Surgical clip applier

Information

  • Patent Grant
  • 10758234
  • Patent Number
    10,758,234
  • Date Filed
    Tuesday, May 22, 2018
    7 years ago
  • Date Issued
    Tuesday, September 1, 2020
    5 years ago
Abstract
A surgical clip applier is provided including a housing; at least one handle pivotably connected to the housing; a channel assembly extending distally from the housing; a plurality of clips loaded in the clip carrier; a drive channel translatably supported in the housing and the channel assembly, the drive channel being translated upon actuation of the at least one handle; and a counter mechanism supported in the housing, the counter mechanism including indicia visible through the housing, wherein the indicia corresponds to a quantity of clips loaded in the clip applier, wherein the indicia decrements upon each firing of the clip applier resulting in a reduction in the quantity of clips remaining of the plurality of clips.
Description
BACKGROUND
1. Technical Field

The present application relates to surgical instruments, and more particularly, to surgical clip appliers having a plurality of clips for applying the clips to body tissues and vessels during surgical procedures.


2. Discussion of Related Art

Surgical clip appliers are known in the art and have increased in popularity among surgeons by offering an alternative to conventional suturing of body tissues and vessels. Typical instruments are disclosed in U.S. Pat. No. 5,030,226 to Green et al. and U.S. Pat. No. 5,431,668 to Burbank, III et al. These instruments generally provide a plurality of clips which are stored in the instrument and which are fed sequentially to the jaw mechanism at the distal end of the instrument upon opening and closing of the handles at the proximal end of the instrument. As the handles are closed, the jaws close to deform a clip positioned between the jaw members, and as the jaws are opened to release the deformed clip, a new clip is fed from the series to a position between the jaws. This process is repeated until all the clips in the series of clips have been used.


A need exists for a user of the clip applier to know how many clips remain in the clip applier and/or to know when a final clip of the plurality of clips has been fired.


SUMMARY

The present application relates to surgical clip appliers having a plurality of clips for applying the clips to body tissues and vessels during surgical procedures and their methods of use.


According to an aspect of the present disclosure, a surgical clip applier is provided including a housing; at least one handle pivotably connected to the housing; a channel assembly extending distally from the housing; a plurality of clips loaded in the clip carrier; a drive channel translatably supported in the housing and the channel assembly, the drive channel being translated upon actuation of the at least one handle; and a counter mechanism supported in the housing, the counter mechanism including indicia visible through the housing, wherein the indicia corresponds to a quantity of clips loaded in the clip applier, wherein the indicia decrements upon each firing of the clip applier resulting in a reduction in the quantity of clips remaining of the plurality of clips.


The counter mechanism may be rotatably supported in the housing and may include a uni-directional clutch member permitting rotation of the counter mechanism in a single direction. The counter mechanism may include a counter dial rotatably supported in the housing, wherein the counter dial includes the indicia thereof; and a counter clutch operatively connected to the counter dial such that rotation of the counter clutch in a first direction results in rotation of the counter dial in the first direction, and rotation of the counter clutch in second direction results in no rotation of the counter dial.


The counter mechanism may include a latch member operatively engaged with the counter dial. In use, the latch member permits rotation of the counter dial in the first direction and inhibits rotation of the counter mechanism in a direction opposite to the first direction.


The counter dial may include a plurality of grooves formed in an outer periphery thereof, and the latch member may include a resilient finger biased into engagement with the plurality of grooves of the counter dial.


The counter clutch may be concentrically, rotatably nested in a bore defined in the counter dial. The counter clutch may include at least one resilient finger extending therefrom for engagement with uni-directional teeth formed in a perimetrical surface of the bore of the counter dial.


The drive channel may define an angled slot therein, and the counter clutch may include a clutch pin extending from a surface thereof and may be slidably disposed in the angled slot of the drive channel. In use, translation of the drive channel in a first direction relative to the counter mechanism would cause the clutch pin to be cammed by the angled slot thereof thereby causing the counter clutch to rotate in the first direction, and translation of the drive channel in a second direction relative to the counter mechanism would cause the clutch pin to be cammed by the angled slot thereof thereby causing the counter clutch to rotate in the second direction.


The counter mechanism may include a latch member operatively engaged with the counter dial. In use, the latch member permits rotation of the counter dial in the first direction and inhibits rotation of the counter mechanism in a direction opposite to the first direction.


The counter mechanism may include a counter dial defining a lock out groove formed in an outer perimetrical edge thereof; and a lock out supported in the housing. The lock out may be biased such that a first catch thereof engages against the outer perimetrical edge of the counter dial. In use, as the counter dial is rotated and the lock out groove of the counter dial is brought into registration with the first catch of the lock out, the first catch of the lock out is urged into the lock out groove thereby preventing a rotation of the counter dial in an opposite direction.


The lock out may include a second catch. In use, the second catch of the lock out moves into a path of a translating member of the clip applier when the first catch of the lock out is moved into the lock out groove of the counter dial, thereby inhibiting a translation of the translating member of the clip applier.


The lock out groove of the counter dial may move into registration with the first catch of the lock out when a final clip of the plurality of clips has been fired. The lock out groove of the counter dial may be associated with an indicia on the counter mechanism indicating that the final clip has been fired. The indicia on the counter mechanism, indicating that the final clip of the plurality of clip has been fired, may be represented by the number “zero.”


The clip applier may further include a ratchet mechanism having a ratchet pawl pivotably supported in the housing; and a rack member provided on the translating member. The rack member may be in operative registration with the ratchet pawl. In use, the rack member translates across the ratchet pawl as the translating member translates. The ratchet mechanism may be prevented from re-setting when the rack member has not completed a fully translation.





BRIEF DESCRIPTION OF THE DRAWINGS

The present clip applier will be more fully appreciated as the same becomes better understood from the following detailed description when considered in connection with the following drawings, in which:



FIG. 1 is a perspective view of a surgical clip applier according to an embodiment of the present disclosure;



FIG. 2 is a top, plan view of the surgical clip applier of FIG. 1;



FIG. 3 is an enlarged view of the indicated area of detail of FIG. 2;



FIG. 4 is a perspective view of a mechanical counter assembly of the surgical clip applier of FIGS. 1 and 2;



FIG. 5 is an exploded perspective view of the surgical clip applier of FIGS. 1-4;



FIG. 6 is a perspective view of a handle assembly with a housing half-section removed therefrom and illustrating a counter of the mechanical counter assembly engaged with a drive channel;



FIG. 7 is a perspective view of a handle assembly with a housing half-section and drive channel removed therefrom and illustrating the counter of the mechanical counter assembly engaged with a ratchet;



FIG. 8 is an enlarged view of the indicated area of detail of FIG. 7;



FIG. 9 is a perspective view of a handle assembly with a housing half-section, the drive channel, and the ratchet removed therefrom;



FIG. 10 is a front, perspective view, with parts separated, of a counter and a clutch of the mechanical counter assembly;



FIG. 11 is a rear, perspective view, with parts separated, of the counter and the clutch of the mechanical counter assembly of FIG. 10;



FIG. 12 is a rear, perspective view of the counter and the clutch of the mechanical counter assembly of FIGS. 10 and 11;



FIG. 13 is a perspective view of a lock-out of the clip applier of FIGS. 1-4;



FIG. 14 is a top plan, schematic illustration of the mechanical counter assembly operatively connected to the drive channel when the clip applier is in an original unactuated position;



FIG. 14A is a side view of the mechanical counter assembly as viewed along 14A-14A of FIG. 14;



FIG. 14B is an enlarged view of the indicated area of detail of FIG. 14;



FIG. 14C is a cross-sectional view of the mechanical counter assembly as taken along 14C-14C of FIG. 14A;



FIG. 15 is a top plan, schematic illustration of the mechanical counter assembly operatively connected to the drive channel when the clip applier is initially actuated;



FIG. 15A is an enlarged view of the indicated area of detail of FIG. 15;



FIG. 15B is a cross-sectional view of the mechanical counter assembly as taken along 14C-14C of FIG. 14A, during the initial actuation of the clip applier;



FIG. 16 is a top plan, schematic illustration of the mechanical counter assembly operatively connected to the drive channel when the clip applier is fully actuated;



FIG. 16A is an enlarged view of the indicated area of detail of FIG. 16;



FIG. 16B is a cross-sectional view of the mechanical counter assembly as taken along 14C-14C of FIG. 14A, following the full actuation of the clip applier;



FIG. 17 is a top plan, schematic illustration of the mechanical counter assembly operatively connected to the drive channel when the clip applier is released after full actuation;



FIG. 17A is an enlarged view of the indicated area of detail of FIG. 17;



FIG. 17B is a cross-sectional view of the mechanical counter assembly as taken along 14C-14C of FIG. 14A, during a release of the clip applier following full actuation;



FIG. 18 is a cross-sectional view of the mechanical counter assembly as taken along 14C-14C of FIG. 14A, illustrating the mechanical counter assembly fully re-set;



FIG. 19 is a top, plan view of the mechanical counter assembly, illustrating the counter at a “zero” position and locked out;



FIG. 19A is a cross-sectional view of the mechanical counter assembly as taken along 14C-14C of FIG. 14A, illustrating the counter at a “zero” position and locked out; and



FIG. 19B is an enlarged view of the indicated area of detail of FIG. 19A.





DETAILED DESCRIPTION OF EMBODIMENTS

Embodiments of surgical clip appliers in accordance with the present disclosure will now be described in detail with reference to the drawing figures wherein like reference numerals identify similar or identical structural elements. As shown in the drawings and described throughout the following description, as is traditional when referring to relative positioning on a surgical instrument, the term “proximal” refers to the end of the apparatus which is closer to the user and the term “distal” refers to the end of the apparatus which is further away from the user.


Referring now to FIGS. 1-5, a surgical clip applier in accordance with an embodiment of the present disclosure is generally designated as 100. Surgical clip applier 100 generally includes a handle assembly 102 including a housing 104 having an upper housing half 104a and lower housing half 104b. Handle assembly 102 further includes a pair of handles 106 pivotably secured to housing 104 and extending outwardly therefrom. A channel assembly 108 is fixedly secured to housing 104 and extends outwardly therefrom, terminating in a jaw assembly 110.


As seen in FIGS. 1-5, housing halves 104a and 104b of clip applier 100 fit together by snap fit engagement with one another. Housing 104 defines a window 104c formed in lower housing half 104b for supporting and displaying a counter mechanism, as will be discussed in greater detail below.


As seen in FIG. 4, handles 106 are secured to housing 104 by handle pivot posts 104d extending from lower housing half 104b and into respective apertures 106a formed in handles 106. Handle assembly 102 includes a link member 122 pivotally connected to each handle 106 at a pivot point 106b formed in a respective handle 106. A distal end of each link member 122 is pivotally connected to a pivot point formed in a drive channel 140 via a drive pin 124. Each end of drive pin 124 is slidably received in an elongate channel formed in a respective upper and lower housing half 104a, 104b. In use, as will be described in greater detail below, as handles 106 are squeezed, link members 122 push drive channel 140 distally via drive pin 124.


Channel assembly 108 includes a channel or cartridge cover 130 and an outer or lower channel 132 each having a proximal end retained in housing assembly 102, between upper and lower housing halves 104a, 104b.


As seen in FIG. 5, clip applier 100 includes a clip pusher bar 160 slidably disposed beneath cartridge cover 130, a stabilizer 162 configured to overlie and engage pusher bar 160, a motion multiplier system 155 supported in housing 104, a clip carrier 170 disposed within channel assembly 108 and beneath pusher bar 160, a stack of surgical clips “C” loaded and/or retained within clip carrier 170 in a manner so as to slide therewithin and/or therealong, a clip follower 174 slidably disposed within clip carrier 170 and positioned behind the stack of surgical clips “C,” a wedge plate 180 slidably disposed within handle assembly 102 and channel assembly 108, a wedge plate pivot arm 179 pivotally supported in lower housing half 104b of housing 104 for transmitting translation of drive channel 140 to translation of wedge plate 180, a drive channel 140 reciprocally supported in and extending between housing 104 of handle assembly 102 and channel assembly 108, an audible/tactile indicator 148 connected to drive channel 140 via drive pin 124, and a jaw assembly 110 mounted on or at a distal end of channel assembly 108 and actuatable by handles 106 of handle assembly 102.


Reference may be made to U.S. Provisional Application No. 61/091,467, filed on Aug. 25, 2008, entitled “Surgical Clip Applier” and U.S. Provisional Application No. 61/091,485, filed on Aug. 25, 2008, entitled “Surgical Clip Applier and Method of Assembly,” the entire contents of each of which being incorporated herein by reference, for a detailed discussion of the structure, operation, and method of assembly of various components surgical clip applier 100. Reference may also be made to U.S. Provisional Application No. 61/286,569, filed on Dec. 15, 2009, entitled “Surgical Clip Applier”, the entire contents of which is incorporated herein by reference, for additional detailed discussion of the structure, operation, and method of assembly of various components of surgical clip applier 100.


As seen in FIGS. 1-12, clip applier 100 further includes a mechanical counter mechanism 190 supported in housing 104 of handle assembly 102. Counter mechanism 190 includes a counter dial 192 rotatably disposed within housing 104 so as to overlie window 104c formed in lower housing half 104b, a counter clutch 194 operatively connected to counter dial 192 and configured to permit uni-directional rotation of counter dial 192, and a latch member 196 configured to engage counter dial 192.


