1. Field of the Invention
The present invention relates to bridging agents for use in subterranean formations, to well drill-in and servicing fluids comprising such bridging agents, and to methods of using such bridging agents and well drill-in and servicing fluids in subterranean drilling operations.
2. Description of Related Art
Often, once drilling of a well bore in a subterranean formation has been initiated, an operator will employ a fluid referred to as a “well drill-in and servicing fluid.” As referred to herein, the term “well drill-in and servicing fluid” will be understood to mean a fluid placed in a subterranean formation from which production has been, is being, or may be cultivated. For example, an operator may begin drilling a subterranean borehole using a drilling fluid, cease drilling at a depth just above that of a productive formation, circulate a sufficient quantity of a well drill-in and servicing fluid through the bore hole to completely flush out the drilling fluid, then proceed to drill into the desired formation using the well drill-in and servicing fluid. Well drill-in and servicing fluids are often utilized, inter alia, to minimize damage to the permeability of such formations.
Well drill-in and servicing fluids may also include “fluid loss control fluids.” As referred to herein, the term “fluid loss control fluid” will be understood to mean a fluid designed to form a filter cake onto a screen or gravel pack, or in some cases, directly onto the formation. For example, a fluid loss control fluid may comprise a comparatively small volume of fluid designed to form a filter cake so as to plug off a “thief zone” (a formation, most commonly encountered during drilling operations, into which the drilling fluid may be lost). Generally, well drill-in and servicing fluids are designed to form a fast and efficient filter cake on the walls of the well bores within the producing formations to minimize leak-off and damage. The filter cake is removed before hydrocarbons from the formation are produced. Conventionally, removal has been by contacting the filter cake with one or more subsequent fluids.
Other conventional methods of removing the filter cake include formulating the well drill-in and servicing fluid so as to include an acid-soluble particulate solid bridging agent. The resultant filter cake formed by such well drill-in and servicing fluid is then contacted with a strong acid to ultimately dissolve the bridging agent. This method is problematic, however, because the strong acid often corrodes metallic surfaces and completion equipment such as sand control screens, thereby causing such equipment to prematurely fail. Further, the acid may damage the producing formation. Additionally, the acid may cause the bridging agent to dissolve too quickly, resulting in the acid being lost into the formation, rather than completely covering the filter cake.
Another method has been to use a water-soluble particulate solid bridging agent in the well drill-in and servicing fluid, which is later contacted with an aqueous salt solution that is undersaturated with respect to such bridging agents. This method is problematic, however, because such bridging agents may require a relatively long period of time to dissolve in the solutions, due to, inter alia, the presence of various gelling agents in the well drill-in and servicing fluids. Such gelling agents shield the water-soluble bridging agents. A further problem is that the aqueous salt solution has a limited range of possible densities.
The present invention relates to bridging agents for use in subterranean formations, to well drill-in and servicing fluids comprising such bridging agents, and to methods of using such bridging agents and well drill-in and servicing fluids in subterranean drilling operations.
An example of a method of the present invention comprises the steps of: placing a well drill-in and servicing fluid in a subterranean formation, the well drill-in and servicing fluid comprising a viscosifier, a fluid loss control additive, and a bridging agent comprising a degradable material; and forming a self-degrading filter cake comprising the bridging agent upon a surface within the formation whereby fluid loss to the formation through the self-degrading filter cake is reduced.
Another example of a method of the present invention comprises a method of degrading a filter cake in a subterranean formation, the filter cake having been deposited therein by a well drill-in and servicing fluid comprising a bridging agent, comprising the step of utilizing a bridging agent comprising a degradable material.
Another example of a method of the present invention comprises a method of drilling an open hole in a subterranean formation, comprising the steps of: circulating through a drill pipe and drill bit a well drill-in and servicing fluid comprising a viscosified fluid, a fluid loss control additive, and a bridging agent comprising a degradable material; forming a filter cake comprising the bridging agent upon a surface within the formation; and permitting the filter cake to degrade.
An example of a composition of the present invention is a well drill-in and servicing fluid comprising a viscosified fluid; a fluid loss control additive; and a bridging agent comprising a degradable material.
The features and advantages of the present invention will be readily apparent to those skilled in the art upon a reading of the description of the preferred embodiments, which follows.
The present invention relates to bridging agents for use in subterranean formations, to well drill-in and servicing fluids comprising such bridging agents, and to methods of using such bridging agents and well drill-in and servicing fluids in subterranean drilling operations.
The well drill-in and servicing fluids of the present invention generally comprise a viscosified fluid comprising a viscosifier, a fluid loss control additive, and a bridging agent comprising a degradable material capable of undergoing an irreversible degradation downhole. The term “irreversible” as used herein means that the degradable material once degraded should not recrystallize or reconsolidate while downhole, e.g., the degradable material should degrade in situ but should not recrystallize or reconsolidate in situ. The terms “degradation” or “degradable” refer to both the two relatively extreme cases of hydrolytic degradation that the degradable material may undergo, i.e., heterogeneous (or bulk erosion) and homogeneous (or surface erosion), and any stage of degradation in between these two. This degradation can be a result of, inter alia, a chemical or thermal reaction or a reaction induced by radiation.
A variety of viscosified fluids may be included in the well drill-in and servicing fluids of the present invention. These are fluids whose viscosities have been enhanced by the use of a viscosifier. In certain embodiments, the viscosified fluid may comprise a base fluid such as water, oil, or mixtures thereof. The viscosified fluid is present in the well drill-in and servicing fluids of the present invention in an amount in the range of from about 68% to about 99% by weight. In certain preferred embodiments, the viscosified fluid is present in the well drill-in and servicing fluids of the present invention in an amount in the range of from about 90% to about 97% by weight.
