This invention relates to electronic devices in which digital signals are coupled through signal lines adjacent each other, and, more particularly, to a system and method for reducing jitter in the signals that is caused by variations in the propagation velocities of the signals.
In many electronic devices, signals are coupled through parallel signal lines that are positioned closely adjacent each other. For example, in a double in-line memory module (“DIMM”) 10 shown in
As is well known in the art, the transmission lines formed by the microstrip conductors in the buses 20 behave essentially as series inductors and resistors, and shunt capacitors. As shown in
Returning to
The timing of a digital signal is affected by “jitter,” which is high frequency phase noise that cause rapid changes in the timing at which transitions of the digital signal occur. Jitter can be caused by a number of sources, such as noise coupled to digital circuits along with a digit signal, which causes the switching time of the digital circuit to vary in a random manner. Jitter can also be caused by variations in the propagation time of digital signals coupled through signal lines. A pair of microstrip signal lines 70, 72 formed by a pair of conductive traces 74, 76 on a substrate 78 are shown in
As a result of these variations in the effective dielectric constants of the signal lines 70, 72, the time required for signals to propagate through the signal lines also varies. More specifically, the propagation velocity of the signals are highest when the signals transition in opposite directions. The propagation velocity is slower when one of the signals switches but the other does not. The propagation velocity is even slower when both of the signals switch in the same direction. Thus, for example, if the signal lines 70, 72 couples write data signals to one of the SDRAM devices 14 (
There is therefore a need for a system and method that can avoid the effects of jitter produced by coupling signals through signal lines that are closely adjacent each other.
A method and system for coupling first and second digital signals through respective first and second adjacent signal lines first identifies each transition of the first and second signals. Based on the identified transitions, the method and system determines a delay value for the first and second signals. A delay circuit or other device then delays the first and second signals by the delay value before coupling the signals to the first and second signal lines, respectively. The delay of the signals ensures that the time required for the first and second signals propagate to a location in the signal lines is substantially constant, thereby reducing jitter of the signals.
One embodiment of a system 80 for reducing jitter in signals coupled through a pair of adjacent signal lines is shown in
In operation, the mode detector 88 determines the relative transitions of the signals S1, S2. Based on whether the signals S1, S2 are transitioning in the same direction or in opposite directions or whether either of the signals S1, S2 are not transitioning at all, the mode detector 88 sets a corresponding delay value for the delay circuits 82, 84. More specifically, if the mode detector 88 determines that the signals S1, S2 have transitioned in the same direction, the mode detector 88 sets the delay circuits 82, 84 to provide either no delay or a relatively small delay. If the mode detector 88 determines that the signals S1, S2 have transitioned in opposite directions, the mode detector 88 sets the delay circuits 82, 84 to provide either a relatively large delay. Finally, if the mode detector 88 determines that one of the signals S1, S2 has not transitioned but the other one has, the mode detector 88 sets the delay circuits 82, 84 to provide a moderate delay that is intermediate the delays provided in the other circumstances. The delay circuits 82, 84 delay the signals S1, S2 by appropriate amounts so that they arrive at the receiver 94 at the same time. As a result, the amount of jitter in the signals S1, S2 is substantially reduced, thereby allowing the receiver 94 to operate at a higher speed without encountering data errors.
Sets of digital signals are commonly coupled through a large number of respective signal lines known as buses. For example, data signals are coupled through a data bus, and address signals are coupled through an address bus. Under these circumstances, it may not be possible to minimize jitter by simply coupling pairs of signals through the jitter reduction system 80 since the propagation time of a signal coupled through one of the lines can be affected by transitions in the signal line of an adjacent pair. However, as shown in
The magnitude of the delay value provided by the delay circuits 82, 84 will depend on a number of factors in addition to the relative signal transitions in the signal lines 66, 68. A primary factor is the length of the signal lines 90, 92. The appropriate delay value in any situation can be determined using a number of techniques. The delay values can be determined using conventional simulation techniques or empirically by measuring variations in the relative timing of signals S1, S2 coupled through the signal lines 90, 92. Once the delay values have been determined, delay values are selected that compensate for these variations.
