The subject matter disclosed herein relates to a system and method of acquiring three-dimensional coordinates of points on a surface of an object and in particular to a system and method of operating a laser tracker in conjunction with a scanner device to track the position and orientation of the scanner device during operation.
The acquisition of three-dimensional coordinates of an object or an environment is known. Various techniques may be used, such as time-of-flight (TOF) or triangulation methods for example. A TOF system such as a laser tracker, for example, directs a beam of light such as a laser beam toward a retroreflector target positioned over a spot to be measured. An absolute distance meter (ADM) is used to determine the distance from the distance meter to the retroreflector based on length of time it takes the light to travel to the spot and return. By moving the retroreflector target over the surface of the object, the coordinates of the object surface may be ascertained. Another example of a TOF system is a laser scanner that measures a distance to a spot on a diffuse surface with an ADM that measures the time for the light to travel to the spot and return. TOF systems have advantages in being accurate, but in some cases may be slower than systems that project a plurality of light spots onto the surface at each instant in time.
In contrast, a triangulation system such as a scanner projects either a line of light (e.g. from a laser line probe) or a pattern of light (e.g. from a structured light) onto the surface. In this system, a camera is coupled to a projector in a fixed mechanical relationship. The light/pattern emitted from the projector is reflected off of the surface and detected by the camera. Since the camera and projector are arranged in a fixed relationship, the distance to the object may be determined from captured images using trigonometric principles. Triangulation systems provide advantages in quickly acquiring coordinate data over large areas.
In some systems, during the scanning process, the scanner acquires, at different times, a series of images of the patterns of light formed on the object surface. These multiple images are then registered relative to each other so that the position and orientation of each image relative to the other images is known. Where the scanner is handheld, various techniques have been used to register the images. One common technique uses features in the images to match overlapping areas of adjacent image frames. This technique works well when the object being measured has many features relative to the field of view of the scanner. However, if the object contains a relatively large flat or curved surface, the images may not properly register relative to each other.
Accordingly, while existing coordinate measurement devices are suitable for their intended purposes, the need for improvement remains, particularly in improving the registration of images acquired by a scanner device.
According to one aspect of the invention, a method of determining three-dimensional (3D) coordinates of an object surface with a six degree-of-freedom (DOF) laser tracker and a portable structured light scanner is provided. The method comprises providing the scanner having a body, a first camera, a second camera, a first projector, and a processor. The first camera, second camera, and the first projector are coupled to the body, the first camera having a first camera perspective center at a first camera position, the second camera having a second camera perspective center at a second camera position, and the first projector having a first projector perspective center at a first projector position, respectively, in a scanner frame of reference. The first projector position being non-collinear with respect to the first camera position and the second camera position. The first projector configured to produce a first projector pattern of light within the projector and to project the first projector pattern onto the surface as a first surface pattern. The first projector pattern of light being a pattern of light having uniformly spaced elements in each of two dimensions of two-dimensional space. The scanner further having a first retroreflector coupled to the body. The tracker is provided having a tracker frame of reference. The scanner having a first pose in the tracker frame of reference, the first pose including a first location and a first orientation, each of the first location and the first orientation being defined by three degrees of freedom. An emitted beam of light from the tracker is locked onto the first retroreflector. The tracker receives a reflected portion of the emitted beam of light. The tracker measures the first location, the location based at least in part on a first distance, a first angle, and a second angle. The first distance being a distance from the tracker to the retroreflector, the first distance measured with a distance meter, a first angle measured with a first angle measuring device, and a second angle measured with a second angle measuring device. The tracker measures the first orientation. The first surface pattern is projected onto the surface. The first surface pattern is imaged with the first camera to obtain a first image. The first surface pattern is imaged with the second camera to obtain a second image. The processor determines the 3D coordinates of a first plurality of points in the tracker frame of reference based at least in part on the first location, the first orientation, the first projector pattern, the first image, the second image, the first camera position, the second camera position, and the first projector position. The determining of the 3D coordinates being based at least in part on the use of epipolar constraints among the first camera, the second camera, and the first projector. The 3D coordinates are stored.
These and other advantages and features will become more apparent from the following description taken in conjunction with the drawings.
The subject matter, which is regarded as the invention, is particularly pointed out and distinctly claimed in the claims at the conclusion of the specification. The foregoing and other features, and advantages of the invention are apparent from the following detailed description taken in conjunction with the accompanying drawings in which:
The detailed description explains embodiments of the invention, together with advantages and features, by way of example with reference to the drawings.
Embodiments of the present invention provide advantages in registration of images acquired by a scanner device. Embodiments of the invention provide further advantages in the tracking of a handheld scanner device with a coordinate measurement device such as a laser tracker.
Referring to the
The laser tracker 24 includes a light source that emits light, for example, a laser, and a distance meter. The light source and distance meter are configured to emit and receive light 28 via an aperture 30. The distance meter may be an absolute distance meter assembly which allows the laser tracker 24 to optically measure the distance between the laser tracker 24 and a six-DOF retroreflector.
In other embodiments, the six-DOF laser tracker 24 may operate with a different type of six-DOF target affixed to the scanner 26. In an embodiment, the six-DOF target includes a cube-corner retroreflector and a collection of light points that are imaged by a camera attached to the tracker. In a further embodiment, the six-DOF tracker works with a type of six-DOF target that includes a glass cube-corner retroreflector prism that has its vertex beveled off to permit light to pass through to a position detector for measurement of pitch and yaw angles of the six-DOF target. This six-DOF target may include a mechanical pendulum that permits low friction rotation with measurement of rotation by an angular encoder attached to the pendulum. Other types of six-DOF targets and six-DOF laser trackers are possible.
