The invention relates to hydrant manifolds for industrial fire fighting at plants and facilities, and in particular to a swiveled hydrant manifold. (“Manifold”, as used herein, can include a single port.)
Fire field logistics present problems that rank nearly as high as equipment-on-hand problems and personnel-available problems when facing an industrial fire fighting response.
Large fires require large volumes of water which sometimes require multiple large diameter water supply hoses, of 6 inch diameter and larger. The most convenient, reliable, and safest means of distributing large volumes of water over an entire facility is through constructing underground water delivery systems with aboveground hydrant manifolds. These hydrant manifolds are used in conjunction with large diameter water supply hose to supply the necessary water to pumps, fire fighting nozzles and foam proportioning equipment.
In current practice hydrant manifolds are fixed in regard to the direction they face. Hose that must ultimately run in the opposite direction, thus, must be laid in a large diameter circle in order to effect a 180° turn of the direction of the water without sacrificing head pressure. A 12 inch diameter hose may require a 50 foot turning ratio. The extra hose required to alter the direction of water 180° might be several hundred feet. Large diameter hose is expensive. The cost might run about $2,500 for a 12 inch hose. For that reason sometimes hydrant manifolds are placed on both sides of the road, facing in opposite directions, to address this problem. However, a duplication of iron and of header equipment is then required.
The use of a swivel, with or for a hydrant manifold, can save the cost of providing manifolds on both of sides of a road in order to have a manifold facing in the right direction, and/or can save the cost and expense of carrying and laying extra hose. Since in recent years the size of headers and thus the size of hose and the cost of hose has risen dramatically, the industry is looking for ways to minimize cost and maintenance in regard to fire fighting systems.
Swivels capable of managing thousands of pounds of thrust associated with large fire fighting monitors have been available since the late 1980's, but only from limited suppliers. Williams believes they were the first to provide such large scale swivels, 6 inch and larger, for monitors. Williams has extensively tested in-house swivels for monitors capable of operating after months and years of sitting in the weather as well as capable of handling thousands of pounds of thrust from monitors. Williams is in possession of extensive in-house testing in regard to the weathering and force handling properties of swivels.
Although the industrial fire fighting industry has historically tolerated the waste of hose and duplication of hydrants associated with fixed hydrant manifolds, with the increased diameter requirements for the supply pipes and hoses, the cost of the waste has risen. The inventors view this situation as a problem. With Williams testing experience, the instant inventors teach that an adequate swivel can be provided for use with, or for, a hydrant manifold, to solve this problem.
The invention involves appreciating that the long tolerated situation constitutes an unnecessary problem, a waste of hose and logistics complications associated with fixed hydrant manifolds. The invention further involves knowledge of the testing of swivels, large diameter swivels, which testing indicates that a swivel can be provided for fixed hydrant manifolds that will meet the requirements of enduring the necessary thrust and weathering, for the long term.
The instant invention, therefore, comprises a line of swivels for use with, or for, hydrant manifolds, preferably having an incorporated 360° rotating capability. The swivel is structured for location below a manifold and typically above a valve associated with a water delivery system, or a riser pipe. Such a swivel, tested to endure the requisite ranges of thrust and weather, can allow first responders to position a hydrant in a most advantageous direction depending on the location of the hazard, and preferably to lock the swivel into place using a convenient onboard swivel position lock. A swiveled hydrant manifold saves the cost of providing multiple manifolds facing different directions and/or of providing a hundred or more extra feet of hose required to redirect water without undue pressure loss.
Design Benefits for a Swivel, with or for a Hydrant Manifold:
The instant invention includes a swivel for, use with existing hydrant manifolds as well as for use with its own manifold. The swivel for existing hydrant manifolds offers an alternative for facilities who embrace the importance of having non-fixed hydrant manifolds but already have fixed hydrant manifolds in place. With a swivel conversion a standard non-swiveled hydrant manifold can be converted into a swiveled hydrant. E.g. an end user can unbolt a standard non-swiveled hydrant manifold from the typical hydrant manifold inlet valve or riser pipe, place a conversion swivel on top of the inlet valve or riser pipe and then place the hydrant manifold on top of the swivel. The conversion allows the existing hydrant manifold to swivel and be locked into place via a positive locking mechanism.
A bottom fitting of the swivel is preferably stationary and does not move relative to the ground. A top portion of the swivel, preferably with a locking element and upper flange, preferably locks in the needed direction and can rotate 360 degrees. Preferably the top portion of the swivel and attached hydrant can be secured in a desired direction and fixed, such as pinned into place via mateable locking holes that register every 22.5 degrees (16 positions) for instance.
The invention discloses a swivel for use with or for, a hydrant manifold for industrial fire fighting. The swivel with a hydrant manifold comprises a hydrant manifold and a swivel connected thereto, structured to connect to an industrial water supply pipe system, including inlet and valve or riser pipe. The swivel provides at least a 6 inch flow conduit and preferably includes mating male and female stainless steel sleeves, structured for relative rotation, having at least two rings of steel ball bearings between them, and including an interior water seal and preferably an exterior debris seal. The manifold may be horizontal or vertical. Male and female stainless steel swivel sleeves are preferably structured for welded connection to the hydrant manifold, on the one hand, and to a pipe or fitting likely connecting to an aboveground valve of an industrial water pipe supply system, on the other hand.