The viscosified fluids comprise a viscosifier. A variety of viscosifiers may be included in the well drill-in and servicing fluids of the present invention. Examples of suitable viscosifiers include, inter alia, biopolymers such as xanthan and succinoglycan, cellulose derivatives such as hydroxyethylcellulose and guar and its derivatives such as hydroxypropyl guar. In certain preferred embodiments, the viscosifier is xanthan. The viscosifier is present in the well drill-in and servicing fluids of the present invention in an amount sufficient to suspend the bridging agent and drill cuttings in the well drill-in and servicing fluid. More particularly, the viscosifier is present in the well drill-in and servicing fluids of the present invention in an amount in the range of from about 0.01% to about 0.6% by weight. In certain preferred embodiments, the viscosifier is present in the well drill-in and servicing fluid in an amount in the range of from about 0.13% to about 0.30% by weight.
The well drill-in and servicing fluids of the present invention further comprise a fluid loss control additive. A variety of fluid loss control additives can be included in the well drill-in and servicing fluids of the present invention, including, inter alia, starch, starch ether derivatives, hydroxyethylcellulose, cross-linked hydroxyethylcellulose, and mixtures thereof. In certain preferred embodiments, the fluid loss control additive is starch. The fluid loss control additive is present in the well drill-in and servicing fluids of the present invention in an amount sufficient to provide a desired degree of fluid loss control. More particularly, the fluid loss control additive is present in the well drill-in and servicing fluid in an amount in the range of from about 0.01% to about 3% by weight. In certain preferred embodiments, the fluid loss control additive is present in the well drill-in and servicing fluid in an amount in the range of from about 1% to about 2% by weight.
The well drill-in and servicing fluids of the present invention further comprise a bridging agent comprising a degradable material. The bridging agent becomes suspended in the well drill-in and servicing fluid and, as the well drill-in and servicing fluid begins to form a filter cake within the subterranean formation, the bridging agent becomes distributed throughout the resulting filter cake, most preferably uniformly. In certain preferred embodiments, the filter cake forms upon the face of the formation itself, upon a sand screen, or upon a gravel pack. After the requisite time period dictated by the characteristics of the particular degradable material utilized, the degradable material undergoes an irreversible degradation. This degradation, in effect, causes the degradable material to substantially be removed from the filter cake. As a result, voids are created in the filter cake. Removal of the degradable material from the filter cake allows produced fluids to flow more freely.
Generally, the bridging agent comprising the degradable material is present in the well drill-in and servicing fluid in an amount sufficient to create an efficient filter cake. As referred to herein, the term “efficient filter cake” will be understood to mean a filter cake comprising no material beyond that required to provide a desired level of fluid loss control. In certain embodiments, the bridging agent comprising the degradable material is present in the well drill-in and servicing fluid in an amount ranging from about 0.1% to about 32% by weight. In certain preferred embodiments, the bridging agent comprising the degradable material is present in the well drill-in and servicing fluid in the range of from about 3% and about 10% by weight. In certain preferred embodiments, the bridging agent is present in the well drill-in and servicing fluids in an amount sufficient to provide a fluid loss of less than about 15 mL in tests conducted according to the procedures set forth by API Recommended Practice (RP) 13. One of ordinary skill in the art with the benefit of this disclosure will recognize an optimum concentration of degradable material that provides desirable values in terms of enhanced ease of removal of the filter cake at the desired time without undermining the stability of the filter cake during its period of intended use.
Nonlimiting examples of suitable degradable materials that may be used in conjunction with the present invention include but are not limited to degradable polymers, dehydrated compounds, and/or mixtures of the two. In choosing the appropriate degradable material, one should consider the degradation products that will result. Also, these degradation products should not adversely affect other operations or components. For example, a boric acid derivative may not be included as a degradable material in the well drill-in and servicing fluids of the present invention where such fluids utilize xanthan as the viscosifier, because boric acid and xanthan are generally incompatible. One of ordinary skill in the art, with the benefit of this disclosure, will be able to recognize when potential components of the well drill-in and servicing fluids of the present invention would be incompatible or would produce degradation products that would adversely affect other operations or components.
As for degradable polymers, a polymer is considered to be “degradable” herein if the degradation is due to, inter alia, chemical and/or radical process such as hydrolysis, oxidation, enzymatic degradation, or UV radiation. The degradability of a polymer depends at least in part on its backbone structure. For instance, the presence of hydrolyzable and/or oxidizable linkages in the backbone often yields a material that will degrade as described herein. The rates at which such polymers degrade are dependent on the type of repetitive unit, composition, sequence, length, molecular geometry, molecular weight, morphology (e.g., crystallinity, size of spherulites, and orientation), hydrophilicity, hydrophobicity, surface area, and additives. Also, the environment to which the polymer is subjected may affect how the polymer degrades, e.g., temperature, presence of moisture, oxygen, microorganisms, enzymes, pH, and the like.
Suitable examples of degradable polymers that may be used in accordance with the present invention include but are not limited to those described in the publication of Advances in Polymer Science, Vol. 157 entitled “Degradable Aliphatic Polyesters” edited by A. C. Albertsson. Specific examples include homopolymers, random, block, graft, and star- and hyper-branched aliphatic polyesters. Such suitable polymers may be prepared by polycondensation reactions, ring-opening polymerizations, free radical polymerizations, anionic polymerizations, carbocationic polymerizations, and coordinative ring-opening polymerization for, e.g., lactones, and any other suitable process. Specific examples of suitable polymers include polysaccharides such as dextran or cellulose; chitin; chitosan; proteins; orthoesters; aliphatic polyesters; poly(lactide); poly(glycolide); poly(ε-caprolactone); poly(hydroxybutyrate); poly(anhydrides); aliphatic polycarbonates; poly(orthoesters); poly(amino acids); poly(ethylene oxide); and polyphosphazenes. Of these suitable polymers, aliphatic polyesters and polyanhydrides are preferred.
Aliphatic polyesters degrade chemically, inter alia, by hydrolytic cleavage. Hydrolysis can be catalyzed by either acids or bases. Generally, during the hydrolysis, carboxylic end groups are formed during chain scission, and this may enhance the rate of further hydrolysis. This mechanism is known in the art as “autocatalysis,” and is thought to make polymer matrices more bulk eroding.
