627
1.260
−3.828
1.00
1.05


ATOM
254
HD12
LEU
20
−4.136
2.885
−3.365
1.00
1.12


ATOM
255
HD13
LEU
20
−5.653
2.219
−2.765
1.00
1.10


ATOM
256
CD2
LEU
20
−3.453
2.573
−0.913
1.00
0.38


ATOM
257
HD21
LEU
20
−2.688
3.147
−1.412
1.00
0.99


ATOM
258
HD22
LEU
20
−3.061
2.177
0.012
1.00
1.12


ATOM
259
HD23
LEU
20
−4.300
3.210
−0.702
1.00
1.05


ATOM
260
C
LEU
20
−3.877
−1.558
−2.117
1.00
0.36


ATOM
261
O
LEU
20
−3.353
−1.506
−3.212
1.00
0.41


ATOM
262
N
ILE
21
−3.373
−2.284
−1.156
1.00
0.36


ATOM
263
HN
ILE
21
−3.816
−2.310
−0.282
1.00
0.36


ATOM
264
CA
ILE
21
−2.129
−3.075
−1.379
1.00
0.41


ATOM
265
HA
ILE
21
−1.429
−2.488
−1.955
1.00
0.43


ATOM
266
CB
ILE
21
−1.505
−3.430
−0.013
1.00
0.47


ATOM
267
HB
ILE
21
−2.206
−4.021
0.554
1.00
1.27


ATOM
268
CG1
ILE
21
−1.189
−2.148
0.759
1.00
1.31


ATOM
269
HG11
ILE
21
−2.105
−1.621
0.977
1.00
2.03


ATOM
270
HG12
ILE
21
−0.541
−1.518
0.166
1.00
1.83


ATOM
271
CG2
ILE
21
−0.199
−4.221
−0.176
1.00
1.28


ATOM
272
HG21
ILE
21
−0.199
−4.759
−1.105
1.00
1.89


ATOM
273
HG22
ILE
21
−0.105
−4.922
0.641
1.00
1.82


ATOM
274
HG23
ILE
21
−0.636
−3.538
−0.159
1.00
1.86


ATOM
275
CD1
ILE
21
−0.490
−2.517
2.070
1.00
1.34


ATOM
276
HD11
ILE
21
−0.759
−1.812
2.837
1.00
1.53


ATOM
277
HD12
ILE
21
−0.581
−2.499
1.926
1.00
1.73


ATOM
278
HD13
ILE
21
−0.796
−3.505
2.372
1.00
1.71


ATOM
279
C
ILE
21
−2.480
−4.358
−2.148
1.00
0.44


ATOM
280
O
ILE
21
−1.670
−4.901
−2.874
1.00
0.47


ATOM
281
N
ASN
22
−3.671
−4.861
−1.981
1.00
0.44


ATOM
282
HN
ASN
22
−4.310
−4.423
−1.382
1.00
0.43


ATOM
283
CA
ASN
22
−4.044
−6.125
−2.681
1.00
0.48


ATOM
284
HA
ASN
22
−3.166
−6.745
−2.779
1.00
0.52


ATOM
285
CB
ASN
22
−5.089
−6.872
−1.850
1.00
0.53


ATOM
286
HB1
ASN
22
−5.476
−7.703
−2.420
1.00
0.58


ATOM
287
HB2
ASN
22
−5.897
−6.199
−1.599
1.00
0.51


ATOM
288
CG
ASN
22
−4.440
−7.394
−0.567
1.00
0.59


ATOM
289
OD1
ASN
22
−3.376
−7.980
−0.605
1.00
1.15


ATOM
290
ND2
ASN
22
−5.040
−7.206
0.576
1.00
1.33


ATOM
291
HD21
ASN
22
−5.898
−6.732
0.607
1.00
2.10


ATOM
292
HD22
ASN
22
−4.634
−7.538
1.403
1.00
1.37


ATOM
293
C
ASN
22
−4.612
−5.840
−4.075
1.00
0.46


ATOM
294
O
ASN
22
−4.958
−6.752
−4.800
1.00
0.50


ATOM
295
N
HIS
23
−4.701
−4.598
−4.470
1.00
0.42


ATOM
296
HN
HIS
23
−4.410
−3.871
−3.880
1.00
0.41


ATOM
297
CA
HIS
23
−5.236
−4.292
−5.831
1.00
0.44


ATOM
298
HA
HIS
23
−5.874
−5.101
−6.157
1.00
0.48


ATOM
299
CB
HIS
23
−6.043
−2.995
−5.795
1.00
0.44


ATOM
300
HB1
HIS
23
−5.376
−2.159
−5.684
1.00
0.42


ATOM
301
HB2
HIS
23
−6.730
−3.021
−4.962
1.00
0.46


ATOM
302
CG
HIS
23
−6.814
−2.856
−7.078
1.00
0.54


ATOM
303
ND1
HIS
23
−6.275
−2.251
−8.203
1.00
0.89


ATOM
304
HD1
HIS
23
−5.378
−1.863
−8.278
1.00
1.50


ATOM
305
CD2
HIS
23
−8.081
−3.246
−7.433
1.00
1.13


ATOM
306
HD2
HIS
23
−8.781
−3.751
−6.784
1.00
1.83


ATOM
307
CE1
HIS
23
−7.207
−2.294
−9.172
1.00
0.77


ATOM
308
HE1
HIS
23
−7.066
−1.897
−10.166
1.00
1.14


ATOM
309
NE2
HIS
23
−8.328
−2.890
−8.756
1.00
0.94


ATOM
310
C
HIS
23
−4.063
−4.148
−6.808
1.00
0.45


ATOM
311
O
HIS
23
−3.062
−3.529
−6.506
1.00
0.41


ATOM
312
N
GLU
24
−4.171
−4.741
−7.968
1.00
0.54


ATOM
313
HN
GLU
24
−4.980
−5.251
−8.180
1.00
0.58


ATOM
314
CA
GLU
24
−3.056
−4.671
−8.960
1.00
0.59


ATOM
315
HA
GLU
24
−2.168
−5.109
−8.529
1.00
0.60


ATOM
316
CB
GLU
24
−3.447
−5.458
−10.214
1.00
0.72


ATOM
317
HB1
GLU
24
−4.340
−5.028
−10.642
1.00
0.74


ATOM
318
HB2
GLU
24
−3.635
−6.487
−9.947
1.00
0.76


ATOM
319
CG
GLU
24
−2.312
−5.394
−11.240
1.00
0.78


ATOM
320
HG1
GLU
24
−1.390
−5.715
−10.778
1.00
1.02


ATOM
321
HG2
GLU
24
−2.204
−4.380
−11.596
1.00
1.07


ATOM
322
CD
GLU
24
−2.637
−6.315
−12.417
1.00
1.39


ATOM
323
OE1
GLU
24
−3.745
−6.232
−12.921
1.00
1.95


ATOM
324
OE2
GLU
24
−1.774
−7.093
−12.791
1.00
2.12


ATOM
325
C
GLU
24
−2.764
−3.216
−9.343
1.00
0.56


ATOM
326
O
GLU
24
−1.620
−2.822
−9.488
1.00
0.57


ATOM
327
N
CYS
25
−3.773
−2.406
−9.507
1.00
0.56


ATOM
328
HN
CYS
25
−4.692
−2.727
−9.389
1.00
0.57


ATOM
329
CA
CYS
25
−3.512
−0.991
−9.885
1.00
0.58


ATOM
330
HA
CYS
25
−2.650
−0.947
−10.536
1.00
0.62


ATOM
331
CB
CYS
25
−4.725
−0.402
−10.606
1.00
0.66


ATOM
332
HB1
CYS
25
−5.469
−0.107
−9.881
1.00
0.59


ATOM
333
HB2
CYS
25
−5.143
−1.142
−11.273
1.00
0.74


ATOM
334
SG
CYS
25
−4.206
1.045
−11.562
1.00
0.90


ATOM
335
HG
CYS
25
−4.416
1.830
−11.051
1.00
1.39


ATOM
336
C
CYS
25
−3.227
−0.193
−8.619
1.00
0.49


ATOM
337
O
CYS
25
−2.470
0.757
−8.631
1.00
0.50


ATOM
338
N
GLY
26
−3.796
−0.588
−7.514
1.00
0.44


ATOM
339
HN
GLY
26
−4.384
−1.372
−7.510
1.00
0.46


ATOM
340
CA
GLY
26
−3.507
0.141
−6.253
1.00
0.39


ATOM
341
HA1
GLY
26
−4.035
−0.312
−5.433
1.00
0.38


ATOM
342
HA2
GLY
26
−3.799
1.178
−6.354
1.00
0.44


ATOM
343
C
GLY
26
−2.007
0.042
−6.009
1.00
0.36


ATOM
344
O
GLY
26
−1.351
1.009
−5.687
1.00
0.37


ATOM
345
N
LEU
27
−1.455
−1.127
−6.196
1.00
0.38


ATOM
346
HN
LEU
27
−2.003
−1.889
−6.480
1.00
0.40


ATOM
347
CA
LEU
27
0.010
−1.292
−6.016
1.00
0.40


ATOM
348
HA
LEU
27
0.283
−1.029
−5.006
1.00
0.38


ATOM
349
CB
LEU
27
0.401
−2.746
−6.304
1.00
0.47


ATOM
350
HB1
LEU
27
1.474
−2.821
−6.397
1.00
0.54


ATOM
351
HB2
LEU
27
−0.060
−3.060
−7.230
1.00
0.51


ATOM
352
CG
LEU
27
−0.081
−3.653
−5.165
1.00
0.45


ATOM
353
HG
LEU
27
−1.060
−3.332
−4.839
1.00
0.42


ATOM
354
CD1
LEU
27
−0.158
−5.096
−5.665
1.00
0.52


ATOM
355
HD11
LEU
27
0.780
−5.368
−6.127
1.00
1.23


ATOM
356
HD12
LEU
27
−0.955
−5.185
−6.389
1.00
1.16


ATOM
357
HD13
LEU
27
−0.353
−5.756
−4.832
1.00
1.05


ATOM
358
CD2
LEU
27
0.902
−3.589
−3.988
1.00
0.48


ATOM
359
HD21
LEU
27
1.549
−2.732
−4.093
1.00
1.12


ATOM
360
HD22
LEU
27
1.500
−4.488
−3.973
1.00
1.17


ATOM
361
HD23
LEU
27
0.350
−3.512
−3.064
1.00
1.06


ATOM
362
C
LEU
27
0.720
−0.364
−7.000
1.00
0.43


ATOM
363
O
LEU
27
1.618
0.371
−6.641
1.00
0.43


ATOM
364
N
ALA
28
0.310
−0.384
−8.242
1.00
0.48


ATOM
365
HN
ALA
28
−0.424
−0.981
−8.510
1.00
0.49


ATOM
366
CA
ALA
28
0.952
0.508
−9.248
1.00
0.53


ATOM
367
HA
ALA
28
2.004
0.281
−9.312
1.00
0.56


ATOM
368
CB
ALA
28
0.298
0.297
−10.615
1.00
0.61


ATOM
369
HB1
ALA
28
−0.756
0.525
−10.549
1.00
1.18


ATOM
370
HB2
ALA
28
0.425
−0.731
−10.920
1.00
1.16


ATOM
371
HB3
ALA
28
0.762
0.948
−11.340
1.00
1.21


ATOM
372
C
ALA
28
0.770
1.964
−8.819
1.00
0.50


ATOM
373
O
ALA
28
1.709
2.736
−8.784
1.00
0.50


ATOM
374
N
ALA
29
−0.433
2.344
−8.491
1.00
0.49


ATOM
375
HN
ALA
29
−1.173
1.703
−8.526
1.00
0.50


ATOM
376
CA
ALA
29
−0.684
3.748
−8.063
1.00
0.49


ATOM
377
HA
ALA
29
−0.283
4.429
−8.799
1.00
0.53


ATOM
378
CB
ALA
29
−2.192
3.974
−7.924
1.00
0.52


ATOM
379
HB1
ALA
29
−2.496
3.756
−6.910
1.00
1.18


ATOM
380
HB2
ALA
29
−2.719
3.322
−8.605
1.00
1.21


ATOM
381
HB3
ALA
29
−2.426
5.002
−8.156
1.00
1.00


ATOM
382
C
ALA
29
−0.015
3.997
−6.712
1.00
0.43


ATOM
383
O
ALA
29
0.552
5.044
−6.471
1.00
0.45


ATOM
384
N
PHE
30
−0.089
3.045
−5.824
1.00
0.39


ATOM
385
HN
PHE
30
−0.558
2.212
−6.038
1.00
0.40


ATOM
386
CA
PHE
30
0.530
3.227
−4.484
1.00
0.37


ATOM
387
HA
PHE
30
0.165
4.146
−4.051
1.00
0.41


ATOM
388
CB
PHE
30
0.147
2.055
−3.576
1.00
0.38


ATOM
389
HB1
PHE
30
0.545
1.138
−3.984
1.00
0.43


ATOM
390
HB2
PHE
30
−0.929
1.984
−3.513
1.00
0.40


ATOM
391
CG
PHE
30
0.716
2.282
−2.197
1.00
0.48


ATOM
392
CD1
PHE
30
0.267
3.363
−1.428
1.00
0.64


ATOM
393
HD1
PHE
30
−0.486
4.031
−1.821
1.00
0.71


ATOM
394
CD2
PHE
30
1.690
1.416
−1.685
1.00
0.59


ATOM
395
HD2
PHE
30
2.035
0.580
−2.275
1.00
0.64


ATOM
396
CE1
PHE
30
0.793
3.580
−0.151
1.00
0.82


ATOM
397
HE1
PHE
30
0.446
4.412
0.440
1.00
1.00


ATOM
398
CE2
PHE
30
2.213
1.633
−0.406
1.00
0.76


ATOM
399
HE2
PHE
30
2.963
0.964
−0.009
1.00
0.90


ATOM
400
CZ
PHE
30
1.765
2.715
0.360
1.00
0.86


ATOM
401
HZ
PHE
30
2.171
2.887
1.344
1.00
1.03


ATOM
402
C
PHE
30
2.054
3.309
−4.615
1.00
0.36


ATOM
403
O
PHE
30
2.691
4.134
−3.992
1.00
0.37


ATOM
404
N
LYS
31
2.650
2.468
−5.421
1.00
0.38


ATOM
405
HN
LYS
31
2.126
1.808
−5.922
1.00
0.40


ATOM
406
CA
LYS
31
4.132
2.527
−5.573
1.00
0.40


ATOM
407
HA
LYS
31
4.598
2.360
−4.613
1.00
0.41


ATOM
408
CB
LYS
31
4.607
1.457
−6.562
1.00
0.47


ATOM
409
HB1
LYS
31
5.586
1.721
−6.932
1.00
0.52


ATOM
410
HB2
LYS
31
3.914
1.402
−7.389
1.00
0.49


ATOM
411
CG
LYS
31
4.680
0.094
−5.869
1.00
0.51


ATOM
412
HG1
LYS
31
3.699
−0.184
−5.513
1.00
0.80


ATOM
413
HG2
LYS
31
5.364
0.157
−5.035
1.00
0.72


ATOM
414
CD
LYS
31
5.173
−0.953
−6.878
1.00
0.73


ATOM
415
HD1
LYS
31
6.052
−0.577
−7.380
1.00
1.40


ATOM
416
HD2
LYS
31
4.398
−1.137
−7.607
1.00
1.34


ATOM
417
CE
LYS
31
5.521
−2.270
−6.168
1.00
1.20


ATOM
418
HE1
LYS
31
5.814
−2.074
−5.148
1.00
1.85


ATOM
419
HE2
LYS
31
6.339
−2.748
−6.687
1.00
1.74


ATOM
420
NZ
LYS
31
4.337
−3.174
−6.180
1.00
1.97


ATOM
421
HZ1
LYS
31
4.363
−3.788
−5.342
1.00
2.46


ATOM
422
HZ2
LYS
31
4.357
−3.759
−7.041
1.00
2.37


ATOM
423
HZ3
LYS
31
3.467
−2.607
−6.165
1.00
2.48


ATOM
424
C
LYS
31
4.535
3.905
−6.099
1.00
0.41


ATOM
425
O
LYS
31
5.483
4.509
−5.632
1.00
0.42


ATOM
426
N
ALA
32
3.819
4.413
−7.063
1.00
0.45


ATOM
427
HN
ALA
32
3.056
3.915
−7.425
1.00
0.46


ATOM
428
CA
ALA
32
4.164
5.751
−7.611
1.00
0.51


ATOM
429
HA
ALA
32
5.213
5.777
−7.868
1.00
0.53


ATOM
430
CB
ALA
32
3.324
6.024
−8.860
1.00
0.62


ATOM
431
HB1
ALA
32
2.389
5.487
−8.790
1.00
1.11


ATOM
432
HB2
ALA
32
3.863
5.694
−9.736
1.00
1.10


ATOM
433
HB3
ALA
32
3.126
7.083
−8.937
1.00
1.24


ATOM
434
C
ALA
32
3.872
6.814
−6.554
1.00
0.48


ATOM
435
O
ALA
32
4.627
7.748
−6.372
1.00
0.49


ATOM
436
N
PHE
33
2.784
6.676
−5.847
1.00
0.48


ATOM
437
HN
PHE
33
2.189
5.912
−6.003
1.00
0.49


ATOM
438
CA
PHE
33
2.454
7.675
−4.796
1.00
0.53


ATOM
439
HA
PHE
33
2.365
8.648
−5.253
1.00
0.60


ATOM
440
CB
PHE
33
1.133
7.316
−4.120
1.00
0.60


ATOM
441
HB1
PHE
33
1.205
6.334
−3.677
1.00
0.56


ATOM
442
HB2
PHE
33
0.335
7.331
−4.848
1.00
0.66


ATOM
443
CG
PHE
33
0.863
8.336
−3.046
1.00
0.76


ATOM
444
CD1
PHE
33
0.371
9.600
−3.389
1.00
0.93


ATOM
445
HD1
PHE
33
0.170
9.841
−4.422
1.00
0.97


ATOM
446
CD2
PHE
33
1.125
8.023
−1.708
1.00
0.84


ATOM
447
HD2
PHE
33
1.502
7.046
−1.446
1.00
0.82


ATOM
448
CE1
PHE
33
0.143
10.554
−2.391
1.00
1.11


ATOM
449
HE1
PHE
33
−0.236
11.530
−2.653
1.00
1.27


ATOM
450
CE2
PHE
33
0.893
8.974
−0.711
1.00
1.05


ATOM
451
HE2
PHE
33
1.093
8.733
0.323
1.00
1.16


ATOM
452
CZ
PHE
33
0.404
10.239
−1.052
1.00
1.16


ATOM
453
HZ
PHE
33
0.233
10.974
−0.283
1.00
1.33


ATOM
454
C
PHE
33
3.567
7.717
−3.748
1.00
0.47


ATOM
455
O
PHE
33
3.965
8.770
−3.297
1.00
0.52


ATOM
456
N
LEU
34
4.073
6.583
−3.355
1.00
0.42


ATOM
457
HN
LEU
34
3.740
5.741
−3.729
1.00
0.43


ATOM
458
CA
LEU
34
5.160
6.574
−2.335
1.00
0.44


ATOM
459
HA
LEU
34
4.810
7.052
−1.436
1.00
0.53


ATOM
460
CB
LEU
34
5.587
5.135
−2.027
1.00
0.51


ATOM
461
HB1
LEU
34
6.490
5.150
−1.434
1.00
0.57


ATOM
462
HB2
LEU
34
5.781
4.618
−2.955
1.00
0.50


ATOM
463
CG
LEU
34
4.483
4.395
−1.257
1.00
0.62


ATOM
464
HG
LEU
34
3.562
4.450
−1.822
1.00
0.53


ATOM
465
CD1
LEU
34
4.900
2.919
−1.119
1.00
0.82


ATOM
466
HD11
LEU
34
5.962
2.832
−1.296
1.00
1.31


ATOM
467
HD12
LEU
34
4.369
2.329
−1.851
1.00
1.24


ATOM
468
HD13
LEU
34
4.672
2.548
−0.134
1.00
1.37


ATOM
469
CD2
LEU
34
4.280
5.051
0.129
1.00
0.81


ATOM
470
HD21
LEU
34
5.215
5.455
0.477
1.00
1.25


ATOM
471
HD22
LEU
34
3.916
4.330
0.840
1.00
1.37


ATOM
472
HD23
LEU
34
3.557
5.848
0.044
1.00
1.35


ATOM
473
C
LEU
34
6.352
7.356
−2.877
1.00
0.38


ATOM
474
O
LEU
34
7.016
8.074
−2.156
1.00
0.41


ATOM
475
N
LYS
35
6.629
7.228
−4.142
1.00
0.39


ATOM
476
HN
LYS
35
6.081
6.644
−4.711
1.00
0.41


ATOM
477
CA
LYS
35
7.779
7.971
−4.724
1.00
0.47


ATOM
478
HA
LYS
35
8.702
7.612
−4.294
1.00
0.48


ATOM
479
CB
LYS
35
7.798
7.765
−6.239
1.00
0.60


ATOM
480
HB1
LYS
35
7.495
8.677
−6.730
1.00
1.08


ATOM
481
HB2
LYS
35
7.115
6.970
−6.501
1.00
0.93


ATOM
482
CG
LYS
35
9.211
7.393
−6.688
1.00
1.34


ATOM
483
HG1
LYS
35
9.485
6.440
−6.262
1.00
1.84


ATOM
484
HG2
LYS
35
9.905
8.151
−6.355
1.00
1.85


ATOM
485
CD
LYS
35
9.248
7.297
−8.213
1.00
1.48


ATOM
486
HD1
LYS
35
9.686
8.196
−8.620
1.00
1.59


ATOM
487
HD2
LYS
35
8.242
7.183
−8.591
1.00
1.64


ATOM
488
CE
LYS
35
10.091
6.091
−8.627
1.00
2.33


ATOM
489
HE1
LYS
35
11.059
6.148
−8.153
1.00
2.75


ATOM
490
HE2
LYS
35
10.214
6.088
−9.700
1.00
2.70


ATOM
491
NZ
LYS
35
9.402
4.839
−8.202
1.00
3.09


ATOM
492
HZ1
LYS
35
9.038
4.955
−7.235
1.00
3.47


ATOM
493
HZ2
LYS
35
10.076
4.047
−8.227
1.00
3.33


ATOM
494
HZ3
LYS
35
8.610
4.643
−8.846
1.00
3.60


ATOM
495
C
LYS
35
7.606
9.461
−4.413
1.00
0.50


ATOM
496
O
LYS
35
8.552
10.155
−4.099
1.00
0.55


ATOM
497
N
SER
36
6.399
9.952
−4.493
1.00
0.54


ATOM
498
HN
SER
36
5.652
9.369
−4.743
1.00
0.52


ATOM
499
CA
SER
36
6.148
11.392
−4.196
1.00
0.66


ATOM
500
HA
SER
36
6.722
12.002
−4.877
1.00
0.73


ATOM
501
CB
SER
36
4.661
11.704
−4.365
1.00
0.75


ATOM
502
HB1
SER
36
4.479
12.737
−4.100
1.00
0.88


ATOM
503
HB2
SER
36
4.081
11.066
−3.722
1.00
0.71


ATOM
504
OG
SER
36
4.282
11.475
−5.716
1.00
0.81


ATOM
505
HG
SER
36
4.052
10.548
−5.807
1.00
1.17


ATOM
506
C
SER
36
6.570
11.704
−2.758
1.00
0.65


ATOM
507
O
SER
36
7.065
12.774
−2.467
1.00
0.75


ATOM
508
N
GLU
37
6.364
10.781
−1.856
1.00
0.59


ATOM
509
HN
GLU
37
5.953
9.929
−2.115
1.00
0.55


ATOM
510
CA
GLU
37
6.736
11.025
−0.431
1.00
0.66


ATOM
511
HA
GLU
37
6.817
12.086
−0.251
1.00
0.77


ATOM
512
CB
GLU
37
5.658
10.433
0.482
1.00
0.72


ATOM
513
HB1
GLU
37
6.004
10.451
1.504
1.00
0.80


ATOM
514
HB2
GLU
37
5.458
9.413
0.187
1.00
0.65


ATOM
515
CG
GLU
37
4.375
11.259
0.366
1.00
0.86


ATOM
516
HG1
GLU
37
4.043
11.267
−0.661
1.00
0.89


ATOM
517
HG2
GLU
37
4.568
12.271
0.691
1.00
1.11


ATOM
518
CD
GLU
37
3.288
10.638
1.245
1.00
1.09


ATOM
519
OE1
GLU
37
3.179
9.423
1.249
1.00
1.61


ATOM
520
OE2
GLU
37
2.582
11.388
1.899
1.00
1.69


ATOM
521
C
GLU
37
8.076
10.349
−0.132
1.00
0.58


ATOM
522
O
GLU
37
8.509
10.281
1.001
1.00
0.65


ATOM
523
N
TYR
38
8.737
9.860
−1.145
1.00
0.49


ATOM
524
HN
TYR
38
8.369
9.936
−2.049
1.00
0.47


ATOM
525
CA
TYR
38
10.057
9.200
−0.937
1.00
0.48


ATOM
526
HA
TYR
38
10.389
8.762
−1.866
1.00
0.47


ATOM
527
CB
TYR
38
11.075
10.242
−0.473
1.00
0.62


ATOM
528
HB1
TYR
38
12.041
9.775
−0.354
1.00
0.65


ATOM
529
HB2
TYR
38
10.758
10.661
0.469
1.00
0.69


ATOM
530
CG
TYR
38
11.171
11.338
−1.507
1.00
0.72


ATOM
531
CD1
TYR
38
10.437
12.519
−1.340
1.00
0.83


ATOM
532
HD1
TYR
38
9.807
12.645
−0.472
1.00
0.89


ATOM
533
CD2
TYR
38
11.988
11.173
−2.631
1.00
0.77


ATOM
534
HD2
TYR
38
12.553
10.262
−2.760
1.00
0.78


ATOM
535
CE1
TYR
38
10.520
13.535
−2.298
1.00
0.95


ATOM
536
HE1
TYR
38
9.954
14.446
−2.170
1.00
1.07


ATOM
537
CE2
TYR
38
12.071
12.191
−3.590
1.00
0.89


ATOM