The appropriate delay values can also be determined automatically using an evaluation system 100 as shown in
In operation, the pattern generator 104 generates a pattern of the signals S1, S2 at each of several delay values. In response to the transmission of each pattern of signals S1, S2, the pattern detector 110 transmits the feedback data to the pattern generator 104 indicating whether or not the transmitted pattern was detected. After transmitting the signal pattern at each of a plurality of delay values and receiving feedback data from the pattern detector 110, the pattern generator 104 determines the optimum values of the delay value for each type of signal transition. For example, if, for eight delay values, the pattern detector 110 provides feedback data of F, F, P, P, P, P, P, F (where P is a pass, meaning the signals were properly received an F is a fail, meaning the signals were not properly received), the pattern generator 104 may select the delay value approximately in the midpoint of the delay values in which the transmitted pattern was detected.
Although the evaluation system 100 as shown in
A memory system 120 according to one embodiment of the invention is shown in
In operation, the pattern generators 104 in the memory controller 124 transmit the predetermined pattern at each of a plurality of delay values for respective pairs of signal lines in the data bus 130. At each of these delay values, the pattern detectors 110 in the SDRAM devices 114 transmit feedback data to the pattern generators 104. The pattern generators 104 use the evaluation feedback data to select respective delay values that will be used in normal operation to couple write data signals through respective pairs of the signal lines in the data bus 130 from the memory controller 124 to the SDRAM devices 114. The jitter reduction systems 80 and pattern generators 104 in each of the SDRAM devices 128 then perform the same operation with the pattern detectors 110 in the memory controller 124. The pattern generators 110 use the feedback data to select respective delay values that will be used in normal operation to couple read data signals through respective pairs of the signal lines in the data bus 130 from the SDRAM devices 128 to the memory controller 124. In normal operation, the write data and read data are coupled between the memory controller 124 and the SDRAM devices 128 with relatively little jitter, thus allowing the SDRAM devices 128 to operate at a higher speed without the risk of erroneous data being written or read.
The jitter reduction systems 80 may also be included in the memory controller 124 for respective pairs of signal lines in the address bus 132 and the command bus 134. However, since it is generally not as critical to couple address and command signals to the SDRAM devices 128 at very high speeds, the jitter reduction systems 80 may be coupled only to the signal lines in the data bus 130.
In an alternative embodiment, the memory controller 124 and the SDRAM devices 128 each include one of the jitter reduction systems 80 for each pair of signal lines in the data bus, but only the memory controller 124 includes the pattern generators 104 and only the SDRAM devices 128 include the pattern detectors 110. In operation, once the pattern generators 104 in the memory controller 124 determines the optimum delay values for each pair of signal lines in the data bus 130, it transmits data specifying these delay values to the SDRAM devices 128. The jitter reduction systems 80 in the SDRAM devices 128 are then programmed to use these same delay values. This embodiment is based on the assumption that the propagation times through each pair of signal lines in the data bus 130 are the same for both read data signals and write data signals.
The memory system 120 shown in
Although the present invention has been described with reference to the disclosed embodiments, persons skilled in the art will recognize that changes may be made in form and detail without departing from the spirit and scope of the invention. Such modifications are well within the skill of those ordinarily skilled in the art. Accordingly, the invention is not limited except as by the appended claims.
Number | Name | Date | Kind |
---|---|---|---|
4481625 | Roberts et al. | Nov 1984 | A |
5086470 | Ballance | Feb 1992 | A |
5243627 | Betts et al. | Sep 1993 | A |
5452333 | Guo et al. | Sep 1995 | A |
5710649 | Mollenauer | Jan 1998 | A |
5802103 | Jeong | Sep 1998 | A |
5956374 | Iwamatsu | Sep 1999 | A |
6010788 | Kebabjian et al. | Jan 2000 | A |
6011441 | Ghoshal | Jan 2000 | A |
6208702 | Ghoshal | Mar 2001 | B1 |
6211714 | Jeong | Apr 2001 | B1 |
6316981 | Rao et al. | Nov 2001 | B1 |
6385367 | Rogers et al. | May 2002 | B1 |
6403887 | Kebabjian et al. | Jun 2002 | B1 |
6448168 | Rao et al. | Sep 2002 | B1 |
6452107 | Kebabjian | Sep 2002 | B1 |
6549059 | Johnson | Apr 2003 | B1 |
6664839 | Ootake et al. | Dec 2003 | B2 |
6684030 | Taylor et al. | Jan 2004 | B1 |
6820234 | Deas et al. | Nov 2004 | B2 |
6917229 | Cho | Jul 2005 | B2 |
20040223566 | Yamashita | Nov 2004 | A1 |
Number | Date | Country | |
---|---|---|---|
20060224342 A1 | Oct 2006 | US |