Preferably the swivel includes grease fittings for lubricating the area between the sleeves and around the bearings, and the sleeves and bearings are preferably constructed of 316 stainless steel, and include a locking mechanism, such as a pair of locking flanges. More preferably, the swivel of the instant invention incorporates flanges or flange portions on the male and female sleeves with mating holes such that a pin can be placed through the holes to lock the swivel in place.
The invention includes a swivel device for connecting to existing hydrant manifolds. The swivel device comprises a first fitting structured to fixedly attach to an inlet valve or riser pipe and a swivel body structured to sealingly and rotatably mate with the first fitting, the body providing a second fitting to fixedly attach, directly or indirectly, to a hydrant manifold. A locking device is preferably included for setting a rotatable attachment position between the swivel body and the first fitting. The first fitting and the swivel body preferably provide an at least 6 inch fluid conduit between the first fitting and second fitting.
It should be clear that the swivel can connect directly or indirectly between the hydrant manifold and the industrial water supply pipe system. Preferred embodiments show the swivel connected in a simple and direct fashion.
A better understanding of the present invention can be obtained when the following detailed description of the preferred embodiments are considered in conjunction with the following drawings, in which:
The drawings are primarily illustrative. It would be understood that structure may have been simplified and details omitted in order to convey certain aspects of the invention. Scale may be sacrificed to clarity.
As illustrated in
An outside debris seal location DSL is preferably provided, for a debris seal such as an O ring, located in a suitable notch between the male and female sleeves. In preferred embodiments a simple O ring has been shown to prevent debris from entering from the outside into the area between the male and female sleeve. An interior seal IS of a more complex design, preferably of a PFTE or Teflon, is preferably provided in an interior seal location ISL as a water seal for the space between the sleeves and containing the ball bearings. Preferably the inner water seal IS is positioned on shoulders at location ISL between the male and female sleeves such that water pressure drives the seal into greater sealing engagement between the two sleeves.
In preferred embodiments a drain is provided in a fitting below the swivel such that when an upstream valve turns off the water supply to the swivel and hydrant, water can drain from the manifold and swivel to the outside.
Preferably lubricant is provided through at least one grease fitting GF, with maintenance preferably on a schedule of every six months to a year. A lubricant is selected to maintain its viscosity and composition through the range of anticipated environmental and hazard temperature changes.
A location for a custom water seal ISL, preferably with an elgiloy spring, is indicated. A grease pressure vent GPV hole is indicated. One or more standard grease fittings are not shown but would be included.
As mentioned, preferably the sleeve castings are manufactured from 316 stainless steel and annealed and stressed relieved. Ports P are indicated in the female sleeve through which the ball bearings are loaded. Preferably a water seal is specifically designed for its chamber ISL in order to seal tightly against water leakage under the pressure of water through the swivel. A PTFE or Teflon seal is preferred.
As discussed above and illustrated in
An outside debris seal DS is also preferably provided, such as an O ring, located in a suitable notch DSL between the male and female sleeve. A simple O ring can prevent debris from entering from the outside into the area between the male and female sleeves. An interior seal of a more complex design, preferably of a PFTE or Teflon, is preferably provided in an interior seal location ISL as a water seal for the space between the sleeves containing the ball bearings. Preferably the inner water seal is positioned on shoulders between the male and female sleeves such that water pressure drives the seal into greater sealing engagement between the two sleeves.
In preferred embodiments a drain is provided such that when an upstream valve turns off the water supply to the swivel and hydrant, water can drain from the manifold and swivel to the outside.
Preferably lubricant is provided through at least one grease fitting GF, with maintenance preferably on a schedule of every six months to a year. A lubricant is selected to maintain its viscosity and composition through the range of anticipated environmental and hazard temperature changes.
As indicated in
The foregoing description of preferred embodiments of the invention is presented for purposes of illustration and description, and is not intended to be exhaustive or to limit the invention to the precise form or embodiment disclosed. The description was selected to best explain the principles of the invention and their practical application to enable others skilled in the art to best utilize the invention in various embodiments. Various modifications as are best suited to the particular use are contemplated. It is intended that the scope of the invention is not to be limited by the specification, but to be defined by the claims set forth below. Since the foregoing disclosure and description of the invention are illustrative and explanatory thereof, various changes in the size, shape, and materials, as well as in the details of the illustrated device may be made without departing from the spirit of the invention. The invention is claimed using terminology that depends upon a historic presumption that recitation of a single element covers one or more, and recitation of two elements covers two or more, and the like. Also, the drawings and illustration herein have not necessarily been produced to scale.
This application is related to, and claims priority from, co-pending Application Ser. No. 61/459,232 and Ser. No. 61/464,628, filed Dec. 9, 2010 and Mar. 7, 2011 respectively by the same inventors, and entitled Swivel Hydrant Manifold for Industrial Fire Fighting and Swivel With or for Industrial Hydrant Manifold for Industrial Fire Fighting, respectively. The content of both said provisional applications is herein and hereby incorporated by reference.
Filing Document | Filing Date | Country | Kind | 371c Date |
---|---|---|---|---|
PCT/US2011/001960 | 12/6/2011 | WO | 00 | 6/4/2013 |
Number | Date | Country | |
---|---|---|---|
61459232 | Dec 2010 | US | |
61464628 | Mar 2011 | US |