Suitable aliphatic polyesters have the general formula of repeating units shown below:
where n is an integer between 75 and 10,000 and R is selected from the group consisting of hydrogen, alkyl, aryl, alkylaryl, acetyl, heteroatoms, and mixtures thereof. Of the suitable aliphatic polyesters, poly(lactide) is preferred. Poly(lactide) is synthesized either from lactic acid by a condensation reaction or more commonly by ring-opening polymerization of cyclic lactide monomer. Since both lactic acid and lactide can achieve the same repeating unit, the general term poly(lactic acid) as used herein refers to writ of formula I without any limitation as to how the polymer was made such as from lactides, lactic acid, or oligomers, and without reference to the degree of polymerization or level of plasticization.
The lactide monomer exists generally in three different forms: two stereoisomers L- and D-lactide and racemic D,L-lactide (meso-lactide). The oligomers of lactic acid, and oligomers of lactide are defined by the formula:
where m is an integer: 2≦m≦75. Preferably m is an integer: 2≦m≦10. These limits correspond to number average molecular weights below about 5,400 and below about 720, respectively. The chirality of the lactide units provides a means to adjust, inter alia, degradation rates, as well as physical and mechanical properties. Poly(L-lactide), for instance, is a semicrystalline polymer with a relatively slow hydrolysis rate. This could be desirable in applications of the present invention where a slower degradation of the degradable material is desired. Poly(D,L-lactide) may be a more amorphous polymer with a resultant faster hydrolysis rate. This may be suitable for other applications where a more rapid degradation may be appropriate. The stereoisomers of lactic acid may be used individually or combined in accordance with the present invention. Additionally, they may be copolymerized with, for example, glycolide or other monomers like ε-caprolactone, 1,5-dioxepan-2-one, trimethylene carbonate, or other suitable monomers to obtain polymers with different properties or degradation times. Additionally, the lactic acid stereoisomers can be modified by blending high and low molecular weight polylactide or by blending polylactide with other polyesters.
Plasticizers may be present in the polymeric degradable materials of the present invention. The plasticizers may be present in an amount sufficient to provide the desired characteristics, for example, (a) more effective compatibilization of the melt blend components, (b) improved processing characteristics during the blending and processing steps, and (c) control and regulation of the sensitivity and degradation of the polymer by moisture. Suitable plasticizers include but are not limited to derivatives of oligomeric lactic acid, selected from the group defined by the formula:
where R is a hydrogen, alkyl, aryl, alkylaryl, acetyl, heteroatom, or a mixture thereof and R is saturated, where R′ is a hydrogen, alkyl, aryl, alkylaryl, acetyl, heteroatom, or a mixture thereof and R′ is saturated, where R and R′cannot both be hydrogen, where q is an integer: 2≦q≦75; and mixtures thereof. Preferably q is an integer; 2≦q≦10. As used herein the term “derivatives of oligomeric lactic acid” includes derivatives of oligomeric lactide.
Aliphatic polyesters useful in the present invention may be prepared by substantially any of the conventionally known manufacturing methods such as those described in U.S. Pat. Nos. 6,323,307; 5,216,050; 4,387,769; 3,912,692; and 2,703,316, the relevant disclosures of which are incorporated herein by reference. In addition to the other qualities above, the plasticizers may enhance the degradation rate of the degradable polymeric materials.
Polyanhydrides are another type of particularly suitable degradable polymer useful in the present invention. Polyanhydride hydrolysis proceeds, inter alia, via free carboxylic acid chain-ends to yield carboxylic acids as final degradation products. The erosion time can be varied over a broad range of changes in the polymer backbone. Examples of suitable polyanhydrides include poly(adipic anhydride), poly(suberic anhydride), poly(sebacic anhydride), and poly(dodecanedioic anhydride). Other suitable examples include but are not limited to poly(maleic anhydride) and poly(benzoic anhydride).
The physical properties of degradable polymers depend on several factors such as the composition of the repeat units, flexibility of the chain, presence of polar groups, molecular mass, degree of branching, crystallinity, orientation, etc. For example, short chain branches reduce the degree of crystallinity of polymers while long chain branches lower the melt viscosity and impart, inter alia, elongational viscosity with tension-stiffening behavior. The properties of the material utilized can be further tailored by blending, and copolymerizing it with another polymer, or by changing the macromolecular architecture (e.g., hyper-branched polymers, star-shaped, or dendrimers, etc.). The properties of any such suitable degradable polymers (e.g., hydrophobicity, hydrophilicity, rate of degradation, etc.) can be tailored by introducing select functional groups along the polymer chains. For example, poly(phenyllactide) will degrade at about ⅕th of the rate of racemic poly(lactide) at a pH of 7.4 at 55° C. One of ordinary skill in the art with the benefit of this disclosure will be able to determine the appropriate functional groups to introduce to the polymer chains to achieve the desired physical properties of the degradable polymers.
Dehydrated compounds may be used in accordance with the present invention as a degradable material. A dehydrated compound is suitable for use in the present invention if it will degrade over time as it is rehydrated. For example, a particulate solid anhydrous borate material that degrades over time may be suitable. Specific examples of particulate solid anhydrous borate materials that may be used include but are not limited to anhydrous sodium tetraborate (also known as anhydrous borax), and anhydrous boric acid. These anhydrous borate materials are only slightly soluble in water. However, with time and heat in a subterranean environment, the anhydrous borate materials react with the surrounding aqueous fluid and are hydrated. The resulting hydrated borate materials are substantially soluble in water as compared to anhydrous borate materials and as a result degrade in the aqueous fluid. In some instances, the total time required for the anhydrous borate materials to degrade in an aqueous fluid is in the range of from about 8 hours to about 72 hours depending upon the temperature of the subterranean zone in which they are placed.