As seen in FIGS. 4-11, counter dial 192 includes a first face 192a disposed adjacent window 104c formed in lower housing half 104b. First face 192a includes a plurality of indicia 192b, in the form of sequential numbers disposed thereof and substantially around a radial periphery thereof. Indicia 192b may correspond to the number of clips that are loaded in clip applier 100. By way of example only, indicia 192b may be numerals from “0-22.” Indicia 192b are located on first face 192a so as to be in registration with window 104c formed in lower housing half 104b. Counter dial 192 includes a second face 192c, opposite first face 192b, and defining a bore 192d therein. Bore 192d includes a radial array of uni-directional teeth 192e formed therein. Counter dial 192 further includes a first or outer rim defining a plurality of grooves 192f formed around an outer periphery thereof, and a second or inner rim defining a single groove 192g formed in an outer periphery thereof.


With continued reference to FIGS. 4-11, counter clutch 194 is concentrically and rotatably nested in bore 192d of counter dial 192. Counter clutch 194 of mechanical counter mechanism 190 includes a body portion 194a configured and dimensioned for rotatable disposition in bore 192d of counter dial 192. Counter clutch 194 includes a pair of opposed resilient fingers 194b, 194c extending substantially tangentially from body portion 194a. Resilient fingers 194b, 194c extend from body portion 194a by an amount sufficient so as to resiliently engage uni-directional teeth 192e of dial 192. Counter clutch 194 includes a clutch pin 194d extending from body portion 194a and projecting out of bore 192d of counter dial 192.


As seen in FIGS. 4-9, latch member 196 of mechanical counter mechanism 190 is secured to lower housing half 104b. Latch member 196 includes a resilient finger 196a configured to contact and selectively engage grooves 192f formed around the outer periphery of counter dial 192.


As seen in FIGS. 5 and 6, drive channel 140 defines an angled slot 140a formed therein at a location so as to slidably receive clutch pin 194d extending from body portion 194a of counter clutch 194. Angled slot 140a of drive channel 140 extends in a direction away from a longitudinal axis of clip applier 100 from a proximal to a distal direction.


As seen in FIGS. 4, 5, 7 and 8, clip applier 100 includes a ratchet rack member 141 slidably disposed in lower housing half 104b. Rack member 141 is pinned to drive pin 124 such that translation of drive pin 124 relative to housing 104 results in concomitant translation of rack member 141. Rack member 141 is disposed in housing 104 such that clutch pin 194d of counter clutch 194 rides along or contacts a side edge 141b thereof. Rack member 141 includes ratchet teeth 141a formed along an edge thereof and are configured and adapted to engage with a ratchet pawl 142 supported in housing 104. Rack member 141 and pawl 142 define a ratchet mechanism 144.


In use, as drive channel 140 is moved axially by drive pin 124, rack member 141 is also moved. Rack teeth 141a of rack member 141 has a length which allows pawl 142 to reverse and advance back over rack member 141 when rack member 141 changes between proximal and distal movement as drive channel 140 reaches a proximal-most or distal-most position.


Pawl 142 is pivotally connected to lower housing half 104b by a pawl pin at a location wherein pawl 142 is in substantial operative engagement with rack member 141. Pawl 142 is engageable with rack member 141 to restrict longitudinal movement of rack member 141 and, in turn, drive channel 140. Ratchet mechanism 144 further includes a pawl spring 145 configured and positioned to bias pawl 142 into operative association with rack member 141. Pawl spring 145 functions to maintain the teeth of pawl 142 in engagement with the teeth 141a of rack member 141, as well as to maintain pawl 142 in a rotated or canted position.


As seen in FIGS. 4, 5, 7-9 and 13, clip applier 100 further includes a lock out 146 pivotally connected or supported in housing 104. Lock out 146 includes a body portion 146a, a first catch 146b formed at one and of body portion 146a, and a second catch 146c extending from a side edge of body portion 146a. First catch 146b is configured and dimensioned to engage groove 192g formed in the outer periphery of the inner rim of counter dial 192. Second catch 146c is configured and dimensioned to engage a notch 141c formed in a side edge of rack member 141. A biasing member 147 is provided to maintain first catch 146b of lock out 146 in contact with the outer periphery of the inner rim of counter dial 192.


Turning now to FIGS. 14-19B, the operation of clip applier 100 is provided. Prior to any initial squeezing of handles 106 of clip applier 100 and with clip applier 100 fully loaded with clips “C,” as seen in FIGS. 14-14C, drive channel 140 is located at a proximal-most position, indicia 192b of counter dial 192 of mechanical counter mechanism 190, relating to a fully loaded clip applier 100, in the present instance being fully loaded with twenty-two (22) clips, is visible through window 104c formed in housing half 104b. Accordingly, as seen in FIG. 14B, the numeral “22” is visible through window 104c. Also, as seen in FIG. 14B, resilient finger 196a of latch member 196 is engaged in a groove 192f formed around the outer periphery of counter dial 192.


As seen in FIG. 14C, prior to any squeezing of handles 106, clutch pin 194d of counter clutch 194 is disposed at a distal end of angled slot 140a of drive channel 140. Also, first catch 146b of lock out 146 is in contact with the outer periphery of the inner rim of counter dial 192 so that second catch 146c of lock out 146 is disengaged from rack member 141. Moreover, prior to any squeezing of handles 106, and when clip applier 100 is fully loaded with clips, groove 192g formed in the outer periphery of the inner rim of counter dial 192 is oriented distal of first catch 146b of lock out 146.


As seen in FIGS. 15-15B, during an initial squeeze of handles 106, as indicated by arrow “A1,” drive pin 124 translates drive channel 140 and rack member 141 in a distal direction, as indicated by arrow “B1.” As drive channel 140 is translated in a distal direction, angled slot 140a of drive channel 140 is moved in a distal direction relative to clutch pin 194d of counter clutch 194, clutch pin 194d is cammed through angled slot 140a of drive channel 140 causing counter clutch 194 to rotate in the direction of arrow “C1.” As counter clutch 194 is rotated in the direction of arrow “C1,” as seen in FIG. 15B, resilient fingers 194b, 194c thereof engage uni-directional teeth 192e of dial 192, thereby causing dial 192 to also rotate in the direction of arrow “C1.” Moreover, as dial 192 is rotated in the direction of arrow “C1,” groove 192g formed in the outer periphery of the inner rim of counter dial 192 is rotated away from first catch 146b of lock out 146 as first catch 146b continues to ride along the outer periphery of the inner rim of counter dial 192.


As dial 192 is rotated in the direction of arrow “C1,” as seen in FIG. 15A, indicia 192b of numeral “22” is moved relative to window 104c formed in housing half 104b, thereby beginning to decrement. Additionally, as dial 192 is rotated in the direction of arrow “C1,” resilient finger 196a of latch member 196 begins to disengage the groove 192f formed around the outer periphery of counter dial 192.


As seen in FIGS. 16-16B, during a final or complete squeeze of handles 106, as indicated by arrow “A1,” drive pin 124 further translates drive channel 140 and rack member 141 in a distal direction, as indicated by arrow “B1.” As drive channel 140 is further translated in a distal direction, angled slot 140a of drive channel 140 is further moved in a distal direction relative to clutch pin 194d of counter clutch 194, clutch pin 194d is further cammed through angled slot 140a of drive channel 140 causing counter clutch 194 to further rotate in the direction of arrow “C1.” As counter clutch 194 is further rotated in the direction of arrow “C1,” as seen in FIG. 16B, resilient fingers 194b, 194c continue to cause dial 192 to rotate in the direction of arrow “C1.” Moreover, as dial 192 is further rotated in the direction of arrow “C1,” groove 192g formed in the outer periphery of the inner rim of counter dial 192 is further rotated away from first catch 146b of lock out 146 as first catch 146b further continues to ride along the outer periphery of the inner rim of counter dial 192.


As dial 192 is further rotated in the direction of arrow “C1,” as seen in FIG. 16A, indicia 192b of numeral “22” is completely moved out of view of window 104c formed in housing half 104b and new numeral “21” is moved into view of window 104c, thereby fully being decremented. This change of numeral, or decrementing, coinciding with a formation and/or firing/ejection/release of a clip from clip applier 100. In this manner, the user is shown the number of clips remaining in clip applier 100 and available to fire. Additionally, as dial 192 is further rotated in the direction of arrow “C1,” resilient finger 196a of latch member 196 moves into engagement in a groove 192f′ adjacent to groove 192f formed around the outer periphery of counter dial 192.


Turning now to FIGS. 17-18, during an opening of handles 106, as indicated by arrow “A2,” drive pin 124 translates drive channel 140 and rack member 141 in a proximal direction, as indicated by arrow “B2.” As drive channel 140 is translated in a proximal direction, angled slot 140a of drive channel 140 is moved in a proximal direction relative to clutch pin 194d of counter clutch 194, clutch pin 194d is cammed through angled slot 140a of drive channel 140 causing counter clutch 194 to rotate in the direction of arrow “C2,” opposite to “C1.” As counter clutch 194 is rotated in the direction of arrow “C2,” as seen in FIG. 17B, resilient fingers 194b, 194c are caused to deflect and snap over uni-directional teeth 192e of dial 192. as seen from FIG. 17A, any frictional forces tending to cause dial 192 to also rotate in the direction of arrow “C2” and negated by the engagement of resilient finger 196a of latch member 196 in groove 192f formed around the outer periphery of counter dial 192, thereby maintaining the rotational orientation of dial 192.


With dial 192 being held or maintained in this rotational orientation, indicia 192b of numeral “21” is maintained in view in window 104c.


As seen in FIG. 18, when drive channel 140 has been moved back to the fully proximal position, resilient fingers 194b, 194c of counter clutch 194 are re-set in engagement with adjacent uni-directional teeth 192e of dial 192.


Additionally, as dial 192 is further rotated in the direction of arrow “C1,” resilient finger 196a of latch member 196 moves into engagement in a groove 192f adjacent to groove 192f formed around the outer periphery of counter dial 192.


Turning now to FIGS. 19-19B, during the squeezing of handles 106, upon the firing of a final clip loaded in clip applier 100, indicia 192b of dial in the form of numeral “0” is completely moved into view of window 104c formed in housing half 104b, thereby indicating to the user that no more clip are present in clip applier 100. When dial 192 has been rotated to this position, as seen in FIGS. 19A and 19B, groove 192g formed in the outer periphery of the inner rim of counter dial 192 is rotated into registration with first catch 146b of lock out 146. In this position, biasing member 147, acting on lock out 146, urges first catch 146b of lock out 146 into groove 192g of dial 192.


Additionally, in the present position, second catch 146c of lock out 146 is moved into notch 141c formed in the side edge of rack member 141 and thus into the path of proximal translation of rack member 141. Accordingly, as handles 106 are released and drive pin 124 begins to move rack member 141 in a proximal direction, notch 141c of rack member 141 engages second catch 146c of lock out 146 thereby prohibiting rack member 141 from returning to a proximal most or home position. With rack member 141 being inhibited or blocked from returning to the proximal most position, ratchet pawl 142 of ratchet mechanism 144 (see FIG. 5) is prevented from resetting itself. Since pawl 142 is prevented from resetting itself, handles 106 can not be re-actuated or re-squeezed since they have only been partially opened. Once again, reference may be made to U.S. Provisional Application No. 61/091,467, filed on Aug. 25, 2008 (now U.S. Pat. No. 8,465,502), entitled “Surgical Clip Applier;” U.S. Provisional Application No. 61/091,485, filed on Aug. 25, 2008 (now U.S. Pat. No. 8,056,565), entitled “Surgical Clip Applier and Method of Assembly;” and U.S. Provisional Application No. 61/286,569, filed on Dec. 15, 2009 (now U.S. Pat. No. 8,545,486), entitled “Surgical Clip Applier”, for a detailed discussion of the structure, operation, and method of assembly of various components of surgical clip applier 100.


It should be understood that the foregoing description is only illustrative of the present disclosure. Various alternatives and modifications can be devised by those skilled in the art without departing from the disclosure. Accordingly, the present disclosure is intended to embrace all such alternatives, modifications and variances. The embodiments described with reference to the attached drawing figures are presented only to demonstrate certain examples of the disclosure. Other elements, steps, methods and techniques that are insubstantially different from those described above and/or in the appended claims are also intended to be within the scope of the disclosure.