538
HE2
TYR
38
12.702
12.065
−4.457
1.00
0.98


ATOM
539
CZ
TYR
38
11.338
13.372
−3.423
1.00
0.96


ATOM
540
OH
TYR
38
11.420
14.374
−4.368
1.00
1.10


ATOM
541
HH
TYR
38
10.671
14.284
−4.961
1.00
1.26


ATOM
542
C
TYR
38
9.923
8.105
0.122
1.00
0.45


ATOM
543
O
TYR
38
10.871
7.770
0.804
1.00
0.53


ATOM
544
N
SER
39
8.753
7.544
0.253
1.00
0.41


ATOM
545
HN
SER
39
8.009
7.832
−0.316
1.00
0.41


ATOM
546
CA
SER
39
8.539
6.463
1.257
1.00
0.44


ATOM
547
HA
SER
39
9.338
6.481
1.984
1.00
0.51


ATOM
548
CB
SER
39
7.201
6.687
1.965
1.00
0.52


ATOM
549
HB1
SER
39
7.369
7.244
2.877
1.00
1.14


ATOM
550
HB2
SER
39
6.750
5.741
2.208
1.00
1.14


ATOM
551
OG
SER
39
6.333
7.417
1.106
1.00
1.45


ATOM
552
HG
SER
39
5.440
7.094
1.244
1.00
1.88


ATOM
553
C
SER
39
8.544
5.114
0.532
1.00
0.37


ATOM
554
O
SER
39
7.896
4.168
0.936
1.00
0.37


ATOM
555
N
GLU
40
9.276
5.026
−0.546
1.00
0.36


ATOM
556
HN
GLU
40
9.787
5.803
−0.853
1.00
0.40


ATOM
557
CA
GLU
40
9.331
3.751
−1.314
1.00
0.35


ATOM
558
HA
GLU
40
8.330
3.447
−1.581
1.00
0.35


ATOM
559
CB
GLU
40
10.156
3.962
−2.584
1.00
0.41


ATOM
560
HB1
GLU
40
9.749
4.789
−3.146
1.00
0.45


ATOM
561
HB2
GLU
40
10.122
3.065
−3.185
1.00
0.42


ATOM
562
CG
GLU
40
11.606
4.270
−2.204
1.00
0.46


ATOM
563
HG1
GLU
40
12.083
3.370
−1.847
1.00
0.91


ATOM
564
HG2
GLU
40
11.622
5.020
−1.426
1.00
0.86


ATOM
565
CD
GLU
40
12.356
4.789
−3.431
1.00
1.09


ATOM
566
OE1
GLU
40
11.780
4.769
−4.506
1.00
1.76


ATOM
567
OE2
GLU
40
13.496
5.196
−3.276
1.00
1.77


ATOM
568
C
GLU
40
9.982
2.668
−0.455
1.00
0.37


ATOM
569
O
GLU
40
9.820
1.494
−0.694
1.00
0.37


ATOM
570
N
GLU
41
10.709
3.045
0.551
1.00
0.43


ATOM
571
HN
GLU
41
10.830
3.999
0.745
1.00
0.47


ATOM
572
CA
GLU
41
11.341
2.018
1.420
1.00
0.50


ATOM
573
HA
GLU
41
11.954
1.361
0.822
1.00
0.54


ATOM
574
CB
GLU
41
12.203
2.712
2.476
1.00
0.63


ATOM
575
HB1
GLU
41
12.956
3.314
1.989
1.00
0.75


ATOM
576
HB2
GLU
41
12.682
1.968
3.096
1.00
0.65


ATOM
577
CG
GLU
41
11.320
3.611
3.346
1.00
0.65


ATOM
578
HG1
GLU
41
10.948
3.045
4.186
1.00
0.98


ATOM
579
HG2
GLU
41
10.489
3.975
2.760
1.00
0.79


ATOM
580
CD
GLU
41
12.143
4.794
3.857
1.00
1.10


ATOM
581
OE1
GLU
41
11.545
5.789
4.231
1.00
1.72


ATOM
582
OE2
GLU
41
13.358
4.687
3.862
1.00
1.73


ATOM
583
C
GLU
41
10.232
1.212
2.104
1.00
0.45


ATOM
584
O
GLU
41
10.379
0.040
2.387
1.00
0.45


ATOM
585
N
ASN
42
9.124
1.849
2.378
1.00
0.42


ATOM
586
HN
ASN
42
9.040
2.797
2.143
1.00
0.44


ATOM
587
CA
ASN
42
7.990
1.153
3.053
1.00
0.41


ATOM
588
HA
ASN
42
8.316
0.797
4.018
1.00
0.45


ATOM
589
CB
ASN
42
6.842
2.144
3.250
1.00
0.44


ATOM
590
HB1
ASN
42
5.959
1.613
3.574
1.00
0.46


ATOM
591
HB2
ASN
42
6.638
2.646
2.316
1.00
0.41


ATOM
592
CG
ASN
42
7.231
3.176
4.308
1.00
0.51


ATOM
593
OD1
ASN
42
8.056
2.910
5.159
1.00
1.00


ATOM
594
ND2
ASN
42
6.667
4.352
4.291
1.00
1.28


ATOM
595
HD21
ASN
42
6.002
4.566
3.604
1.00
2.00


ATOM
596
HD22
ASN
42
6.907
5.020
4.965
1.00
1.32


ATOM
597
C
ASN
42
7.485
−0.035
2.223
1.00
0.36


ATOM
598
O
ASN
42
7.276
−1.113
2.744
1.00
0.36


ATOM
599
N
ILE
43
7.260
0.145
0.946
1.00
0.36


ATOM
600
HN
ILE
43
7.413
1.021
0.534
1.00
0.38


ATOM
601
CA
ILE
43
6.741
−0.993
0.129
1.00
0.35


ATOM
602
HA
ILE
43
5.915
−1.439
0.665
1.00
0.36


ATOM
603
CB
ILE
43
6.224
−0.485
−1.234
1.00
0.36


ATOM
604
HB
ILE
43
5.556
0.347
−1.071
1.00
0.40


ATOM
605
CG1
ILE
43
5.472
−1.611
−1.958
1.00
0.46


ATOM
606
HG11
ILE
43
6.092
−2.494
−1.985
1.00
0.55


ATOM
607
HG12
ILE
43
5.255
−1.297
−2.969
1.00
0.49


ATOM
608
CG2
ILE
43
7.383
−0.019
−2.115
1.00
0.45


ATOM
609
HG21
ILE
43
7.549
−0.739
−2.902
1.00
1.14


ATOM
610
HG22
ILE
43
8.269
0.075
−1.524
1.00
1.12


ATOM
611
HG23
ILE
43
7.139
0.938
−2.552
1.00
1.10


ATOM
612
CD1
ILE
43
4.154
−1.937
−1.238
1.00
0.59


ATOM
613
HD11
ILE
43
4.247
−2.890
−0.737
1.00
1.19


ATOM
614
HD12
ILE
43
3.354
−1.991
−1.962
1.00
1.22


ATOM
615
HD13
ILE
43
3.928
−1.171
−0.513
1.00
1.18


ATOM
616
C
ILE
43
7.829
−2.063
−0.035
1.00
0.36


ATOM
617
O
ILE
43
7.550
−3.244
0.022
1.00
0.36


ATOM
618
N
ASP
44
9.067
−1.678
−0.210
1.00
0.38


ATOM
619
HN
ASP
44
9.291
−0.724
−0.235
1.00
0.39


ATOM
620
CA
ASP
44
10.137
−2.707
−0.339
1.00
0.42


ATOM
621
HA
ASP
44
9.903
−3.382
−1.149
1.00
0.44


ATOM
622
CB
ASP
44
11.481
−2.023
−0.601
1.00
0.48


ATOM
623
HB1
ASP
44
12.277
−2.749
−0.521
1.00
0.52


ATOM
624
HB2
ASP
44
11.635
−1.239
0.126
1.00
0.48


ATOM
625
CG
ASP
44
11.483
−1.423
−2.008
1.00
0.53


ATOM
626
OD1
ASP
44
10.684
−1.862
−2.819
1.00
0.98


ATOM
627
OD2
ASP
44
12.282
−0.533
−2.250
1.00
0.85


ATOM
628
C
ASP
44
10.205
−3.480
0.978
1.00
0.38


ATOM
629
O
ASP
44
10.286
−4.692
1.005
1.00
0.40


ATOM
630
N
PHE
45
10.144
−2.771
2.072
1.00
0.36


ATOM
631
HN
PHE
45
10.059
−1.797
2.012
1.00
0.37


ATOM
632
CA
PHE
45
10.172
−3.426
3.408
1.00
0.34


ATOM
633
HA
PHE
45
11.069
−4.019
3.505
1.00
0.36


ATOM
634
CB
PHE
45
10.154
−2.333
4.482
1.00
0.35


ATOM
635
HB1
PHE
45
9.259
−1.739
4.371
1.00
0.36


ATOM
636
HB2
PHE
45
11.019
−1.699
4.358
1.00
0.40


ATOM
637
CG
PHE
45
10.180
−2.942
5.864
1.00
0.34


ATOM
638
CD1
PHE
45
8.979
−3.176
6.545
1.00
0.35


ATOM
639
HD1
PHE
45
8.037
−2.931
6.077
1.00
0.38


ATOM
640
CD2
PHE
45
11.402
−3.260
6.469
1.00
0.38


ATOM
641
HD2
PHE
45
12.328
−3.080
5.944
1.00
0.43


ATOM
642
CE1
PHE
45
8.998
−3.727
7.832
1.00
0.39


ATOM
643
HE1
PHE
45
8.070
−3.904
8.358
1.00
0.44


ATOM
644
CE2
PHE
45
11.422
−3.814
7.756
1.00
0.41


ATOM
645
HE2
PHE
45
12.364
−4.060
8.223
1.00
0.47


ATOM
646
CZ
PHE
45
10.220
−4.047
8.437
1.00
0.40


ATOM
647
HZ
PHE
45
10.236
−4.472
9.430
1.00
0.45


ATOM
648
C
PHE
45
8.942
−4.325
3.546
1.00
0.32


ATOM
649
O
PHE
45
9.010
−5.420
4.068
1.00
0.33


ATOM
650
N
TRP
46
7.816
−3.863
3.074
1.00
0.32


ATOM
651
HN
TRP
46
7.791
−2.977
2.656
1.00
0.33


ATOM
652
CA
TRP
46
6.569
−4.673
3.164
1.00
0.33


ATOM
653
HA
TRP
46
6.353
−4.885
4.201
1.00
0.34


ATOM
654
CB
TRP
46
5.409
−3.882
2.553
1.00
0.36


ATOM
655
HB1
TRP
46
5.625
−3.672
1.516
1.00
0.36


ATOM
656
HB2
TRP
46
5.287
−2.953
3.089
1.00
0.38


ATOM
657
CG
TRP
46
4.147
−4.679
2.647
1.00
0.38


ATOM
658
CD1
TRP
46
3.381
−4.785
3.758
1.00
0.47


ATOM
659
HD1
TRP
46
3.586
−4.316
4.709
1.00
0.55


ATOM
660
CD2
TRP
46
3.487
−5.471
1.618
1.00
0.42


ATOM
661
NE1
TRP
46
2.295
−5.593
3.477
1.00
0.50


ATOM
662
HE1
TRP
46
1.587
−5.830
4.112
1.00
0.58


ATOM
663
CE2
TRP
46
2.315
−6.041
2.171
1.00
0.47


ATOM
664
CE3
TRP
46
3.787
−5.750
0.273
1.00
0.50


ATOM
665
HE3
TRP
46
4.674
−5.331
−0.177
1.00
0.52


ATOM
666
CZ2
TRP
46
1.471
−6.856
1.417
1.00
0.54


ATOM
667
HZ2
TRP
46
0.582
−7.278
1.863
1.00
0.58


ATOM
668
CZ3
TRP
46
2.939
−6.571
−0.490
1.00
0.61


ATOM
669
HZ3
TRP
46
3.179
−6.779
−1.522
1.00
0.73


ATOM
670
CH2
TRP
46
1.784
−7.123
0.082
1.00
0.61


ATOM
671
HH2
TRP
46
1.136
−7.753
−0.509
1.00
0.70


ATOM
672
C
TRP
46
6.758
−5.991
2.403
1.00
0.34


ATOM
673
O
TRP
46
6.316
−7.037
2.836
1.00
0.36


ATOM
674
N
ILE
47
7.406
−5.948
1.266
1.00
0.35


ATOM
675
HN
ILE
47
7.750
−5.094
0.930
1.00
0.35


ATOM
676
CA
ILE
47
7.613
−7.199
0.476
1.00
0.39


ATOM
677
HA
ILE
47
6.659
−7.670
0.292
1.00
0.41


ATOM
678
CB
ILE
47
8.280
−6.857
−0.859
1.00
0.44


ATOM
679
HB
ILE
47
9.177
−6.286
−0.669
1.00
0.44


ATOM
680
CG1
ILE
47
7.308
−6.033
−1.715
1.00
0.46


ATOM
681
HG11
ILE
47
6.922
−5.214
−1.127
1.00
0.43


ATOM
682
HG12
ILE
47
6.488
−6.663
−2.030
1.00
0.48


ATOM
683
CG2
ILE
47
8.643
−8.149
−1.595
1.00
0.50


ATOM
684
HG21
ILE
47
9.497
−8.607
−1.119
1.00
1.26


ATOM
685
HG22
ILE
47
8.882
−7.924
−2.623
1.00
1.09


ATOM
686
HG23
ILE
47
7.805
−8.830
−1.561
1.00
1.06


ATOM
687
CD1
ILE
47
8.023
−5.475
−2.954
1.00
0.53


ATOM
688
HD11
ILE
47
7.886
−6.152
−3.783
1.00
1.12


ATOM
689
HD12
ILE
47
9.077
−5.362
−2.752
1.00
1.14


ATOM
690
HD13
ILE
47
7.602
−4.513
−3.206
1.00
1.18


ATOM
691
C
ILE
47
8.512
−8.157
1.260
1.00
0.38


ATOM
692
O
ILE
47
8.271
−9.347
1.309
1.00
0.39


ATOM
693
N
SER
48
9.538
−7.649
1.884
1.00
0.38


ATOM
694
HN
SER
48
9.713
−6.686
1.842
1.00
0.38


ATOM
695
CA
SER
48
10.435
−8.537
2.672
1.00
0.41


ATOM
696
HA
SER
48
10.745
−9.373
2.060
1.00
0.43


ATOM
697
CB
SER
48
11.666
−7.753
3.131
1.00
0.43


ATOM
698
HB1
SER
48
12.173
−7.343
2.267
1.00
0.45


ATOM
699
HB2
SER
48
12.337
−8.409
3.659
1.00
0.46


ATOM
700
OG
SER
48
11.257
−6.703
3.998
1.00
0.43


ATOM
701
HG
SER
48
11.122
−7.077
4.872
1.00
0.98


ATOM
702
C
SER
48
9.666
−9.051
3.888
1.00
0.41


ATOM
703
O
SER
48
9.778
−10.198
4.272
1.00
0.42


ATOM
704
N
CYS
49
8.879
−8.204
4.493
1.00
0.41


ATOM
705
HN
CYS
49
8.803
−7.285
4.160
1.00
0.41


ATOM
706
CA
CYS
49
8.088
−8.628
5.681
1.00
0.44


ATOM
707
HA
CYS
49
8.752
−9.033
6.431
1.00
0.45


ATOM
708
CB
CYS
49
7.347
−7.420
6.253
1.00
0.49


ATOM
709
HB1
CYS
49
6.369
−7.726
6.595
1.00
1.07


ATOM
710
HB2
CYS
49
7.241
−6.666
5.487
1.00
1.09


ATOM
711
SG
CYS
49
8.285
−6.738
7.642
1.00
1.57


ATOM
712
HG
CYS
49
7.704
−6.155
8.136
1.00
1.99


ATOM
713
C
CYS
49
7.073
−9.695
5.262
1.00
0.44


ATOM
714
O
CYS
49
6.812
−10.635
5.987
1.00
0.45


ATOM
715
N
GLU
50
6.497
−9.556
4.097
1.00
0.46


ATOM
716
HN
GLU
50
6.722
−8.791
3.529
1.00
0.46


ATOM
717
CA
GLU
50
5.498
−10.563
3.636
1.00
0.49


ATOM
718
HA
GLU
50
4.673
−10.598
4.332
1.00
0.52


ATOM
719
CB
GLU
50
4.980
−10.171
2.250
1.00
0.52


ATOM
720
HB1
GLU
50
4.419
−10.991
1.829
1.00
0.93


ATOM
721
HB2
GLU
50
5.817
−9.938
1.607
1.00
0.86


ATOM
722
CG
GLU
50
4.074
−8.945
2.371
1.00
0.83


ATOM
723
HG1
GLU
50
4.303
−8.247
1.580
1.00
1.28


ATOM
724
HG2
GLU
50
4.236
−8.471
3.329
1.00
1.55


ATOM
725
CD
GLU
50
2.611
−9.379
2.257
1.00
1.44


ATOM
726
OE1
GLU
50
1.829
−8.989
3.108
1.00
2.08


ATOM
727
OE2
GLU
50
2.298
−10.094
1.319
1.00
2.13


ATOM
728
C
GLU
50
6.162
−11.937
3.561
1.00
0.46


ATOM
729
O
GLU
50
5.635
−12.918
4.047
1.00
0.48


ATOM
730
N
GLU
51
7.325
−12.014
2.976
1.00
0.43


ATOM
731
HN
GLU
51
7.744
−11.209
2.604
1.00
0.43


ATOM
732
CA
GLU
51
8.025
−13.325
2.899
1.00
0.43


ATOM
733
HA
GLU
51
7.408
−14.035
2.367
1.00
0.47


ATOM
734
CB
GLU
51
9.363
−13.157
2.175
1.00
0.44


ATOM
735
HB1
GLU
51
9.941
−14.064
2.274
1.00
0.46


ATOM
736
HB2
GLU
51
9.907
−12.333
2.612
1.00
0.42


ATOM
737
CG
GLU
51
9.114
−12.874
0.692
1.00
0.51


ATOM
738
HG1
GLU
51
8.465
−12.018
0.592
1.00
0.73


ATOM
739
HG2
GLU
51
8.649
−13.736
0.235
1.00
0.69


ATOM
740
CD
GLU
51
10.446
−12.585
−0.002
1.00
0.63


ATOM
741
OE1
GLU
51
10.431
−12.357
−1.200
1.00
1.41


ATOM
742
OE2
GLU
51
11.460
−12.595
0.678
1.00
1.24


ATOM
743
C
GLU
51
8.272
−13.822
4.321
1.00
0.40


ATOM
744
O
GLU
51
8.141
−14.992
4.619
1.00
0.41


ATOM
745
N
TYR
52
8.633
−12.928
5.197
1.00
0.37


ATOM
746
HN
TYR
52
8.731
−11.992
4.924
1.00
0.37


ATOM
747
CA
TYR
52
8.899
−13.316
6.607
1.00
0.35


ATOM
748
HA
TYR
52
9.696
−14.043
6.639
1.00
0.34


ATOM
749
CB
TYR
52
9.312
−12.067
7.390
1.00
0.36


ATOM
750
HB1
TYR
52
8.442
−11.454
7.573
1.00
0.40


ATOM
751
HB2
TYR
52
10.032
−11.505
6.814
1.00
0.38


ATOM
752
CG
TYR
52
9.929
−12.468
8.708
1.00
0.31


ATOM
753
CD1
TYR
52
11.322
−12.552
8.828
1.00
0.30


ATOM
754
HD1
TYR
52
11.951
−12.330
7.979
1.00
0.33


ATOM
755
CD2
TYR
52
9.113
−12.755
9.807
1.00
0.30


ATOM
756
HD2
TYR
52
8.039
−12.690
9.715
1.00
0.33


ATOM
757
CE1
TYR
52
11.899
−12.921
10.048
1.00
0.28


ATOM
758
HE1
TYR
52
12.973
−12.986
10.139
1.00
0.29


ATOM
759
CE2
TYR
52
9.690
−13.125
11.027
1.00
0.29


ATOM
760
HE2
TYR
52
9.061
−13.347
11.875
1.00
0.31


ATOM
761
CZ
TYR
52
11.083
−13.209
11.148
1.00
0.28


ATOM
762
OH
TYR
52
11.652
−13.575
12.351
1.00
0.29


ATOM
763
HH
TYR
52
11.898
−12.774
12.819
1.00
0.88


ATOM
764
C
TYR
52
7.627
−13.919
7.220
1.00
0.38


ATOM
765
O
TYR
52
7.678
−14.896
7.941
1.00
0.38


ATOM
766
N
LYS
53
6.485
−13.343
6.940
1.00
0.43


ATOM
767
HN
LYS
53
6.464
−12.555
6.358
1.00
0.44


ATOM
768
CA
LYS
53
5.212
−13.884
7.508
1.00
0.48


ATOM
769
HA
LYS
53
5.331
−14.019
8.573
1.00
0.49


ATOM
770
CB
LYS
53
4.060
−12.909
7.256
1.00
0.58


ATOM
771
HB1
LYS
53
3.121
−13.421
7.407
1.00
0.64


ATOM
772
HB2
LYS
53
4.112
−12.549
6.239
1.00
0.58


ATOM
773
CG
LYS
53
4.152
−11.724
8.219
1.00
0.66


ATOM
774
HG1
LYS
53
5.045
−11.156
8.008
1.00
0.79


ATOM
775
HG2
LYS
53
4.187
−12.088
9.236
1.00
0.94


ATOM
776
CD
LYS
53
2.923
−10.826
8.033
1.00
0.81


ATOM
777
HD1
LYS
53
2.035
−11.438
7.968
1.00
1.25


ATOM
778
HD2
LYS
53
3.032
−10.255
7.122
1.00
1.23


ATOM
779
CE
LYS
53
2.791
−9.870
9.220
1.00
1.12


ATOM
780
HE1
LYS
53
2.836
−10.430
10.142
1.00
1.54


ATOM
781
HE2
LYS
53
1.844
−9.356
9.164
1.00
1.59


ATOM
782
NZ
LYS
53
3.902
−8.878
9.186
1.00
2.03


ATOM
783
HZ1
LYS
53
4.149
−8.668
8.198
1.00
2.49


ATOM
784
HZ2
LYS
53
4.733
−9.271
9.675
1.00
2.51


ATOM
785
HZ3
LYS
53
3.602
−8.003
9.659
1.00
2.52


ATOM
786
C
LYS
53
4.859
−15.231
6.872
1.00
0.48


ATOM
787
O
LYS
53
4.084
−15.991
7.417
1.00
0.52


ATOM
788
N
LYS
54
5.394
−15.537
5.722
1.00
0.46


ATOM
789
HN
LYS
54
6.008
−14.915
5.278
1.00
0.46


ATOM
790
CA
LYS
54
5.041
−16.836
5.083
1.00
0.50


ATOM
791
HA
LYS
54
4.020
−17.089
5.331
1.00
0.53


ATOM
792
CB
LYS
54
5.178
−16.721
3.562
1.00
0.56


ATOM
793
HB1
LYS
54
5.090
−17.700
3.117
1.00
0.60


ATOM
794
HB2
LYS
54
6.142
−16.298
3.318
1.00
0.54


ATOM
795
CG
LYS
54
4.068
−15.816
3.021
1.00
0.62


ATOM
796
HG1
LYS
54
4.154
−14.836
3.466
1.00
0.60


ATOM
797
HG2
LYS
54
3.105
−16.240
3.269
1.00
0.66


ATOM
798
CD
LYS
54
4.197
−15.695
1.502
1.00
0.71


ATOM
799
HD1
LYS
54
4.109
−16.674
1.054
1.00
0.84


ATOM
800
HD2
LYS
54
5.160
−15.271
1.254
1.00
0.88


ATOM
801
CE
LYS
54
3.086
−14.790
0.965
1.00
0.89


ATOM
802
HE1
LYS
54
2.472
−14.449
1.785
1.00
1.34


ATOM
803
HE2
LYS
54
2.478
−15.343
0.265
1.00
1.45


ATOM
804
NZ
LYS
54
3.693
−13.617
0.277
1.00
1.70


ATOM
805
HZ1
LYS
54
4.116
−13.922
−0.622
1.00
2.20


ATOM
806
HZ2
LYS
54
4.429
−13.202
0.885
1.00
2.24


ATOM
807
HZ3
LYS
54
2.958
−12.906
0.088
1.00
2.18


ATOM
808
C
LYS
54
5.970
−17.929
5.606
1.00
0.47


ATOM
809
O
LYS
54
5.586
−19.077
5.721
1.00
0.52


ATOM
810
N
ILE
55
7.178
−17.586
5.954
1.00
0.43


ATOM
811
HN
ILE
55
7.468
−16.654
5.877
1.00
0.43


ATOM
812
CA
ILE
55
8.102
−18.616
6.501
1.00
0.44


ATOM
813
HA
ILE
55
8.062
−19.504
5.886
1.00
0.49


ATOM
814
CB
ILE
55
9.531
−18.067
6.523
1.00
0.42


ATOM
815
HB
ILE
55
9.545
−17.129
7.057
1.00
0.40


ATOM
816
CG1
ILE
55
10.012
−17.858
5.077
1.00
0.43


ATOM
817
HG11
ILE
55
9.228
−17.386
4.505
1.00
0.44


ATOM
818
HG12
ILE
55
10.244
−18.818
4.637
1.00
0.47


ATOM
819
CG2
ILE
55
10.446
−19.072
7.229
1.00
0.44


ATOM
820
HG21
ILE
55
11.472
−18.778
7.096
1.00
1.12


ATOM
821
HG22
ILE
55
10.297
−20.055
6.805
1.00
1.10


ATOM
822
HG23
ILE
55
10.214
−19.096
8.283
1.00
1.11


ATOM
823
CD1
ILE
55
11.267
−16.972
5.041
1.00
0.43


ATOM
824
HD11
ILE
55