Blends of certain degradable materials may also be suitable. One example of a suitable blend of materials is a mixture of poly(lactic acid) and sodium borate where the mixing of an acid and base could result in a neutral solution where this is desirable. Another example would include a blend of poly(lactic acid) and boric oxide, a blend of calcium carbonate and poly(lactic) acid, a blend of magnesium oxide and poly(lactic) acid, and the like. In certain preferred embodiments, the degradable material is calcium carbonate plus poly(lactic) acid. Where a mixture including poly(lactic) acid is used, in certain preferred embodiments the poly(lactic) acid is present in the mixture in a stoichiometric amount, e.g., where a mixture of calcium carbonate and poly(lactic) acid is used, the mixture comprises two poly(lactic) acid units for each calcium carbonate unit. Other blends that undergo an irreversible degradation may also be suitable, if the products of the degradation do not undesirably interfere with either the conductivity of the filter cake or with the production of any of the fluids from the subterranean formation.
The choice of degradable material can depend, at least in part, on the conditions of the well, e.g., well bore temperature. For instance, lactides have been found to be suitable for lower temperature wells, including those within the range of about 60° F. to about 150° F., and polylactides have been found to be suitable for well bore temperatures above this range. Dehydrated salts may also be suitable for higher temperature wells.
Also, we have found that a preferable result is achieved if the degradable material degrades slowly over time as opposed to instantaneously. The slow degradation of the degradable material helps, inter alia, to maintain the stability of the filter cake.
The specific features of the degradable material may be modified so as to maintain the filter cake's filtering capability when the filter cake is intact while easing the removal of the filter cake when such removal becomes desirable. In certain embodiments, the degradable material has a particle size distribution in the range of from about 0.1 micron to about 1.0 millimeters. Whichever degradable material is utilized, the bridging agents may have any shape, including but not limited to particles having the physical shape of platelets, shavings, flakes, ribbons, rods, strips, spheroids, toroids, pellets, tablets, or any other physical shape. One of ordinary skill in the art with the benefit of this disclosure will recognize the specific degradable material and the preferred size and shape for a given application.
The filter cake formed by the well drill-in and servicing fluids of the present invention is removed after a desired amount of time by being contacted with a degrading agent. In certain embodiments, the degrading agent comprises water. The source of the degrading agent may be, inter alia, a well drill-in and servicing fluid, such as a gravel pack fluid or a completion brine, for instance. In certain embodiments, the source of the degrading agent may be the bridging agent itself. For example, the bridging agent may comprise a water-containing compound. Any compound containing releasable water may be used as the water-containing compound. As referred to herein, the term “releasable water” will be understood to mean water that may be released under desired downhole conditions, including, inter alia, temperature. In certain embodiments, the water-containing compound may be sodium acetate trihydrate, sodium borate decahydrate, sodium carbonate decahydrate, or the like. In certain preferred embodiments, the water-containing compound is sodium acetate trihydrate.
The filter cake formed by the well drill-in and servicing fluids of the present invention is a “self-degrading” filter cake. As referred to herein, the term “self-degrading filter cake” will be understood to mean a filter cake that may be removed without the need to circulate a separate “clean up” solution or “breaker” through the well bore, such clean up solution or breaker having no purpose other than to degrade the filter cake. Though the filter cakes formed by the well drill-in and servicing fluids of the present invention constitute “self-degrading” filter cakes, an operator may nevertheless occasionally elect to circulate a separate clean up solution through the well bore under certain circumstances, such as when the operator desires to hasten the rate of degradation of the filter cake. In certain embodiments, the bridging agents of the present invention are sufficiently acid-degradable as to be removed by such treatment.
An example of a method of the present invention comprises the steps of: placing a well drill-in and servicing fluid in a subterranean formation, the well drill-in and servicing fluid comprising a viscosifier, a fluid loss control additive, and a bridging agent comprising a degradable material; and forming a self-degrading filter cake comprising the bridging agent upon a surface within the formation whereby fluid loss to the formation through the self-degrading filter cake is reduced. Another example of a method of the present invention comprises a method of degrading a filter cake in a subterranean formation, the filter cake having been deposited therein by a well drill-in and servicing fluid comprising a bridging agent, comprising the step of utilizing a bridging agent comprising a degradable material.
Another example of a method of the present invention comprises a method of drilling an open hole in a subterranean formation, comprising the steps of: circulating through a drill pipe and drill bit a well drill-in and servicing fluid comprising a viscosified fluid, a fluid loss control additive, and a bridging agent comprising a degradable material; forming a filter cake comprising the bridging agent upon a surface within the formation; and permitting the filter cake to degrade.
An example of a well drill-in and servicing fluid of the present invention comprises a viscosified fluid, a fluid loss control additive, and a bridging agent comprising a degradable material.
To facilitate a better understanding of the present invention, the following examples of exemplary embodiments are given. In no way should such examples be read to limit the scope of the invention.
A dynamic filtration test was conducted, in a Fann Model 90B dynamic filtration tester, in which seven embodiments of filter cakes of the present invention were constructed. For each of the seven embodiments, a sample composition was formulated comprising 336 mL of a 10% aqueous solution of sodium chloride by weight, to which 0.85 grams of clarified liquid xanthan biopolymer, 7.4 grams of a non-ionic starch derivative, 20 grams of powdered polylactic acid, and 30 grams of calcium carbonate were added. This sample composition was then hot rolled for 16 hours at 150° F.
The dynamic filtration test comprised constructing filter cakes on the inner diameter of a synthetic core comprising “ALOXIT™” having a 35 micron pore throat size. The filter cakes were constructed by continuously shearing each sample composition inside the core for an hour while applying a differential pressure of 500 psid, during which time the filter cake formed on the core's inner diameter. The porous nature of the core provides the potential for fluid to leak outward in a radial direction, with the filtrate rate and volume being dependent on the integrity of the filter cake deposited on the core. The volume of filtrate for a particular sample composition was collected and recorded with time. The test concluded after 60 minutes. The results are depicted in Table 1 below, and in
The above example demonstrates, inter alia, that the well drill-in and servicing fluids of the present invention may be used to provide filter cakes having acceptable filtration leak off, as well as that the integrity of such filter cakes is generally repeatable over a series of tests.