Claims
  • 1. A surgical clip applier, comprising: a housing;a drive channel supported in the housing; anda counter mechanism supported in the housing and including: a counter dial rotatably supported in the housing, the counter dial including teeth, a first rim defining a plurality of grooves formed around an outer periphery thereof, and a second rim defining a lock out groove formed in an outer periphery thereof;a counter clutch operatively coupled to the drive channel, the counter clutch including at least one finger configured to engage at least one tooth of the teeth of the counter dial to rotate the counter dial in a single direction relative to the drive channel;a ratchet mechanism including a rack member and a ratchet pawl, the rack member translatably supported in the housing, operatively coupled to the drive channel, and including a plurality of ratchet teeth, the ratchet pawl supported in the housing and configured to engage the plurality of ratchet teeth to restrict translation of the rack member relative to the housing; anda latch member configured to selectively engage the counter dial, wherein the latch member permits rotation of the counter dial in the first direction relative to the drive channel and inhibits rotation of the counter mechanism in the second direction relative to the drive channel, wherein the latch member is configured to contact and selectively engage the plurality of grooves formed on the outer periphery of the first rim of the counter dial;wherein when the drive channel is translated in a first direction relative to the housing, the counter clutch is configured to rotate in a first direction relative to the drive channel such that the at least one finger of the counter clutch engages at least one tooth of the teeth of the counter dial to rotate the counter dial in the first direction relative to the drive channel, and wherein when the drive channel is translated in a second direction relative to the housing, the counter clutch is configured to rotate in a second direction relative to the drive channel such that the at least one finger of the counter clutch disengages from the teeth of the counter dial and the counter dial is not rotated in the second direction relative to the drive channel.
  • 2. The surgical clip applier according to claim 1, further comprising a clip carrier, and a plurality of clips loaded in the clip carrier.
  • 3. The surgical clip applier according to claim 1, wherein the rack member includes a first edge and an opposing second edge, the first edge defining the plurality of ratchet teeth and the second edge defining a notch.
  • 4. The surgical clip applier according to claim 3, further including: a lock out member supported in the housing, the lock out member having a body portion defining a first catch and a second catch, the first catch configured to engage the lock out groove formed in the second rim of the counter dial and the second catch configured to engage the notch defined on the second edge of the rack member.
  • 5. The surgical clip applier according to claim 4, further including: a lock out spring resiliently biased to maintain the first catch of the lock out member in contact with the outer periphery of the second rim of the counter dial,wherein as the counter dial is rotated in the first direction relative to the drive channel, the first catch of the lock out member is brought into registration with the lock out groove when a final clip of a plurality of clips has been fired to inhibit further rotation of the counter dial in the first direction relative to the drive channel.
  • 6. The surgical clip applier according to claim 5, wherein when the final clip of the plurality of clips has been fired and the first catch of the lock out member is brought into registration with the lock out groove, the second catch of the lock out member is brought into registration with the notch defined on the second edge of the rack member such that the rack member is prevented from translating relative to the housing.
  • 7. The surgical clip applier according to claim 6, further including at least one handle pivotably connected to the housing, wherein actuation of the at least one handle is configured to translate the drive channel, wherein when the second catch of the lock out member is brought into registration with the notch defined on the second edge of the rack member, the at least one handle is prevented from actuation.
  • 8. The surgical clip applier according to claim 7, wherein the lock out groove of the counter dial is associated with indicia on the counter dial indicating that the final clip of the plurality of clips has been fired.
  • 9. A counter mechanism for use with a surgical instrument, the counter mechanism comprising: a counter dial including teeth;a counter clutch including at least one finger configured to engage at least one tooth of the teeth of the counter dial to rotate the counter dial in a single direction;a ratchet mechanism including a rack member and a ratchet pawl, the rack member including a plurality of ratchet teeth, the ratchet pawl configured to engage the plurality of ratchet teeth to restrict translation of the rack member wherein when a drive channel of the surgical instrument is translated in a first direction, the counter clutch is configured to rotate in a first direction such that the at least one finger of the counter clutch engages at least one tooth of the teeth of the counter dial to rotate the counter dial in the first direction, and wherein when the drive channel is translated in a second direction, the counter clutch is configured to rotate in a second direction such that the at least one finger of the counter clutch disengages from the teeth of the counter dial and the counter dial is not rotated in the second direction; anda lock out member configured to maintain contact with the counter dial as the counter dial rotates in the first direction to urge a portion of the lock out member into engagement with a portion of the counter dial to inhibit translation of the drive channel.
  • 10. The counter mechanism according to claim 9, wherein the counter dial includes a first face and an opposing second face, the first face including indicia and the second face defining a bore therein, wherein the teeth of the counter dial are located within a perimetrical array in the bore.
  • 11. The counter mechanism according to claim 10, wherein the counter clutch is nested in the bore defined in second face of the counter dial.
  • 12. The counter mechanism according to claim 9, wherein when a final clip of a plurality of clips within the surgical instrument is fired, the lock out member is configured to engage the counter dial to inhibit further rotation of the counter dial in the first direction.
  • 13. A surgical clip applier, comprising: a housing;a drive channel supported in the housing; anda counter mechanism supported in the housing and including: a counter dial rotatably supported in the housing, the counter dial including teeth, a first rim defining a plurality of grooves formed around an outer periphery thereof, and a second rim defining a lock out groove formed in an outer periphery thereof;a counter clutch operatively coupled to the drive channel, the counter clutch including at least one finger configured to engage at least one tooth of the teeth of the counter dial to rotate the counter dial in a single direction relative to the drive channel; anda ratchet mechanism including a rack member and a ratchet pawl, the rack member translatably supported in the housing, operatively coupled to the drive channel, and including a plurality of ratchet teeth, the ratchet pawl supported in the housing and configured to engage the plurality of ratchet teeth to restrict translation of the rack member relative to the housing;wherein when the drive channel is translated in a first direction relative to the housing, the counter clutch is configured to rotate in a first direction relative to the drive channel such that the at least one finger of the counter clutch engages at least one tooth of the teeth of the counter dial to rotate the counter dial in the first direction relative to the drive channel, and wherein when the drive channel is translated in a second direction relative to the housing, the counter clutch is configured to rotate in a second direction relative to the drive channel such that the at least one finger of the counter clutch disengages from the teeth of the counter dial and the counter dial is not rotated in the second direction relative to the drive channel.
CROSS REFERENCE TO RELATED APPLICATION

This application is a continuation application claiming the benefit of and priority to U.S. patent application Ser. No. 14/882,535, filed on Oct. 14, 2015, which is a continuation application claiming the benefit of and priority to U.S. patent application Ser. No. 12/939,296, filed Nov. 4, 2010 (now U.S. Pat. No. 9,186,136), which claims the benefit of and priority to U.S. Provisional Application Ser. No. 61/285,006, filed on Dec. 9, 2009, the entire content of each of which being incorporate herein by reference.