11.181
−16.182
5.772
1.00
1.04


ATOM
825
HD12
ILE
55
11.368
−16.536
4.058
1.00
1.11


ATOM
826
HD13
ILE
55
12.141
−17.568
5.256
1.00
1.07


ATOM
827
C
ILE
55
7.654
−18.956
7.925
1.00
0.46


ATOM
828
O
ILE
55
7.679
−18.117
8.803
1.00
0.45


ATOM
829
N
LYS
56
7.242
−20.173
8.159
1.00
0.53


ATOM
830
HN
LYS
56
7.228
−20.831
7.433
1.00
0.57


ATOM
831
CA
LYS
56
6.786
−20.564
9.526
1.00
0.60


ATOM
832
HA
LYS
56
6.530
−19.676
10.084
1.00
0.60


ATOM
833
CB
LYS
56
5.549
−21.450
9.410
1.00
0.71


ATOM
834
HB1
LYS
56
5.320
−21.883
10.372
1.00
0.76


ATOM
835
HB2
LYS
56
5.739
−22.235
8.693
1.00
0.72


ATOM
836
CG
LYS
56
4.372
−20.592
8.941
1.00
0.76


ATOM
837
HG1
LYS
56
4.605
−20.155
7.982
1.00
0.92


ATOM
838
HG2
LYS
56
4.196
−19.804
9.660
1.00
1.08


ATOM
839
CD
LYS
56
3.113
−21.450
8.815
1.00
1.01


ATOM
840
HD1
LYS
56
2.896
−21.918
9.763
1.00
1.45


ATOM
841
HD2
LYS
56
3.269
−22.210
8.062
1.00
1.34


ATOM
842
CE
LYS
56
1.938
−20.558
8.407
1.00
1.20


ATOM
843
HE1
LYS
56
2.278
−19.819
7.696
1.00
1.51


ATOM
844
HE2
LYS
56
1.546
−20.060
9.282
1.00
1.81


ATOM
845
NZ
LYS
56
0.867
−21.388
7.789
1.00
1.88


ATOM
846
HZ1
LYS
56
0.749
−21.115
6.793
1.00
2.37


ATOM
847
HZ2
LYS
56
−0.027
−21.236
8.299
1.00
2.42


ATOM
848
HZ3
LYS
56
1.131
−22.392
7.842
1.00
2.24


ATOM
849
C
LYS
56
7.899
−21.308
10.259
1.00
0.59


ATOM
850
O
LYS
56
7.723
−21.765
11.369
1.00
0.66


ATOM
851
N
SER
57
9.044
−21.421
9.651
1.00
0.54


ATOM
852
HN
SER
57
9.159
−21.038
8.757
1.00
0.52


ATOM
853
CA
SER
57
10.182
−22.120
10.314
1.00
0.56


ATOM
854
HA
SER
57
9.802
−22.839
11.018
1.00
0.62


ATOM
855
CB
SER
57
11.010
−22.840
9.251
1.00
0.60


ATOM
856
HB1
SER
57
11.904
−23.245
9.707
1.00
0.61


ATOM
857
HB2
SER
57
11.291
−22.142
8.479
1.00
0.57


ATOM
858
OG
SER
57
10.235
−23.883
8.677
1.00
0.69


ATOM
859
HG
SER
57
9.561
−23.481
8.123
1.00
1.15


ATOM
860
C
SER
57
11.078
−21.070
11.006
1.00
0.50


ATOM
861
O
SER
57
11.730
−20.304
10.328
1.00
0.45


ATOM
862
N
PRO
58
11.127
−21.000
12.328
1.00
0.51


ATOM
863
CA
PRO
58
11.984
−19.977
12.992
1.00
0.48


ATOM
864
HA
PRO
58
11.693
−18.986
12.685
1.00
0.44


ATOM
865
CB
PRO
58
11.659
−20.165
14.475
1.00
0.55


ATOM
866
HB1
PRO
58
11.180
−19.277
14.857
1.00
0.57


ATOM
867
HB2
PRO
58
12.572
−20.350
15.025
1.00
0.58


ATOM
868
CG
PRO
58
10.713
−21.360
14.630
1.00
0.60


ATOM
869
HG1
PRO
58
9.810
−21.045
15.129
1.00
0.64


ATOM
870
HG2
PRO
58
11.198
−22.132
15.211
1.00
0.64


ATOM
871
CD
PRO
58
10.366
−21.902
13.241
1.00
0.59


ATOM
872
HD2
PRO
58
10.699
−22.928
13.144
1.00
0.63


ATOM
873
HD1
PRO
58
9.309
−21.820
13.057
1.00
0.61


ATOM
874
C
PRO
58
13.479
−20.198
12.738
1.00
0.47


ATOM
875
O
PRO
58
14.312
−19.439
13.194
1.00
0.48


ATOM
876
N
SER
59
13.829
−21.230
12.020
1.00
0.49


ATOM
877
HN
SER
59
13.146
−21.836
11.663
1.00
0.51


ATOM
878
CA
SER
59
15.273
−21.490
11.752
1.00
0.52


ATOM
879
HA
SER
59
15.856
−21.166
12.601
1.00
0.54


ATOM
880
CB
SER
59
15.491
−22.987
11.535
1.00
0.59


ATOM
881
HB1
SER
59
15.026
−23.539
12.341
1.00
0.97


ATOM
882
HB2
SER
59
16.547
−23.200
11.520
1.00
1.14


ATOM
883
OG
SER
59
14.920
−23.368
10.291
1.00
1.30


ATOM
884
HG
SER
59
14.343
−22.658
9.999
1.00
1.81


ATOM
885
C
SER
59
15.726
−20.723
10.506
1.00
0.48


ATOM
886
O
SER
59
16.876
−20.346
10.389
1.00
0.51


ATOM
887
N
LYS
60
14.844
−20.487
9.571
1.00
0.46


ATOM
888
HN
LYS
60
13.920
−20.797
9.674
1.00
0.46


ATOM
889
CA
LYS
60
15.257
−19.746
8.344
1.00
0.45


ATOM
890
HA
LYS
60
16.288
−19.968
8.117
1.00
0.49


ATOM
891
CB
LYS
60
14.372
−20.154
7.165
1.00
0.49


ATOM
892
HB1
LYS
60
14.552
−19.487
6.335
1.00
0.51


ATOM
893
HB2
LYS
60
13.338
−20.085
7.460
1.00
0.46


ATOM
894
CG
LYS
60
14.671
−21.589
6.731
1.00
0.57


ATOM
895
HG1
LYS
60
14.342
−22.275
7.496
1.00
0.82


ATOM
896
HG2
LYS
60
15.734
−21.705
6.570
1.00
1.07


ATOM
897
CD
LYS
60
13.917
−21.874
5.428
1.00
1.20


ATOM
898
HD1
LYS
60
14.502
−21.522
4.592
1.00
1.80


ATOM
899
HD2
LYS
60
12.968
−21.357
5.444
1.00
1.78


ATOM
900
CE
LYS
60
13.675
−23.376
5.280
1.00
1.67


ATOM
901
HE1
LYS
60
13.104
−23.560
4.381
1.00
2.00


ATOM
902
HE2
LYS
60
13.124
−23.739
6.135
1.00
2.17


ATOM
903
NZ
LYS
60
14.981
−24.086
5.191
1.00
2.48


ATOM
904
HZ1
LYS
60
14.935
−24.804
4.441
1.00
2.80


ATOM
905
HZ2
LYS
60
15.187
−24.546
6.101
1.00
3.08


ATOM
906
HZ3
LYS
60
15.732
−23.403
4.968
1.00
2.81


ATOM
907
C
LYS
60
15.086
−18.242
8.570
1.00
0.39


ATOM
908
O
LYS
60
15.656
−17.432
7.867
1.00
0.40


ATOM
909
N
LEU
61
14.295
−17.862
9.535
1.00
0.34


ATOM
910
HN
LEU
61
13.833
−18.532
10.085
1.00
0.35


ATOM
911
CA
LEU
61
14.080
−16.406
9.787
1.00
0.30


ATOM
912
HA
LEU
61
13.695
−15.937
8.895
1.00
0.30


ATOM
913
CB
LEU
61
13.082
−16.224
10.935
1.00
0.28


ATOM
914
HB1
LEU
61
12.898
−15.171
11.086
1.00
0.26


ATOM
915
HB2
LEU
61
13.496
−16.648
11.836
1.00
0.30


ATOM
916
CG
LEU
61
11.760
−16.926
10.607
1.00
0.29


ATOM
917
HG
LEU
61
11.939
−17.985
10.500
1.00
0.32


ATOM
918
CD1
LEU
61
10.767
−16.695
11.747
1.00
0.31


ATOM
919
HD11
LEU
61
11.298
−16.675
12.688
1.00
1.07


ATOM
920
HD12
LEU
61
10.041
−17.495
11.761
1.00
1.07


ATOM
921
HD13
LEU
61
10.262
−15.753
11.599
1.00
1.02


ATOM
922
CD2
LEU
61
11.175
−16.374
9.305
1.00
0.29


ATOM
923
HD21
LEU
61
11.610
−16.894
8.466
1.00
1.05


ATOM
924
HD22
LEU
61
11.395
−15.322
9.228
1.00
1.00


ATOM
925
HD23
LEU
61
10.105
−16.519
9.302
1.00
1.00


ATOM
926
C
LEU
61
15.406
−15.745
10.173
1.00
0.32


ATOM
927
O
LEU
61
15.699
−14.637
9.772
1.00
0.32


ATOM
928
N
SER
62
16.202
−16.411
10.963
1.00
0.35


ATOM
929
HN
SER
62
15.939
−17.299
11.284
1.00
0.37


ATOM
930
CA
SER
62
17.501
−15.819
11.396
1.00
0.40


ATOM
931
HA
SER
62
17.295
−14.972
12.033
1.00
0.39


ATOM
932
CB
SER
62
18.288
−16.854
12.204
1.00
0.46


ATOM
933
HB1
SER
62
19.339
−16.786
11.954
1.00
0.81


ATOM
934
HB2
SER
62
17.925
−17.842
11.979
1.00
0.76


ATOM
935
OG
SER
62
18.101
−16.602
13.590
1.00
0.90


ATOM
936
HG
SER
62
18.764
−15.966
13.869
1.00
1.29


ATOM
937
C
SER
62
18.326
−15.333
10.188
1.00
0.43


ATOM
938
O
SER
62
18.585
−14.153
10.065
1.00
0.43


ATOM
939
N
PRO
63
18.749
−16.208
9.298
1.00
0.46


ATOM
940
CA
PRO
63
19.553
−15.775
8.121
1.00
0.51


ATOM
941
HA
PRO
63
20.579
−15.618
8.406
1.00
0.56


ATOM
942
CB
PRO
63
19.467
−16.990
7.197
1.00
0.56


ATOM
943
HB1
PRO
63
20.459
−17.291
6.900
1.00
0.66


ATOM
944
HB2
PRO
63
18.885
−16.738
6.321
1.00
0.58


ATOM
945
CG
PRO
63
18.790
−18.137
7.955
1.00
0.52


ATOM
946
HG1
PRO
63
19.453
−18.988
7.993
1.00
0.57


ATOM
947
HG2
PRO
63
17.876
−18.411
7.450
1.00
0.50


ATOM
948
CD
PRO
63
18.476
−17.669
9.379
1.00
0.48


ATOM
949
HD2
PRO
63
17.445
−17.871
9.625
1.00
0.43


ATOM
950
HD1
PRO
63
19.145
−18.138
10.080
1.00
0.52


ATOM
951
C
PRO
63
18.998
−14.526
7.425
1.00
0.47


ATOM
952
O
PRO
63
19.684
−13.534
7.280
1.00
0.48


ATOM
953
N
LYS
64
17.773
−14.567
6.977
1.00
0.44


ATOM
954
HN
LYS
64
17.233
−15.377
7.089
1.00
0.45


ATOM
955
CA
LYS
64
17.205
−13.380
6.277
1.00
0.44


ATOM
956
HA
LYS
64
17.910
−13.040
5.532
1.00
0.48


ATOM
957
CB
LYS
64
15.891
−13.762
5.589
1.00
0.48


ATOM
958
HB1
LYS
64
16.029
−14.687
5.051
1.00
0.57


ATOM
959
HB2
LYS
64
15.617
−12.982
4.895
1.00
0.50


ATOM
960
CG
LYS
64
14.782
−13.937
6.639
1.00
0.47


ATOM
961
HG1
LYS
64
14.491
−12.969
7.019
1.00
0.52


ATOM
962
HG2
LYS
64
15.153
−14.543
7.452
1.00
0.65


ATOM
963
CD
LYS
64
13.554
−14.620
6.017
1.00
0.65


ATOM
964
HD1
LYS
64
12.944
−15.036
6.804
1.00
1.34


ATOM
965
HD2
LYS
64
13.871
−15.413
5.356
1.00
1.14


ATOM
966
CE
LYS
64
12.726
−13.599
5.228
1.00
1.10


ATOM
967
HE1
LYS
64
13.339
−12.750
4.972
1.00
1.80


ATOM
968
HE2
LYS
64
11.893
−13.270
5.831
1.00
1.66


ATOM
969
NZ
LYS
64
12.214
−14.237
3.982
1.00
1.78


ATOM
970
HZ1
LYS
64
11.179
−14.312
4.032
1.00
2.21


ATOM
971
HZ2
LYS
64
12.627
−15.187
3.885
1.00
2.30


ATOM
972
HZ3
LYS
64
12.478
−13.657
3.161
1.00
2.22


ATOM
973
C
LYS
64
16.958
−12.252
7.282
1.00
0.37


ATOM
974
O
LYS
64
17.022
−11.087
6.942
1.00
0.37


ATOM
975
N
ALA
65
16.675
−12.578
8.515
1.00
0.35


ATOM
976
HN
ALA
65
16.623
−13.522
8.781
1.00
0.37


ATOM
977
CA
ALA
65
16.426
−11.505
9.517
1.00
0.31


ATOM
978
HA
ALA
65
15.572
−10.919
9.210
1.00
0.31


ATOM
979
CB
ALA
65
16.150
−12.132
10.884
1.00
0.33


ATOM
980
HB1
ALA
65
16.918
−12.856
11.109
1.00
1.02


ATOM
981
HB2
ALA
65
15.187
−12.621
10.868
1.00
1.03


ATOM
982
HB3
ALA
65
16.150
−11.362
11.640
1.00
1.02


ATOM
983
C
ALA
65
17.658
−10.602
9.606
1.00
0.32


ATOM
984
O
ALA
65
17.550
−9.392
9.575
1.00
0.31


ATOM
985
N
LYS
66
18.830
−11.172
9.710
1.00
0.36


ATOM
986
HN
LYS
66
18.903
−12.149
9.728
1.00
0.38


ATOM
987
CA
LYS
66
20.054
−10.325
9.790
1.00
0.39


ATOM
988
HA
LYS
66
19.992
−9.685
10.656
1.00
0.39


ATOM
989
CB
LYS
66
21.302
−11.208
9.901
1.00
0.47


ATOM
990
HB1
LYS
66
22.180
−10.612
9.704
1.00
0.50


ATOM
991
HB2
LYS
66
21.240
−12.006
9.176
1.00
0.49


ATOM
992
CG
LYS
66
21.403
−11.808
11.305
1.00
0.50


ATOM
993
HG1
LYS
66
20.530
−12.412
11.506
1.00
0.47


ATOM
994
HG2
LYS
66
21.467
−11.011
12.033
1.00
0.50


ATOM
995
CD
LYS
66
22.658
−12.684
11.385
1.00
0.60


ATOM
996
HD1
LYS
66
23.521
−12.100
11.100
1.00
0.89


ATOM
997
HD2
LYS
66
22.553
−13.522
10.711
1.00
0.79


ATOM
998
CE
LYS
66
22.847
−13.201
12.814
1.00
0.91


ATOM
999
HE1
LYS
66
22.576
−12.429
13.518
1.00
1.53


ATOM
1000
HE2
LYS
66
23.881
−13.474
12.962
1.00
1.37


ATOM
1001
NZ
LYS
66
21.985
−14.396
13.031
1.00
1.77


ATOM
1002
HZ1
LYS
66
22.475
−15.068
13.655
1.00
2.25


ATOM
1003
HZ2
LYS
66
21.787
−14.852
12.117
1.00
2.26


ATOM
1004
HZ3
LYS
66
21.092
−14.104
13.474
1.00
2.32


ATOM
1005
C
LYS
66
20.169
−9.465
8.533
1.00
0.39


ATOM
1006
O
LYS
66
20.497
−8.298
8.599
1.00
0.39


ATOM
1007
N
LYS
67
19.911
−10.030
7.385
1.00
0.40


ATOM
1008
HN
LYS
67
19.653
−10.975
7.348
1.00
0.42


ATOM
1009
CA
LYS
67
20.019
−9.233
6.133
1.00
0.42


ATOM
1010
HA
LYS
67
21.007
−8.801
6.069
1.00
0.46


ATOM
1011
CB
LYS
67
19.789
−10.150
4.931
1.00
0.47


ATOM
1012
HB1
LYS
67
19.743
−9.560
4.028
1.00
0.51


ATOM
1013
HB2
LYS
67
18.860
−10.688
5.059
1.00
0.45


ATOM
1014
CG
LYS
67
20.949
−11.143
4.832
1.00
0.54


ATOM
1015
HG1
LYS
67
20.996
−11.732
5.735
1.00
0.73


ATOM
1016
HG2
LYS
67
21.876
−10.601
4.708
1.00
0.88


ATOM
1017
CD
LYS
67
20.737
−12.070
3.634
1.00
1.02


ATOM
1018
HD1
LYS
67
20.694
−11.484
2.728
1.00
1.58


ATOM
1019
HD2
LYS
67
19.811
−12.612
3.758
1.00
1.44


ATOM
1020
CE
LYS
67
21.902
−13.058
3.543
1.00
1.16


ATOM
1021
HE1
LYS
67
21.922
−13.672
4.432
1.00
1.68


ATOM
1022
HE2
LYS
67
22.831
−12.514
3.461
1.00
1.61


ATOM
1023
NZ
LYS
67
21.726
−13.925
2.344
1.00
1.81


ATOM
1024
HZ1
LYS
67
20.813
−13.714
1.894
1.00
2.28


ATOM
1025
HZ2
LYS
67
21.749
−14.925
2.633
1.00
2.30


ATOM
1026
HZ3
LYS
67
22.494
−13.742
1.668
1.00
2.26


ATOM
1027
C
LYS
67
18.977
−8.113
6.147
1.00
0.38


ATOM
1028
O
LYS
67
19.294
−6.962
5.928
1.00
0.40


ATOM
1029
N
ILE
68
17.740
−8.430
6.425
1.00
0.34


ATOM
1030
HN
ILE
68
17.500
−9.361
6.616
1.00
0.34


ATOM
1031
CA
ILE
68
16.700
−7.363
6.471
1.00
0.33


ATOM
1032
HA
ILE
68
16.701
−6.825
5.535
1.00
0.36


ATOM
1033
CB
ILE
68
15.318
−7.985
6.700
1.00
0.34


ATOM
1034
HB
ILE
68
15.379
−8.690
7.516
1.00
0.34


ATOM
1035
CG1
ILE
68
14.877
−8.706
5.415
1.00
0.38


ATOM
1036
HG11
ILE
68
15.722
−9.227
4.992
1.00
0.39


ATOM
1037
HG12
ILE
68
14.517
−7.976
4.705
1.00
0.40


ATOM
1038
CG2
ILE
68
14.317
−6.879
7.055
1.00
0.37


ATOM
1039
HG21
ILE
68
13.310
−7.250
6.944
1.00
1.13


ATOM
1040
HG22
ILE
68
14.462
−6.036
6.399
1.00
1.06


ATOM
1041
HG23
ILE
68
14.472
−6.569
8.079
1.00
1.06


ATOM
1042
CD1
ILE
68
13.757
−9.716
5.710
1.00
0.41


ATOM
1043
HD11
ILE
68
13.980
−10.259
6.615
1.00
1.07


ATOM
1044
HD12
ILE
68
13.681
−10.412
4.888
1.00
1.07


ATOM
1045
HD13
ILE
68
12.818
−9.196
5.822
1.00
1.16


ATOM
1046
C
ILE
68
17.025
−6.398
7.608
1.00
0.31


ATOM
1047
O
ILE
68
16.998
−5.194
7.443
1.00
0.32


ATOM
1048
N
TYR
69
17.336
−6.917
8.762
1.00
0.30


ATOM
1049
HN
TYR
69
17.354
−7.890
8.874
1.00
0.31


ATOM
1050
CA
TYR
69
17.665
−6.032
9.908
1.00
0.30


ATOM
1051
HA
TYR
69
16.818
−5.405
10.128
1.00
0.31


ATOM
1052
CB
TYR
69
17.999
−6.888
11.129
1.00
0.32


ATOM
1053
HB1
TYR
69
18.840
−7.526
10.902
1.00
0.34


ATOM
1054
HB2
TYR
69
17.143
−7.496
11.384
1.00
0.34


ATOM
1055
CG
TYR
69
18.346
−5.995
12.296
1.00
0.32


ATOM
1056
CD1
TYR
69
19.645
−5.490
12.428
1.00
0.35


ATOM
1057
HD1
TYR
69
20.395
−5.731
11.689
1.00
0.38


ATOM
1058
CD2
TYR
69
17.374
−5.683
13.253
1.00
0.34


ATOM
1059
HD2
TYR
69
16.372
−6.074
13.152
1.00
0.36


ATOM
1060
CE1
TYR
69
19.972
−4.672
13.515
1.00
0.38


ATOM
1061
HE1
TYR
69
20.974
−4.283
13.617
1.00
0.42


ATOM
1062
CE2
TYR
69
17.699
−4.864
14.340
1.00
0.37


ATOM
1063
HE2
TYR
69
16.949
−4.623
15.078
1.00
0.41


ATOM
1064
CZ
TYR
69
18.999
−4.359
14.472
1.00
0.38


ATOM
1065
OH
TYR
69
19.320
−3.553
15.544
1.00
0.42


ATOM
1066
HH
TYR
69
20.265
−3.385
15.516
1.00
1.03


ATOM
1067
C
TYR
69
18.875
−5.168
9.555
1.00
0.31


ATOM
1068
O
TYR
69
18.864
−3.965
9.721
1.00
0.33


ATOM
1069
N
ASN
70
19.922
−5.778
9.072
1.00
0.33


ATOM
1070
HN
ASN
70
19.910
−6.750
8.950
1.00
0.34


ATOM
1071
CA
ASN
70
21.137
−4.999
8.710
1.00
0.36


ATOM
1072
HA
ASN
70
21.424
−4.381
9.545
1.00
0.39


ATOM
1073
CB
ASN
70
22.282
−5.958
8.376
1.00
0.40


ATOM
1074
HB1
ASN
70
23.104
−5.403
7.950
1.00
0.43


ATOM
1075
HB2
ASN
70
21.938
−6.695
7.665
1.00
0.39


ATOM
1076
CG
ASN
70
22.752
−6.658
9.653
1.00
0.44


ATOM
1077
OD1
ASN
70
22.635
−6.116
10.734
1.00
1.05


ATOM
1078
ND2
ASN
70
23.282
−7.847
9.573
1.00
0.99


ATOM
1079
HD21
ASN
70
23.376
−8.285
8.702
1.00
1.65


ATOM
1080
HD22
ASN
70
23.586
−8.303
10.386
1.00
0.99


ATOM
1081
C
ASN
70
20.846
−4.115
7.497
1.00
0.36


ATOM
1082
O
ASN
70
21.461
−3.088
7.305
1.00
0.41


ATOM
1083
N
GLU
71
19.934
−4.518
6.659
1.00
0.34


ATOM
1084
HN
GLU
71
19.460
−5.361
6.816
1.00
0.33


ATOM
1085
CA
GLU
71
19.631
−3.703
5.451
1.00
0.37


ATOM
1086
HA
GLU
71
20.542
−3.239
5.103
1.00
0.41


ATOM
1087
CB
GLU
71
19.089
−4.618
4.347
1.00
0.42


ATOM
1088
HB1
GLU
71
18.117
−4.990
4.633
1.00
0.89


ATOM
1089
HB2
GLU
71
19.766
−5.448
4.204
1.00
0.65


ATOM
1090
CG
GLU
71
18.967
−3.832
3.039
1.00
1.01


ATOM
1091
HG1
GLU
71
19.928
−3.418
2.777
1.00
1.38


ATOM
1092
HG2
GLU
71
18.251
−3.033
3.165
1.00
1.52


ATOM
1093
CD
GLU
71
18.496
−4.768
1.923
1.00
1.15


ATOM
1094
OE1
GLU
71
18.168
−4.270
0.858
1.00
1.71


ATOM
1095
OE2
GLU
71
18.475
−5.967
2.151
1.00
1.57


ATOM
1096
C
GLU
71
18.599
−2.605
5.760
1.00
0.37


ATOM
1097
O
GLU
71
18.784
−1.461
5.395
1.00
0.56


ATOM
1098
N
PHE
72
17.492
−2.951
6.376
1.00
0.36


ATOM
1099
HN
PHE
72
17.343
−3.887
6.625
1.00
0.50


ATOM
1100
CA
PHE
72
16.426
−1.926
6.640
1.00
0.38


ATOM
1101
HA
PHE
72
16.558
−1.101
5.959
1.00
