The present disclosure relates generally to electric drive assemblies and machines, and more particularly, to systems and methods for regulating the common buses of electric drive assemblies and machines.
A common or electrical bus is used in a variety of applications including work machines, vehicles and computers. Electrical buses may also be used in high voltage applications to deliver power from a power source to the electrical devices. An electrical bus is essentially a parallel circuit that is used to connect a plurality of electrical devices together with a power source including generators, solar cells, batteries, or the like. Moreover, electrical buses may be used in direct current (DC) applications and have a positive line and a negative line, or ground line, over which a potential voltage difference may be provided.
As the electrical devices and subcomponents of an electric drive machine rely on the common bus for power, it is essential to regulate or maintain the bus voltage throughout operation of the machine for proper functionality. It is well known that a generator, such as a switched reluctance (SR) generator driven at relatively low engine idle speeds, may be used to regulate the common bus voltage during normal operations of the associated machine. However, it is also well known that such a generator cannot be used to regulate the voltage across a common bus without first priming the common bus or providing a startup voltage thereto. For instance, if the bus voltage has been substantially discharged and/or is less than the minimum startup voltage required for priming the generator, the generator may be unable to turn and begin regulating the bus voltage upon the next startup without additional help.
Accordingly, typical high voltage electric drive machines are provided with an auxiliary voltage source, such as an accessory power converter, configured to prime the common bus and the generator during startup. For example, once the engine of the machine is started by an operator, the accessory power converter is also started to charge the common bus and generator to the minimal startup voltage required. Once the engine idle speed settles to a relatively low idle speed and stabilizes, a request may be submitted to the generator to begin regulating the common bus to an optimum bus voltage. As the common bus and generator have already been primed or charged by the accessory power converter, the generator may begin regulating the bus voltage as soon as the request is received. Once the common bus voltage has been regulated, the operator may be enabled to change the throttle position, engage the engine into a relatively high idle speed and commence normal operations of the machine.
Although such priming strategies may be adequate for most purposes, a significant problem may arise if the accessory power converter, or auxiliary voltage source, malfunctions. For instance, if the auxiliary voltage source fails to prime the common bus or generator during startup of a high voltage electric drive machine, the common bus may not have the minimum charge that is required to start the associated SR generator. Moreover, without a properly primed common bus, the SR generator may be unable to regulate the common bus to the appropriate bus voltage and/or distribute the proper DC voltage to the electrical devices of the machine that are connected to the common bus.
The disclosed system and method is directed at overcoming one or more of the problems set forth above.
In one aspect of the present disclosure, a method of regulating a common bus of a machine having an engine, a generator and an auxiliary power source is provided. The method determines an operational state of the auxiliary power source, operates the engine at a predetermined idle speed if the auxiliary power source is determined to be inoperative, and enables the generator to regulate the common bus in response to the predetermined idle speed of the engine.
In another aspect of the disclosure, a primer system for a machine is provided. The primer system includes a common bus, a generator and a controller. The generator coupled to the common bus and an engine of the machine. The generator is further configured to supply electrical current to the common bus. The controller is operatively coupled to the engine and configured to selectively operate the engine at a high idle speed so as to prime the common bus and enable the generator.
In yet another aspect of the disclosure, a primer system for a machine is provided. The primer system includes a common bus, a generator coupled to the common bus and an engine of the machine, an auxiliary power source and a controller. The generator is configured to supply electrical current to the common bus. The auxiliary power source is configured to charge the common bus at startup. The controller is operatively coupled to the engine and configured to detect an operational state of the auxiliary power source. If the auxiliary power source is determined to be inoperative, the controller operates the engine at a predetermined idle speed.
Reference will now be made in detail to specific embodiments or features, examples of which are illustrated in the accompanying drawings. Generally, corresponding reference numbers will be used throughout the drawings to refer to the same or corresponding parts.
As further shown in
The generator 110 of
The common bus 114 may provide a positive line 118 and a negative or ground line 120 across which the common bus 114 may communicate a common DC bus voltage between one or more electrically parallel devices or subcomponents of the machine 100. For instance, the common bus 114 may communicate power supplied by the engine 102 and the generator 110 to one or more motors 122 for causing motion via a traction device 106. Specifically, the first converter circuit 116 associated with the generator 110 may provide a DC signal to be transmitted to a second converter circuit 116 associated with one or more motors 122. The second converter circuit 116 may convert the DC signal into the appropriated phased signals necessary for driving the motors 122. The common bus 114 may also communicate the common DC voltage to other components of the machine 100, such as power storage devices (not shown), accessory power loads (not shown), or the like. Additionally or optionally, the common bus 114 may be configured such that power supplied by a secondary power source, such as a power storage device, may be communicated to the generator 110 and/or the one or more motors 122. Furthermore, the DC voltage across the common bus 114 may be a substantially high DC voltage which can be conditioned or converted to lower voltages as required by any of the connected components or subcomponents of the machine 100.