US Referenced Citations (1014)
Number Name Date Kind
3120230 Skold Feb 1964 A
3363628 Wood Jan 1968 A
3638847 Noiles et al. Feb 1972 A
3675688 Bryan et al. Jul 1972 A
3735762 Bryan et al. May 1973 A
3867944 Samuels Feb 1975 A
4226242 Jarvik Oct 1980 A
4242902 Green Jan 1981 A
4296751 Blake, III et al. Oct 1981 A
4372316 Blake, III et al. Feb 1983 A
4408603 Blake, III et al. Oct 1983 A
4412539 Jarvik Nov 1983 A
4418694 Beroff et al. Dec 1983 A
4449531 Cerwin et al. May 1984 A
4471780 Menges et al. Sep 1984 A
4478220 Di Giovanni et al. Oct 1984 A
4480640 Becht Nov 1984 A
4480641 Failla et al. Nov 1984 A
4487204 Hrouda Dec 1984 A
4487205 Di Giovanni et al. Dec 1984 A
4491133 Menges et al. Jan 1985 A
4492232 Green Jan 1985 A
4498476 Cerwin et al. Feb 1985 A
4500024 DiGiovanni et al. Feb 1985 A
4509518 McGarry et al. Apr 1985 A
4512345 Green Apr 1985 A
4522207 Klieman et al. Jun 1985 A
4532925 Blake, III Aug 1985 A
4534351 Rothfuss et al. Aug 1985 A
4545377 Cerwin et al. Oct 1985 A
4549544 Favaron Oct 1985 A
4556058 Green Dec 1985 A
4557263 Green Dec 1985 A
4562839 Blake, III et al. Jan 1986 A
4572183 Juska Feb 1986 A
4576165 Green et al. Mar 1986 A
4576166 Montgomery et al. Mar 1986 A
4590937 Deniega May 1986 A
4592498 Braun et al. Jun 1986 A
4598711 Deniega Jul 1986 A
4602631 Funatsu Jul 1986 A
4611595 Klieman et al. Sep 1986 A
4612932 Caspar et al. Sep 1986 A
4616650 Green et al. Oct 1986 A
4616651 Golden Oct 1986 A
4624254 McGarry et al. Nov 1986 A
4637395 Caspar et al. Jan 1987 A
4646740 Peters et al. Mar 1987 A
4647504 Kimimura et al. Mar 1987 A
4658822 Kees, Jr. Apr 1987 A
4660558 Kees, Jr. Apr 1987 A
4662373 Montgomery et al. May 1987 A
4662374 Blake, III May 1987 A
4671278 Chin Jun 1987 A
4671282 Tretbar Jun 1987 A
4674504 Klieman et al. Jun 1987 A
4681107 Kees, Jr. Jul 1987 A
4696396 Samuels Sep 1987 A
4702247 Blake, III et al. Oct 1987 A
4706668 Backer Nov 1987 A
4712549 Peters et al. Dec 1987 A
4726372 Perlin Feb 1988 A
4733666 Mercer, Jr. Mar 1988 A
4759364 Boebel Jul 1988 A
4765335 Schmidt et al. Aug 1988 A
4777949 Perlin Oct 1988 A
4796625 Kees, Jr. Jan 1989 A
4799481 Transue et al. Jan 1989 A
4815466 Perlin Mar 1989 A
4821721 Chin et al. Apr 1989 A
4822348 Casey Apr 1989 A
4834096 Oh et al. May 1989 A
4850355 Brooks et al. Jul 1989 A
4854317 Braun Aug 1989 A
4856517 Collins et al. Aug 1989 A
4929239 Braun May 1990 A
4931058 Cooper Jun 1990 A
4934364 Green Jun 1990 A
4951860 Peters et al. Aug 1990 A
4957500 Liang et al. Sep 1990 A
4966603 Focelle et al. Oct 1990 A
4967949 Sandhaus Nov 1990 A
4983176 Cushman et al. Jan 1991 A
4988355 Leveen et al. Jan 1991 A
5002552 Casey Mar 1991 A
5026379 Yoon Jun 1991 A
5030224 Wright et al. Jul 1991 A
5030226 Green et al. Jul 1991 A
5032127 Frazee et al. Jul 1991 A
5035692 Lyon et al. Jul 1991 A
5047038 Peters et al. Sep 1991 A
5049152 Simon et al. Sep 1991 A
5049153 Nakao et al. Sep 1991 A
5053045 Schmidt et al. Oct 1991 A
5059202 Liang et al. Oct 1991 A
5062563 Green et al. Nov 1991 A
5062846 Oh et al. Nov 1991 A
5078731 Hayhurst Jan 1992 A
5084057 Green et al. Jan 1992 A
5100416 Oh et al. Mar 1992 A
5100420 Green et al. Mar 1992 A
5104394 Knoepfler Apr 1992 A
5104395 Thornton et al. Apr 1992 A
5112343 Thornton May 1992 A
5122150 Puig Jun 1992 A
5127915 Mattson Jul 1992 A
5129885 Green et al. Jul 1992 A
5156608 Troidl et al. Oct 1992 A
5160339 Chen et al. Nov 1992 A
5163945 Ortiz et al. Nov 1992 A
5171247 Hughett et al. Dec 1992 A
5171249 Stefanchik et al. Dec 1992 A
5171250 Yoon Dec 1992 A
5171251 Bregen et al. Dec 1992 A
5171252 Friedland Dec 1992 A
5171253 Klieman Dec 1992 A
5192288 Thompson et al. Mar 1993 A
5197970 Green et al. Mar 1993 A
5199566 Ortiz et al. Apr 1993 A
5201746 Shichman Apr 1993 A
5201900 Nardella Apr 1993 A
5207691 Nardella May 1993 A
5207692 Kraus et al. May 1993 A
5217473 Yoon Jun 1993 A
5219353 Garvey, III et al. Jun 1993 A
5246450 Thornton et al. Sep 1993 A
5269792 Kovac et al. Dec 1993 A
5281228 Wolfson Jan 1994 A
5282807 Knoepfler Feb 1994 A
5282808 Kovac et al. Feb 1994 A
5282832 Toso et al. Feb 1994 A
5289963 McGarry et al. Mar 1994 A
5290299 Fain et al. Mar 1994 A
5300081 Young et al. Apr 1994 A
5304183 Gourlay et al. Apr 1994 A
5306280 Bregen et al. Apr 1994 A
5306283 Conners Apr 1994 A
5312426 Segawa et al. May 1994 A
5330442 Green et al. Jul 1994 A
5330487 Thornton et al. Jul 1994 A
5340360 Stefanchik Aug 1994 A
5342373 Stefanchik et al. Aug 1994 A
5354304 Allen et al. Oct 1994 A
5354306 Garvey, III et al. Oct 1994 A
5356064 Green et al. Oct 1994 A
5359993 Slater et al. Nov 1994 A
5366458 Korthoff et al. Nov 1994 A
5366459 Yoon Nov 1994 A
5368600 Failla et al. Nov 1994 A
5381943 Allen et al. Jan 1995 A
5382253 Hogendijk Jan 1995 A
5382254 McGarry et al. Jan 1995 A
5382255 Castro et al. Jan 1995 A
5383880 Hooven Jan 1995 A
5383881 Green et al. Jan 1995 A
5395375 Turkel et al. Mar 1995 A
5395381 Green et al. Mar 1995 A
5403327 Thornton et al. Apr 1995 A
5409498 Braddock et al. Apr 1995 A
5413584 Schulze May 1995 A
5423835 Green et al. Jun 1995 A
5425740 Hutchinson, Jr. Jun 1995 A
5431667 Thompson et al. Jul 1995 A
5431668 Burbank, III et al. Jul 1995 A
5431669 Thompson et al. Jul 1995 A
5439468 Schulze et al. Aug 1995 A
5441509 Vidal et al. Aug 1995 A
5447513 Davison et al. Sep 1995 A
5448042 Robinson et al. Sep 1995 A
5449365 Green et al. Sep 1995 A
5462555 Bolanos et al. Oct 1995 A
5462558 Kolesa et al. Oct 1995 A
5464416 Steckel Nov 1995 A
5474566 Alesi et al. Dec 1995 A
5474567 Stefanchik et al. Dec 1995 A
5474572 Hayhurst Dec 1995 A
5487499 Sorrentino et al. Jan 1996 A
5487746 Yu et al. Jan 1996 A
5501693 Gravener Mar 1996 A
5509920 Phillips et al. Apr 1996 A
5514149 Green et al. May 1996 A
5520701 Lerch May 1996 A
5527318 McGarry Jun 1996 A
5527319 Green et al. Jun 1996 A
5527320 Carruthers et al. Jun 1996 A
5542949 Yoon Aug 1996 A
5547474 Kloeckl et al. Aug 1996 A
5562655 Mittelstadt et al. Oct 1996 A
5569274 Rapacki et al. Oct 1996 A
5571121 Heifetz Nov 1996 A
5575802 McQuilkin et al. Nov 1996 A
5582615 Foshee et al. Dec 1996 A
5584840 Ramsey et al. Dec 1996 A
5591178 Green et al. Jan 1997 A
5593414 Shipp et al. Jan 1997 A
5593421 Bauer Jan 1997 A
5601573 Fogelberg et al. Feb 1997 A
5601574 Stefanchik et al. Feb 1997 A
5607436 Pratt et al. Mar 1997 A
5618291 Thompson et al. Apr 1997 A
5618306 Roth et al. Apr 1997 A
5620452 Yoon Apr 1997 A
5626585 Mittelstadt et al. May 1997 A
5626586 Pistl et al. May 1997 A
5626587 Bishop et al. May 1997 A
5626592 Phillips et al. May 1997 A
RE35525 Stefanchik et al. Jun 1997 E
5634930 Thornton et al. Jun 1997 A
5643291 Pier et al. Jul 1997 A
5645551 Green et al. Jul 1997 A
5645553 Kolesa et al. Jul 1997 A
5649937 Bito et al. Jul 1997 A
5653720 Johnson et al. Aug 1997 A
5662662 Bishop et al. Sep 1997 A
5662676 Koninckx Sep 1997 A
5662679 Voss et al. Sep 1997 A
5665097 Baker et al. Sep 1997 A
5676676 Porter Oct 1997 A
5681330 Hughett et al. Oct 1997 A
5683405 Yacoubian et al. Nov 1997 A
5695502 Pier et al. Dec 1997 A
5695505 Yoon Dec 1997 A
5697938 Jensen et al. Dec 1997 A
5697942 Palti Dec 1997 A
5700270 Peyser et al. Dec 1997 A
5700271 Whitfield et al. Dec 1997 A
5702048 Eberlin Dec 1997 A
5709706 Kienzle et al. Jan 1998 A
5713911 Racenet et al. Feb 1998 A
5713912 Porter Feb 1998 A
5720756 Green et al. Feb 1998 A
5722982 Ferreira et al. Mar 1998 A
5725537 Green et al. Mar 1998 A
5725538 Green et al. Mar 1998 A
5725542 Yoon Mar 1998 A
5733295 Back et al. Mar 1998 A
5743310 Moran Apr 1998 A
5749881 Sackier et al. May 1998 A
5755726 Pratt et al. May 1998 A
5766189 Matsuno Jun 1998 A
5769857 Reztzov et al. Jun 1998 A
5772673 Cuny et al. Jun 1998 A
5776146 Sackier et al. Jul 1998 A
5776147 Dolendo Jul 1998 A
5779718 Green et al. Jul 1998 A
5779720 Walder-Utz et al. Jul 1998 A
5782844 Yoon et al. Jul 1998 A
5788698 Savornin Aug 1998 A
5792149 Sheds et al. Aug 1998 A
5792150 Pratt et al. Aug 1998 A
5797922 Hessel et al. Aug 1998 A
5810853 Yoon Sep 1998 A
5817116 Takahashi et al. Oct 1998 A
5827306 Yoon Oct 1998 A
5827323 Klieman et al. Oct 1998 A
5833695 Yoon Nov 1998 A
5833696 Whitfield et al. Nov 1998 A
5833700 Fogelberg et al. Nov 1998 A
5835199 Phillips et al. Nov 1998 A
5843097 Mayenberger et al. Dec 1998 A
5843101 Fry Dec 1998 A
5846255 Casey Dec 1998 A
5849019 Yoon Dec 1998 A
5858018 Shipp et al. Jan 1999 A
5861005 Kontos Jan 1999 A
5868759 Peyser et al. Feb 1999 A
5868761 Nicholas et al. Feb 1999 A
5876410 Petillo Mar 1999 A
5895394 Kienzle et al. Apr 1999 A
5897565 Foster Apr 1999 A
5904693 Dicesare et al. May 1999 A
5906625 Bito et al. May 1999 A
5913862 Ramsey et al. Jun 1999 A
5913876 Taylor et al. Jun 1999 A
5918791 Sorrentino et al. Jul 1999 A
5921991 Whitehead et al. Jul 1999 A
5921996 Sherman Jul 1999 A
5921997 Fogelberg et al. Jul 1999 A
5928251 Aranyi et al. Jul 1999 A
5938667 Peyser et al. Aug 1999 A
5951574 Stefanchik et al. Sep 1999 A
5972003 Rousseau et al. Oct 1999 A
5976159 Bolduc et al. Nov 1999 A
5993465 Shipp et al. Nov 1999 A
6004335 Vaitekunas et al. Dec 1999 A
6009551 Sheynblat Dec 1999 A
6017358 Yoon et al. Jan 2000 A
6044971 Esposito et al. Apr 2000 A
6045560 McKean et al. Apr 2000 A
6053908 Crainich et al. Apr 2000 A
RE36720 Green et al. May 2000 E
6059799 Aranyi et al. May 2000 A
6099536 Petillo Aug 2000 A
6099537 Sugai et al. Aug 2000 A
6139555 Hart et al. Oct 2000 A
6210418 Storz et al. Apr 2001 B1
6217590 Levinson Apr 2001 B1
6228097 Levinson et al. May 2001 B1
6241740 Davis et al. Jun 2001 B1
6258105 Hart et al. Jul 2001 B1
6261302 Voegele et al. Jul 2001 B1
6273898 Kienzle et al. Aug 2001 B1
6277131 Kalikow Aug 2001 B1
6306149 Meade Oct 2001 B1
6318619 Lee Nov 2001 B1
6322571 Adams Nov 2001 B1
6350269 Shipp et al. Feb 2002 B1
6352541 Kienzle et al. Mar 2002 B1
6391035 Appleby et al. May 2002 B1
6423079 Blake, III Jul 2002 B1
6428548 Durgin et al. Aug 2002 B1
6440144 Bacher Aug 2002 B1
6461363 Gadberry et al. Oct 2002 B1
6464710 Foster Oct 2002 B1
6494886 Wilk et al. Dec 2002 B1
6517536 Hooven et al. Feb 2003 B2
6520972 Peters Feb 2003 B2
6527786 Davis et al. Mar 2003 B1
6537289 Kayan et al. Mar 2003 B1
6546935 Hooven Apr 2003 B2
6551333 Kuhns et al. Apr 2003 B2
6562051 Bolduc et al. May 2003 B1
6569171 DeGuillebon et al. May 2003 B2
6579304 Hart et al. Jun 2003 B1
6599298 Forster et al. Jul 2003 B1
6601748 Fung et al. Aug 2003 B1
6602252 Mollenauer Aug 2003 B2
6607540 Shipp Aug 2003 B1
6613060 Adams et al. Sep 2003 B2
6626916 Yeung et al. Sep 2003 B1
6626922 Hart et al. Sep 2003 B1
6648898 Baxter Nov 2003 B1
6652538 Kayan et al. Nov 2003 B2
6652539 Shipp et al. Nov 2003 B2
6656193 Grant et al. Dec 2003 B2
6673083 Kayan et al. Jan 2004 B1
6676659 Hutchins et al. Jan 2004 B2
6679894 Damarati Jan 2004 B2
RE38445 Pistl et al. Feb 2004 E
6695854 Kayan et al. Feb 2004 B1
6706057 Bidoia et al. Mar 2004 B1
6716226 Sixto, Jr. et al. Apr 2004 B2