0.42


ATOM
1102
CB
PHE
72
15.065
−2.563
6.364
1.00
0.41


ATOM
1103
HB1
PHE
72
14.283
−1.905
6.712
1.00
0.45


ATOM
1104
HB2
PHE
72
14.998
−3.508
6.884
1.00
0.43


ATOM
1105
CG
PHE
72
14.904
−2.793
4.880
1.00
0.39


ATOM
1106
CD1
PHE
72
14.338
−1.798
4.075
1.00
0.45


ATOM
1107
HD1
PHE
72
14.019
−0.865
4.514
1.00
0.51


ATOM
1108
CD2
PHE
72
15.318
−4.003
4.311
1.00
0.39


ATOM
1109
HD2
PHE
72
15.757
−4.768
4.931
1.00
0.42


ATOM
1110
CE1
PHE
72
14.185
−2.014
2.700
1.00
0.47


ATOM
1111
HE1
PHE
72
13.748
−1.246
2.078
1.00
0.54


ATOM
1112
CE2
PHE
72
15.166
−4.218
2.936
1.00
0.40


ATOM
1113
HE2
PHE
72
15.485
−5.152
2.497
1.00
0.43


ATOM
1114
CZ
PHE
72
14.599
−3.224
2.131
1.00
0.43


ATOM
1115
HZ
PHE
72
14.480
−3.391
1.070
1.00
0.46


ATOM
1116
C
PHE
72
16.428
−1.382
8.083
1.00
0.37


ATOM
1117
O
PHE
72
16.004
−0.265
8.308
1.00
0.45


ATOM
1118
N
ILE
73
16.844
−2.144
9.065
1.00
0.33


ATOM
1119
HN
ILE
73
17.154
−3.056
8.887
1.00
0.31


ATOM
1120
CA
ILE
73
16.790
−1.622
10.476
1.00
0.35


ATOM
1121
HA
ILE
73
16.040
−0.850
10.543
1.00
0.39


ATOM
1122
CB
ILE
73
16.417
−2.762
11.430
1.00
0.34


ATOM
1123
HB
ILE
73
17.183
−3.521
11.381
1.00
0.33


ATOM
1124
CG1
ILE
73
15.064
−3.376
11.022
1.00
0.35


ATOM
1125
HG11
ILE
73
14.816
−4.175
11.706
1.00
0.40


ATOM
1126
HG12
ILE
73
15.145
−3.778
10.024
1.00
0.35


ATOM
1127
CG2
ILE
73
16.343
−2.234
12.869
1.00
0.39


ATOM
1128
HG21
ILE
73
17.257
−2.477
13.389
1.00
1.05


ATOM
1129
HG22
ILE
73
15.507
−2.691
13.378
1.00
1.11


ATOM
1130
HG23
ILE
73
16.212
−1.162
12.854
1.00
1.12


ATOM
1131
CD1
ILE
73
13.944
−2.324
11.048
1.00
0.40


ATOM
1132
HD11
ILE
73
14.174
−1.548
11.760
1.00
1.07


ATOM
1133
HD12
ILE
73
13.015
−2.799
11.330
1.00
1.09


ATOM
1134
HD13
ILE
73
13.838
−1.890
10.065
1.00
1.13


ATOM
1135
C
ILE
73
18.141
−1.048
10.913
1.00
0.38


ATOM
1136
O
ILE
73
18.235
−0.385
11.928
1.00
0.40


ATOM
1137
N
SER
74
19.188
−1.295
10.182
1.00
0.45


ATOM
1138
HN
SER
74
19.108
−1.837
9.370
1.00
0.51


ATOM
1139
CA
SER
74
20.516
−0.755
10.599
1.00
0.50


ATOM
1140
HA
SER
74
20.767
−1.142
11.576
1.00
0.55


ATOM
1141
CB
SER
74
21.586
−1.181
9.600
1.00
0.65


ATOM
1142
HB1
SER
74
21.160
−1.205
8.610
1.00
1.28


ATOM
1143
HB2
SER
74
21.953
−2.158
9.857
1.00
1.25


ATOM
1144
OG
SER
74
22.663
−0.254
9.645
1.00
1.39


ATOM
1145
HG
SER
74
23.480
−0.752
9.720
1.00
1.87


ATOM
1146
C
SER
74
20.479
0.771
10.656
1.00
0.43


ATOM
1147
O
SER
74
20.057
1.428
9.725
1.00
0.43


ATOM
1148
N
VAL
75
20.949
1.341
11.731
1.00
0.44


ATOM
1149
HN
VAL
75
21.307
0.793
12.460
1.00
0.48


ATOM
1150
CA
VAL
75
20.976
2.824
11.832
1.00
0.47


ATOM
1151
HA
VAL
75
19.974
3.213
11.719
1.00
0.47


ATOM
1152
CB
VAL
75
21.543
3.241
13.191
1.00
0.55


ATOM
1153
HB
VAL
75
21.665
4.314
13.216
1.00
0.65


ATOM
1154
CG1
VAL
75
20.580
2.811
14.300
1.00
0.58


ATOM
1155
HG11
VAL
75
20.495
1.735
14.307
1.00
1.22


ATOM
1156
HG12
VAL
75
19.609
3.248
14.122
1.00
1.13


ATOM
1157
HG13
VAL
75
20.957
3.149
15.254
1.00
1.18


ATOM
1158
CG2
VAL
75
22.898
2.565
13.405
1.00
0.62


ATOM
1159
HG21
VAL
75
23.659
3.319
13.546
1.00
1.17


ATOM
1160
HG22
VAL
75
23.142
1.964
12.541
1.00
1.22


ATOM
1161
HG23
VAL
75
22.851
1.933
14.280
1.00
1.19


ATOM
1162
C
VAL
75
21.865
3.363
10.711
1.00
0.51


ATOM
1163
O
VAL
75
21.825
4.529
10.374
1.00
0.58


ATOM
1164
N
GLN
76
22.672
2.511
10.135
1.00
0.53


ATOM
1165
HN
GLN
76
22.683
1.576
10.431
1.00
0.51


ATOM
1166
CA
GLN
76
23.575
2.948
9.032
1.00
0.64


ATOM
1167
HA
GLN
76
23.706
4.019
9.069
1.00
0.69


ATOM
1168
CB
GLN
76
24.932
2.257
9.185
1.00
0.75


ATOM
1169
HB1
GLN
76
25.538
2.460
8.316
1.00
0.85


ATOM
1170
HB2
GLN
76
24.782
1.191
9.279
1.00
0.74


ATOM
1171
CG
GLN
76
25.643
2.783
10.434
1.00
0.81


ATOM
1172
HG1
GLN
76
25.021
2.617
11.300
1.00
0.85


ATOM
1173
HG2
GLN
76
25.831
3.841
10.322
1.00
1.02


ATOM
1174
CD
GLN
76
26.971
2.043
10.613
1.00
1.29


ATOM
1175
OE1
GLN
76
27.267
1.119
9.882
1.00
1.74


ATOM
1176
NE2
GLN
76
27.786
2.408
11.564
1.00
1.77


ATOM
1177
HE21
GLN
76
27.546
3.151
12.157
1.00
1.99


ATOM
1178
HE22
GLN
76
28.638
1.940
11.686
1.00
2.18


ATOM
1179
C
GLN
76
22.959
2.549
7.688
1.00
0.61


ATOM
1180
O
GLN
76
23.519
2.798
6.639
1.00
0.71


ATOM
1181
N
ALA
77
21.812
1.927
7.712
1.00
0.52


ATOM
1182
HN
ALA
77
21.379
1.733
8.570
1.00
0.46


ATOM
1183
CA
ALA
77
21.160
1.506
6.438
1.00
0.53


ATOM
1184
HA
ALA
77
21.728
0.704
5.991
1.00
0.62


ATOM
1185
CB
ALA
77
19.736
1.022
6.723
1.00
0.51


ATOM
1186
HB1
ALA
77
19.207
1.775
7.288
1.00
1.18


ATOM
1187
HB2
ALA
77
19.772
0.106
7.290
1.00
1.14


ATOM
1188
HB3
ALA
77
19.223
0.848
5.789
1.00
1.09


ATOM
1189
C
ALA
77
21.098
2.688
5.471
1.00
0.57


ATOM
1190
O
ALA
77
20.834
3.808
5.860
1.00
0.58


ATOM
1191
N
THR
78
21.329
2.445
4.210
1.00
0.64


ATOM
1192
HN
THR
78
21.531
1.533
3.916
1.00
0.68


ATOM
1193
CA
THR
78
21.269
3.553
3.218
1.00
0.71


ATOM
1194
HA
THR
78
21.864
4.385
3.566
1.00
0.78


ATOM
1195
CB
THR
78
21.807
3.063
1.871
1.00
0.82


ATOM
1196
HB
THR
78
21.908
3.900
1.197
1.00
0.89


ATOM
1197
OG1
THR
78
20.904
2.115
1.320
1.00
0.80


ATOM
1198
HG1
THR
78
20.897
1.344
1.891
1.00
1.14


ATOM
1199
CG2
THR
78
23.175
2.409
2.071
1.00
0.94


ATOM
1200
HG21
THR
78
23.866
3.135
2.475
1.00
1.58


ATOM
1201
HG22
THR
78
23.545
2.050
1.122
1.00
1.33


ATOM
1202
HG23
THR
78
23.081
1.581
2.758
1.00
1.29


ATOM
1203
C
THR
78
19.814
3.993
3.055
1.00
0.66


ATOM
1204
O
THR
78
19.532
5.083
2.597
1.00
0.74


ATOM
1205
N
LYS
79
18.891
3.145
3.431
1.00
0.58


ATOM
1206
HN
LYS
79
19.153
2.274
3.796
1.00
0.57


ATOM
1207
CA
LYS
79
17.443
3.488
3.310
1.00
0.59


ATOM
1208
HA
LYS
79
17.336
4.545
3.119
1.00
0.67


ATOM
1209
CB
LYS
79
16.826
2.697
2.150
1.00
0.64


ATOM
1210
HB1
LYS
79
17.139
3.132
1.213
1.00
0.72


ATOM
1211
HB2
LYS
79
15.749
2.738
2.223
1.00
0.67


ATOM
1212
CG
LYS
79
17.285
1.236
2.210
1.00
0.62


ATOM
1213
HG1
LYS
79
16.974
0.793
3.143
1.00
0.58


ATOM
1214
HG2
LYS
79
18.362
1.194
2.134
1.00
0.63


ATOM
1215
CD
LYS
79
16.664
0.456
1.049
1.00
0.75


ATOM
1216
HD1
LYS
79
16.979
0.892
0.113
1.00
1.13


ATOM
1217
HD2
LYS
79
15.586
0.499
1.122
1.00
1.16


ATOM
1218
CE
LYS
79
17.122
−1.002
1.109
1.00
1.04


ATOM
1219
HE1
LYS
79
16.646
−1.495
1.943
1.00
1.68


ATOM
1220
HE2
LYS
79
18.195
−1.038
1.235
1.00
1.62


ATOM
1221
NZ
LYS
79
16.747
−1.694
−0.157
1.00
1.61


ATOM
1222
HZ1
LYS
79
15.881
−1.268
−0.541
1.00
2.15


ATOM
1223
HZ2
LYS
79
16.583
−2.703
0.037
1.00
2.00


ATOM
1224
HZ3
LYS
79
17.517
−1.594
−0.848
1.00
2.07


ATOM
1225
C
LYS
79
16.723
3.139
4.616
1.00
0.51


ATOM
1226
O
LYS
79
15.948
2.207
4.682
1.00
0.50


ATOM
1227
N
GLU
80
16.969
3.886
5.657
1.00
0.51


ATOM
1228
HN
GLU
80
17.594
4.638
5.585
1.00
0.55


ATOM
1229
CA
GLU
80
16.296
3.598
6.955
1.00
0.47


ATOM
1230
HA
GLU
80
16.552
2.602
7.282
1.00
0.47


ATOM
1231
CB
GLU
80
16.743
4.615
8.006
1.00
0.55


ATOM
1232
HB1
GLU
80
16.129
4.512
8.888
1.00
0.55


ATOM
1233
HB2
GLU
80
16.638
5.614
7.608
1.00
0.60


ATOM
1234
CG
GLU
80
18.205
4.365
8.377
1.00
0.62


ATOM
1235
HG1
GLU
80
18.822
4.451
7.496
1.00
0.93


ATOM
1236
HG2
GLU
80
18.306
3.373
8.794
1.00
0.82


ATOM
1237
CD
GLU
80
18.646
5.402
9.410
1.00
1.22


ATOM
1238
OE1
GLU
80
19.839
5.528
9.622
1.00
1.84


ATOM
1239
OE2
GLU
80
17.781
6.050
9.976
1.00
1.91


ATOM
1240
C
GLU
80
14.783
3.704
6.770
1.00
0.43


ATOM
1241
O
GLU
80
14.298
4.526
6.019
1.00
0.49


ATOM
1242
N
VAL
81
14.035
2.882
7.451
1.00
0.39


ATOM
1243
HN
VAL
81
14.449
2.228
8.052
1.00
0.41


ATOM
1244
CA
VAL
81
12.552
2.933
7.317
1.00
0.37


ATOM
1245
HA
VAL
81
12.286
3.377
6.369
1.00
0.41


ATOM
1246
CB
VAL
81
11.986
1.514
7.394
1.00
0.38


ATOM
1247
HB
VAL
81
10.927
1.560
7.604
1.00
0.40


ATOM
1248
CG1
VAL
81
12.211
0.801
6.060
1.00
0.43


ATOM
1249
HG11
VAL
81
12.464
−0.233
6.243
1.00
1.14


ATOM
1250
HG12
VAL
81
13.019
1.280
5.527
1.00
1.05


ATOM
1251
HG13
VAL
81
11.309
0.851
5.468
1.00
1.13


ATOM
1252
CG2
VAL
81
12.698
0.745
8.508
1.00
0.38


ATOM
1253
HG21
VAL
81
12.756
1.363
9.392
1.00
0.98


ATOM
1254
HG22
VAL
81
13.696
0.484
8.186
1.00
1.17


ATOM
1255
HG23
VAL
81
12.146
−0.156
8.734
1.00
1.05


ATOM
1256
C
VAL
81
11.974
3.772
8.457
1.00
0.37


ATOM
1257
O
VAL
81
12.532
3.837
9.535
1.00
0.38


ATOM
1258
N
ASN
82
10.865
4.420
8.231
1.00
0.41


ATOM
1259
HN
ASN
82
10.429
4.361
7.355
1.00
0.44


ATOM
1260
CA
ASN
82
10.267
5.255
9.309
1.00
0.45


ATOM
1261
HA
ASN
82
11.035
5.861
9.765
1.00
0.47


ATOM
1262
CB
ASN
82
9.188
6.160
8.713
1.00
0.55


ATOM
1263
HB1
ASN
82
9.652
7.005
8.228
1.00
0.63


ATOM
1264
HB2
ASN
82
8.536
6.510
9.501
1.00
0.61


ATOM
1265
CC
ASN
82
8.373
5.370
7.689
1.00
0.56


ATOM
1266
OD1
ASN
82
8.264
4.164
7.781
1.00
1.10


ATOM
1267
ND2
ASN
82
7.790
6.004
6.709
1.00
1.18


ATOM
1268
HD21
ASN
82
7.876
6.977
6.634
1.00
1.85


ATOM
1269
HD22
ASN
82
7.264
5.507
6.049
1.00
1.22


ATOM
1270
C
ASN
82
9.641
4.343
10.364
1.00
0.42


ATOM
1271
O
ASN
82
8.602
3.750
10.153
1.00
0.45


ATOM
1272
N
LEU
83
10.273
4.228
11.498
1.00
0.40


ATOM
1273
HN
LEU
83
11.110
4.717
11.640
1.00
0.41


ATOM
1274
CA
LEU
83
9.733
3.357
12.580
1.00
0.42


ATOM
1275
HA
LEU
83
8.664
3.264
12.468
1.00
0.46


ATOM
1276
CB
LEU
83
10.381
1.969
12.510
1.00
0.41


ATOM
1277
HB1
LEU
83
10.164
1.424
13.417
1.00
0.43


ATOM
1278
HB2
LEU
83
11.451
2.083
12.413
1.00
0.40


ATOM
1279
CG
LEU
83
9.846
1.190
11.302
1.00
0.45


ATOM
1280
HG
LEU
83
9.973
1.781
10.408
1.00
0.46


ATOM
1281
CD1
LEU
83
10.631
−0.114
11.154
1.00
0.49


ATOM
1282
HD11
LEU
83
10.352
−0.599
10.230
1.00
1.04


ATOM
1283
HD12
LEU
83
10.407
−0.765
11.985
1.00
1.16


ATOM
1284
HD13
LEU
83
11.689
0.103
11.141
1.00
1.14


ATOM
1285
CD2
LEU
83
8.358
0.868
11.496
1.00
0.51


ATOM
1286
HD21
LEU
83
8.129
0.810
12.549
1.00
1.21


ATOM
1287
HD22
LEU
83
8.132
−0.079
11.028
1.00
1.10


ATOM
1288
HD23
LEU
83
7.761
1.644
11.042
1.00
1.06


ATOM
1289
C
LEU
83
10.050
3.988
13.935
1.00
0.45


ATOM
1290
O
LEU
83
10.908
4.840
14.048
1.00
0.48


ATOM
1291
N
ASP
84
9.366
3.575
14.965
1.00
0.49


ATOM
1292
HN
ASP
84
8.679
2.886
14.853
1.00
0.50


ATOM
1293
CA
ASP
84
9.632
4.152
16.310
1.00
0.55


ATOM
1294
HA
ASP
84
9.636
5.231
16.247
1.00
0.61


ATOM
1295
CB
ASP
84
8.542
3.700
17.283
1.00
0.64


ATOM
1296
HB1
ASP
84
8.735
4.117
18.260
1.00
1.28


ATOM
1297
HB2
ASP
84
8.541
2.621
17.345
1.00
1.26


ATOM
1298
CG
ASP
84
7.178
4.184
16.786
1.00
1.25


ATOM
1299
OD1
ASP
84
6.183
3.793
17.374
1.00
2.03


ATOM
1300
OD2
ASP
84
7.152
4.927
15.819
1.00
2.00


ATOM
1301
C
ASP
84
10.994
3.662
16.807
1.00
0.50


ATOM
1302
O
ASP
84
11.517
2.672
16.335
1.00
0.46


ATOM
1303
N
SER
85
11.575
4.349
17.752
1.00
0.55


ATOM
1304
HN
SER
85
11.139
5.146
18.118
1.00
0.61


ATOM
1305
CA
SER
85
12.905
3.922
18.273
1.00
0.56


ATOM
1306
HA
SER
85
13.579
3.757
17.445
1.00
0.55


ATOM
1307
CB
SER
85
13.475
5.012
19.182
1.00
0.68


ATOM
1308
HB1
SER
85
14.435
4.693
19.566
1.00
1.19


ATOM
1309
HB2
SER
85
12.802
5.186
20.005
1.00
1.27


ATOM
1310
OG
SER
85
13.624
6.213
18.437
1.00
1.48


ATOM
1311
HG
SER
85
14.112
6.007
17.637
1.00
1.97


ATOM
1312
C
SER
85
12.749
2.625
19.067
1.00
0.51


ATOM
1313
O
SER
85
13.688
1.874
19.239
1.00
0.51


ATOM
1314
N
CYS
86
11.569
2.354
19.553
1.00
0.53


ATOM
1315
HN
CYS
86
10.824
2.972
19.403
1.00
0.56


ATOM
1316
CA
CYS
86
11.355
1.104
20.334
1.00
0.54


ATOM
1317
HA
CYS
86
12.225
0.903
20.940
1.00
0.58


ATOM
1318
CB
CYS
86
10.129
1.272
21.236
1.00
0.64


ATOM
1319
HB1
CYS
86
9.326
0.650
20.869
1.00
1.29


ATOM
1320
HB2
CYS
86
9.816
2.306
21.228
1.00
1.16


ATOM
1321
SG
CYS
86
10.548
0.782
22.927
1.00
1.74


ATOM
1322
HG
CYS
86
9.773
0.922
23.476
1.00
2.26


ATOM
1323
C
CYS
86
11.120
−0.061
19.371
1.00
0.48


ATOM
1324
O
CYS
86
11.554
−1.171
19.606
1.00
0.47


ATOM
1325
N
THR
87
10.433
0.183
18.290
1.00
0.45


ATOM
1326
HN
THR
87
10.091
1.086
18.122
1.00
0.48


ATOM
1327
CA
THR
87
10.167
−0.910
17.314
1.00
0.42


ATOM
1328
HA
THR
87
9.615
−1.701
17.800
1.00
0.46


ATOM
1329
CB
THR
87
9.344
−0.356
16.145
1.00
0.45


ATOM
1330
HB
THR
87
9.912
0.401
15.628
1.00
0.45


ATOM
1331
OG1
THR
87
8.140
0.208
16.647
1.00
0.50


ATOM
1332
HG1
THR
87
7.466
−0.476
16.638
1.00
0.94


ATOM
1333
CG2
THR
87
9.000
−1.485
15.169
1.00
0.48


ATOM
1334
HG21
THR
87
9.908
−1.938
14.800
1.00
1.14


ATOM
1335
HG22
THR
87
8.439
−1.083
14.340
1.00
1.02


ATOM
1336
HG23
THR
87
8.406
−2.231
15.677
1.00
1.19


ATOM
1337
C
THR
87
11.496
−1.463
16.789
1.00
0.38


ATOM
1338
O
THR
87
11.717
−2.658
16.771
1.00
0.38


ATOM
1339
N
ARG
88
12.383
−0.606
16.354
1.00
0.37


ATOM
1340
HN
ARG
88
12.188
0.354
16.370
1.00
0.39


ATOM
1341
CA
ARG
88
13.689
−1.094
15.825
1.00
0.37


ATOM
1342
HA
ARG
88
13.517
−1.748
14.983
1.00
0.37


ATOM
1343
CB
ARG
88
14.545
0.094
15.382
1.00
0.41


ATOM
1344
HB1
ARG
88
15.533
−0.253
15.118
1.00
0.45


ATOM
1345
HB2
ARG
88
14.619
0.805
16.192
1.00
0.43


ATOM
1346
CG
ARG
88
13.907
0.771
14.169
1.00
0.47


ATOM
1347
HG1
ARG
88
13.000
1.271
14.470
1.00
0.85


ATOM
1348
HG2
ARG
88
13.678
0.026
13.420
1.00
0.82


ATOM
1349
CD
ARG
88
14.885
1.795
13.590
1.00
0.93


ATOM
1350
HD1
ARG
88
15.525
1.310
12.867
1.00
1.47


ATOM
1351
HD2
ARG
88
15.489
2.206
14.384
1.00
1.51


ATOM
1352
NE
ARG
88
14.123
2.890
12.929
1.00
1.81


ATOM
1353
HE
ARG
88
13.166
2.783
12.748
1.00
2.38


ATOM
1354
CZ
ARG
88
14.728
4.002
12.610
1.00
2.49


ATOM
1355
NH1
ARG
88
14.055
4.979
12.068
1.00
3.58


ATOM
1356
HH11
ARG
88
13.075
4.877
11.896
1.00
3.99


ATOM
1357
HH12
ARG
88
14.519
5.831
11.825
1.00
4.19


ATOM
1358
NH2
ARG
88
16.008
4.134
12.829
1.00
2.58


ATOM
1359
HH21
ARG
88
16.524
3.383
13.241
1.00
2.27


ATOM
1360
HH22
ARG
88
16.472
4.985
12.585
1.00
3.35


ATOM
1361
C
ARG
88
14.433
−1.857
16.921
1.00
0.37


ATOM
1362
O
ARG
88
14.927
−2.947
16.707
1.00
0.36


ATOM
1363
N
GLU
89
14.521
−1.292
18.094
1.00
0.40


ATOM
1364
HN
GLU
89
14.119
−0.412
18.247
1.00
0.42


ATOM
1365
CA
GLU
89
15.238
−1.987
19.199
1.00
0.43


ATOM
1366
HA
GLU
89
16.263
−2.158
18.911
1.00
0.44


ATOM
1367
CB
GLU
89
15.198
−1.120
20.459
1.00
0.49


ATOM
1368
HB1
GLU
89
15.560
−1.691
21.301
1.00
0.53


ATOM
1369
HB2
GLU
89
14.182
−0.806
20.648
1.00
0.50


ATOM
1370
CG
GLU
89
16.086
0.110
20.262
1.00
0.53


ATOM
1371
HG1
GLU
89
15.724
0.684
19.422
1.00
0.73


ATOM
1372
HG2
GLU
89
17.102
−0.206
20.073
1.00
0.73


ATOM
1373
CD
GLU
89
16.046
0.975
21.523
1.00
0.95


ATOM
1374
OE1
GLU
89
16.839
1.898
21.609
1.00
1.64


ATOM
1375
OE2
GLU
89
15.223
0.700
22.380
1.00
1.54


ATOM
1376
C
GLU
89
14.559
−3.325
19.479
1.00
0.41


ATOM
1377
O
GLU
89
15.207
−4.326
19.711
1.00
0.42


ATOM
1378
N
GLU
90
13.257
−3.352
19.456
1.00
0.42


ATOM
1379
HN
GLU
90
12.753
−2.535
19.265
1.00
0.42


ATOM
1380
CA
GLU
90
12.542
−4.628
19.717
1.00
0.44


ATOM
1381
HA
GLU
90
12.802
−4.990
20.701
1.00