Still referring to
The auxiliary power source 126 may include an auxiliary DC voltage source, or the like, configured to automatically charge the common bus 114 to the minimum startup voltage during the ignition of the engine 102. Once the common bus 114 has been sufficiently primed, the auxiliary power source 126 may be powered off while the engine 102 is operated at a relatively low idle speed. Upon stabilization of the low engine idle speed, the generator 110 may begin regulating the common bus 114 at an optimum bus voltage. In particular, once the low engine idle speed stabilizes, a priming request may be transmitted from the controller 128 to the engine 102 and/or generator 110 to begin regulating the common bus 114 to a predefined bus voltage in response to the low engine idle speed. While the bus voltage is regulated by the generator 110, an operator may commence normal operations of the machine 100 by changing the throttle position and engaging the engine into a relatively high idle speed, or the like.
Operations of the primer system 124 may be embedded or integrated into the existing controls of the machine 100. Moreover, the controller 128 may be implemented using one or more of a processor, a microprocessor, a microcontroller, an electronic control module (ECM), an electronic control unit (ECU), or any other suitable means for electronically controlling functionality of the primer system 124. The controller 128 may be configured to operate according to a predetermined algorithm or set of instructions for controlling the primer system 124 based on the operating conditions of the machine 100. Such an algorithm or set of instructions may be preprogrammed or incorporated into a memory of the controller 128 as is commonly used in the art.
As shown in
If the auxiliary power source 126 is determined to be operational and once the common bus 114 has been sufficiently charged, the controller 128 may operate the engine 102 at a relatively low idle speed and enable the generator 110 to operate in response to the idling engine 102. Moreover, the controller 128 may monitor the engine idle speed for stabilization, and once stabilized, the controller 128 may enable the generator 110 to regulate the common bus 114 at an optimum bus voltage. The bus voltage may then be distributed to the various electrical devices and subcomponents of the machine 100 requiring DC power. Furthermore, as the generator 110 regulates the common bus 114, an operator may adjust the throttle position of the engine 102 as desired and perform the required operations of the machine 100. As shown in
Alternatively, if the auxiliary power source 126 is determined to be inoperative, the controller 128 may temporarily operate the engine 102 at a relatively high idle speed in order to provide the generator 110 with the startup voltage it requires to begin regulating the common bus 114. More specifically, the high idle speed of the engine 102 may result in a residual voltage that can be used to prime the common bus 114 and enable the generator 110 to begin regulating the bus voltage. The high engine idle speed may be a predetermined value that is stored in the controller 128 and configured to supply the common bus 114 with enough startup voltage for starting the generator 110. The controller 128 may alternatively determine the appropriate idle speed based on the immediate operating conditions of the engine 102 and/or the machine 100. Once the generator 110 has been started and the bus voltage is regulated, the controller 128 may return the engine 102 to low or normal idle speeds and resume normal operations of the machine 100. The controller 128 of the primer system 124 may then return to a standby mode to monitor for subsequent startup requests.
In still further alternatives, the controller 128 of the primer system 124 may instead proceed to place the machine 100 into a limp mode of operation if the auxiliary power source 126 is determined to be inoperative, as illustrated in phantom lines in
In general, the foregoing disclosure finds utility in various industrial applications, such as the farming, construction and mining industries in providing a more robust electrical bus priming strategy for work vehicles and/or machines, such as tractors, backhoe loaders, compactors, feller bunchers, forest machines, industrial loaders, skid steer loaders, wheel loaders, and the like. More specifically, the disclosed priming strategy may be applied to high voltage electric drive machines with switched reluctance generators or other comparable generators commonly used in the art. The systems and methods disclosed herein monitor the ability of an auxiliary power source to prime the common bus and start the associated generator during startup. If the auxiliary power source is determined to be inoperative, the engine is engaged at a relatively high idle speed in order to prime the common bus and enable the generator to regulate the bus voltage. As the work machine can be started and remain fully operational even in the event of a failing auxiliary power source, the down time typically associated with a failed auxiliary power source is significantly reduced.
From the foregoing, it will be appreciated that while only certain embodiments have been set forth for the purposes of illustration, alternatives and modifications will be apparent from the above description to those skilled in the art. These and other alternatives are considered equivalents and within the spirit and scope of this disclosure and the appended claims.
Number | Name | Date | Kind |
---|---|---|---|
1734931 | Webb et al. | Nov 1929 | A |
3121836 | Rosenberry | Feb 1964 | A |
4520272 | Danno et al. | May 1985 | A |
6011377 | Heglund et al. | Jan 2000 | A |
6404163 | Kapsokavathis et al. | Jun 2002 | B1 |
6435294 | Hara et al. | Aug 2002 | B1 |
6661206 | Gallegos-Lopez | Dec 2003 | B2 |
6700802 | Ulinski et al. | Mar 2004 | B2 |
7495411 | Kaneko et al. | Feb 2009 | B2 |
20020051368 | Ulinski et al. | May 2002 | A1 |
20050096804 | Gee et al. | May 2005 | A1 |
20060116797 | Moran | Jun 2006 | A1 |
20070023210 | Bernardi et al. | Feb 2007 | A1 |
20070045259 | Beeson et al. | Mar 2007 | A1 |
20070080236 | Betz et al. | Apr 2007 | A1 |
20090001911 | Kayikei et al. | Jan 2009 | A1 |
20090140574 | Gorman et al. | Jun 2009 | A1 |
20100106343 | Donnelly et al. | Apr 2010 | A1 |
20100207457 | Reinkens | Aug 2010 | A1 |
20100280712 | Bowman | Nov 2010 | A1 |
Number | Date | Country | |
---|---|---|---|
20120161452 A1 | Jun 2012 | US |