6723109 Solingen Apr 2004 B2
6743240 Smith et al. Jun 2004 B2
6773438 Knodel et al. Aug 2004 B1
6773440 Gannoe et al. Aug 2004 B2
6776783 Frantzen et al. Aug 2004 B1
6776784 Ginn Aug 2004 B2
6780195 Porat Aug 2004 B2
6793663 Kneifel et al. Sep 2004 B2
6793664 Mazzocchi et al. Sep 2004 B2
6802848 Anderson et al. Oct 2004 B2
6814742 Kimura et al. Nov 2004 B2
6818009 Hart et al. Nov 2004 B2
6821273 Mollenauer Nov 2004 B2
6821284 Sturtz et al. Nov 2004 B2
6824547 Wilson, Jr. et al. Nov 2004 B2
6824548 Smith et al. Nov 2004 B2
6835199 McGuckin, Jr. et al. Dec 2004 B2
6835200 Laufer et al. Dec 2004 B2
6837893 Miller Jan 2005 B2
6837894 Pugsley, Jr. et al. Jan 2005 B2
6837895 Mayenberger Jan 2005 B2
6840945 Manetakis et al. Jan 2005 B2
6843794 Sixto, Jr. et al. Jan 2005 B2
6849078 Durgin et al. Feb 2005 B2
6849079 Blake, III et al. Feb 2005 B1
6853879 Sunaoshi Feb 2005 B2
6869435 Blake, III Mar 2005 B2
6869436 Wendlandt Mar 2005 B2
6889116 Jinno May 2005 B2
6896682 McClellan et al. May 2005 B1
6905503 Gifford, III et al. Jun 2005 B2
6911032 Jugenheimer et al. Jun 2005 B2
6911033 de Guillebon et al. Jun 2005 B2
6913607 Ainsworth et al. Jul 2005 B2
6916327 Northrup, III et al. Jul 2005 B2
6923818 Muramatsu et al. Aug 2005 B2
6939356 Debbas Sep 2005 B2
6942674 Belef et al. Sep 2005 B2
6942676 Buelna Sep 2005 B2
6945978 Hyde Sep 2005 B1
6945979 Kortenbach et al. Sep 2005 B2
6949107 McGuckin, Jr. et al. Sep 2005 B2
6953465 Dieck et al. Oct 2005 B2
6955643 Gellman et al. Oct 2005 B2
6959852 Shelton, IV et al. Nov 2005 B2
6960218 Rennich Nov 2005 B2
6960221 Ho et al. Nov 2005 B2
6962594 Thevenet Nov 2005 B1
6963792 Green Nov 2005 B1
6964363 Wales et al. Nov 2005 B2
6964668 Modesitt et al. Nov 2005 B2
6966875 Longobardi Nov 2005 B1
6966917 Suyker et al. Nov 2005 B1
6966919 Sixto, Jr. et al. Nov 2005 B2
6969391 Gazzani Nov 2005 B1
6972023 Whayne et al. Dec 2005 B2
6972027 Fallin et al. Dec 2005 B2
6973770 Schnipke et al. Dec 2005 B2
6974462 Sater Dec 2005 B2
6974466 Ahmed et al. Dec 2005 B2
6974475 Wall Dec 2005 B1
6981505 Krause et al. Jan 2006 B2
6981628 Wales Jan 2006 B2
6991635 Takamoto et al. Jan 2006 B2
7052504 Hughett May 2006 B2
7056330 Gayton Jun 2006 B2
7108703 Danitz et al. Sep 2006 B2
7144402 Kuester, III Dec 2006 B2
7175648 Nakao Feb 2007 B2
7179265 Manetakis et al. Feb 2007 B2
7207997 Shipp et al. Apr 2007 B2
7211091 Fowler et al. May 2007 B2
7211092 Hughett May 2007 B2
7214230 Brock et al. May 2007 B2
7214232 Bowman et al. May 2007 B2
7223271 Muramatsu et al. May 2007 B2
7232445 Kortenbach et al. Jun 2007 B2
7261724 Molitor et al. Aug 2007 B2
7261725 Binmoeller Aug 2007 B2
7264625 Buncke Sep 2007 B1
7288098 Huitema et al. Oct 2007 B2
7297149 Vitali et al. Nov 2007 B2
7316693 Viola Jan 2008 B2
7316696 Wilson, Jr. et al. Jan 2008 B2
7326223 Wilson, Jr. Feb 2008 B2
7329266 Royse et al. Feb 2008 B2
7331968 Arp et al. Feb 2008 B2
7338503 Rosenberg et al. Mar 2008 B2
7357805 Masuda et al. Apr 2008 B2
7510562 Lindsay Mar 2009 B2
7552853 Mas et al. Jun 2009 B2
7585304 Hughett Sep 2009 B2
7637917 Whitfield et al. Dec 2009 B2
7644848 Swayze et al. Jan 2010 B2
7686820 Huitema et al. Mar 2010 B2
7695482 Viola Apr 2010 B2
7717926 Whitfield et al. May 2010 B2
7727248 Smith et al. Jun 2010 B2
7731724 Huitema et al. Jun 2010 B2
7740641 Huitema Jun 2010 B2
7752853 Singh et al. Jul 2010 B2
7753250 Clauson et al. Jul 2010 B2
7766207 Mather et al. Aug 2010 B2
7819886 Whitfield et al. Oct 2010 B2
7887553 Lehman et al. Feb 2011 B2
7905890 Whitfield et al. Mar 2011 B2
7942885 Sixto, Jr. et al. May 2011 B2
7952060 Watanabe et al. May 2011 B2
7963433 Whitman et al. Jun 2011 B2
7988027 Olson et al. Aug 2011 B2
8011550 Aranyi et al. Sep 2011 B2
8011555 Tarinelli et al. Sep 2011 B2
8016178 Olson et al. Sep 2011 B2
8021375 Aldrich et al. Sep 2011 B2
8021378 Sixto, Jr. et al. Sep 2011 B2
8038686 Huitema et al. Oct 2011 B2
8048088 Green et al. Nov 2011 B2
8056565 Zergiebel Nov 2011 B2
8062310 Shibata et al. Nov 2011 B2
8066720 Knodel et al. Nov 2011 B2
8066721 Kortenbach et al. Nov 2011 B2
8066722 Miyagi et al. Nov 2011 B2
8070760 Fujita Dec 2011 B2
8075571 Vitali et al. Dec 2011 B2
8080021 Griego Dec 2011 B2
8083668 Durgin et al. Dec 2011 B2
8088061 Wells et al. Jan 2012 B2
8091755 Kayan et al. Jan 2012 B2
8100926 Filshie et al. Jan 2012 B1
8128643 Aranyi et al. Mar 2012 B2
8133240 Damarati Mar 2012 B2
8142451 Boulnois et al. Mar 2012 B2
8157145 Shelton, IV et al. Apr 2012 B2
8157149 Olson et al. Apr 2012 B2
8157151 Ingmanson et al. Apr 2012 B2
8172859 Matsuno et al. May 2012 B2
8172870 Shipp May 2012 B2
8187290 Buckman et al. May 2012 B2
8211120 Itoh Jul 2012 B2
8211124 Ainsworth et al. Jul 2012 B2
8216255 Smith et al. Jul 2012 B2
8216257 Huitema et al. Jul 2012 B2
8236012 Molitor et al. Aug 2012 B2
8246634 Huitema et al. Aug 2012 B2
8246635 Huitema Aug 2012 B2
8262678 Matsuoka et al. Sep 2012 B2
8262679 Nguyen Sep 2012 B2
8267944 Sorrentino et al. Sep 2012 B2
8267945 Nguyen et al. Sep 2012 B2
8267946 Whitfield et al. Sep 2012 B2
8272554 Whitman et al. Sep 2012 B2
8282655 Whitfield et al. Oct 2012 B2
8308743 Matsuno et al. Nov 2012 B2
8328822 Huitema et al. Dec 2012 B2
8336556 Zergiebel Dec 2012 B2
8348130 Shah et al. Jan 2013 B2
8357171 Whitfield et al. Jan 2013 B2
8366709 Schechter et al. Feb 2013 B2
8366726 Dennis Feb 2013 B2
8371491 Huitema et al. Feb 2013 B2
8372095 Viola Feb 2013 B2
8382773 Whitfield et al. Feb 2013 B2
8398655 Cheng et al. Mar 2013 B2
8403138 Weisshaupt et al. Mar 2013 B2
8403945 Whitfield et al. Mar 2013 B2
8403946 Whitfield et al. Mar 2013 B2
8408442 Racenet et al. Apr 2013 B2
8409222 Whitfield et al. Apr 2013 B2
8409223 Sorrentino et al. Apr 2013 B2
8419752 Sorrentino et al. Apr 2013 B2
8430892 Bindra et al. Apr 2013 B2
8444660 Adams et al. May 2013 B2
8465460 Yodfat et al. Jun 2013 B2
8465502 Zergiebel Jun 2013 B2
8475473 Vandenbroek et al. Jul 2013 B2
8480688 Boulnois et al. Jul 2013 B2
8486091 Sorrentino et al. Jul 2013 B2
8491608 Sorrentino et al. Jul 2013 B2
8496673 Nguyen et al. Jul 2013 B2
8506580 Zergiebel et al. Aug 2013 B2
8512357 Viola Aug 2013 B2
8518055 Cardinale et al. Aug 2013 B1
8523882 Huitema et al. Sep 2013 B2
8529585 Jacobs et al. Sep 2013 B2
8529586 Rosenberg et al. Sep 2013 B2
8529588 Ahlberg et al. Sep 2013 B2
8545486 Malkowski Oct 2013 B2
8556920 Huitema et al. Oct 2013 B2
8568430 Shipp Oct 2013 B2
8579918 Whitfield et al. Nov 2013 B2
8585717 Sorrentino et al. Nov 2013 B2
8603109 Aranyi et al. Dec 2013 B2
8652151 Lehman et al. Feb 2014 B2
8652152 Aranyi et al. Feb 2014 B2
8663247 Menn et al. Mar 2014 B2
8685048 Adams et al. Apr 2014 B2
8690899 Kogiso et al. Apr 2014 B2
8708213 Shelton, IV et al. Apr 2014 B2
8709027 Adams et al. Apr 2014 B2
8715299 Menn et al. May 2014 B2
8720766 Hess et al. May 2014 B2
8734469 Pribanic et al. May 2014 B2
8747423 Whitfield et al. Jun 2014 B2
8753356 Vitali et al. Jun 2014 B2
8814884 Whitfield et al. Aug 2014 B2
8821516 Huitema Sep 2014 B2
8839954 Disch Sep 2014 B2
8845659 Whitfield et al. Sep 2014 B2
8894665 Sorrentino et al. Nov 2014 B2
8894666 Schulz et al. Nov 2014 B2
8900253 Aranyi et al. Dec 2014 B2
8915930 Huitema et al. Dec 2014 B2
8920438 Aranyi et al. Dec 2014 B2
8939974 Boudreaux et al. Jan 2015 B2
8950646 Viola Feb 2015 B2
8961542 Whitfield et al. Feb 2015 B2
8968337 Whitfield et al. Mar 2015 B2
8968342 Wingardner, III et al. Mar 2015 B2
8973804 Hess et al. Mar 2015 B2
9011464 Zammataro Apr 2015 B2
9011465 Whitfield et al. Apr 2015 B2
9089334 Sorrentino et al. Jul 2015 B2
9113892 Malkowski et al. Aug 2015 B2
9113893 Sorrentino et al. Aug 2015 B2
9119629 Cardinale et al. Sep 2015 B2
9186136 Malkowski et al. Nov 2015 B2
9186153 Zammataro Nov 2015 B2
9208429 Thornton et al. Dec 2015 B2
9282961 Whitman et al. Mar 2016 B2
9282972 Patel et al. Mar 2016 B1
9326776 Gadberry et al. May 2016 B2
9358011 Sorrentino et al. Jun 2016 B2
9358015 Sorrentino et al. Jun 2016 B2
9364216 Rockrohr et al. Jun 2016 B2
9364239 Malkowski Jun 2016 B2
9364240 Whitfield et al. Jun 2016 B2
9370400 Parihar Jun 2016 B2
9393024 Whitfield et al. Jul 2016 B2
9398917 Whitfield et al. Jul 2016 B2
9408610 Hartoumbekis Aug 2016 B2
9414844 Zergiebel et al. Aug 2016 B2
9433411 Racenet et al. Sep 2016 B2
9439654 Sorrentino et al. Sep 2016 B2
9445810 Cappola Sep 2016 B2
9480477 Aranyi et al. Nov 2016 B2
9498227 Zergiebel et al. Nov 2016 B2
9526501 Malkowski Dec 2016 B2
9526565 Strobl Dec 2016 B2
9532787 Zammataro Jan 2017 B2
9545254 Sorrentino et al. Jan 2017 B2
9549741 Zergiebel Jan 2017 B2
9687247 Aranyi et al. Jun 2017 B2
9717504 Huitema Aug 2017 B2
9717505 Whitfield et al. Aug 2017 B2
9737310 Whitfield et al. Aug 2017 B2
9782181 Vitali et al. Oct 2017 B2
10004502 Malkowski et al. Jun 2018 B2
10136939 Minnelli et al. Nov 2018 B2
10159484 Sorrentino et al. Dec 2018 B2
10159491 Gokharu Dec 2018 B2
10159492 Zammataro Dec 2018 B2
10166027 Aranyi et al. Jan 2019 B2
10231732 Racenet et al. Mar 2019 B1
10231735 Sorrentino et al. Mar 2019 B2
10231738 Sorrentino et al. Mar 2019 B2
10258346 Zergiebel et al. Apr 2019 B2
10292712 Shankarsetty May 2019 B2
10349936 Rockrohr et al. Jul 2019 B2
10349950 Aranyi et al. Jul 2019 B2
10357250 Zammataro Jul 2019 B2
10363045 Whitfield et al. Jul 2019 B2
10368876 Bhatnagar et al. Aug 2019 B2
10390831 Holsten et al. Aug 2019 B2
10426489 Baril Oct 2019 B2
20010047178 Peters Nov 2001 A1
20020040226 Laufer et al. Apr 2002 A1
20020068947 Kuhns et al. Jun 2002 A1
20020082618 Shipp et al. Jun 2002 A1
20020087169 Brock et al. Jul 2002 A1
20020087170 Kuhns et al. Jul 2002 A1
20020099388 Mayenberger Jul 2002 A1
20020120279 Deguillebon et al. Aug 2002 A1
20020123742 Baxter et al. Sep 2002 A1
20020128668 Manetakis et al. Sep 2002 A1
20020177859 Monassevitch et al. Nov 2002 A1
20020198537 Smith et al. Dec 2002 A1
20020198538 Kortenbach et al. Dec 2002 A1
20020198539 Sixto et al. Dec 2002 A1
20020198540 Smith et al. Dec 2002 A1
20020198541 Smith et al. Dec 2002 A1
20030014060 Wilson et al. Jan 2003 A1
20030018345 Green Jan 2003 A1
20030023249 Manetakis Jan 2003 A1
20030040759 de Guillebon et al. Feb 2003 A1
20030105476 Sancoff et al. Jun 2003 A1
20030114867 Bolduc et al. Jun 2003 A1
20030135224 Blake Jul 2003 A1
20030167063 Kerr Sep 2003 A1
20030208231 Williamson et al. Nov 2003 A1
20030220657 Adams Nov 2003 A1
20030225423 Huitema Dec 2003 A1
20030229360 Gayton Dec 2003 A1
20030233105 Gayton Dec 2003 A1
20040010272 Manetakis et al. Jan 2004 A1
20040044352 Fowler et al. Mar 2004 A1
20040097970 Hughett May 2004 A1
20040097971 Hughett May 2004 A1
20040097972 Shipp et al. May 2004 A1
20040106936 Shipp et al. Jun 2004 A1
20040133215 Baxter Jul 2004 A1
20040138681 Pier Jul 2004 A1
20040153100 Ahlberg et al. Aug 2004 A1
20040158266 Damarati Aug 2004 A1
20040162567 Adams Aug 2004 A9
20040167545 Sadler et al. Aug 2004 A1
20040176776 Zubok et al. Sep 2004 A1