0.48


ATOM
1382
CB
GLU
90
11.032
−4.395
19.645
1.00
0.49


ATOM
1383
HB1
GLU
90
10.749
−4.177
18.626
1.00
0.75


ATOM
1384
HB2
GLU
90
10.766
−3.563
20.280
1.00
0.91


ATOM
1385
CG
GLU
90
10.301
−5.653
20.116
1.00
1.00


ATOM
1386
HG1
GLU
90
10.670
−5.941
21.090
1.00
1.59


ATOM
1387
HG2
GLU
90
10.474
−6.455
19.413
1.00
1.45


ATOM
1388
CD
GLU
90
8.802
−5.368
20.207
1.00
1.19


ATOM
1389
OE1
GLU
90
8.052
−6.305
20.424
1.00
1.64


ATOM
1390
OE2
GLU
90
8.429
−4.215
20.058
1.00
1.85


ATOM
1391
C
GLU
90
12.958
−5.663
18.671
1.00
0.40


ATOM
1392
O
GLU
90
13.167
−6.820
18.979
1.00
0.43


ATOM
1393
N
THR
91
13.085
−5.259
17.433
1.00
0.37


ATOM
1394
HN
THR
91
12.916
−4.321
17.199
1.00
0.36


ATOM
1395
CA
THR
91
13.492
−6.227
16.378
1.00
0.36


ATOM
1396
HA
THR
91
12.808
−7.063
16.370
1.00
0.39


ATOM
1397
CB
THR
91
13.482
−5.543
15.009
1.00
0.35


ATOM
1398
HB
THR
91
14.321
−4.868
14.934
1.00
0.34


ATOM
1399
OG1
THR
91
12.267
−4.824
14.849
1.00
0.43


ATOM
1400
HG1
THR
91
12.455
−4.032
14.340
1.00
1.03


ATOM
1401
CG2
THR
91
13.591
−6.600
13.910
1.00
0.39


ATOM
1402
HG21
THR
91
14.000
−6.151
13.017
1.00
1.03


ATOM
1403
HG22
THR
91
12.610
−6.998
13.695
1.00
1.06


ATOM
1404
HG23
THR
91
14.239
−7.398
14.240
1.00
1.18


ATOM
1405
C
THR
91
14.904
−6.726
16.678
1.00
0.36


ATOM
1406
O
THR
91
15.208
−7.887
16.506
1.00
0.41


ATOM
1407
N
SER
92
15.770
−5.850
17.119
1.00
0.35


ATOM
1408
HN
SER
92
15.498
−4.916
17.243
1.00
0.34


ATOM
1409
CA
SER
92
17.170
−6.263
17.422
1.00
0.39


ATOM
1410
HA
SER
92
17.634
−6.646
16.526
1.00
0.41


ATOM
1411
CB
SER
92
17.957
−5.050
17.920
1.00
0.42


ATOM
1412
HB1
SER
92
17.820
−4.227
17.231
1.00
0.43


ATOM
1413
HB2
SER
92
19.004
−5.296
17.977
1.00
0.51


ATOM
1414
OG
SER
92
17.490
−4.685
19.212
1.00
0.40


ATOM
1415
HG
SER
92
16.642
−5.112
19.353
1.00
0.98


ATOM
1416
C
SER
92
17.170
−7.345
18.505
1.00
0.41


ATOM
1417
O
SER
92
17.917
−8.300
18.443
1.00
0.47


ATOM
1418
N
ARG
93
16.344
−7.202
19.502
1.00
0.40


ATOM
1419
HN
ARG
93
15.750
−6.424
19.541
1.00
0.39


ATOM
1420
CA
ARG
93
16.305
−8.228
20.580
1.00
0.45


ATOM
1421
HA
ARG
93
17.314
−8.430
20.906
1.00
0.50


ATOM
1422
CB
ARG
93
15.486
−7.706
21.767
1.00
0.49


ATOM
1423
HB1
ARG
93
15.348
−8.502
22.482
1.00
0.52


ATOM
1424
HB2
ARG
93
14.523
−7.360
21.419
1.00
0.47


ATOM
1425
CG
ARG
93
16.249
−6.545
22.426
1.00
0.55


ATOM
1426
HG1
ARG
93
16.224
−5.689
21.768
1.00
0.81


ATOM
1427
HG2
ARG
93
17.276
−6.837
22.589
1.00
0.95


ATOM
1428
CD
ARG
93
15.616
−6.163
23.771
1.00
1.01


ATOM
1429
HD1
ARG
93
16.381
−5.752
24.417
1.00
1.67


ATOM
1430
HD2
ARG
93
15.192
−7.035
24.239
1.00
1.59


ATOM
1431
NE
ARG
93
14.544
−5.150
23.560
1.00
1.59


ATOM
1432
HE
ARG
93
14.468
−4.684
22.702
1.00
2.15


ATOM
1433
CZ
ARG
93
13.713
−4.876
24.530
1.00
2.23


ATOM
1434
NH1
ARG
93
12.783
−3.976
24.363
1.00
3.17


ATOM
1435
HH11
ARG
93
12.705
−3.492
23.491
1.00
3.53


ATOM
1436
HH12
ARG
93
12.149
−3.768
25.109
1.00
3.77


ATOM
1437
NH2
ARG
93
13.817
−5.502
25.671
1.00
2.56


ATOM
1438
HH21
ARG
93
14.532
−6.189
25.800
1.00
2.42


ATOM
1439
HH22
ARG
93
13.182
−5.294
26.415
1.00
3.34


ATOM
1440
C
ARG
93
15.696
−9.526
20.034
1.00
0.44


ATOM
1441
O
ARG
93
16.049
−10.611
20.450
1.00
0.46


ATOM
1442
N
ASN
94
14.781
−9.419
19.108
1.00
0.43


ATOM
1443
HN
ASN
94
14.510
−8.533
18.790
1.00
0.44


ATOM
1444
CA
ASN
94
14.142
−10.642
18.535
1.00
0.46


ATOM
1445
HA
ASN
94
13.738
−11.243
19.336
1.00
0.48


ATOM
1446
CB
ASN
94
13.012
−10.233
17.589
1.00
0.52


ATOM
1447
HB1
ASN
94
12.667
−11.099
17.045
1.00
0.56


ATOM
1448
HB2
ASN
94
13.376
−9.491
16.893
1.00
0.53


ATOM
1449
CG
ASN
94
11.854
−9.648
18.399
1.00
0.57


ATOM
1450
OD1
ASN
94
11.720
−9.922
19.575
1.00
1.33


ATOM
1451
ND2
ASN
94
11.005
−8.848
17.814
1.00
1.12


ATOM
1452
HD21
ASN
94
11.114
−8.628
16.865
1.00
1.88


ATOM
1453
HD22
ASN
94
10.258
−8.469
18.323
1.00
1.13


ATOM
1454
C
ASN
94
15.176
−11.461
17.758
1.00
0.47


ATOM
1455
O
ASN
94
14.989
−12.637
17.513
1.00
0.47


ATOM
1456
N
MET
95
16.261
−10.856
17.362
1.00
0.55


ATOM
1457
HN
MET
95
16.396
−9.907
17.564
1.00
0.59


ATOM
1458
CA
MET
95
17.292
−11.613
16.597
1.00
0.63


ATOM
1459
HA
MET
95
16.860
−11.996
15.684
1.00
0.66


ATOM
1460
CB
MET
95
18.466
−10.691
16.267
1.00
0.78


ATOM
1461
HB1
MET
95
19.130
−11.185
15.573
1.00
0.83


ATOM
1462
HB2
MET
95
19.003
−10.451
17.173
1.00
0.87


ATOM
1463
CG
MET
95
17.932
−9.409
15.632
1.00
0.92


ATOM
1464
HG1
MET
95
18.755
−8.745
15.415
1.00
1.48


ATOM
1465
HG2
MET
95
17.259
−8.930
16.317
1.00
1.45


ATOM
1466
SD
MET
95
17.048
−9.799
14.104
1.00
1.27


ATOM
1467
CE
MET
95
18.402
−9.445
12.963
1.00
0.68


ATOM
1468
HE1
MET
95
18.054
−9.569
11.950
1.00
1.31


ATOM
1469
HE2
MET
95
19.218
−10.123
13.148
1.00
1.10


ATOM
1470
HE3
MET
95
18.740
−8.429
13.110
1.00
1.19


ATOM
1471
C
MET
95
17.781
−12.773
17.462
1.00
0.62


ATOM
1472
O
MET
95
18.093
−13.840
16.973
1.00
0.65


ATOM
1473
N
LEU
96
17.838
−12.570
18.749
1.00
0.62


ATOM
1474
HN
LEU
96
17.573
−11.702
19.118
1.00
0.60


ATOM
1475
CA
LEU
96
18.290
−13.657
19.660
1.00
0.69


ATOM
1476
HA
LEU
96
19.238
−14.044
19.324
1.00
0.79


ATOM
1477
CB
LEU
96
18.420
−13.104
21.084
1.00
0.74


ATOM
1478
HB1
LEU
96
18.755
−13.891
21.744
1.00
0.91


ATOM
1479
HB2
LEU
96
17.458
−12.743
21.417
1.00
0.71


ATOM
1480
CG
LEU
96
19.434
−11.953
21.114
1.00
0.88


ATOM
1481
HG
LEU
96
19.332
−11.359
20.217
1.00
1.46


ATOM
1482
CD1
LEU
96
19.165
−11.078
22.339
1.00
1.14


ATOM
1483
HD11
LEU
96
18.289
−10.471
22.164
1.00
1.78


ATOM
1484
HD12
LEU
96
20.016
−10.438
22.519
1.00
1.69


ATOM
1485
HD13
LEU
96
18.999
−11.707
23.201
1.00
1.48


ATOM
1486
CD2
LEU
96
20.860
−12.508
21.207
1.00
1.41


ATOM
1487
HD21
LEU
96
21.562
−11.688
21.231
1.00
1.93


ATOM
1488
HD22
LEU
96
21.068
−13.131
20.352
1.00
1.80


ATOM
1489
HD23
LEU
96
20.961
−13.091
22.111
1.00
1.98


ATOM
1490
C
LEU
96
17.244
−14.774
19.639
1.00
0.63


ATOM
1491
O
LEU
96
17.546
−15.930
19.858
1.00
0.72


ATOM
1492
N
GLU
97
16.013
−14.426
19.374
1.00
0.54


ATOM
1493
HN
GLU
97
15.802
−13.484
19.200
1.00
0.51


ATOM
1494
CA
GLU
97
14.925
−15.445
19.329
1.00
0.52


ATOM
1495
HA
GLU
97
15.348
−16.429
19.201
1.00
0.57


ATOM
1496
CB
GLU
97
14.134
−15.397
20.638
1.00
0.61


ATOM
1497
HB1
GLU
97
13.340
−16.127
20.606
1.00
1.01


ATOM
1498
HB2
GLU
97
13.713
−14.411
20.769
1.00
1.07


ATOM
1499
CG
GLU
97
15.066
−15.714
21.810
1.00
1.37


ATOM
1500
HG1
GLU
97
15.579
−14.814
22.116
1.00
1.99


ATOM
1501
HG2
GLU
97
15.790
−16.455
21.504
1.00
1.89


ATOM
1502
CD
GLU
97
14.246
−16.254
22.984
1.00
1.82


ATOM
1503
OE1
GLU
97
13.579
−17.259
22.801
1.00
2.29


ATOM
1504
OE2
GLU
97
14.300
−15.654
24.044
1.00
2.43


ATOM
1505
C
GLU
97
13.987
−15.114
18.160
1.00
0.43


ATOM
1506
O
GLU
97
12.921
−14.565
18.357
1.00
0.44


ATOM
1507
N
PRO
98
14.382
−15.427
16.946
1.00
0.40


ATOM
1508
CA
PRO
98
13.539
−15.121
15.757
1.00
0.41


ATOM
1509
HA
PRO
98
13.400
−14.057
15.660
1.00
0.45


ATOM
1510
CB
PRO
98
14.397
−15.630
14.595
1.00
0.49


ATOM
1511
HB1
PRO
98
14.543
−14.838
13.874
1.00
0.56


ATOM
1512
HB2
PRO
98
13.906
−16.467
14.121
1.00
0.54


ATOM
1513
CG
PRO
98
15.758
−16.073
15.146
1.00
0.50


ATOM
1514
HG1
PRO
98
16.520
−15.374
14.838
1.00
0.52


ATOM
1515
HG2
PRO
98
15.996
−17.060
14.774
1.00
0.57


ATOM
1516
CD
PRO
98
15.680
−16.102
16.674
1.00
0.47


ATOM
1517
HD2
PRO
98
15.669
−17.124
17.029
1.00
0.53


ATOM
1518
HD1
PRO
98
16.492
−15.547
17.114
1.00
0.50


ATOM
1519
C
PRO
98
12.183
−15.832
15.800
1.00
0.38


ATOM
1520
O
PRO
98
12.106
−17.045
15.811
1.00
0.42


ATOM
1521
N
THR
99
11.118
−15.073
15.829
1.00
0.37


ATOM
1522
HN
THR
99
11.220
−14.098
15.823
1.00
0.38


ATOM
1523
CA
THR
99
9.748
−15.668
15.878
1.00
0.38


ATOM
1524
HA
THR
99
9.809
−16.742
15.786
1.00
0.43


ATOM
1525
CB
THR
99
9.076
−15.304
17.205
1.00
0.45


ATOM
1526
HB
THR
99
8.084
−15.727
17.233
1.00
0.46


ATOM
1527
OG1
THR
99
8.989
−13.891
17.316
1.00
0.49


ATOM
1528
HG1
THR
99
9.097
−13.517
16.438
1.00
0.85


ATOM
1529
CG2
THR
99
9.892
−15.861
18.374
1.00
0.58


ATOM
1530
HG21
THR
99
9.862
−15.163
19.198
1.00
1.21


ATOM
1531
HG22
THR
99
10.915
−16.007
18.064
1.00
1.22


ATOM
1532
HG23
THR
99
9.473
−16.806
18.687
1.00
1.10


ATOM
1533
C
THR
99
8.914
−15.104
14.728
1.00
0.34


ATOM
1534
O
THR
99
9.319
−14.181
14.051
1.00
0.30


ATOM
1535
N
ILE
100
7.751
−15.649
14.503
1.00
0.37


ATOM
1536
HN
ILE
100
7.443
−16.392
15.063
1.00
0.41


ATOM
1537
CA
ILE
100
6.890
−15.143
13.398
1.00
0.38


ATOM
1538
HA
ILE
100
7.470
−15.079
12.489
1.00
0.38


ATOM
1539
CB
ILE
100
5.713
−16.102
13.190
1.00
0.46


ATOM
1540
HB
ILE
100
6.080
−17.117
13.135
1.00
0.49


ATOM
1541
CG1
ILE
100
4.970
−15.744
11.895
1.00
0.53


ATOM
1542
HG11
ILE
100
4.707
−14.697
11.910
1.00
0.54


ATOM
1543
HG12
ILE
100
4.070
−16.337
11.826
1.00
0.59


ATOM
1544
CG2
ILE
100
4.749
−15.978
14.371
1.00
0.50


ATOM
1545
HG21
ILE
100
4.105
−16.844
14.403
1.00
1.03


ATOM
1546
HG22
ILE
100
4.149
−15.087
14.253
1.00
1.14


ATOM
1547
HG23
ILE
100
5.312
−15.913
15.290
1.00
1.17


ATOM
1548
CD1
ILE
100
5.857
−16.026
10.675
1.00
0.59


ATOM
1549
HD11
ILE
100
6.567
−16.804
10.910
1.00
1.22


ATOM
1550
HD12
ILE
100
6.388
−15.127
10.402
1.00
1.15


ATOM
1551
HD13
ILE
100
5.238
−16.342
9.848
1.00
1.11


ATOM
1552
C
ILE
100
6.365
−13.754
13.767
1.00
0.38


ATOM
1553
O
ILE
100
5.956
−12.988
12.917
1.00
0.41


ATOM
1554
N
THR
101
6.377
−13.419
15.031
1.00
0.39


ATOM
1555
HN
THR
101
6.714
−14.050
15.701
1.00
0.40


ATOM
1556
CA
THR
101
5.881
−12.078
15.452
1.00
0.44


ATOM
1557
HA
THR
101
5.174
−11.718
14.727
1.00
0.48


ATOM
1558
CB
THR
101
5.200
−12.181
16.820
1.00
0.53


ATOM
1559
HB
THR
101
4.849
−11.206
17.120
1.00
0.59


ATOM
1560
OG1
THR
101
6.134
−12.661
17.777
1.00
0.54


ATOM
1561
HG1
THR
101
6.977
−12.235
17.608
1.00
0.89


ATOM
1562
CG2
THR
101
4.011
−13.139
16.736
1.00
0.58


ATOM
1563
HG21
THR
101
3.336
−12.807
15.961
1.00
1.20


ATOM
1564
HG22
THR
101
3.493
−13.153
17.684
1.00
1.20


ATOM
1565
HG23
THR
101
4.364
−14.133
16.505
1.00
1.14


ATOM
1566
C
THR
101
7.058
−11.104
15.546
1.00
0.41


ATOM
1567
O
THR
101
6.926
−9.998
16.031
1.00
0.46


ATOM
1568
N
CYS
102
8.211
−11.513
15.095
1.00
0.34


ATOM
1569
HN
CYS
102
8.295
−12.412
14.714
1.00
0.31


ATOM
1570
CA
CYS
102
9.406
−10.622
15.163
1.00
0.34


ATOM
1571
HA
CYS
102
9.591
−10.353
16.192
1.00
0.42


ATOM
1572
CB
CYS
102
10.622
−11.368
14.611
1.00
0.34


ATOM
1573
HB1
CYS
102
10.377
−11.795
13.650
1.00
0.33


ATOM
1574
HB2
CYS
102
10.901
−12.157
15.295
1.00
0.40


ATOM
1575
SG
CYS
102
12.004
−10.214
14.425
1.00
0.37


ATOM
1576
HG
CYS
102
11.669
−9.415
14.013
1.00
0.89


ATOM
1577
C
CYS
102
9.179
−9.348
14.340
1.00
0.32


ATOM
1578
O
CYS
102
9.273
−8.248
14.848
1.00
0.32


ATOM
1579
N
PHE
103
8.906
−9.484
13.068
1.00
0.33


ATOM
1580
HN
PHE
103
8.852
−10.379
12.673
1.00
0.36


ATOM
1581
CA
PHE
103
8.704
−8.276
12.210
1.00
0.34


ATOM
1582
HA
PHE
103
9.226
−7.437
12.643
1.00
0.34


ATOM
1583
CB
PHE
103
9.272
−8.554
10.816
1.00
0.37


ATOM
1584
HB1
PHE
103
8.966
−7.770
10.140
1.00
0.41


ATOM
1585
HB2
PHE
103
8.900
−9.503
10.459
1.00
0.36


ATOM
1586
CG
PHE
103
10.780
−8.599
10.881
1.00
0.38


ATOM
1587
CD1
PHE
103
11.430
−9.774
11.273
1.00
0.40


ATOM
1588
HD1
PHE
103
10.854
−10.647
11.537
1.00
0.45


ATOM
1589
CD2
PHE
103
11.526
−7.466
10.540
1.00
0.47


ATOM
1590
HD2
PHE
103
11.022
−6.561
10.233
1.00
0.56


ATOM
1591
CE1
PHE
103
12.829
−9.815
11.328
1.00
0.45


ATOM
1592
HE1
PHE
103
13.331
−10.722
11.630
1.00
0.52


ATOM
1593
CE2
PHE
103
12.924
−7.506
10.594
1.00
0.52


ATOM
1594
HE2
PHE
103
13.500
−6.630
10.333
1.00
0.62


ATOM
1595
CZ
PHE
103
13.576
−8.680
10.989
1.00
0.48


ATOM
1596
HZ
PHE
103
14.655
−8.712
11.030
1.00
0.53


ATOM
1597
C
PHE
103
7.216
−7.935
12.081
1.00
0.35


ATOM
1598
O
PHE
103
6.856
−6.949
11.469
1.00
0.35


ATOM
1599
N
ASP
104
6.344
−8.728
12.637
1.00
0.37


ATOM
1600
HN
ASP
104
6.640
−9.525
13.126
1.00
0.38


ATOM
1601
CA
ASP
104
4.890
−8.415
12.516
1.00
0.41


ATOM
1602
HA
ASP
104
4.618
−8.378
11.471
1.00
0.43


ATOM
1603
CB
ASP
104
4.063
−9.488
13.220
1.00
0.47


ATOM
1604
HB1
ASP
104
3.027
−9.184
13.243
1.00
0.52


ATOM
1605
HB2
ASP
104
4.423
−9.613
14.228
1.00
0.45


ATOM
1606
CG
ASP
104
4.186
−10.807
12.454
1.00
0.52


ATOM
1607
OD1
ASP
104
4.780
−10.796
11.388
1.00
1.11


ATOM
1608
OD2
ASP
104
3.673
−11.803
12.938
1.00
1.20


ATOM
1609
C
ASP
104
4.607
−7.058
13.162
1.00
0.39


ATOM
1610
O
ASP
104
3.833
−6.268
12.659
1.00
0.41


ATOM
1611
N
GLU
105
5.229
−6.784
14.275
1.00
0.38


ATOM
1612
HN
GLU
105
5.847
−7.438
14.663
1.00
0.38


ATOM
1613
CA
GLU
105
4.997
−5.483
14.959
1.00
0.39


ATOM
1614
HA
GLU
105
3.942
−5.367
15.160
1.00
0.42


ATOM
1615
CB
GLU
105
5.771
−5.448
16.279
1.00
0.43


ATOM
1616
HB1
GLU
105
6.831
−5.442
16.075
1.00
0.85


ATOM
1617
HB2
GLU
105
5.522
−6.320
16.867
1.00
1.05


ATOM
1618
CG
GLU
105
5.398
−4.183
17.056
1.00
1.06


ATOM
1619
HG1
GLU
105
4.325
−4.131
17.164
1.00
1.73


ATOM
1620
HG2
GLU
105
5.750
−3.314
16.519
1.00
1.61


ATOM
1621
CD
GLU
105
6.044
−4.225
18.441
1.00
1.50


ATOM
1622
OE1
GLU
105
5.950
−3.235
19.148
1.00
2.16


ATOM
1623
OE2
GLU
105
6.621
−5.248
18.771
1.00
2.05


ATOM
1624
C
GLU
105
5.470
−4.343
14.056
1.00
0.36


ATOM
1625
O
GLU
105
4.862
−3.292
13.997
1.00
0.38


ATOM
1626
N
ALA
106
6.557
−4.535
13.359
1.00
0.35


ATOM
1627
HN
ALA
106
7.039
−5.386
13.425
1.00
0.35


ATOM
1628
CA
ALA
106
7.070
−3.453
12.472
1.00
0.36


ATOM
1629
HA
ALA
106
7.149
−2.536
13.034
1.00
0.37


ATOM
1630
CB
ALA
106
8.450
−3.844
11.939
1.00
0.39


ATOM
1631
HB1
ALA
106
9.160
−3.066
12.176
1.00
1.00


ATOM
1632
HB2
ALA
106
8.400
−3.972
10.868
1.00
1.12


ATOM
1633
HB3
ALA
106
8.764
−4.770
12.399
1.00
1.10


ATOM
1634
C
ALA
106
6.110
−3.247
11.296
1.00
0.36


ATOM
1635
O
ALA
106
5.792
−2.130
10.939
1.00
0.36


ATOM
1636
N
GLN
107
5.632
−4.304
10.698
1.00
0.41


ATOM
1637
HN
GLN
107
5.886
−5.201
11.000
1.00
0.44


ATOM
1638
CA
GLN
107
4.683
−4.135
9.560
1.00
0.45


ATOM
1639
HA
GLN
107
5.162
−3.559
8.780
1.00
0.46


ATOM
1640
CB
GLN
107
4.263
−5.498
9.004
1.00
0.54


ATOM
1641
HB1
GLN
107
3.737
−6.053
9.766
1.00
0.64


ATOM
1642
HB2
GLN
107
5.141
−6.048
8.697
1.00
0.68


ATOM
1643
CG
GLN
107
3.339
−5.289
7.798
1.00
0.70


ATOM
1644
HG1
GLN
107
3.863
−4.733
7.035
1.00
0.87


ATOM
1645
HG2
GLN
107
2.461
−4.740
8.105
1.00
0.82


ATOM
1646
CD
GLN
107
2.913
−6.643
7.233
1.00
0.81


ATOM
1647
OE1
GLN
107
2.352
−7.455
7.936
1.00
1.35


ATOM
1648
NE2
GLN
107
3.158
−6.922
5.982
1.00
1.26


ATOM
1649
HE21
GLN
107
3.612
−6.265
5.414
1.00
1.89


ATOM
1650
HE22
GLN
107
2.888
−7.788
5.611
1.00
1.28


ATOM
1651
C
GLN
107
3.455
−3.378
10.063
1.00
0.43


ATOM
1652
O
GLN
107
2.921
−2.520
9.389
1.00
0.44


ATOM
1653
N
LYS
108
3.008