The seven sample filter cakes prepared in Example 1 were then each subjected to a break test, in which a 10% aqueous solution of sodium chloride by weight was injected into the core at 50 psi differential pressure. Break tests for Sample Compositions 1, 2, 4, and 6 were conducted at 200° F., while break tests for Sample Compositions 3, 5 and 7 were performed at 180° F. As the sodium chloride solution began to break down each filter cake, the amount of filtrate (e.g., the amount of broken filter cake) was collected and measured. The break test continued until such time as the maximum filtrate volume (50 mL) of a particular sample was collected in the Model 90B dynamic filtration tester. The results are illustrated in Table 2 below and in
The above example illustrates, inter alia, that exemplary embodiments of filter cakes formed from the well drill-in and treatment fluids of the present invention are degradable.
Therefore, the present invention is well adapted to carry out the objects and attain the ends and advantages mentioned as well as those that are inherent therein. While numerous changes may be made by those skilled in the art, such changes are encompassed within the spirit of this invention as defined by the appended claims.
Number | Name | Date | Kind |
---|---|---|---|
2238671 | Woodhouse | Apr 1941 | A |
2703316 | Palmer | Mar 1955 | A |
3173484 | Huitt et al. | Mar 1965 | A |
3195635 | Fast | Jul 1965 | A |
3272650 | MacVittie | Sep 1966 | A |
3302719 | Fischer | Feb 1967 | A |
3364995 | Atkins et al. | Jan 1968 | A |
3366178 | Malone et al. | Jan 1968 | A |
3455390 | Gallus | Jul 1969 | A |
3784585 | Schmitt et al. | Jan 1974 | A |
3819525 | Hattenbrun | Jun 1974 | A |
3828854 | Templeton et al. | Aug 1974 | A |
3836465 | Rhudy et al. | Sep 1974 | A |
3868998 | Lybarger et al. | Mar 1975 | A |
3912692 | Casey et al. | Oct 1975 | A |
3948672 | Harnsberger | Apr 1976 | A |
3955993 | Curtice | May 1976 | A |
3960736 | Free et al. | Jun 1976 | A |
3968840 | Tate | Jul 1976 | A |
3986355 | Klaeger | Oct 1976 | A |
3998272 | Maly | Dec 1976 | A |
3998744 | Arnold et al. | Dec 1976 | A |
4010071 | Colegrove | Mar 1977 | A |
4068718 | Cooke, Jr. et al. | Jan 1978 | A |
4169798 | DeMartino | Oct 1979 | A |
4172066 | Zweigle et al. | Oct 1979 | A |
4261421 | Watanabe | Apr 1981 | A |
4265673 | Pace et al. | May 1981 | A |
4299825 | Lee | Nov 1981 | A |
4387769 | Erbstoesser et al. | Jun 1983 | A |
4460052 | Gockel | Jul 1984 | A |
4470915 | Conway | Sep 1984 | A |
4498995 | Gockel | Feb 1985 | A |
4502540 | Byham | Mar 1985 | A |
4506734 | Nolte | Mar 1985 | A |
4521316 | Sikorski | Jun 1985 | A |
4526695 | Erbstoesser et al. | Jul 1985 | A |
4632876 | Laird et al. | Dec 1986 | A |
4694905 | Armbruster | Sep 1987 | A |
4715967 | Bellis | Dec 1987 | A |
4716964 | Erbstoesser et al. | Jan 1988 | A |
4767706 | Levesque | Aug 1988 | A |
4772346 | Anderson et al. | Sep 1988 | A |
4785884 | Armbruster | Nov 1988 | A |
4793416 | Mitchell | Dec 1988 | A |
4797262 | Dewitz | Jan 1989 | A |
4809783 | Hollenbeck et al. | Mar 1989 | A |
4817721 | Pober | Apr 1989 | A |
4822500 | Dobson et al. | Apr 1989 | A |
4829100 | Murphey et al. | May 1989 | A |
4836940 | Alexander | Jun 1989 | A |
4843118 | Lai et al. | Jun 1989 | A |
4848467 | Cantu et al. | Jul 1989 | A |
4863980 | Cowan et al. | Sep 1989 | A |
4886354 | Welch et al. | Dec 1989 | A |
4894231 | Moreau et al. | Jan 1990 | A |
4957165 | Cantu et al. | Sep 1990 | A |
4961466 | Himes et al. | Oct 1990 | A |
4986353 | Clark et al. | Jan 1991 | A |
4986354 | Cantu et al. | Jan 1991 | A |
4986355 | Casad et al. | Jan 1991 | A |
5034139 | Reid et al. | Jul 1991 | A |
5082056 | Tackett, Jr. | Jan 1992 | A |
5142023 | Gruber et al. | Aug 1992 | A |
5152781 | Tang et al. | Oct 1992 | A |
5161615 | Hutchins et al. | Nov 1992 | A |
5203834 | Hutchins et al. | Apr 1993 | A |
5213446 | Dovan | May 1993 | A |
5216050 | Sinclair | Jun 1993 | A |
5247059 | Gruber et al. | Sep 1993 | A |
5249628 | Surjaatmadja | Oct 1993 | A |
5251697 | Shuler | Oct 1993 | A |
5295542 | Cole et al. | Mar 1994 | A |
5304620 | Holtmyer et al. | Apr 1994 | A |