20040176783 Edoga et al. Sep 2004 A1
20040176784 Okada Sep 2004 A1
20040193213 Aranyi et al. Sep 2004 A1
20040232197 Shelton et al. Nov 2004 A1
20050010242 Lindsay Jan 2005 A1
20050080440 Durgin et al. Apr 2005 A1
20050090837 Sixto et al. Apr 2005 A1
20050090838 Sixto et al. Apr 2005 A1
20050096670 Wellman et al. May 2005 A1
20050096671 Wellman et al. May 2005 A1
20050096672 Manetakis et al. May 2005 A1
20050101975 Nguyen et al. May 2005 A1
20050107807 Nakao May 2005 A1
20050107809 Litscher et al. May 2005 A1
20050107810 Morales et al. May 2005 A1
20050107811 Starksen et al. May 2005 A1
20050107812 Starksen et al. May 2005 A1
20050107871 Realyvasquez et al. May 2005 A1
20050113847 Gadberry et al. May 2005 A1
20050119671 Reydel et al. Jun 2005 A1
20050119673 Gordon et al. Jun 2005 A1
20050119677 Shipp Jun 2005 A1
20050125010 Smith et al. Jun 2005 A1
20050143767 Kimura et al. Jun 2005 A1
20050149063 Young et al. Jul 2005 A1
20050149064 Peterson et al. Jul 2005 A1
20050149068 Williams et al. Jul 2005 A1
20050149069 Bertolero et al. Jul 2005 A1
20050165415 Wales Jul 2005 A1
20050165418 Chan Jul 2005 A1
20050171560 Hughett Aug 2005 A1
20050175703 Hunter et al. Aug 2005 A1
20050177176 Gerbi et al. Aug 2005 A1
20050203547 Weller et al. Sep 2005 A1
20050203548 Weller et al. Sep 2005 A1
20050216036 Nakao Sep 2005 A1
20050216056 Valdevit et al. Sep 2005 A1
20050222588 Vandenbroek et al. Oct 2005 A1
20050222590 Gadberry et al. Oct 2005 A1
20050222665 Aranyi Oct 2005 A1
20050228411 Manzo Oct 2005 A1
20050228416 Burbank et al. Oct 2005 A1
20050234478 Wixey et al. Oct 2005 A1
20050251183 Buckman et al. Nov 2005 A1
20050251184 Anderson Nov 2005 A1
20050256529 Yawata et al. Nov 2005 A1
20050267495 Ginn et al. Dec 2005 A1
20050273122 Theroux et al. Dec 2005 A1
20050277951 Smith et al. Dec 2005 A1
20050277952 Arp et al. Dec 2005 A1
20050277953 Francese et al. Dec 2005 A1
20050277954 Smith et al. Dec 2005 A1
20050277955 Palmer et al. Dec 2005 A1
20050277956 Francese et al. Dec 2005 A1
20050277958 Levinson Dec 2005 A1
20050288689 Kammerer et al. Dec 2005 A1
20050288690 Bourque et al. Dec 2005 A1
20060000867 Shelton et al. Jan 2006 A1
20060004388 Whayne et al. Jan 2006 A1
20060004390 Rosenberg et al. Jan 2006 A1
20060009789 Gambale et al. Jan 2006 A1
20060009790 Blake et al. Jan 2006 A1
20060009792 Baker et al. Jan 2006 A1
20060020270 Jabba et al. Jan 2006 A1
20060020271 Stewart et al. Jan 2006 A1
20060047305 Ortiz et al. Mar 2006 A1
20060047306 Ortiz et al. Mar 2006 A1
20060064117 Aranyi et al. Mar 2006 A1
20060079115 Aranyi et al. Apr 2006 A1
20060079913 Whitfield et al. Apr 2006 A1
20060085015 Whitfield et al. Apr 2006 A1
20060085021 Wenzler Apr 2006 A1
20060100649 Hart May 2006 A1
20060111731 Manzo May 2006 A1
20060124485 Kennedy Jun 2006 A1
20060129170 Royce et al. Jun 2006 A1
20060135992 Bettuchi et al. Jun 2006 A1
20060163312 Viola et al. Jul 2006 A1
20060173470 Oray et al. Aug 2006 A1
20060178683 Shimoji et al. Aug 2006 A1
20060184182 Aranyi et al. Aug 2006 A1
20060190013 Menn Aug 2006 A1
20060195125 Sakakine et al. Aug 2006 A1
20060200179 Barker Sep 2006 A1
20060212050 D'Agostino et al. Sep 2006 A1
20060217749 Wilson et al. Sep 2006 A1
20060224165 Surti et al. Oct 2006 A1
20060224170 Duff Oct 2006 A1
20060235437 Vitali et al. Oct 2006 A1
20060235438 Huitema et al. Oct 2006 A1
20060235439 Molitor et al. Oct 2006 A1
20060235440 Huitema et al. Oct 2006 A1
20060235441 Huitema et al. Oct 2006 A1
20060235442 Huitema Oct 2006 A1
20060235443 Huitema et al. Oct 2006 A1
20060235444 Huitema et al. Oct 2006 A1
20060241655 Viola Oct 2006 A1
20060259045 Damarati Nov 2006 A1
20060259049 Harada et al. Nov 2006 A1
20060264987 Sgro Nov 2006 A1
20060271072 Hummel et al. Nov 2006 A1
20070016228 Salas Jan 2007 A1
20070021761 Phillips Jan 2007 A1
20070021766 Belagali et al. Jan 2007 A1
20070023476 Whitman et al. Feb 2007 A1
20070023477 Whitman et al. Feb 2007 A1
20070027458 Sixto, Jr. et al. Feb 2007 A1
20070034669 de la Torre et al. Feb 2007 A1
20070038233 Martinez et al. Feb 2007 A1
20070049947 Menn et al. Mar 2007 A1
20070049948 Menn et al. Mar 2007 A1
20070049949 Manetakis Mar 2007 A1
20070049950 Theroux et al. Mar 2007 A1
20070049951 Menn Mar 2007 A1
20070049953 Shimoji et al. Mar 2007 A2
20070066981 Meagher Mar 2007 A1
20070073314 Gadberry et al. Mar 2007 A1
20070083218 Morris Apr 2007 A1
20070093790 Downey et al. Apr 2007 A1
20070093856 Whitfield et al. Apr 2007 A1
20070106314 Dunn May 2007 A1
20070112365 Hilal et al. May 2007 A1
20070118155 Goldfarb et al. May 2007 A1
20070118161 Kennedy et al. May 2007 A1
20070118163 Boudreaux et al. May 2007 A1
20070118174 Chu May 2007 A1
20070123916 Maier et al. May 2007 A1
20070142848 Ainsworth et al. Jun 2007 A1
20070142851 Sixto et al. Jun 2007 A1
20070149988 Michler et al. Jun 2007 A1
20070149989 Santilli et al. Jun 2007 A1
20070162060 Wild Jul 2007 A1
20070173866 Sorrentino et al. Jul 2007 A1
20070175949 Shelton et al. Aug 2007 A1
20070185504 Manetakis et al. Aug 2007 A1
20070191868 Theroux et al. Aug 2007 A1
20070203509 Bettuchi Aug 2007 A1
20070203510 Bettuchi Aug 2007 A1
20070213747 Monassevitch et al. Sep 2007 A1
20070250080 Jones et al. Oct 2007 A1
20070265640 Kortenbach et al. Nov 2007 A1
20070276417 Mendes, Jr. et al. Nov 2007 A1
20070282355 Brown et al. Dec 2007 A1
20070288039 Aranyi et al. Dec 2007 A1
20070293875 Soetikno et al. Dec 2007 A1
20080004636 Walberg et al. Jan 2008 A1
20080004637 Klassen et al. Jan 2008 A1
20080004639 Huitema et al. Jan 2008 A1
20080015615 Molitor et al. Jan 2008 A1
20080027465 Vitali et al. Jan 2008 A1
20080027466 Vitali et al. Jan 2008 A1
20080029577 Shelton et al. Feb 2008 A1
20080045981 Margolin et al. Feb 2008 A1
20080051808 Rivera et al. Feb 2008 A1
20080065118 Damarati Mar 2008 A1
20080083813 Zemlok et al. Apr 2008 A1
20080103510 Taylor et al. May 2008 A1
20080147092 Rogge et al. Jun 2008 A1
20080147093 Roskopf et al. Jun 2008 A1
20080154287 Rosenberg et al. Jun 2008 A1
20080167665 Arp et al. Jul 2008 A1
20080167671 Giordano et al. Jul 2008 A1
20080228199 Cropper Sep 2008 A1
20080243145 Whitfield et al. Oct 2008 A1
20080255413 Zemlok et al. Oct 2008 A1
20080255589 Blakeney et al. Oct 2008 A1
20080306492 Shibata et al. Dec 2008 A1
20080306493 Shibata et al. Dec 2008 A1
20080312665 Shibata et al. Dec 2008 A1
20080312670 Lutze et al. Dec 2008 A1
20080319456 Hart Dec 2008 A1
20090076533 Kayan et al. Mar 2009 A1
20090088777 Miyagi et al. Apr 2009 A1
20090088783 Kennedy et al. Apr 2009 A1
20090171380 Whiting Jul 2009 A1
20090182193 Whitman et al. Jul 2009 A1
20090204115 Dees, Jr. et al. Aug 2009 A1
20090222003 Otley Sep 2009 A1
20090228023 Cui Sep 2009 A1
20090228024 Whitfield et al. Sep 2009 A1
20090261142 Milliman et al. Oct 2009 A1
20090264904 Aldrich et al. Oct 2009 A1
20090299382 Zergiebel Dec 2009 A1
20090312775 Gilkey et al. Dec 2009 A1
20090326558 Cui et al. Dec 2009 A1
20100049216 Zergiebel Feb 2010 A1
20100057105 Sorrentino et al. Mar 2010 A1
20100057107 Sorrentino et al. Mar 2010 A1
20100069935 Crainich Mar 2010 A1
20100089970 Smith et al. Apr 2010 A1
20100274262 Schulz et al. Oct 2010 A1
20100274264 Schulz et al. Oct 2010 A1
20100318103 Cheng et al. Dec 2010 A1
20100331862 Monassevitch et al. Dec 2010 A1
20110054498 Monassevitch et al. Mar 2011 A1
20110082474 Bindra et al. Apr 2011 A1
20110087220 Felder et al. Apr 2011 A1
20110087241 Nguyen Apr 2011 A1
20110087243 Nguyen et al. Apr 2011 A1
20110087268 Livneh Apr 2011 A1
20110112552 Lehman et al. May 2011 A1
20110137323 Malkowski et al. Jun 2011 A1
20110137324 Boudreaux et al. Jun 2011 A1
20110144662 McLawhorn et al. Jun 2011 A1
20110144665 Malkowski Jun 2011 A1
20110190791 Jacobs et al. Aug 2011 A1
20110208212 Zergiebel et al. Aug 2011 A1
20110218553 Huitema et al. Sep 2011 A1
20110218554 Cheng et al. Sep 2011 A1
20110218555 Huitema Sep 2011 A1
20110218556 Nguyen et al. Sep 2011 A1
20110224696 Huitema et al. Sep 2011 A1
20110224700 Schmidt et al. Sep 2011 A1
20110224701 Menn Sep 2011 A1
20110230900 Sarradon Sep 2011 A1
20110245847 Menn et al. Oct 2011 A1
20110245848 Rosenberg et al. Oct 2011 A1
20110251608 Timm et al. Oct 2011 A1
20110295290 Whitfield Dec 2011 A1
20110313437 Yeh Dec 2011 A1
20120022526 Aldridge et al. Jan 2012 A1
20120029534 Whitfield et al. Feb 2012 A1
20120041455 Martinez Feb 2012 A1
20120046671 Matsuoka et al. Feb 2012 A1
20120048759 Disch et al. Mar 2012 A1
20120053402 Conlon et al. Mar 2012 A1
20120059394 Brenner et al. Mar 2012 A1
20120065647 Litscher et al. Mar 2012 A1
20120109158 Zammataro May 2012 A1
20120116420 Sorrentino et al. May 2012 A1
20120197269 Zammataro Aug 2012 A1
20120226291 Malizia et al. Sep 2012 A1
20120253298 Henderson et al. Oct 2012 A1
20120265220 Menn Oct 2012 A1
20120277765 Zammataro et al. Nov 2012 A1
20120330326 Creston et al. Dec 2012 A1
20130041379 Bodor et al. Feb 2013 A1
20130110135 Whitfield et al. May 2013 A1
20130131697 Hartoumbekis May 2013 A1
20130165951 Blake, III Jun 2013 A1
20130165952 Whitfield et al. Jun 2013 A1
20130172910 Malkowski Jul 2013 A1
20130172911 Rockrohr et al. Jul 2013 A1
20130172912 Whitfield et al. Jul 2013 A1
20130175320 Mandakolathur Vasudevan et al. Jul 2013 A1
20130226200 Kappel et al. Aug 2013 A1
20130253540 Castro et al. Sep 2013 A1
20130253541 Zergiebel Sep 2013 A1
20130274767 Sorrentino et al. Oct 2013 A1
20130289583 Zergiebel et al. Oct 2013 A1
20130296891 Hartoumbekis Nov 2013 A1
20130296892 Sorrentino et al. Nov 2013 A1
20130310849 Malkowski Nov 2013 A1
20130325040 Zammataro Dec 2013 A1
20130325057 Larson et al. Dec 2013 A1
20140005693 Shelton, IV et al. Jan 2014 A1
20140039526 Malkowski Feb 2014 A1
20140052157 Whitfield et al. Feb 2014 A1
20140058412 Aranyi et al. Feb 2014 A1
20140074143 Fitzgerald et al. Mar 2014 A1
20140188159 Steege Jul 2014 A1
20140194903 Malkowski et al. Jul 2014 A1
20140207156 Malkowski Jul 2014 A1
20140276970 Messerly et al. Sep 2014 A1
20140296879 Menn et al. Oct 2014 A1
20140316441 Zergiebel et al. Oct 2014 A1
20140330291 Whitfield et al. Nov 2014 A1
20140371728 Vaughn Dec 2014 A1
20150005790 Whitfield et al. Jan 2015 A1
20150032131 Sorrentino et al. Jan 2015 A1
20150045816 Aranyi et al. Feb 2015 A1
20150066057 Rockrohr et al. Mar 2015 A1
20150080916 Aranyi et al. Mar 2015 A1
20150127022 Whitfield et al. May 2015 A1
20150164511 Whitfield et al. Jun 2015 A1
20150190138 Whitfield et al. Jul 2015 A1
20150190139 Zammataro Jul 2015 A1
20150201953 Strobl et al. Jul 2015 A1
20150265282 Miles et al. Sep 2015 A1
20150282808 Sorrentino et al. Oct 2015 A1
20150313452 Nasser et al. Nov 2015 A1
20150314451 Nixon Nov 2015 A1
20150351771 Malkowski et al. Dec 2015 A1
20150351772 Malkowski et al. Dec 2015 A1
20160004956 Reynolds et al. Jan 2016 A1
20160030044 Zammataro Feb 2016 A1
20160030045 Malkowski et al. Feb 2016 A1
20160113655 Holsten Apr 2016 A1
20160151071 Tokarz et al. Jun 2016 A1