−3.688
11.249
1.00
0.44


ATOM
1654
HN
LYS
108
3.458
−4.381
11.776
1.00
0.44


ATOM
1655
CA
LYS
108
1.819
−2.986
11.805
1.00
0.47


ATOM
1656
HA
LYS
108
0.959
−3.170
11.178
1.00
0.53


ATOM
1657
CB
LYS
108
1.551
−3.505
13.223
1.00
0.51


ATOM
1658
HB1
LYS
108
2.414
−3.313
13.843
1.00
0.47


ATOM
1659
HB2
LYS
108
1.366
−4.568
13.185
1.00
0.55


ATOM
1660
CG
LYS
108
0.331
−2.798
13.823
1.00
0.58


ATOM
1661
HG1
LYS
108
−0.536
−2.991
13.209
1.00
0.64


ATOM
1662
HG2
LYS
108
0.513
−1.734
13.867
1.00
0.56


ATOM
1663
CD
LYS
108
0.080
−3.329
15.236
1.00
0.66


ATOM
1664
HD1
LYS
108
1.000
−3.300
15.801
1.00
1.17


ATOM
1665
HD2
LYS
108
−0.275
−4.348
15.180
1.00
0.97


ATOM
1666
CE
LYS
108
−0.969
−2.459
15.931
1.00
1.17


ATOM
1667
HE1
LYS
108
−1.535
−1.917
15.189
1.00
1.70


ATOM
1668
HE2
LYS
108
−0.476
−1.760
16.590
1.00
1.60


ATOM
1669
NZ
LYS
108
−1.889
−3.324
16.724
1.00
2.14


ATOM
1670
HZ1
LYS
108
−2.836
−2.895
16.744
1.00
2.66


ATOM
1671
HZ2
LYS
108
−1.527
−3.413
17.696
1.00
2.61


ATOM
1672
HZ3
LYS
108
−1.945
−4.264
16.286
1.00
2.59


ATOM
1673
C
LYS
108
2.117
−1.489
11.852
1.00
0.43


ATOM
1674
O
LYS
108
1.274
−0.668
11.548
1.00
0.47


ATOM
1675
N
LYS
109
3.314
−1.128
12.216
1.00
0.37


ATOM
1676
HN
LYS
109
3.983
−1.806
12.448
1.00
0.35


ATOM
1677
CA
LYS
109
3.668
0.315
12.266
1.00
0.38


ATOM
1678
HA
LYS
109
2.945
0.838
12.867
1.00
0.43


ATOM
1679
CB
LYS
109
5.068
0.483
12.867
1.00
0.38


ATOM
1680
HB1
LYS
109
5.348
1.525
12.835
1.00
0.66


ATOM
1681
HB2
LYS
109
5.776
−0.096
12.293
1.00
0.65


ATOM
1682
CG
LYS
109
5.076
0.000
14.326
1.00
0.71


ATOM
1683
HG1
LYS
109
6.091
−0.217
14.623
1.00
1.11


ATOM
1684
HG2
LYS
109
4.482
−0.898
14.406
1.00
1.07


ATOM
1685
CD
LYS
109
4.496
1.075
15.256
1.00
0.60


ATOM
1686
HD1
LYS
109
3.471
1.278
14.994
1.00
0.54


ATOM
1687
HD2
LYS
109
5.076
1.981
15.167
1.00
0.70


ATOM
1688
CE
LYS
109
4.549
0.574
16.701
1.00
1.05


ATOM
1689
HE1
LYS
109
4.897
−0.449
16.714
1.00
1.64


ATOM
1690
HE2
LYS
109
3.561
0.623
17.134
1.00
1.55


ATOM
1691
NZ
LYS
109
5.480
1.426
17.493
1.00
1.71


ATOM
1692
HZ1
LYS
109
5.381
1.202
18.503
1.00
2.20


ATOM
1693
HZ2
LYS
109
5.251
2.429
17.334
1.00
2.20


ATOM
1694
HZ3
LYS
109
6.458
1.241
17.194
1.00
2.19


ATOM
1695
C
LYS
109
3.631
0.880
10.845
1.00
0.37


ATOM
1696
O
LYS
109
3.171
1.983
10.622
1.00
0.39


ATOM
1697
N
ILE
110
4.099
0.135
9.876
1.00
0.35


ATOM
1698
HN
ILE
110
4.459
−0.758
10.068
1.00
0.34


ATOM
1699
CA
ILE
110
4.064
0.646
8.478
1.00
0.36


ATOM
1700
HA
ILE
110
4.532
1.618
8.431
1.00
0.37


ATOM
1701
CB
ILE
110
4.791
−0.332
7.549
1.00
0.38


ATOM
1702
HB
ILE
110
4.301
−1.294
7.601
1.00
0.39


ATOM
1703
CG1
ILE
110
6.258
−0.485
7.991
1.00
0.40


ATOM
1704
HG11
ILE
110
6.766
−1.157
7.315
1.00
0.42


ATOM
1705
HG12
ILE
110
6.283
−0.902
8.987
1.00
0.41


ATOM
1706
CG2
ILE
110
4.725
0.180
6.106
1.00
0.41


ATOM
1707
HG21
ILE
110
5.675
0.018
5.620
1.00
1.14


ATOM
1708
HG22
ILE
110
4.498
1.237
6.109
1.00
1.15


ATOM
1709
HG23
ILE
110
3.954
−0.352
5.570
1.00
1.01


ATOM
1710
CD1
ILE
110
6.982
0.871
7.997
1.00
0.43


ATOM
1711
HD11
ILE
110
6.630
1.485
7.183
1.00
1.15


ATOM
1712
HD12
ILE
110
8.044
0.708
7.886
1.00
1.09


ATOM
1713
HD13
ILE
110
6.795
1.374
8.933
1.00
1.08


ATOM
1714
C
ILE
110
2.600
0.762
8.050
1.00
0.36


ATOM
1715
O
ILE
110
2.194
1.741
7.457
1.00
0.37


ATOM
1716
N
PHE
111
1.798
−0.223
8.367
1.00
0.37


ATOM
1717
HN
PHE
111
2.144
−0.998
8.858
1.00
0.38


ATOM
1718
CA
PHE
111
0.353
−0.160
8.002
1.00
0.39


ATOM
1719
HA
PHE
111
0.256
−0.074
6.931
1.00
0.40


ATOM
1720
CB
PHE
111
−0.357
−1.434
8.478
1.00
0.41


ATOM
1721
HB1
PHE
111
−1.317
−1.174
8.897
1.00
0.43


ATOM
1722
HB2
PHE
111
0.245
−1.919
9.232
1.00
0.43


ATOM
1723
CG
PHE
111
−0.556
−2.375
7.310
1.00
0.44


ATOM
1724
CD1
PHE
111
0.521
−2.699
6.477
1.00
0.47


ATOM
1725
HD1
PHE
111
1.499
−2.283
6.670
1.00
0.50


ATOM
1726
CD2
PHE
111
−1.823
−2.918
7.056
1.00
0.46


ATOM
1727
HD2
PHE
111
−2.656
−2.671
7.698
1.00
0.49


ATOM
1728
CE1
PHE
111
0.330
−3.563
5.390
1.00
0.52


ATOM
1729
HE1
PHE
111
1.161
−3.813
4.749
1.00
0.58


ATOM
1730
CE2
PHE
111
−2.011
−3.781
5.969
1.00
0.50


ATOM
1731
HE2
PHE
111
−2.984
−4.196
5.767
1.00
0.54


ATOM
1732
CZ
PHE
111
−0.940
−4.102
5.139
1.00
0.52


ATOM
1733
HZ
PHE
111
−1.096
−4.766
4.303
1.00
0.56


ATOM
1734
C
PHE
111
−0.286
1.060
8.672
1.00
0.39


ATOM
1735
O
PHE
111
−0.997
1.821
8.049
1.00
0.40


ATOM
1736
N
ASN
112
−0.047
1.252
9.940
1.00
0.40


ATOM
1737
HN
ASN
112
0.527
0.627
10.434
1.00
0.41


ATOM
1738
CA
ASN
112
−0.645
2.425
10.638
1.00
0.43


ATOM
1739
HA
ASN
112
−1.713
2.431
10.473
1.00
0.44


ATOM
1740
CB
ASN
112
−0.369
2.322
12.139
1.00
0.49


ATOM
1741
HB1
ASN
112
−0.478
3.295
12.592
1.00
0.51


ATOM
1742
HB2
ASN
112
0.638
1.963
12.294
1.00
0.49


ATOM
1743
CG
ASN
112
−1.363
1.350
12.777
1.00
0.54


ATOM
1744
OD1
ASN
112
−2.285
1.763
13.452
1.00
1.23


ATOM
1745
ND2
ASN
112
−1.218
0.067
12.587
1.00
1.22


ATOM
1746
HD21
ASN
112
−0.477
−0.267
12.039
1.00
2.00


ATOM
1747
HD22
ASN
112
−1.850
−0.562
12.992
1.00
1.25


ATOM
1748
C
ASN
112
−0.044
3.729
10.100
1.00
0.42


ATOM
1749
O
ASN
112
−0.734
4.712
9.922
1.00
0.43


ATOM
1750
N
LEU
113
1.241
3.755
9.861
1.00
0.42


ATOM
1751
HN
LEU
113
1.788
2.959
10.025
1.00
0.42


ATOM
1752
CA
LEU
113
1.877
5.011
9.361
1.00
0.45


ATOM
1753
HA
LEU
113
1.674
5.806
10.058
1.00
0.48


ATOM
1754
CB
LEU
113
3.396
4.800
9.246
1.00
0.51


ATOM
1755
HB1
LEU
113
3.592
4.029
8.516
1.00
0.58


ATOM
1756
HB2
LEU
113
3.784
4.487
10.204
1.00
0.65


ATOM
1757
CG
LEU
113
4.107
6.097
8.812
1.00
0.66


ATOM
1758
HG
LEU
113
3.530
6.596
8.049
1.00
1.18


ATOM
1759
CD1
LEU
113
4.272
7.037
10.015
1.00
1.30


ATOM
1760
HD11
LEU
113
4.845
7.905
9.721
1.00
1.71


ATOM
1761
HD12
LEU
113
4.789
6.519
10.808
1.00
1.92


ATOM
1762
HD13
LEU
113
3.304
7.355
10.366
1.00
1.86


ATOM
1763
CD2
LEU
113
5.487
5.740
8.249
1.00
1.24


ATOM
1764
HD21
LEU
113
5.868
4.867
8.757
1.00
1.64


ATOM
1765
HD22
LEU
113
6.166
6.566
8.396
1.00
1.80


ATOM
1766
HD23
LEU
113
5.401
5.531
7.193
1.00
1.86


ATOM
1767
C
LEU
113
1.302
5.379
7.993
1.00
0.42


ATOM
1768
O
LEU
113
0.782
6.460
7.801
1.00
0.44


ATOM
1769
N
MET
114
1.390
4.497
7.038
1.00
0.42


ATOM
1770
HN
MET
114
1.814
3.630
7.205
1.00
0.44


ATOM
1771
CA
MET
114
0.847
4.820
5.692
1.00
0.44


ATOM
1772
HA
MET
114
1.306
5.729
5.332
1.00
0.50


ATOM
1773
CB
MET
114
1.161
3.676
4.722
1.00
0.48


ATOM
1774
HB1
MET
114
2.228
3.512
4.691
1.00
0.64


ATOM
1775
HB2
MET
114
0.808
3.935
3.734
1.00
0.55


ATOM
1776
CG
MET
114
0.468
2.400
5.192
1.00
0.41


ATOM
1777
HG1
MET
114
−0.487
2.307
4.697
1.00
0.53


ATOM
1778
HG2
MET
114
0.316
2.451
6.256
1.00
0.70


ATOM
1779
SD
MET
114
1.500
0.965
4.795
1.00
0.90


ATOM
1780
CE
MET
114
1.183
0.924
3.014
1.00
0.53


ATOM
1781
HE1
MET
114
0.647
1.815
2.721
1.00
1.23


ATOM
1782
HE2
MET
114
0.592
0.059
2.773
1.00
1.18


ATOM
1783
HE3
MET
114
2.124
0.871
2.484
1.00
1.20


ATOM
1784
C
MET
114
−0.664
5.028
5.798
1.00
0.41


ATOM
1785
O
MET
114
−1.228
5.884
5.149
1.00
0.46


ATOM
1786
N
GLU
115
−1.325
4.254
6.615
1.00
0.38


ATOM
1787
HN
GLU
115
−0.854
3.569
7.135
1.00
0.37


ATOM
1788
CA
GLU
115
−2.799
4.417
6.757
1.00
0.43


ATOM
1789
HA
GLU
115
−3.252
4.361
5.780
1.00
0.46


ATOM
1790
CB
GLU
115
−3.367
3.300
7.635
1.00
0.47


ATOM
1791
HB1
GLU
115
−2.950
3.371
8.627
1.00
0.88


ATOM
1792
HB2
GLU
115
−3.119
2.342
7.205
1.00
0.93


ATOM
1793
CG
GLU
115
−4.889
3.443
7.711
1.00
0.84


ATOM
1794
HG1
GLU
115
−5.295
3.505
6.712
1.00
1.29


ATOM
1795
HG2
GLU
115
−5.138
4.341
8.257
1.00
1.25


ATOM
1796
CD
GLU
115
−5.483
2.229
8.426
1.00
0.86


ATOM
1797
OE1
GLU
115
−4.716
1.370
8.829
1.00
1.35


ATOM
1798
OE2
GLU
115
−6.695
2.174
8.551
1.00
1.34


ATOM
1799
C
GLU
115
−3.123
5.777
7.390
1.00
0.49


ATOM
1800
O
GLU
115
−4.069
6.436
7.016
1.00
0.60


ATOM
1801
N
LYS
116
−2.365
6.202
8.359
1.00
0.48


ATOM
1802
HN
LYS
116
−1.609
5.661
8.671
1.00
0.45


ATOM
1803
CA
LYS
116
−2.668
7.513
9.001
1.00
0.58


ATOM
1804
HA
LYS
116
−3.739
7.614
9.108
1.00
0.66


ATOM
1805
CB
LYS
116
−2.021
7.571
10.386
1.00
0.65


ATOM
1806
HB1
LYS
116
−2.103
8.573
10.781
1.00
0.73


ATOM
1807
HB2
LYS
116
−0.978
7.298
10.308
1.00
0.62


ATOM
1808
CG
LYS
116
−2.739
6.596
11.321
1.00
0.72


ATOM
1809
HG1
LYS
116
−2.662
5.595
10.928
1.00
1.06


ATOM
1810
HG2
LYS
116
−3.779
6.877
11.391
1.00
1.02


ATOM
1811
CD
LYS
116
−2.096
6.649
12.711
1.00
1.27


ATOM
1812
HD1
LYS
116
−2.210
7.642
13.120
1.00
1.84


ATOM
1813
HD2
LYS
116
−1.045
6.414
12.629
1.00
1.69


ATOM
1814
CE
LYS
116
−2.775
5.637
13.643
1.00
1.56


ATOM
1815
HE1
LYS
116
−2.724
5.998
14.660
1.00
2.10


ATOM
1816
HE2
LYS
116
−2.264
4.689
13.574
1.00
1.73


ATOM
1817
NZ
LYS
116
−4.202
5.459
13.252
1.00
2.20


ATOM
1818
HZ1
LYS
116
−4.268
4.755
12.489
1.00
2.55


ATOM
1819
HZ2
LYS
116
−4.587
6.367
12.921
1.00
2.66


ATOM
1820
HZ3
LYS
116
−4.748
5.129
14.072
1.00
2.60


ATOM
1821
C
LYS
116
−2.141
8.665
8.139
1.00
0.59


ATOM
1822
O
LYS
116
−2.447
9.815
8.391
1.00
0.74


ATOM
1823
N
ASP
117
−1.347
8.373
7.135
1.00
0.56


ATOM
1824
HN
ASP
117
−1.108
7.439
6.957
1.00
0.57


ATOM
1825
CA
ASP
117
−0.794
9.464
6.268
1.00
0.63


ATOM
1826
HA
ASP
117
−1.212
10.412
6.564
1.00
0.74


ATOM
1827
CB
ASP
117
0.727
9.518
6.428
1.00
0.74


ATOM
1828
HB1
ASP
117
1.182
9.719
5.470
1.00
1.35


ATOM
1829
HB2
ASP
117
1.083
8.570
6.804
1.00
1.02


ATOM
1830
CG
ASP
117
1.103
10.629
7.410
1.00
1.44


ATOM
1831
OD1
ASP
117
2.187
11.172
7.271
1.00
2.14


ATOM
1832
OD2
ASP
117
0.304
10.917
8.286
1.00
2.15


ATOM
1833
C
ASP
117
−1.125
9.214
4.795
1.00
0.55


ATOM
1834
O
ASP
117
−1.718
10.045
4.136
1.00
0.67


ATOM
1835
N
SER
118
−0.719
8.096
4.258
1.00
0.45


ATOM
1836
HN
SER
118
−0.219
7.445
4.794
1.00
0.48


ATOM
1837
CA
SER
118
−0.987
7.832
2.816
1.00
0.42


ATOM
1838
HA
SER
118
−0.515
8.600
2.221
1.00
0.45


ATOM
1839
CB
SER
118
−0.410
6.472
2.424
1.00
0.46


ATOM
1840
HB1
SER
118
0.552
6.339
2.900
1.00
0.53


ATOM
1841
HB2
SER
118
−0.287
6.429
1.355
1.00
0.47


ATOM
1842
OG
SER
118
−1.303
5.445
2.834
1.00
0.47


ATOM
1843
HG
SER
118
−1.809
5.168
2.067
1.00
0.87


ATOM
1844
C
SER
118
−2.489
7.836
2.540
1.00
0.39


ATOM
1845
O
SER
118
−2.950
8.491
1.634
1.00
0.41


ATOM
1846
N
TYR
119
−3.257
7.113
3.309
1.00
0.40


ATOM
1847
HN
TYR
119
−2.865
6.587
4.037
1.00
0.43


ATOM
1848
CA
TYR
119
−4.730
7.075
3.069
1.00
0.41


ATOM
1849
HA
TYR
119
−4.924
6.667
2.090
1.00
0.41


ATOM
1850
CB
TYR
119
−5.388
6.195
4.123
1.00
0.46


ATOM
1851
HB1
TYR
119
−6.210
6.728
4.576
1.00
0.51


ATOM
1852
HB2
TYR
119
−4.663
5.949
4.874
1.00
0.53


ATOM
1853
CG
TYR
119
−5.892
4.929
3.487
1.00
0.43


ATOM
1854
CD1
TYR
119
−5.050
4.165
2.669
1.00
0.61


ATOM
1855
HD1
TYR
119
−4.032
4.481
2.497
1.00
0.83


ATOM
1856
CD2
TYR
119
−7.207
4.521
3.711
1.00
0.46


ATOM
1857
HD2
TYR
119
−7.854
5.113
4.343
1.00
0.65


ATOM
1858
CE1
TYR
119
−5.529
2.994
2.075
1.00
0.63


ATOM
1859
HE1
TYR
119
−4.883
2.405
1.445
1.00
0.87


ATOM
1860
CE2
TYR
119
−7.683
3.349
3.118
1.00
0.45


ATOM
1861
HE2
TYR
119
−8.696
3.031
3.289
1.00
0.61


ATOM
1862
CZ
TYR
119
−6.845
2.586
2.300
1.00
0.45


ATOM
1863
OH
TYR
119
−7.318
1.434
1.711
1.00
0.50


ATOM
1864
HH
TYR
119
−7.406
1.597
0.769
1.00
0.86


ATOM
1865
C
TYR
119
−5.316
8.478
3.150
1.00
0.41


ATOM
1866
O
TYR
119
−6.093
8.885
2.309
1.00
0.43


ATOM
1867
N
ARG
120
−4.951
9.228
4.143
1.00
0.43


ATOM
1868
HN
ARG
120
−4.324
8.885
4.813
1.00
0.43


ATOM
1869
CA
ARG
120
−5.494
10.606
4.252
1.00
0.47


ATOM
1870
HA
ARG
120
−6.569
10.582
4.338
1.00
0.51


ATOM
1871
CB
ARG
120
−4.874
11.295
5.474
1.00
0.52


ATOM
1872
HB1
ARG
120
−5.257
12.301
5.549
1.00
0.58


ATOM
1873
HB2
ARG
120
−3.800
11.330
5.356
1.00
0.50


ATOM
1874
CG
ARG
120
−5.218
10.524
6.754
1.00
0.60


ATOM
1875
HG1
ARG
120
−4.491
10.758
7.518
1.00
1.00


ATOM
1876
HG2
ARG
120
−5.192
9.464
6.550
1.00
1.23


ATOM
1877
CD
ARG
120
−6.614
10.911
7.250
1.00
1.18


ATOM
1878
HD1
ARG
120
−7.354
10.608
6.528
1.00
1.78


ATOM
1879
HD2
ARG
120
−6.661
11.983
7.392
1.00
1.85


ATOM
1880
NE
ARG
120
−6.886
10.223
8.543
1.00
1.72


ATOM
1881
HE
ARG
120
−6.355
9.442
8.804
1.00
2.17


ATOM
1882
CZ
ARG
120
−7.838
10.654
9.325
1.00
2.45


ATOM
1883
NH1
ARG
120
−8.089
10.036
10.447
1.00
3.29


ATOM
1884
HH11
ARG
120
−7.552
9.234
10.707
1.00
3.50


ATOM
1885
HH12
ARG
120
−8.818
10.366
11.048
1.00
3.98


ATOM
1886
NH2
ARG
120
−8.532
11.708
8.991
1.00
2.92


ATOM
1887
HH21
ARG
120
−8.334
12.186
8.136
1.00
2.75


ATOM
1888
HH22
ARG
120
−9.260
12.037
9.592
1.00
3.77


ATOM
1889
C
ARG
120
−5.079
11.366
2.992
1.00
0.46


ATOM
1890
O
ARG
120
−5.863
12.066
2.375
1.00
0.49


ATOM
1891
N
ARG
121
−3.844
11.218
2.603
1.00
0.44


ATOM
1892
HN
ARG
121
−3.239
10.641
3.115
1.00
0.43


ATOM
1893
CA
ARG
121
−3.347
11.910
1.386
1.00
0.45


ATOM
1894
HA
ARG
121
−3.618
12.955
1.429
1.00
0.49


ATOM
1895
CB
ARG
121
−1.825
11.783
1.313
1.00
0.47


ATOM
1896
HB1
ARG
121
−1.470
12.338
0.460
1.00
0.49


ATOM
1897
HB2
ARG
121
−1.559
10.741
1.202
1.00
0.48


ATOM
1898
CG
ARG
121
−1.185
12.341
2.594
1.00
0.56


ATOM
1899
HG1
ARG
121
−0.442
11.645
2.952
1.00
1.20


ATOM
1900
HG2
ARG
121
−1.947
12.468
3.349
1.00
1.08


ATOM
1901
CD
ARG
121
−0.518
13.695
2.321
1.00
1.18


ATOM
1902
HD1
ARG
121
−1.275
14.440
2.130
1.00
1.73


ATOM
1903
HD2
ARG
121
0.136
13.615
1.465
1.00
1.91


ATOM
1904
NE
ARG
121
0.284
14.091
3.513
1.00
1.81


ATOM
1905
HE
ARG
121
0.159
13.622
4.364
1.00
2.29


ATOM
1906
CZ
ARG
121
1.164
15.050
3.420
1.00
2.47


ATOM
1907
NH1
ARG
121
1.886
15.375
4.458
1.00
3.36


ATOM
1908
HH11
ARG
121
1.765
14.889
5.324
1.00
3.67


ATOM
1909
HH12
ARG
121
2.561
16.110
4.387
1.00
3.97


ATOM
1910
NH2
ARG
121
1.321
15.686
2.292
1.00
2.78


ATOM
1911
HH21
ARG
121
0.766
15.438
1.497
1.00
2.59


ATOM
1912
HH22
ARG
121
1.995
16.421
2.222
1.00
3.55


ATOM
1913
C
ARG
121
−3.959
11.273
0.131
1.00
0.42


ATOM
1914
O
ARG
121
−4.306
11.957
−0.806
1.00
0.44


ATOM
1915
N
PHE
122
−4.079
9.967
0.099
1.00
0.39


ATOM
1916
HN
PHE
122
−3.782
9.429
0.861
1.00
0.40


ATOM
1917
CA
PHE
122
−4.647
9.296
−1.114
1.00
0.40


ATOM
1918
HA
PHE
122
−4.008
9.489
−1.963
1.00
0.42


ATOM
1919
CB
PHE
122
−4.746
7.783
−0.886
1.00
0.40


ATOM
1920
HB1
PHE
122
−5.785
7.498
−0.826
1.00
0.54


ATOM
1921
HB2
PHE
122
−4.253
7.523
0.032
1.00
0.48


ATOM
1922
CG
PHE
122
−4.092
7.041
−2.028
1.00
0.38


ATOM
1923
CD1
PHE
122
−2.709
6.825
−2.025
1.00
0.49


ATOM
1924
HD1
PHE
122
−2.106
7.196
−1.210
1.00
0.67


ATOM
1925
CD2
PHE
122
−4.874
6.559
−3.085
1.00
0.69


ATOM
1926
HD2
PHE
122
−5.941
6.726
−3.087
1.00
0.92


ATOM
1927
CE1
PHE
122
−2.108
6.126
−3.079
1.00
0.68


ATOM
1928
HE1
PHE
122
−1.041
5.959
−3.077
1.00
0.90


ATOM
1929
CE2
PHE
122
−4.272
5.863
−4.140
1.00
0.85


ATOM
1930
HE2
PHE
122
−4.876