5314031 | Hale et al. | May 1994 | A |
5325923 | Surjaatmadja et al. | Jul 1994 | A |
5330005 | Card et al. | Jul 1994 | A |
5359026 | Gruber | Oct 1994 | A |
5360068 | Sprunt et al. | Nov 1994 | A |
5363916 | Himes et al. | Nov 1994 | A |
5373901 | Norman et al. | Dec 1994 | A |
5386874 | Laramay et al. | Feb 1995 | A |
5396957 | Surjaatmadja et al. | Mar 1995 | A |
5402846 | Jennings, Jr. et al. | Apr 1995 | A |
5439055 | Card et al. | Aug 1995 | A |
5460226 | Lawson et al. | Oct 1995 | A |
5464060 | Hale et al. | Nov 1995 | A |
5475080 | Gruber et al. | Dec 1995 | A |
5484881 | Gruber et al. | Jan 1996 | A |
5487897 | Polson et al. | Jan 1996 | A |
5492177 | Yeh et al. | Feb 1996 | A |
5496557 | Feijen et al. | Mar 1996 | A |
5497830 | Boles et al. | Mar 1996 | A |
5499678 | Surjaatmadja et al. | Mar 1996 | A |
5501276 | Weaver et al. | Mar 1996 | A |
5505787 | Yamaguchi | Apr 1996 | A |
5512071 | Yam et al. | Apr 1996 | A |
5536807 | Gruber et al. | Jul 1996 | A |
5555936 | Pirri et al. | Sep 1996 | A |
5591700 | Harris et al. | Jan 1997 | A |
5594095 | Gruber et al. | Jan 1997 | A |
5602083 | Gabrysch et al. | Feb 1997 | A |
5604186 | Hunt et al. | Feb 1997 | A |
5607905 | Dobson, Jr. et al. | Mar 1997 | A |
5613558 | Dillenbeck | Mar 1997 | A |
5670473 | Scepanski | Sep 1997 | A |
5697440 | Weaver et al. | Dec 1997 | A |
5698322 | Tsai et al. | Dec 1997 | A |
5723416 | Liao | Mar 1998 | A |
5765642 | Surjaatmadja | Jun 1998 | A |
5783527 | Dobson et al. | Jul 1998 | A |
5791415 | Nguyen et al. | Aug 1998 | A |
5799734 | Norman et al. | Sep 1998 | A |
5833000 | Weaver et al. | Nov 1998 | A |
5849401 | El-Afandi et al. | Dec 1998 | A |
5853048 | Weaver et al. | Dec 1998 | A |
5888944 | Patel | Mar 1999 | A |
5893416 | Read | Apr 1999 | A |
5908073 | Nguyen et al. | Jun 1999 | A |
5916849 | House | Jun 1999 | A |
5924488 | Nguyen et al. | Jul 1999 | A |
5964291 | Bourne et al. | Oct 1999 | A |
5977030 | House | Nov 1999 | A |
5979557 | Card et al. | Nov 1999 | A |
5981447 | Chang et al. | Nov 1999 | A |
5996693 | Heathman | Dec 1999 | A |
6004400 | Bishop et al. | Dec 1999 | A |
6024170 | McCabe et al. | Feb 2000 | A |
6028113 | Scepanski | Feb 2000 | A |
6047772 | Weaver et al. | Apr 2000 | A |
6110875 | Tjon-Joe-Pin et al. | Aug 2000 | A |
6114410 | Betzold | Sep 2000 | A |
6123159 | Brookey et al. | Sep 2000 | A |
6123965 | Jacob et al. | Sep 2000 | A |
6131661 | Conner et al. | Oct 2000 | A |
6135987 | Tsai et al. | Oct 2000 | A |
6143698 | Murphey et al. | Nov 2000 | A |
6148917 | Brookey et al. | Nov 2000 | A |
6162766 | Muir et al. | Dec 2000 | A |
6169058 | Le et al. | Jan 2001 | B1 |
6172011 | Card et al. | Jan 2001 | B1 |
6189615 | Sydansk | Feb 2001 | B1 |
6202751 | Chatterji et al. | Mar 2001 | B1 |
6209643 | Nguyen et al. | Apr 2001 | B1 |
6209646 | Reddy et al. | Apr 2001 | B1 |
6214773 | Harris et al. | Apr 2001 | B1 |
6242390 | Mitchell et al. | Jun 2001 | B1 |
6258755 | House et al. | Jul 2001 | B1 |
6260622 | Blok et al. | Jul 2001 | B1 |
6291013 | Gibson et al. | Sep 2001 | B1 |
6300286 | Dobson et al. | Oct 2001 | B1 |
6302209 | Thompson et al. | Oct 2001 | B1 |
6308788 | Patel et al. | Oct 2001 | B1 |
6311773 | Todd et al. | Nov 2001 | B1 |
6323307 | Bigg et al. | Nov 2001 | B1 |
6326458 | Gruber et al. | Dec 2001 | B1 |
6328105 | Betzold | Dec 2001 | B1 |
6330917 | Chatterji et al. | Dec 2001 | B2 |
6357527 | Norman et al. | Mar 2002 | B1 |
6364945 | Chatterji et al. | Apr 2002 | B1 |
6380138 | Ischy et al. | Apr 2002 | B1 |
6387986 | Moradi-Araghi et al. | May 2002 | B1 |
6390195 | Nguyen et al. | May 2002 | B1 |
6394185 | Constien | May 2002 | B1 |
6422314 | Todd et al. | Jul 2002 | B1 |
6422326 | Brookey et al. | Jul 2002 | B1 |
6432155 | Swazey et al. | Aug 2002 | B1 |
6454003 | Chang et al. | Sep 2002 | B1 |
6485947 | Rajgarhia et al. | Nov 2002 | B1 |
6488763 | Brothers et al. | Dec 2002 | B2 |
6494263 | Todd | Dec 2002 | B2 |
6508305 | Brannon et al. | Jan 2003 | B1 |
6509301 | Vollmer et al. | Jan 2003 | B1 |
6527051 | Reddy et al. | Mar 2003 | B1 |
6554071 | Reddy et al. | Apr 2003 | B1 |
6566310 | Chan | May 2003 | B2 |