20160192940 Gokharu Jul 2016 A1
20160213377 Shankarsetty Jul 2016 A1
20160242767 Kasvikis Aug 2016 A1
20160242789 Sorrentino et al. Aug 2016 A1
20160256157 Rockrohr et al. Sep 2016 A1
20160256158 Whitfield et al. Sep 2016 A1
20160262764 Gokharu Sep 2016 A1
20160296236 Whitfield et al. Oct 2016 A1
20160338695 Hartoumbekis Nov 2016 A1
20160338699 Sorrentino et al. Nov 2016 A1
20170027581 Zergiebel et al. Feb 2017 A1
20170049449 Aranyi et al. Feb 2017 A1
20170065277 Malkowski Mar 2017 A1
20170065281 Zammataro Mar 2017 A1
20170086846 Sorrentino et al. Mar 2017 A1
20170086850 Zergiebel Mar 2017 A1
20170202567 Griffiths et al. Jul 2017 A1
20170238936 Mujawar Aug 2017 A1
20170245921 Joseph et al. Aug 2017 A1
20170252042 Kethman et al. Sep 2017 A1
20170290587 Schober et al. Oct 2017 A1
20180021041 Zhang et al. Jan 2018 A1
20180168660 Gokharu Jun 2018 A1
20180214156 Baril et al. Aug 2018 A1
20180221028 Williams Aug 2018 A1
20180228492 Aranyi et al. Aug 2018 A1
20180228567 Baril et al. Aug 2018 A1
20180235632 Mujawar et al. Aug 2018 A1
20180235633 Baril et al. Aug 2018 A1
20180235637 Xu et al. Aug 2018 A1
20180242977 Tan et al. Aug 2018 A1
20180263624 Malkowski et al. Sep 2018 A1
20180271526 Zammataro Sep 2018 A1
20180317927 Cai et al. Nov 2018 A1
20180317928 P V R Nov 2018 A1
20180325519 Baril et al. Nov 2018 A1
20190000449 Baril et al. Jan 2019 A1
20190000482 Hu et al. Jan 2019 A1
20190000584 Baril Jan 2019 A1
20190021738 Hartoumbekis Jan 2019 A1
20190038375 Baril et al. Feb 2019 A1
20190046202 Baril et al. Feb 2019 A1
20190046203 Baril et al. Feb 2019 A1
20190046207 Czernik et al. Feb 2019 A1
20190046208 Baril et al. Feb 2019 A1
20190053806 Zhang et al. Feb 2019 A1
20190053808 Baril et al. Feb 2019 A1
20190059904 Zammataro Feb 2019 A1
20190076147 Baril et al. Mar 2019 A1
20190076148 Baril et al. Mar 2019 A1
20190076149 Baril et al. Mar 2019 A1
20190076150 Gokharu Mar 2019 A1
20190076210 Baril et al. Mar 2019 A1
20190133583 Baril et al. May 2019 A1
20190133584 Baril et al. May 2019 A1
20190133593 P V R May 2019 A1
20190133594 Dinino May 2019 A1
20190133595 Baril et al. May 2019 A1
20190150935 Raikar et al. May 2019 A1
20190175176 Zammataro Jun 2019 A1
20190175187 P V R Jun 2019 A1
20190175188 P V R Jun 2019 A1
20190175189 P V R Jun 2019 A1
20190192139 Rockrohr et al. Jun 2019 A1
20190209177 Whitfield et al. Jul 2019 A1
20190216464 Baril et al. Jul 2019 A1
20190239893 Shankarsetty Aug 2019 A1
Foreign Referenced Citations (96)
Number Date Country
2010200641 Oct 2010 AU
2013254887 Nov 2013 AU
1163889 Mar 1984 CA
2740831 Apr 2010 CA
1 939 231 Apr 2007 CN
1994236 Jul 2007 CN
101401737 Apr 2009 CN
101530340 Sep 2009 CN
101658437 Mar 2010 CN
101664329 Mar 2010 CN
101664331 Mar 2010 CN
201683954 Dec 2010 CN
103083059 May 2013 CN
103181809 Jul 2013 CN
103181810 Jul 2013 CN
103251441 Aug 2013 CN
104487006 Apr 2015 CN
104605911 Feb 2017 CN
20 2005 001664 May 2005 DE
202007003398 Jun 2007 DE
20 2009 006113 Jul 2009 DE
0000756 Feb 1979 EP
0073655 Mar 1983 EP
0085931 Aug 1983 EP
0086721 Aug 1983 EP
0089737 Sep 1983 EP
0092300 Oct 1983 EP
0324166 Jul 1989 EP
0392750 Oct 1990 EP
0406724 Jan 1991 EP
0409569 Jan 1991 EP
0514139 Mar 1993 EP
0569223 Nov 1993 EP
0594003 Apr 1994 EP
0598529 May 1994 EP
0622049 Nov 1994 EP
0685204 Dec 1995 EP
0732078 Sep 1996 EP
0755655 Jan 1997 EP
0760230 Mar 1997 EP
0769274 Apr 1997 EP
0769275 Apr 1997 EP
0834286 Apr 1998 EP
1317906 Jun 2003 EP
1468653 Oct 2004 EP
1609427 Dec 2005 EP
1712187 Oct 2006 EP
1712191 Oct 2006 EP
1757236 Feb 2007 EP
1813199 Aug 2007 EP
1813207 Aug 2007 EP
1894531 Mar 2008 EP
1908423 Apr 2008 EP
1913881 Apr 2008 EP
2000102 Dec 2008 EP
2140817 Jan 2010 EP
2229895 Sep 2010 EP
2263570 Dec 2010 EP
2332471 Jun 2011 EP
2412318 Feb 2012 EP
2412319 Feb 2012 EP
2752165 Jul 2014 EP
3132756 Feb 2017 EP
1134832 Nov 1968 GB
2073022 Oct 1981 GB
2 132 899 Jul 1984 GB
2003033361 Feb 2003 JP
2006154230 Jun 2006 JP
2006277221 Oct 2006 JP
2008017876 Jan 2008 JP
2008515550 May 2008 JP
2009198991 Sep 2009 JP
2011186812 Sep 2011 JP
2013166982 Aug 2013 JP
9003763 Apr 1990 WO
0042922 Jul 2000 WO
0165997 Sep 2001 WO
0166001 Sep 2001 WO
0167965 Sep 2001 WO
03086207 Oct 2003 WO
03092473 Nov 2003 WO
2004032762 Apr 2004 WO
2005091457 Sep 2005 WO
2006042076 Apr 2006 WO
2006042084 Apr 2006 WO
2006042110 Apr 2006 WO
2006042141 Apr 2006 WO
2006135479 Dec 2006 WO
2008118928 Oct 2008 WO
2008127968 Oct 2008 WO
2016192096 Dec 2016 WO
2016192718 Dec 2016 WO
2016197350 Dec 2016 WO
2016206015 Dec 2016 WO
2017084000 May 2017 WO
2017146138 Aug 2017 WO
Non-Patent Literature Citations (149)
Entry
Extended European Search Report corresponding to Patent Application EP 18154617.7 dated Jun. 25, 2018.
Extended European Search Report corresponding to Patent Application EP 18155158.1 dated Jun. 28, 2018.
Extended European Search Report corresponding to Patent Application EP 15877428.1 dated Jul. 2, 2018.
European Search Report corresponding to Patent Application EP 18157789.1 dated Jul. 5, 2018.
Office Action corresponding to Patent Application CA 2,972,444 dated Aug. 9, 2018.
European Search Report corresponding to Patent Application EP 18156458.4 dated Sep. 3, 2018.
European Search Report corresponding to Patent Application EP 18171682.0 dated Sep. 18, 2018.
European Search Report corresponding to Patent Application EP 15878354.8 dated Sep. 19, 2018.
European Search Report corresponding to Patent Application EP 18183394.8 dated Sep. 28, 2018.
Extended European Search Report corresponding to Patent Application EP 18163041.9 dated Sep. 28, 2018.
Extended European Search Report corresponding to Patent Application EP 18170524.5 dated Oct. 1, 2018.
Japanese Office Action corresponding to Patent Application JP 2017-536546 dated Oct. 15, 2018.
Extended European Search Report corresponding to Patent Application EP 18187640.0 dated Nov. 30, 2018.
Extended European Search Report corresponding to Patent Application EP 18187690.5 dated Nov. 30, 2018.
Chinese First Office Action corresponding to Patent Application CN 201510696298.9 dated Dec. 3, 2018.
Extended European Search Report corresponding to Patent Application EP 18158143.0 dated Dec. 5, 2018.
Extended European Search Report corresponding to counterpart Int'l Application No. EP 12 19 3447.5 dated Oct. 19, 2015.
Canadian Office Action corresponding to counterpart Int'l Application No. CA 2,675,875 dated Oct. 26, 2015.
Japanese Office Action corresponding to counterpart Int'l Application No. JP 2015-005629 dated Oct. 28, 2015.
Japanese Office Action corresponding to counterpart Int'l Application No. JP 2014-245081 dated Oct. 28, 2015.
Canadian Office Action corresponding to counterpart Int'l Application No. CA 2,675,921 dated Oct. 30, 2015.
Chinese Office Action corresponding to counterpart Int'l Application No. CN 201210555570.8 dated Nov. 2, 2015.
Canadian Office Action corresponding to counterpart Int'l Application No. CA 2,676,309 dated Nov. 3, 2015.
Canadian Office Action corresponding to counterpart Int'l Application No. CA 2,676,211 dated Nov. 24, 2015.
Canadian Office Action corresponding to counterpart Int'l Application No. CA 2,676,547 dated Nov. 25, 2015.
Extended European Search Report corresponding to counterpart Int'l Application No. EP 15 17 3809.3 dated Nov. 25, 2015.
Chinese Office Action corresponding to counterpart Int'l Application No. CN 201210586814.9 dated Dec. 2, 2015.
Extended European Search Report corresponding to counterpart Int'l Application No. EP 12 17 2940.4 dated Dec. 14, 2015.
Extended European Search Report corresponding to European Application No. EP 07 25 3905.9, completed Jan. 29, 2008; dated Feb. 7, 2008; (7 Pages).
International Search Report corresponding to International Application No. PCT-US08-58185, completed Sep. 4, 2008; dated Sep. 9, 2008; (2 Pages).
International Search Report corresponding to International Application No. PCT-US08-59859, completed Sep. 14, 2008; dated Sep. 18, 2008; (2 Pages).
Extended European Search Report corresponding to European Application No. EP 07 25 3807.7, completed Nov. 7, 2008; dated Nov. 26, 2008; (11 Pages).
Extended European Search Report corresponding to European Application No. EP 09 25 2049.3, completed Dec. 11, 2009; dated Jan. 12, 2010; (3 Pages).
Extended European Search Report corresponding to European Application No. EP 09 25 2050.1, completed Dec. 23, 2009; dated Jan. 21, 2010; (3 Pages).
Extended European Search Report corresponding to European Application No. EP 09 25 2051.9, completed Dec. 21, 2009; dated Jan. 28, 2010; (3 Pages).
Extended European Search Report corresponding to European Application No. EP 09 25 2052.7, completed Nov. 16, 2009; dated Nov. 24, 2009; (3 Pages).
Extended European Search Report corresponding to European Application No. EP 09 25 2053.5, completed Nov. 24, 2009; dated Dec. 1, 2009; (3 Pages).
Extended European Search Report corresponding to European Application No. EP 09 25 2054.3, completed Jan. 7, 2010; dated Jan. 22, 2010; (3 pages).
Extended European Search Report corresponding to European Application No. EP 09 25 2056.8, completed Jan. 8, 2010; dated Feb. 5, 2010; (3 pages).
Extended European Search Report corresponding to European Application No. EP 10 25 0497.4, completed May 4, 2010; dated May 12, 2010; (6 pages).
Extended European Search Report corresponding to European Application No. EP 10 25 2079.8, completed Mar. 8, 2011; dated Mar. 17, 2011; (3 Pages).
European Search Report corresponding to European Application No. EP 05 81 0218.7, completed Apr. 18, 2011; dated May 20, 2011; (3 Pages).
European Search Report corresponding to European Application No. EP 05 80 7612.6, completed May 2, 2011; dated May 20, 2011; (3 pages).
Extended European Search Report corresponding to European Application No. EP 10 25 1737.2, completed May 9, 2011; dated May 20, 2011; (4 Pages).
Extended European Search Report corresponding to European Application No. EP 11 25 0214.1, completed May 25, 2011; dated Jun. 1, 2011; (3 Pages).
Extended European Search Report corresponding to European Application No. EP 11 00 2681.2, completed May 31, 2011; dated Jun. 10, 2011; (3 Pages).
European Search Report corresponding to European Application No. EP 05 80 2686.5, completed Jan. 9, 2012; dated Jan. 18, 2012; (3 Pages).
Extended European Search Report corresponding to European Application No. EP 12 15 1313.9, completed Mar. 20, 2012 and dated Apr. 12, 2012; (5 Pages).
Extended European Search Report corresponding to European Application No. EP 12 16 1291.5, completed Apr. 24, 2012 and dated May 4, 2012; (5 Pages).
Extended European Search Report corresponding to European Application No. EP 12 16 5891.8, completed Jun. 12, 2012 and dated Jun. 20, 2012; (6 Pages).
Extended European Search Report corresponding to European Application No. EP 12 16 2288.0, completed Jun. 4, 2012 and dated Jul. 7, 2012; (6 Pages).