5.492
−4.955
1.00
1.15


ATOM
1931
CZ
PHE
122
−2.889
5.646
−4.137
1.00
0.78


ATOM
1932
HZ
PHE
122
−2.426
5.107
−4.950
1.00
0.98


ATOM
1933
C
PHE
122
−6.043
9.836
−1.397
1.00
0.41


ATOM
1934
O
PHE
122
−6.356
10.202
−2.507
1.00
0.47


ATOM
1935
N
LEU
123
−6.886
9.892
−0.410
1.00
0.39


ATOM
1936
HN
LEU
123
−6.620
9.593
0.484
1.00
0.38


ATOM
1937
CA
LEU
123
−8.258
10.411
−0.648
1.00
0.43


ATOM
1938
HA
LEU
123
−8.748
9.803
−1.394
1.00
0.46


ATOM
1939
CB
LEU
123
−9.052
10.359
0.659
1.00
0.45


ATOM
1940
HB1
LEU
123
−10.028
10.794
0.509
1.00
0.49


ATOM
1941
HB2
LEU
123
−8.524
10.916
1.420
1.00
0.45


ATOM
1942
CG
LEU
123
−9.200
8.897
1.104
1.00
0.45


ATOM
1943
HG
LEU
123
−8.224
8.433
1.124
1.00
0.42


ATOM
1944
CD1
LEU
123
−9.809
8.845
2.505
1.00
0.50


ATOM
1945
HD11
LEU
123
−9.851
7.818
2.840
1.00
1.17


ATOM
1946
HD12
LEU
123
−10.807
9.256
2.480
1.00
1.13


ATOM
1947
HD13
LEU
123
−9.199
9.420
3.185
1.00
1.05


ATOM
1948
CD2
LEU
123
−10.106
8.131
0.130
1.00
0.49


ATOM
1949
HD21
LEU
123
−10.854
8.796
−0.276
1.00
1.11


ATOM
1950
HD22
LEU
123
−10.593
7.324
0.656
1.00
1.18


ATOM
1951
HD23
LEU
123
−9.510
7.725
−0.674
1.00
1.11


ATOM
1952
C
LEU
123
−8.158
11.851
−1.156
1.00
0.45


ATOM
1953
O
LEU
123
−8.878
12.256
−2.046
1.00
0.54


ATOM
1954
N
LYS
124
−7.262
12.625
−0.605
1.00
0.43


ATOM
1955
HN
LYS
124
−6.683
12.277
0.110
1.00
0.41


ATOM
1956
CA
LYS
124
−7.109
14.035
−1.069
1.00
0.48


ATOM
1957
HA
LYS
124
−8.060
14.386
−1.441
1.00
0.53


ATOM
1958
CB
LYS
124
−6.675
14.918
0.102
1.00
0.55


ATOM
1959
HB1
LYS
124
−6.390
15.892
−0.267
1.00
0.60


ATOM
1960
HB2
LYS
124
−5.834
14.462
0.603
1.00
0.55


ATOM
1961
CG
LYS
124
−7.836
15.068
1.086
1.00
0.64


ATOM
1962
HG1
LYS
124
−8.123
14.096
1.457
1.00
0.81


ATOM
1963
HG2
LYS
124
−8.677
15.524
0.581
1.00
1.05


ATOM
1964
CD
LYS
124
−7.401
15.953
2.257
1.00
1.08


ATOM
1965
HD1
LYS
124
−7.103
16.921
1.885
1.00
1.62


ATOM
1966
HD2
LYS
124
−6.566
15.490
2.764
1.00
1.52


ATOM
1967
CD
LYS
124
−8.564
16.120
3.238
1.00
1.26


ATOM
1968
HE1
LYS
124
−9.495
15.905
2.734
1.00
1.66


ATOM
1969
HE2
LYS
124
−8.581
17.135
3.604
1.00
1.84


ATOM
1970
NZ
LYS
124
−8.393
15.184
4.384
1.00
1.82


ATOM
1971
HZ1
LYS
124
−9.095
15.405
5.119
1.00
2.26


ATOM
1972
HZ2
LYS
124
−7.435
15.287
4.776
1.00
2.35


ATOM
1973
HZ3
LYS
124
−8.533
14.207
4.058
1.00
2.23


ATOM
1974
C
LYS
124
−6.069
14.124
−2.195
1.00
0.47


ATOM
1975
O
LYS
124
−5.784
15.194
−2.695
1.00
0.52


ATOM
1976
N
SER
125
−5.491
13.022
−2.596
1.00
0.46


ATOM
1977
HN
SER
125
−5.724
12.165
−2.182
1.00
0.49


ATOM
1978
CA
SER
125
−4.466
13.076
−3.684
1.00
0.49


ATOM
1979
HA
SER
125
−3.780
13.886
−3.486
1.00
0.54


ATOM
1980
CB
SER
125
−3.689
11.759
−3.739
1.00
0.55


ATOM
1981
HB1
SER
125
−3.181
11.598
−2.800
1.00
1.13


ATOM
1982
HB2
SER
125
−2.961
11.804
−4.531
1.00
1.15


ATOM
1983
OG
SER
125
−4.591
10.691
−3.997
1.00
1.34


ATOM
1984
HG
SER
125
−4.433
10.380
−4.892
1.00
1.80


ATOM
1985
C
SER
125
−5.144
13.310
−5.035
1.00
0.46


ATOM
1986
O
SER
125
−6.282
12.941
−5.246
1.00
0.47


ATOM
1987
N
ARG
126
−4.443
13.914
−5.955
1.00
0.52


ATOM
1988
HN
ARG
126
−3.525
14.196
−5.761
1.00
0.56


ATOM
1989
CA
ARG
126
−5.027
14.172
−7.302
1.00
0.58


ATOM
1990
HA
ARG
126
−5.954
14.715
−7.189
1.00
0.58


ATOM
1991
CB
ARG
126
−4.052
15.009
−8.132
1.00
0.71


ATOM
1992
HB1
ARG
126
−4.391
15.050
−9.156
1.00
1.12


ATOM
1993
HB2
ARG
126
−3.069
14.560
−8.095
1.00
1.28


ATOM
1994
CG
ARG
126
−3.989
16.427
−7.561
1.00
1.29


ATOM
1995
HG1
ARG
126
−3.651
16.388
−6.536
1.00
1.89


ATOM
1996
HG2
ARG
126
−4.973
16.872
−7.598
1.00
1.94


ATOM
1997
CD
ARG
126
−3.016
17.274
−8.384
1.00
1.86


ATOM
1998
HD1
ARG
126
−3.016
18.288
−8.009
1.00
2.13


ATOM
1999
HD2
ARG
126
−3.324
17.274
−9.418
1.00
2.26


ATOM
2000
NE
ARG
126
−1.644
16.705
−8.277
1.00
2.80


ATOM
2001
HE
ARG
126
−1.438
16.050
−7.577
1.00
3.15


ATOM
2002
CZ
ARG
126
−0.715
17.081
−9.112
1.00
3.67


ATOM
2003
NH1
ARG
126
0.490
16.589
−9.016
1.00
4.70


ATOM
2004
HH11
ARC
126
0.702
15.922
−8.301
1.00
4.91


ATOM
2005
HH12
ARG
126
1.201
16.878
−9.657
1.00
5.46


ATOM
2006
NH2
ARG
126
−0.991
17.952
−10.045
1.00
3.92


ATOM
2007
HH21
ARG
126
−1.914
18.330
−10.118
1.00
3.48


ATOM
2008
HH22
ARG
126
−0.280
18.241
−10.685
1.00
4.82


ATOM
2009
C
ARG
126
−5.305
12.846
−8.015
1.00
0.58


ATOM
2010
O
ARG
126
−6.275
12.714
−8.734
1.00
0.60


ATOM
2011
N
PHE
127
−4.460
11.863
−7.838
1.00
0.60


ATOM
2012
HN
PHE
127
−3.675
11.984
−7.264
1.00
0.61


ATOM
2013
CA
PHE
127
−4.693
10.563
−8.531
1.00
0.65


ATOM
2014
HA
PHE
127
−4.690
10.713
−9.600
1.00
0.72


ATOM
2015
CB
PHE
127
−3.592
9.570
−8.147
1.00
0.73


ATOM
2016
HB1
PHE
127
−3.856
8.587
−8.507
1.00
0.80


ATOM
2017
HB2
PHE
127
−3.495
9.543
−7.071
1.00
0.69


ATOM
2018
CG
PHE
127
−2.276
9.989
−8.755
1.00
0.84


ATOM
2019
CD1
PHE
127
−1.398
10.804
−8.031
1.00
0.85


ATOM
2020
HD1
PHE
127
−1.665
11.137
−7.038
1.00
0.82


ATOM
2021
CD2
PHE
127
−1.930
9.557
−10.041
1.00
0.98


ATOM
2022
HD2
PHE
127
−2.607
8.929
−10.601
1.00
1.03


ATOM
2023
CE1
PHE
127
−0.174
11.187
−8.592
1.00
0.98


ATOM
2024
HE1
PHE
127
0.503
11.815
−8.032
1.00
1.03


ATOM
2025
CE2
PHE
127
−0.706
9.941
−10.603
1.00
1.10


ATOM
2026
HE2
PHE
127
−0.439
9.609
−11.595
1.00
1.23


ATOM
2027
CZ
PHE
127
0.172
10.756
−9.878
1.00
1.09


ATOM
2028
HZ
PHE
127
1.116
11.051
−10.310
1.00
1.19


ATOM
2029
C
PHE
127
−6.041
9.987
−8.093
1.00
0.58


ATOM
2030
O
PHE
127
−6.859
9.611
−8.907
1.00
0.59


ATOM
2031
N
TYR
128
−6.280
9.920
−6.813
1.00
0.52


ATOM
2032
HN
TYR
128
−5.609
10.233
−6.171
1.00
0.54


ATOM
2033
CA
TYR
128
−7.578
9.373
−6.327
1.00
0.48


ATOM
2034
HA
TYR
128
−7.701
8.362
−6.679
1.00
0.51


ATOM
2035
CB
TYR
128
−7.602
9.392
−4.801
1.00
0.48


ATOM
2036
HB1
TYR
128
−7.542
10.415
−4.463
1.00
0.48


ATOM
2037
HB2
TYR
128
−6.762
8.832
−4.417
1.00
0.51


ATOM
2038
CG
TYR
128
−8.892
8.779
−4.309
1.00
0.48


ATOM
2039
CD1
TYR
128
−8.961
7.403
−4.059
1.00
0.51


ATOM
2040
HD1
TYR
128
−8.093
6.781
−4.220
1.00
0.53


ATOM
2041
CD2
TYR
128
−10.017
9.586
−4.100
1.00
0.51


ATOM
2042
HD2
TYR
128
−9.964
10.647
−4.292
1.00
0.52


ATOM
2043
CE1
TYR
128
−10.155
6.834
−3.601
1.00
0.56


ATOM
2044
HE1
TYR
128
−10.208
5.772
−3.408
1.00
0.61


ATOM
2045
CE2
TYR
128
−11.211
9.016
−3.642
1.00
0.55


ATOM
2046
HE2
TYR
128
−12.079
9.638
−3.482
1.00
0.61


ATOM
2047
CZ
TYR
128
−11.280
7.640
−3.393
1.00
0.58


ATOM
2048
OH
TYR
128
−12.458
7.079
−2.942
1.00
0.66


ATOM
2049
HH
TYR
128
−12.323
6.797
−2.034
1.00
1.10


ATOM
2050
C
TYR
128
−8.721
10.241
−6.847
1.00
0.45


ATOM
2051
O
TYR
128
−9.718
9.751
−7.336
1.00
0.47


ATOM
2052
N
LEU
129
−8.581
11.531
−6.724
1.00
0.45


ATOM
2053
HN
LEU
129
−7.770
11.894
−6.312
1.00
0.46


ATOM
2054
CA
LEU
129
−9.656
12.453
−7.181
1.00
0.49


ATOM
2055
HA
LEU
129
−10.566
12.245
−6.638
1.00
0.49


ATOM
2056
CB
LEU
129
−9.218
13.896
−6.916
1.00
0.53


ATOM
2057
HB1
LEU
129
−9.912
14.578
−7.383
1.00
0.60


ATOM
2058
HB2
LEU
129
−8.233
14.046
−7.335
1.00
0.55


ATOM
2059
CG
LEU
129
−9.177
14.156
−5.402
1.00
0.50


ATOM
2060
HG
LEU
129
−8.561
13.403
−4.930
1.00
0.45


ATOM
2061
CD1
LEU
129
−8.578
15.539
−5.127
1.00
0.59


ATOM
2062
HD11
LEU
129
−7.762
15.725
−5.810
1.00
1.16


ATOM
2063
HD12
LEU
129
−8.212
15.576
−4.112
1.00
1.16


ATOM
2064
HD13
LEU
129
−9.339
16.293
−5.262
1.00
1.20


ATOM
2065
CD2
LEU
129
−10.593
14.094
−4.814
1.00
0.55


ATOM
2066
HD21
LEU
129
−11.317
14.343
−5.574
1.00
1.20


ATOM
2067
HD22
LEU
129
−10.673
14.796
−3.998
1.00
1.06


ATOM
2068
HD23
LEU
129
−10.785
13.096
−4.448
1.00
1.16


ATOM
2069
C
LEU
129
−9.901
12.261
−8.678
1.00
0.55


ATOM
2070
O
LEU
129
−11.027
12.146
−9.119
1.00
0.61


ATOM
2071
N
ASP
130
−8.863
12.218
−9.467
1.00
0.59


ATOM
2072
HN
ASP
130
−7.959
12.306
−9.100
1.00
0.60


ATOM
2073
CA
ASP
130
−9.063
12.023
−10.930
1.00
0.67


ATOM
2074
HA
ASP
130
−9.667
12.828
−11.323
1.00
0.75


ATOM
2075
CB
ASP
130
−7.705
12.003
−11.636
1.00
0.76


ATOM
2076
HB1
ASP
130
−7.838
11.690
−12.661
1.00
0.81


ATOM
2077
HB2
ASP
130
−7.048
11.311
−11.130
1.00
0.74


ATOM
2078
CG
ASP
130
−7.091
13.403
−11.609
1.00
0.87


ATOM
2079
OD1
ASP
130
−7.835
14.351
−11.416
1.00
1.23


ATOM
2080
OD2
ASP
130
−5.888
13.504
−11.783
1.00
1.58


ATOM
2081
C
ASP
130
−9.778
10.693
−11.158
1.00
0.65


ATOM
2082
O
ASP
130
−10.766
10.615
−11.859
1.00
0.72


ATOM
2083
N
LEU
131
−9.292
9.645
−10.556
1.00
0.61


ATOM
2084
HN
LEU
131
−8.499
9.731
−9.986
1.00
0.59


ATOM
2085
CA
LEU
131
−9.949
8.321
−10.719
1.00
0.66


ATOM
2086
HA
LEU
131
−10.108
8.123
−11.768
1.00
0.73


ATOM
2087
CB
LEU
131
−9.066
7.221
−10.112
1.00
0.70


ATOM
2088
HB1
LEU
131
−9.501
6.255
−10.319
1.00
0.78


ATOM
2089
HB2
LEU
131
−9.011
7.363
−9.042
1.00
0.65


ATOM
2090
CG
LEU
131
−7.649
7.280
−10.701
1.00
0.76


ATOM
2091
HG
LEU
131
−7.339
8.308
−10.805
1.00
0.74


ATOM
2092
CD1
LEU
131
−6.686
6.551
−9.763
1.00
0.85


ATOM
2093
HD11
LEU
131
−5.747
6.382
−10.270
1.00
1.47


ATOM
2094
HD12
LEU
131
−7.114
5.603
−9.472
1.00
1.25


ATOM
2095
HD13
LEU
131
−6.516
7.154
−8.883
1.00
1.30


ATOM
2096
CD2
LEU
131
−7.619
6.591
−12.073
1.00
0.85


ATOM
2097
HD21
LEU
131
−8.623
6.483
−12.452
1.00
1.38


ATOM
2098
HD22
LEU
131
−7.167
5.616
−11.974
1.00
1.27


ATOM
2099
HD23
LEU
131
−7.038
7.187
−12.760
1.00
1.36


ATOM
2100
C
LEU
131
−11.296
8.339
−9.994
1.00
0.67


ATOM
2101
O
LEU
131
−12.196
7.593
−10.325
1.00
0.82


ATOM
2102
N
THR
132
−11.426
9.177
−8.992
1.00
0.58


ATOM
2103
HN
THR
132
−10.679
9.756
−8.743
1.00
0.52


ATOM
2104
CA
THR
132
−12.702
9.242
−8.217
1.00
0.65


ATOM
2105
HA
THR
132
−13.392
8.501
−8.588
1.00
0.79


ATOM
2106
CB
THR
132
−12.417
8.962
−6.735
1.00
0.60


ATOM
2107
HB
THR
132
−13.350
8.813
−6.214
1.00
0.74


ATOM
2108
OG1
THR
132
−11.734
10.071
−6.169
1.00
0.53


ATOM
2109
HG1
THR
132
−10.823
10.044
−6.471
1.00
1.02


ATOM
2110
CG2
THR
132
−11.555
7.703
−6.592
1.00
0.79


ATOM
2111
HG21
THR
132
−12.092
6.965
−6.013
1.00
1.38


ATOM
2112
HG22
THR
132
−10.634
7.953
−6.088
1.00
1.32


ATOM
2113
HG23
THR
132
−11.332
7.299
−7.567
1.00
1.28


ATOM
2114
C
THR
132
−13.339
10.629
−8.348
1.00
0.77


ATOM
2115
O
THR
132
−13.331
11.414
−7.421
1.00
0.84


ATOM
2116
N
ASN
133
−13.911
10.931
−9.481
1.00
0.97


ATOM
2117
HN
ASN
133
−13.917
10.281
−10.213
1.00
1.04


ATOM
2118
CA
ASN
133
−14.569
12.260
−9.651
1.00
1.21


ATOM
2119
HA
ASN
133
−14.028
13.005
−9.086
1.00
1.15


ATOM
2120
CB
ASN
133
−14.583
12.652
−11.131
1.00
1.44


ATOM
2121
HB1
ASN
133
−15.359
13.383
−11.301
1.00
1.70


ATOM
2122
HB2
ASN
133
−14.778
11.775
−11.732
1.00
1.60


ATOM
2123
CG
ASN
133
−13.231
13.247
−11.522
1.00
1.35


ATOM
2124
OD1
ASN
133
−13.027
14.440
−11.414
1.00
1.57


ATOM
2125
ND2
ASN
133
−12.292
12.464
−11.972
1.00
1.89


ATOM
2126
HD21
ASN
133
−12.455
11.502
−12.057
1.00
2.51


ATOM
2127
HD22
ASN
133
−11.422
12.839
−12.225
1.00
1.97


ATOM
2128
C
ASN
133
−16.010
12.179
−9.142
1.00
1.48


ATOM
2129
O
ASN
133
−16.515
11.115
−8.847
1.00
1.63


END











REFERENCES

[0103] 1. Neer, E. J. (1995) Cell 80, 249-257.


[0104] 2. Sprang, S. R. (1997) Annu. Rev. Biochem 66, 639-678.


[0105] 3. LeVine, H., III. (1999) Mol. Neurobiol. 19, 111-149.


[0106] 4. Farfel, Z., Bourne, H. R., and Iiri, T. (1999) N. Engl J. Med. 340, 1012-1020.


[0107] 5. Berghuis, A. M., Lee, E., Raw, A. S., and Gilman, A. (1996) Structure 4, 1277-1290.


[0108] 6. Mixon,, M. B., Lee, E., Coleman, D. F., and Berghuis, A. (1995) Science 270, 954-60.


[0109] 7. Coleman, D. E., Berghuis, A. M., Lee, E., and Linder. (1994) Science 265, 1405-12.


[0110] 8. Tesmer, J. J. G., Berman, D. M., Gilman, A. G., and Sprang, S. R. (1997) Cell 89, 251-261.


[0111] 9. Dohlman, H. G., and Thomer, J. (1997) J. Biol. Chem. 272, 3871-3874.


[0112] 10. Kehrl, J. H. (1998) Immunity 8, 1-10.


[0113] 11. Arshavsky, V. Y., and Pugh, E. N., Jr. (1998) Neuron 20, 11-14.


[0114] 12. Zerangue, N., and Jan, L. Y. (1998) Curr. Biol. 8, R313-R316.


[0115] 13. De Vries, L., and Farquhar, M. G. (1999) Trends Cell Biol. 9, 138-144.


[0116] 14. Kozasa, T., Jiang, X., Hart, M. J., Sternweis, P. M., Singer, W. D., Gilman, A. G., Bollag, G., and Sternweis, P. C. (1998) Science 280, 2109-2112.


[0117] 15. Nomoto, S., Adachi, K., Yang, L.-X., Hirata, Y., Muraguchi, S., and Kiuchi, K. (1997) Biochem. Biophys. Res. Commun. 241, 281-287.


[0118] 16. Gold, S. J., Ni, Y. G., Dohlman, H. G., and Nestler, E. (1997)J. Neurosci. 17, 8024-8037.


[0119] 17. Berman, D. M., Kozasa, T., and Gilman, A. G. (1996) J. Biol. Chem. 271,27209-27212.


[0120] 18. Srinivasa, S. P., Watson, N., Overton, M. C., and Blumer, K. J. (1998) J. Biol. Chem. 273, 1529-1533.


[0121] 19. Posner, B. A., Mukhopadhyay, S., Tesmer, J. J., Gilman, A. G., and Ross, E. M. (1999) Biochemistry 38, 7773-7779.


[0122] 20. Natochin, M., McEntaffer, R. L., and Artemyev, N. O. (1998) J. Biol. Chem. 273, 6731-6735.


[0123] 21. Watson, N., Linder, M. E., and Druey, K. M. (1996) Nature 383, 172-175.


[0124] 22. My, F., Chanda, P. K., Cockett, M. I., Edris, W., Jones, P. G., and Powers, R. (1999) J. Biomol. NMR 15, 339-340.


[0125] 23. Piotto, M., Saudek, V., and Sklenar, V. (1992) J. Biomol. NMR 2, 661-5.


[0126] 24. Grzesiek, S., and Bax, A. (1993) J. Am. Chem. Soc 115, 12593-4.


[0127] 25. Marion, D., Ikura, M., Tschudin, R., and Bax, A. (1989) J. Magn. Reson 85; 393-9.


[0128] 26. Vuister, G. W., and Bax, A. (1993) J. Am. Chem. Soc 115, 7772-7.


[0129] 27. Archer, S. J., Ikura, M., Torchia, D. A., and Bax, A. (1991) J. Magn. Reson 95, 636-41.


[0130] 28. Bax, A. and Pochapsky, S. S. (1992) Journal of Magnetic Resonance 99, 638-643.


[0131] 29. Powers, R., Gronenborn, A. M., Clore, G. M., and Bax, A. (1 991) J. Magn. Reson. 94, 209-13.


[0132] 30. Vuister, G. W., Delaglio, F., and Bax, A. (1992) J. Am. Chem. Soc 114, 9674-5.


[0133] 31. Grzesiek, S., Kuboniwa, H., Hinck, A. P., and Bax, A. (1995) J. Am. Chem. Soc 117, 5312-15.


[0134] 32. Marion, D., Driscoll, P. C., Kay, L. E., Wingfield, P. T., Bax, A., Gronenborn, A. M., and Clore, G. M. (1989) Biochemistry 28, 6150-6.


[0135] 33. Zuiderweg, E. R. P., and Fesik, S. W. (1989) Biochemistry 28, 2387-91.


[0136] 34. Zuiderweg, E. R. P., McIntosh, L. P., Dahlquist, F. W., and Fesik, S. W. (1990) J. Magn. Reson 86,210-16.


[0137] 35. Ikura, M., Kay, L. E., Tschudin, R., and Bax, A. (1990) J. Magn. Reson 86, 204-9.


[0138] 36. Delaglio, F., Grzesiek, S., Vuister, G. W., Zhu, G., Pfeifer, J., and Bax, A. (1995) J. Biomol. NMR 6, 277-293.


[0139] 37. Garrett, D. S., Powers, R., Gronenborn, A. M., and Clore, G. M. (1991) J. Magn. Reson. 95, 214-20.


[0140] 38. Zhu, G., and Bax, A. (1992) J. Magn. Reson. 100, 202-7.


[0141] 39. Williamson, M. P., Havel, T. F., and Wuethrich, K. (1985) J. Mol. Biol 182, 295-315.