6569814 | Brady et al. | May 2003 | B1 |
6578630 | Simpson et al. | Jun 2003 | B2 |
6586372 | Bradbury et al. | Jul 2003 | B1 |
6599863 | Palmer et al. | Jul 2003 | B1 |
6667279 | Hessert et al. | Dec 2003 | B1 |
6669771 | Tokiwa et al. | Dec 2003 | B2 |
6681856 | Chatterji et al. | Jan 2004 | B1 |
6686328 | Binder | Feb 2004 | B1 |
6691780 | Nguyen et al. | Feb 2004 | B2 |
6702023 | Harris et al. | Mar 2004 | B1 |
6702044 | Reddy et al. | Mar 2004 | B2 |
6710019 | Sawdon et al. | Mar 2004 | B1 |
6716797 | Brookey | Apr 2004 | B2 |
6737385 | Todd et al. | May 2004 | B2 |
6761218 | Nguyen et al. | Jul 2004 | B2 |
6763888 | Harris et al. | Jul 2004 | B1 |
6764981 | Eoff et al. | Jul 2004 | B1 |
6793018 | Dawson et al. | Sep 2004 | B2 |
6793730 | Reddy et al. | Sep 2004 | B2 |
6806235 | Mueller et al. | Oct 2004 | B1 |
6817414 | Lee | Nov 2004 | B2 |
6818594 | Freeman et al. | Nov 2004 | B1 |
6837309 | Boney et al. | Jan 2005 | B2 |
6883608 | Parlar et al. | Apr 2005 | B2 |
6896058 | Munoz, Jr. et al. | May 2005 | B2 |
6904971 | Brothers et al. | Jun 2005 | B2 |
6949491 | Cooke, Jr. | Sep 2005 | B2 |
6959767 | Horton et al. | Nov 2005 | B2 |
6978838 | Parlar et al. | Dec 2005 | B2 |
6981552 | Reddy et al. | Jan 2006 | B2 |
6983798 | Todd | Jan 2006 | B2 |
6987083 | Phillippi et al. | Jan 2006 | B2 |
6997259 | Nguyen | Feb 2006 | B2 |
7021377 | Todd et al. | Apr 2006 | B2 |
7032663 | Nguyen | Apr 2006 | B2 |
7033976 | Guzman | Apr 2006 | B2 |
7036586 | Roddy et al. | May 2006 | B2 |
7036587 | Munoz, Jr. et al. | May 2006 | B2 |
7044220 | Nguyen et al. | May 2006 | B2 |
7044224 | Nguyen | May 2006 | B2 |
7063151 | Nguyen et al. | Jun 2006 | B2 |
7066258 | Justus et al. | Jun 2006 | B2 |
7069994 | Cooke, Jr. | Jul 2006 | B2 |
7080688 | Todd et al. | Jul 2006 | B2 |
7093664 | Todd et al. | Aug 2006 | B2 |
7096947 | Todd et al. | Aug 2006 | B2 |
7131491 | Blauch et al. | Nov 2006 | B2 |
7140438 | Frost et al. | Nov 2006 | B2 |
7151077 | Prud'homme et al. | Dec 2006 | B2 |
7156174 | Roddy et al. | Jan 2007 | B2 |
7165617 | Lord et al. | Jan 2007 | B2 |
7168489 | Frost et al. | Jan 2007 | B2 |
7172022 | Reddy et al. | Feb 2007 | B2 |
7178596 | Blauch et al. | Feb 2007 | B2 |
7195068 | Todd | Mar 2007 | B2 |
7204312 | Roddy et al. | Apr 2007 | B2 |
7219731 | Sullivan | May 2007 | B2 |
7228904 | Todd et al. | Jun 2007 | B2 |
7261156 | Nguyen et al. | Aug 2007 | B2 |
7264051 | Nguyen et al. | Sep 2007 | B2 |
7267170 | Mang et al. | Sep 2007 | B2 |
7299876 | Lord et al. | Nov 2007 | B2 |
7306037 | Nguyen et al. | Dec 2007 | B2 |
7353876 | Savery et al. | Apr 2008 | B2 |
7353879 | Todd et al. | Apr 2008 | B2 |
7413017 | Nguyen et al. | Aug 2008 | B2 |
7448450 | Luke et al. | Nov 2008 | B2 |
7455112 | Moorehead et al. | Nov 2008 | B2 |
7461697 | Todd et al. | Dec 2008 | B2 |
7475728 | Pauls et al. | Jan 2009 | B2 |
7484564 | Welton et al. | Feb 2009 | B2 |
7497258 | Savery et al. | Mar 2009 | B2 |
7497278 | Schriener et al. | Mar 2009 | B2 |
7506689 | Surjaatmadja et al. | Mar 2009 | B2 |
7547665 | Welton et al. | Jun 2009 | B2 |
7553800 | Munoz, Jr. | Jun 2009 | B2 |
7595280 | Welton et al. | Sep 2009 | B2 |
7598208 | Todd | Oct 2009 | B2 |
7608566 | Saini et al. | Oct 2009 | B2 |
7608567 | Saini | Oct 2009 | B2 |
7648946 | Munoz, Jr. | Jan 2010 | B2 |
20010016562 | Muir et al. | Aug 2001 | A1 |
20020036088 | Todd | Mar 2002 | A1 |
20020119169 | Angel et al. | Aug 2002 | A1 |
20020125012 | Dawson et al. | Sep 2002 | A1 |
20030054962 | England et al. | Mar 2003 | A1 |
20030060374 | Cooke, Jr. | Mar 2003 | A1 |
20030114314 | Ballard et al. | Jun 2003 | A1 |
20030130133 | Vallmer | Jul 2003 | A1 |
20030147965 | Bassett et al. | Aug 2003 | A1 |
20030188766 | Banerjee et al. | Oct 2003 | A1 |
20030230407 | Vijn et al. | Dec 2003 | A1 |
20030234103 | Lee et al. | Dec 2003 | A1 |
20040014606 | Parlar et al. | Jan 2004 | A1 |
20040014607 | Sinclair et al. | Jan 2004 | A1 |
20040040706 | Hossaini et al. | Mar 2004 | A1 |
20040055747 | Lee | Mar 2004 | A1 |
20040070093 | Mathiowitz et al. | Apr 2004 | A1 |
20040094300 | Sullivan et al. | May 2004 | A1 |