Extended European Search Report corresponding to European Application No. EP 12 16 4955.2, completed Aug. 23, 2012 and dated Sep. 4, 2012; (5 pages).
Extended European Search Report corresponding to European Application No. EP 11 25 0754.6, completed Oct. 22, 2012 and dated Oct. 31, 2012; (6 Pages).
Extended European Search Report corresponding to European Application No. EP 12 18 6401.1, completed Nov. 22, 2012 and dated Nov. 30, 2012; (7 Pages).
Extended European Search Report corresponding to European Application No. EP 12 18 6448.2, completed Nov. 28, 2012 and dated Dec. 10, 2012; (6 Pages).
Extended European Search Report corresponding to European Application No. EP 12 19 1706.6, completed Dec. 19, 2012 and dated Jan. 8, 2013; (6 Pages).
Extended European Search Report corresponding to EP 12 19 8745.7, completed Mar. 19, 2013 and dated Apr. 11, 2013; (8 Pages).
Extended European Search Report corresponding to EP 12 15 2989.5, completed Apr. 9, 2013 and dated Apr. 18, 2013; (9 Pages).
Extended European Search Report corresponding to EP 08 73 2820.9, completed Jul. 2, 2013 and dated Jul. 9, 2013; (10 Pages).
Extended European Search Report corresponding to EP 13 17 2008.8, completed Aug. 14, 2013 and dated Aug. 28, 2013; (8 Pages).
Extended European Search Report corresponding to EP 13 16 6382.5, completed Nov. 19, 2013 and dated Nov. 28, 2013; (8 Pages).
Extended European Search Report corresponding to EP 11 25 0194.5, completed Nov. 25, 2013 and dated Dec. 3, 2013; (8 Pages).
Extended European Search Report corresponding to EP 10 25 1798.4, completed Dec. 12, 2013 and dated Jan. 2, 2014; (9 Pages).
“Salute II Disposable Fixation Device”, Technique Guide—Laparoscopic and Open Inguinal and Ventral Hernia Repair; Davol, A Bard Company, 2006; (7 Pages).
Extended European Search Report corresponding to EP 10 25 2112.7, completed Jul. 29, 2014 and dated Aug. 5, 2014; (8 pp).
Extended European Search Report corresponding to EP 14 15 1673.2, completed Apr. 25, 2014 and dated May 8, 2014; (8 pp).
Japanese Office Action corresponding to JP 2011-160130 dated Dec. 1, 2014.
Chinese Office Action corresponding to CN 201210015011.8 dated Jan. 4, 2015.
Japanese Office Action corresponding to JP 2011-160126 dated Jan. 9, 2015.
Japanese Office Action corresponding to JP 2011-184521 dated Jan. 15, 2015.
Extended European Search Report corresponding to 14 18 2236.1 dated Jan. 20, 2015.
Chinese Office Action corresponding to CN 201110201736.1 dated Feb. 9, 2015.
Extended European Search Report corresponding to EP 14 16 1540.1 dated Feb. 27, 2015.
Australian Office Action corresponding to AU 2010226985 dated Mar. 31, 2015.
Australian Office Action corresponding to AU 2013211526 dated Apr. 6, 2015.
Australian Office Action corresponding to AU 2011211463 dated Apr. 13, 2015.
Australian Office Action corresponding to AU 2013254887 dated Apr. 14, 2015.
Japanese Office Action corresponding to JP 2013-225272 dated May 1, 2015.
International Search Report corresponding to Int'l Patent Appln. PCT/US2018/050316 dated Dec. 31, 2018.
International Search Report corresponding to Int'l Patent Appln. PCT/US2018/050336 dated Jan. 7, 2019.
International Search Report corresponding to Int'l Patent Appln. PCT/US2018/050325 dated Jan. 7, 2019.
International Search Report corresponding to Int'l Patent Appln. PCT/US2018/045306 dated Jan. 16, 2019.
International Search Report corresponding to Int'l Patent Appln. PCT/US2018/050349 dated Jan. 21, 2019.
International Search Report corresponding to Int'l Patent Appln. PCT/US2018/045725 dated Jan. 28, 2019.
Extended European Search Report corresponding to European Patent Application EP 18208630.6 dated Feb. 12, 2019.
International Search Report corresponding to Int'l Patent Appln. PCT/US2018/057910 dated Feb. 22, 2019.
International Search Report corresponding to Int'l Patent Appln. PCT/US2018/057922 dated Feb. 22, 2019.
International Search Report corresponding to Int'l Patent Appln. PCT/US2018/058078 dated Feb. 22, 2019.
International Search Report corresponding to Int'l Patent Appln. PCT/US2018/058603 dated Feb. 22, 2019.
International Search Report corresponding to Int'l Patent Appln. PCT/US2018/057221 dated Mar. 11, 2019.
Extended European Search Report corresponding to European Patent Application EP 18212043.6 dated Apr. 24, 2019.
Extended European Search Report corresponding to European Patent Application EP 18211565.9 dated Apr. 26, 2019.
Extended European Search Report corresponding to European Patent Application EP 18211921.4 dated Apr. 30, 2019.
Chinese First Office Action corresponding to Chinese Patent Application CN 201510868226.8 dated May 29, 2019.
Extended European Search Report corresponding to European Patent Application EP 15905685.2 dated May 29, 2019.
European Office Action corresponding to European Patent Application EP 17157606.9 dated Jul. 2, 2019.
Extended European Search Report corresponding to European Patent Application EP 15908025.8 dated Jul. 2, 2019.
Extended European Search Report corresponding to European Patent Application EP 18212054.3 dated Jul. 3, 2019.
Partial Supplementary European Search Report corresponding to European Patent Application EP 16884297.9 dated Jul. 30, 2019.
Chinese First Office Action corresponding to Chinese Appln. No. CN 201410076318.8 dated Jan. 23, 2017.
Extended European Search Report corresponding to European Appln. No. EP 16 18 3184.7 dated Jan. 24, 2017.
Japanese Office Action corresponding to Japanese Appln. No. JP 2016-097807 dated Feb. 14, 2017.
European Office Action corresponding to European Appln. No. EP 12 19 34475 dated Apr. 4, 2017.
Chinese First Office Action corresponding to Chinese Appln. No. CN 201410008877.5 dated Apr. 6, 2017.
European Search Report corresponding to European Appln. No. EP 17 15 3714.5 dated May 11, 2017.
European Search Report corresponding to European Appln. No. EP 17 15 8519.3 dated May 19, 2017.
European Search Report corresponding to European Appln. No. EP 17 15 7606.9 dated May 22, 2017.
European Office Action corresponding to European Appln. No. EP 11 25 0674.6 dated May 23, 2017.
Canadian Office Action corresponding to Canadian Appln. No. CA 2,743,402 dated May 30, 2017.
Chinese First Office Action corresponding to counterpart Int'l Appln. No. CN 201210586826.1 dated Dec. 30, 2015.
Extended European Search Report corresponding to counterpart Int'l Appln. No. EP 15 19 1313.4 dated Feb. 1, 2016.
Extended European Search Report corresponding to counterpart Int'l Appln. No. EP 15 18 5362.9 dated Feb. 12, 2016.
Extended European Search Report corresponding to counterpart Int'l Appln. No. EP 12 19 7813.4 dated Mar. 7, 2016.
Canadian Office Action corresponding to counterpart Int'l Appln. No. CA 2,676,465 dated Mar. 8, 2016.
Japanese Office Action corresponding to counterpart Int'l Appln. No. JP 2014-245081, dated Mar. 18, 2016.
Japanese Office Action corresponding to counterpart Int'l Appln. No. JP 2015-005629 dated Mar. 18, 2016.
Extended European Search Report corresponding to counterpart Int'l Appln. No. EP 15 19 3549.1 dated Mar. 22, 2016.
International Search Report and Written Opinion corresponding to counterpart Int'l Appln. No. PCT/CN2015/082199 dated Mar. 31, 2016.
Extended European Search Report corresponding to counterpart Int'l Appln. No. EP 15 19 7251.0 dated Apr. 8, 2016.
Extended European Search Report corresponding to counterpart Int'l Appln. No. EP 16 15 0739.7 dated May 17, 2016.
Canadian Office Action corresponding to counterpart Int'l Appln. No. CA 2,716,672 dated May 31, 2016.
Canadian Office Action corresponding to counterpart Int'l Appln. No. CA 2,717,448 dated May 31, 2016.
Canadian Office Action corresponding to counterpart Int'l Appln. No. CA 2,721,951, dated Jun. 1, 2016.
Partial European Search Report corresponding to counterpart Int'l Appln. No. EP 16 15 0287.7 dated Jun. 16, 2016.
Chinese Second Office Action corresponding to counterpart Int'l Appln. No. CN 201210555570.8 dated Jun. 20, 2016.
International Search Report & Written Opinion corresponding to Int'l Appln. No. PCT/CN2015/091603 dated Jul. 8, 2016.
Chinese Second Office Action corresponding to Int'l Appln. No. CN 201210586814.9 dated Jul. 18, 2016.
Chinese First Office Action corresponding to Int'l Appln. No. CN 201510093591.6 dated Jul. 25, 2016.
International Search Report & Written Opinion corresponding to Int'l Appln. No. PCT/CN2015/094172 dated Aug. 4, 2016.
Canadian Office Action corresponding to Int'l Appln. No. CA 2,728,538 dated Sep. 6, 2016.
Chinese Second Office Action corresponding to Int'l Appln. No. CN 201210586826.1 dated Sep. 14, 2016.
Extended European Search Report corresponding to Int'l Appln. No. EP 16 15 0287.7 dated Oct. 4, 2016.
Chinese First Office Action corresponding to Int'l Appln. No. CN 201510205737.1 dated Nov. 1, 2016.
European Office Action corresponding to Int'l Appln. No. EP 08 73 2820.9 dated Nov. 3, 2016.
Extended European Search Report corresponding to Int'l Appln. No. EP 16 18 5465.8 dated Dec. 21, 2016.
Extended European Search Report corresponding to Int'l Appln. No. EP 16 18 4652.2 dated Jan. 4, 2017.
Chinese First Office Action corresponding to Int'l Appln. No. CN 201510419902.3 dated Jan. 4, 2017.
European Office Action corresponding to EP 12 152 989.5 dated May 4, 2015.
Australian Office Action corresponding to AU 2009212759 dated May 7, 2015.
Chinese Office Action corresponding to counterpart Int'l Appln. No. CN 201210212642.9 dated Jun. 3, 2015.
European Office Action corresponding to counterpart Int'l Appln. No. EP 04 719 757.9 dated Jun. 12, 2015.
European Office Action corresponding to counterpart Int'l Appln. No. EP 13 166 382.5 dated Jun. 19, 2015.
Japanese Office Action corresponding to counterpart Int'l Application No. JP 2010-226908 dated Jun. 26, 2015.
Extended European Search Report corresponding to counterpart Int'l Application No. EP 15 15 5024.1 dated Jul. 17, 2015.
Extended European Search Report corresponding to counterpart Int'l Application No. EP 14 19 2026.4 dated Jul. 17, 2015.
Japanese Office Action corresponding to counterpart Int'l Application No. JP 2011-160126 dated Aug. 10, 2015.
Extended European Search Report corresponding to counterpart Int'l Application No. EP 14 15 0321.9 dated Sep. 23, 2015.
Extended European Search Report corresponding to counterpart Int'l Application No. EP 11 25 0675.3 dated Oct. 7, 2015.
Extended European Search Report corresponding to counterpart Int'l Application No. EP 11 25 0674.6 dated Oct. 7, 2015.
Related Publications (1)
Number Date Country
20180263624 A1 Sep 2018 US
Provisional Applications (1)
Number Date Country
61285006 Dec 2009 US
Continuations (2)
Number Date Country
Parent 14882535 Oct 2015 US
Child 15985747 US
Parent 12939296 Nov 2010 US
Child 14882535 US