[0142] 40. Clore, G. M., Nilges, M., Sukumaran, D. K., Bruenger, A. T., Karplus, M., and Gronenborn, A. M. (1986) EMBO J. 2729-35.


[0143] 41. Wuthrich, K., Billeter, M., and Braun, W. (1983) J. Mol. Biol. 169, 949-961.


[0144] 42. Powers, R., Garrett, D. S., March, C. J., Frieden, E. A., Gronenborn, A. M., and Clore, G. M. (1993) Biochemistry 32, 6744-62.


[0145] 43. Cornilescu, G., Delaglio, F., and Bax, A. (1999) J. Biomol. NMR 13, 289-302.


[0146] 44. Bax, A., Max, D., and Zax, D. (1992) J. Am. Chem. Soc. 114, 6923-5.


[0147] 45. Vuister, G. W., Clore, G. M., Gronenborn, A. M., Powers, R., Garrett, D. S., Tschudin, R., and Bax, A. (1993) Biochemistry 32, 6744-62.


[0148] 46. Zuiderweg, E. R. P., Boelens, R., and Kaptein, R. (1985) Biopolymers 24, 601-1 1.


[0149] 47. Kraulis, P. J., Clore, G. M., Nilges, M., Jones, T. A., Pettersson, G., Knowles, J., and Gronenborn, A. M. (1989) Biochemistry 28, 7241-57.


[0150] 48. Nilges, M., Gronenborn, A. M., Bruenger, A. T., and Clore, G. M. (1988) Protein Eng 2,27-38


[0151] 49. Clore, G. M., Appella, E., Yamada, M., Matsushima, K., and Gronenborn, A. M. (1990) Biochemistry 29, 1689-96.


[0152] 50. Brunger, A. T. (1993)X-PLOR Version 3.1 Manual, Yale University, New Haven, Conn.


[0153] 51. Garrett, D. S., Kuszewski, J., Hancock, T. J., Lodi, P. J., Vuister, G. W., Gronenborn, A. M., and Clore, G. M. (1994) J. Magn. Reson., Ser. B 104, 99-103.


[0154] 52. Kuszewski, J., Qin, J., Gronenborn, A. M., and Clore, G. M. (1995) J. Magn. Reson., Ser. B 106, 92-6.


[0155] 53. Kuszewski, J., Gronenborn, A. M., and Clore, G. M. (1996) Protein Sci. 5, 1067-1080.


[0156] 54. Kuszewski, J., Gronenborn, A. M., and Clore, G. M. (1997) J. Magn. Reson. 125, 171-177.


[0157] 55. Clore, G. M., and Gronenborn, A. M. (1989) Crit. Rev. Biochem. Mol. Biol. 24, 479-564.


[0158] 56. Wishart, D. S., and Sykes, B. D. (1994) Methods Enzymol. 239.


[0159] 57. Chen, C. -K., Wieland, T., and Simon, M. I. (1996) Proc. Natl. Acad. Sci. U. S. A. 93, 12885-12889.


[0160] 58. Nilges, M., Clore, G. M., and Gronenborn, A. M. (1988) Febs Lett 239, 129-36.


[0161] 59. Brooks, B. R., Bruccoleri, R. E., Olafson, B. D., States, D. J., Swaminathan, S., and Karplus, M. (1983) J. Comput. Chem 4, 187-217.


[0162] 60. Nilges, M., Clore, G. M., and Gronenborn, A. M. (1988) Febs Lett 229, 317-24.


[0163] 61. Laskowski, R. A., MacArthur, M. W., Moss, D. S., and Thornton, J. M. (1993) J. Appl. Cryst. 26, 283-291.


[0164] 62. Grzesiek, S. and Bax, A. (1992) J. Am. Chem. Soc.ds 114,6291-6293


[0165] 63. Grzesiek, S. and Bax, A. (1992) J. Magn. Reson 99, 201-207


[0166] 64. Grzesiek, S., Anglister, J. and Bax, A. (1993) J. Magn. Reson., Ser. B 101, 114-119


[0167] 65. Grzesiek, S. and Bax, A. (1993) J. Biomol. Nmr 3, 185-204


[0168] 66. Grzesiek, S. and Bax, A. (1992) J. Magn. Reson. 96, 432-40


[0169] 67. Kay, L. E. et al. (1990) J. Magn. Reson. 89, 496-514


[0170] 68. Ikura, M. et al. (1991) J. Biomol. Nmr, 299-304


[0171] 69. Bax, A. et al. (1990) J. Magn. Reson. 88, 425-431


[0172] 70. Powers, R. et al. (1992) Biochemistry 31,4334-4346


[0173] 71. Friedrichs, M. S. et al. (1994) J. Biomol Nmr 4, 703-726


[0174] 72. Wieland, T. Chen, C. K. (1999) Naunyn-Schmiedebergs Arch. Pharmacol 360,14-26.


[0175] 73. Tesmer & Spray (1998) Curr Opinion Structural Biol. 8, 713-719


[0176] 74. Wall et al. (1998) Structure 6, 1169-1183


[0177] 75. Spray, S. R. (1997) Curr. Opn. St. Biol. 7, 849-856


[0178] 76. Bax, A., Vuister, G. W., Grzesiek, S. and Delaglio (1994) Methods Enzymol. 239, 79-105


[0179] 77. Clore, G. M. and Gronenborn, A. M. (1994) Methods Enzymol 239, 349-362


[0180] 78. Wuthrich, K. (1986) NMR of proteins and nucleic acids. John Wiley & Sons, Inc., New York


[0181] 79. DeVries et al. (1995) Proc. Natl. Acad. Sci. USA 92:11916-11920


[0182] 80. Druey et al. (1996) Nature 379:742-746.


[0183] 81. Hunt T. W. et al. (1996) Nature 383:175-177.


[0184] 82. Koelle and Horvitz (1996) Cell 84:115-125


[0185] 83. Hepler J. R. et al. (1997) Proc. Natl. Acad. Sci. USA. 94:428-432.


[0186] 84. Shuey D J, Betty, M, Jones P G, Khawaja X V, Cockett, M. (1998) RGS7 attenuates signal transduction through the Gaq family of heterotrimeric G-proteins in mammalian cells. J. Neurochem. 70:1964-1972.


[0187] 85. Berman D M, Kozasa T, Gilman A G. (1996) The GTPase activating protein RGS4 stabilizes the transition state for nucleotide hydrolysis J. Biol. Chem. 271:27909-27212.


[0188] 86. Zheng, B. et al. (1999) TIBS 24 (November): 411-414.


[0189] 87. de Alba, E. et al. (1999) J. Mol. Biol. 291:927-939.


[0190] 88. Druey, K M. and Kehrl, J M (1999) J. Mol. Biology 291:927-939.


[0191] 89. Wang et al. (1998) J. Biol. Chem. 273:26014-26025.


[0192] 90. Hepler, J. R. (1999) TIBS 20(September) 376-382.


[0193] 91. Berman, D M and Gilman, A G (1998) J. Biol. Chem. 273(3):1269-1272.


Claims
  • 1. A representation of the three-dimensional solution structure of an RGS protein or portion thereof generated using the structural coordinates for RGS4-core protein.
  • 2. The representation of claim 1 that is a representation of an RGS subfamily B protein.
  • 3. The representation of claim 1 that is a representation of an RGS4.
  • 4. The representation of claim 1 that is a representation of rat RGS4 .
  • 5. The representation of claim 1 that is a representation of the Gα binding site of an RGS protein.
  • 6. The representation of claim 1 that is a representation of the α6-α7 region of an RGS protein.
  • 7. The representation of claim 1 that is a representation of the allosteric binding site in the α1-α2 region of an RGS protein.
  • 8. The representation of claim 1 which comprises the entire core region of an RGS protein.
  • 9. The representation of claim 1 that is generated using the structural coordinates for RGS4-core protein as determined by NMR spectroscopy.
  • 10. A method for identifying, selecting or designing a chemical or biochemical species which is a modulator of RGS activity, RGS binding or RGS-Gα complex activity which comprised the steps: (a) studying the interaction of one or more chemical or biochemical test species with the three-dimensional solution structure of an RGS4 protein or a portion thereof; and (b) selecting a chemical or biochemical test species, which is predicted by its interaction with the three-dimensional structure of RGS4 to act as a modulator of an RGS protein to thereby identify, select or design the modulator.
  • 11. The method of claim 10 wherein the modulator is identified, selected or designed based on its predicted interaction with a Gα binding site of a free RGS4 protein.
  • 12. The method of claim 10 wherein the modulator is identified, selected or designed based on its predicted interaction with an allosteric binding site of a free RGS protein.
  • 13. The method of claim 12 wherein the allosteric binding site is located in the α1-α2 region of a free RGS4 protein.
  • 14. The method of claim 10 wherein the modulator is identified, selected or designed based on its predicted interaction with the α6-α7 region of a free RGS4 protein.
  • 15. The method of claim 10 wherein the test species are selected from small organic molecules.
  • 16. The method of claim 10 further comprising the steps of: (a) obtaining the selected test species and (b) assaying the test species to measure its activity as a modulator of RGS activity, RGS binding or RGS-Gα complex activity.
  • 17. A modulator identified, selected or designed by the method of claim 10.
  • 18. A process for identifying a substance that inhibits RGS activity, RGS binding or RGS-Gα complex activity comprising the step of determining the interaction between a candidate species and the structure of free RGS using a representation of the three-dimensional solution structure of RGS4.
  • 19. A process for identifying a substance that mimics or promotes RGS activity, RGS binding or RGS-Gα complex activity comprising the step of determining the interaction between a candidate species and a representation of the three-dimensional structure of free RGS4.
  • 20. A method of identifying modulators of RGS activity, RGS binding or RGS4/Gα complex activity by rational drug design comprising the steps: (a) designing a potential modulator that will form a reversible or non-reversible bond with one or more amino acids in the RGS4 Gα binding site based upon the NMR structure coordinates of free RGS; synthesizing or otherwise obtaining the modulator; and (c) determining whether the potential modulator inhibits or promotes the activity of RGS or RGS4/Gα complex.
  • 21. The method of claim 20 wherein said modulator is designed to interact with one or more atoms of said one or more amino acids in the RGS4 Gα binding site and wherein said one or more amino acids is selected from the group of D117, S118 or R121.
  • 22. The method of claim 20 wherein the amino acids are selected from S39, E41, N42, L113, D117, S118, R121 or N82
  • 23. A method for identifying modulators of RGS activity, RGS binding or RGS4/Gα complex activity by rational drug design comprising the steps: (a) designing a potential modulator that will form a reversible or non-reversible bond with one or more amino acids in the allosteric binding site in the α1-α2 region of RGS based upon the NMR structure coordinates of free RGS4; (b) synthesizing or otherwise obtaining the modulator; and (c) determining whether the potential modulator inhibits or promotes the activity of RGS or RGS4/Gα complex.
  • 24. The method of claim 23 wherein said modulator is designed to interact with one or more atoms of said one or more amino acids in the allosteric binding site and wherein said one or more atoms is selected from the group of RGS residues V10, W13, L17, 120, H23, E24, C25 and T132.
  • 25. A modulator identified by the method of claim 23.
  • 26. A method of identifying modulators of RGS activity, RGS binding or RGS4/Gα complex activity by rational drug design comprising the steps: (a) designing a potential modulator that will form a reversible or non-reversible bond with one or more amino acids in the α6-α7 region of RGS4; (b) synthesizing or otherwise obtaining the modulator; and (c) determining whether the potential modulator inhibits or promotes the activity of RGS or RGS4-Gα complex.
  • 27. The method of claim 26 wherein the modulator activity is assesses using an enzyme assay.
  • 28. A method for identifying a potential modulator of RGS activity, RGS binding or RGS-Gα complex activity by rational drug design comprising the steps:
  • 30. The method of claim 28 wherein the three dimensional structure of step (a) is that of free RGS4 as defined by the relative structural coordinates of RGS4-core protein according to Table 2, ± a root mean square deviation of not more than 1.5 Å from the conserved backbone atoms of the amino acids of RGS4-core.
  • 31. A modulator identified by the method of claim 28.
  • 32. The method of claim 28 wherein the three dimensional structure of step (a) is that of an RGS protein other than RGS4 and wherein the three dimensional structure of the RGS protein other than RGS4 is obtained by molecular replacement analysis or homology modeling techniques employing the relative structural coordinates of RGS4-core protein according to Table 2, ± a root mean square deviation of not more than 1.5 Å from the conserved backbone atoms of the amino acids of RGS4-core.
  • 33. The method of claim 32 wherein the RGS protein other than RGS4 is an RGS subfamily B protein.
  • 34. The method of claim 28 wherein the step of employing the three dimensional structure to designing or select the potential inhibitor comprises the steps of: (1) identifying chemical or biochemical species or fragments thereof capable of binding to an RGS4 protein; and (2) assembling the identified chemical entities or fragments into a single molecule to provide the structure of a potential inhibitor.
  • 35. The method of claim 34 wherein in step (a) the chemical or biochemical species or fragments thereof capable of binding to the Gα binding site of a free RGS-core is a protein.
  • 36. The method of claim 34 wherein in step (a) the chemical or biochemical species or fragments thereof capable of binding to the allosteric binding site in the α1-α2 region of a free RGS core protein are identified.
  • 37. The method of claim 34 wherein in step (a) the chemical or biochemical species or fragments thereof capable of binding to α6-α7 region of a free RGS core protein are identified.
  • 38. The method of claim 34 further comprising the step of testing the potential inhibitor designed or selected in step (b) as an modulator of an RGS protein.
  • 39. A modulator identified by the method of claim 34.
  • 40. A method for identifying a mutant of RGS4 where the biological activity of the derivative is different from that of RGS4 comprising the steps of: (a) identifying amino acid residues of RGS4 protein that are involved in the function of the protein for regulation of G-protein signaling from the three dimensional structure of free RGS4; (b) modifying one or more of the RGS4 amino acid residues identified in step (a) to generate the derivative of RGS4.
  • 41. The method of claim 40 wherein the amino acid residues of RGS4 are modified by site directed mutagenesis of an RGS4 coding sequences after which the derivative RGS4 protein is expressed from the mutagenized RGS4 coding sequence.
  • 42. The method of claim 40 wherein the amino acids modified are in the Gα binding site of RGS4.
  • 43. The method of claim 40 wherein the amino acids modified are in an allosteric binding site of RGS4.
  • 44. The method of claim 40 wherein the amino acids modified are in the α6-α7 region of RGS4.
  • 45. A method for identifying potential modulators of an RGS protein which comprises the steps of: (a) identifying an RGS binding site by detecting perturbations of the NMR resonances in NMR spectra of RGS4 core protein in the presence and absence of chemical and biochemcial species that potential bind to RGS4; (b) employing the three dimensional structure of free RGS4 at the binding site identified in step (b) to select or design chemical or biochemical species that are predicted to bind at the binding site; (c) testing the chemical or biochemical species that are predicted to bind at the binding site for function as an modulator of RGS activity or RGS-Gα complex activity.
Continuations (1)
Number Date Country
Parent 09569836 May 2000 US
Child 09942055 Aug 2001 US