20040099416 | Vijn et al. | May 2004 | A1 |
20040106525 | Willbert et al. | Jun 2004 | A1 |
20040138068 | Rimmer et al. | Jul 2004 | A1 |
20040152601 | Still et al. | Aug 2004 | A1 |
20040152602 | Boles | Aug 2004 | A1 |
20040162386 | Altes et al. | Aug 2004 | A1 |
20040170836 | Bond et al. | Sep 2004 | A1 |
20040214724 | Todd et al. | Oct 2004 | A1 |
20040216876 | Lee | Nov 2004 | A1 |
20040231845 | Cooke, Jr. | Nov 2004 | A1 |
20040261993 | Nguyen | Dec 2004 | A1 |
20040261995 | Nguyen et al. | Dec 2004 | A1 |
20040261996 | Munoz, Jr. et al. | Dec 2004 | A1 |
20040261999 | Nguyen | Dec 2004 | A1 |
20050006095 | Justus et al. | Jan 2005 | A1 |
20050028976 | Nguyen | Feb 2005 | A1 |
20050034861 | Saini et al. | Feb 2005 | A1 |
20050034865 | Todd et al. | Feb 2005 | A1 |
20050059556 | Munoz, Jr. et al. | Mar 2005 | A1 |
20050059557 | Todd et al. | Mar 2005 | A1 |
20050059558 | Blauch et al. | Mar 2005 | A1 |
20050103496 | Todd et al. | May 2005 | A1 |
20050126785 | Todd | Jun 2005 | A1 |
20050130848 | Todd et al. | Jun 2005 | A1 |
20050183741 | Surjaatmadja et al. | Aug 2005 | A1 |
20050205266 | Todd et al. | Sep 2005 | A1 |
20050252659 | Sullivan et al. | Nov 2005 | A1 |
20050272613 | Cooke, Jr. | Dec 2005 | A1 |
20050277554 | Blauch et al. | Dec 2005 | A1 |
20060016596 | Pauls et al. | Jan 2006 | A1 |
20060032633 | Nguyen | Feb 2006 | A1 |
20060046938 | Harris et al. | Mar 2006 | A1 |
20060048938 | Kalman | Mar 2006 | A1 |
20060065397 | Nguyen et al. | Mar 2006 | A1 |
20060105917 | Munoz, Jr. | May 2006 | A1 |
20060105918 | Munoz, Jr. et al. | May 2006 | A1 |
20060169182 | Todd et al. | Aug 2006 | A1 |
20060169448 | Savery et al. | Aug 2006 | A1 |
20060169450 | Mang et al. | Aug 2006 | A1 |
20060169452 | Savery et al. | Aug 2006 | A1 |
20060169453 | Savery et al. | Aug 2006 | A1 |
20060172893 | Todd et al. | Aug 2006 | A1 |
20060172894 | Mang et al. | Aug 2006 | A1 |
20060172895 | Mang et al. | Aug 2006 | A1 |
20060185847 | Saini et al. | Aug 2006 | A1 |
20060185848 | Surjaatmadja et al. | Aug 2006 | A1 |
20060205608 | Todd | Sep 2006 | A1 |
20060243449 | Welton et al. | Nov 2006 | A1 |
20060247135 | Welton et al. | Nov 2006 | A1 |
20060254774 | Saini et al. | Nov 2006 | A1 |
20060258543 | Saini | Nov 2006 | A1 |
20060258544 | Saini | Nov 2006 | A1 |
20060276345 | Todd et al. | Dec 2006 | A1 |
20060283597 | Schriener et al. | Dec 2006 | A1 |
20070042912 | Welton et al. | Feb 2007 | A1 |
20070049501 | Saini et al. | Mar 2007 | A1 |
20070066492 | Funkhouser et al. | Mar 2007 | A1 |
20070066493 | Funkhouser et al. | Mar 2007 | A1 |
20070078063 | Munoz, Jr. | Apr 2007 | A1 |
20070078064 | Munoz et al. | Apr 2007 | A1 |
20070235190 | Lord et al. | Oct 2007 | A1 |
20070238623 | Saini et al. | Oct 2007 | A1 |
20070281868 | Pauls et al. | Dec 2007 | A1 |
20080026955 | Munoz et al. | Jan 2008 | A1 |
20080026959 | Munoz et al. | Jan 2008 | A1 |
20080026960 | Munoz et al. | Jan 2008 | A1 |
20080027157 | Munoz et al. | Jan 2008 | A1 |
20080070810 | Mang | Mar 2008 | A1 |
20080139415 | Todd et al. | Jun 2008 | A1 |
20080169102 | Carbajal et al. | Jul 2008 | A1 |
20090062157 | Munoz et al. | Mar 2009 | A1 |
20090258798 | Munoz | Oct 2009 | A1 |
Number | Date | Country |
---|---|---|
0 510 762 | Apr 1992 | EP |
0 879 935 | Nov 1998 | EP |
0 879 935 | Oct 1999 | EP |
1 413 710 | Apr 2004 | EP |
2004181820 | Jul 2004 | JP |
WO 9315127 | Aug 1993 | WO |
WO 9315127 | Aug 1993 | WO |
WO 9407949 | Apr 1994 | WO |
WO 9407949 | Apr 1994 | WO |
WO 9408078 | Apr 1994 | WO |
WO 9408078 | Apr 1994 | WO |
WO 9408090 | Apr 1994 | WO |
WO 9408090 | Apr 1994 | WO |
WO 9509879 | Apr 1995 | WO |
WO 9509879 | Apr 1995 | WO |
WO 9711845 | Apr 1997 | WO |
WO 9711845 | Apr 1997 | WO |
WO 9927229 | Jun 1999 | WO |
WO 0057022 | Sep 2000 | WO |
WO 0102698 | Jan 2001 | WO |
WO 0187797 | Nov 2001 | WO |
WO 0194744 | Dec 2001 | WO |
WO 0255843 | Jan 2002 | WO |
WO 0212674 | Feb 2002 | WO |
WO 03027431 | Apr 2003 | WO |
WO 03027431 | Apr 2003 | WO |
WO 2004007905 | Jan 2004 | WO |
WO 2004037946 | May 2004 | WO |
WO 2004038176 | May 2004 | WO |
Number | Date | Country | |
---|---|---|---|
20050059557 A1 | Mar 2005 | US |