The six-DOF laser tracker 24 may include motors, angular encoders and a position detector that allows the laser tracker 24 to track the position of a retroreflector as it is moved through space. Provided within the tracker is a controller 32 having a processor configured to determine the three dimensional coordinates of the retroreflector based at least in part on the distance to the retroreflector and on signals from the angular encoders. In addition, the six-DOF laser tracker includes additional methods for determining the three orientational degrees of freedom (e.g., pitch, roll, and yaw). The methods may include steps of imaging, with a camera coupled to the tracker, points of light adjacent to the retroreflector 48. This camera may have a controlled magnification. The methods may also include a wired or wireless communication to obtain data from a position detector and/or an angular encoder attached to a mechanical pendulum. It should be appreciated that these methods are exemplary and other configurations are possible for a six-DOF laser tracker. The controller 32 may further have additional circuitry, including but not limited to communications circuits which allow the laser tracker 24 to communicate with the scanner 26 or a computer 33 via a wired or wireless communications medium 35.
A scanner 26 is a portable device that allows an operator to optically scan and measure an object or the environment. The scanner 26 has a base part 104, a grip part 106, which protrudes from the base part 104, and a head end 108. An operator of the scanner 26 may hold the scanner 26 at the grip part 106, which is configured to allow the operator to carry the scanner 26 through the environment and to align the scanner 26 to objects 22 in the environment.
In the exemplary embodiment, the scanner 26 is a structured light type of coordinate measurement device. As will be discussed in more detail below, the scanner 26 first emits structured light 123 with a projector 120 to form a structured light pattern 34 on surfaces of object 22. The light pattern 34 is reflected from the surface of object 22 as reflected light 40 and is received by the cameras 111, 112. A lens 117 (
In the exemplary embodiment, the projector 120 has a diffraction grating 124. The refraction grating 124 has a lens perspective center 125 and a projector optical axis 127. The ray of light from the light source 121 travels from the light source through the refraction grating 124 and through the perspective center 125 to the object 22. Similarly, each camera lens 117 includes a lens perspective center 129 and a lens optical axis. In the embodiment, of
As will be discussed in more detail below, in the exemplary embodiment, a six degree of freedom (6DOF) retroreflector 48 is coupled to the head end 108 along a top surface. The retroreflector 48 may be similar to the one described in commonly owned U.S. patent application Ser. No. 13/370,339 filed on Feb. 10, 2012 or U.S. patent application Ser. No. 13/407983 filed on Feb. 29, 2012, both of which are incorporated by reference herein in their entirety. In one embodiment, the retroreflector 48 in the form of a six-DOF SMR is coupled to a nest 50. The nest 50 may be a magnetic nest, or may include a clamping arrangement that holds the retroreflector 48 in place during operation. In still other embodiments, one or more the retroreflectors 48 are integrated into the scanner 26. In other embodiments, the scanner 26 may include, in addition to a three DOF retroreflector, three or more points of light mounted on the scanner and viewed by a camera on the six-DOF tracker 24, the combination of retroreflector and lights are sufficient to provide the six degrees of freedom of the scanner 24 within a frame of reference of the tracker 24. In another embodiment, the scanner 26 includes a glass cube-corner retroreflector having the vertex beveled so as to permit light to pass through the retroreflector to a position detector. The position of the transmitted light on the position detector may be used to determine the pitch and yaw angles of the scanner 26. This may be used in combination with a low-friction mechanical pendulum coupled to an angular encoder to determine the roll angle of the scanner 26 with the tracker frame of reference. It should be appreciated that the above described six-DOF targets and trackers are exemplary and not limiting. In other embodiments, other types of six-DOF targets and six-DOF trackers may be used in combination with the scanner 26.
The scanner 26 includes a first camera 111 and a second camera 112 arranged a predetermined distance apart in the head end 108. The first camera 111 and the second camera 112 may be aligned in such a way as to cause the fields of view (FOV) to overlap, thereby providing stereoscopic images of surfaces of object 22. There may be a desired overlap of the camera FOVs that matches, at least approximately, the area of the projected light pattern 34 for a typical distance between the scanner 26 and the object 22. In some embodiments, a typical distance from the scanner 26 to the object 22 may be on the order of several decimeters or a few meters. In an embodiment, the mutual alignment of cameras 111 and 112 is not fixed but can be adjusted by the operator, for example by pivoting the cameras 111, 112 in opposite sense, about axes of rotation that are parallel to the grip 106. Such an adjustment may be followed by a compensation procedure, which may include use of a dot plate, to determine the angles of rotation of the cameras 111, 112.
In the exemplary embodiment, the first camera 111 and the second camera 112 are monochrome, i.e. sensitive to a narrow wavelength range, for example by being provided with filters that pass the desired narrow wavelength range and block other wavelength ranges. The narrow wavelength range passed to the photosensitive arrays 119 within the cameras 111, 112 may be within the infrared range. In order to obtain information on the color of the object 22, a color camera 113 may be arranged in the head end 108. In one embodiment, the color camera 113 may be symmetrically aligned to the first camera 111 and to the second camera 112, and arranged centrally therebetween. The color camera 113 is sensitive in the visible light wavelength range.
The scanner 26 may include a display and control unit 115, such as a touch screen for example. The display and control unit 115 may be arranged at the head end 108, on a side opposite the cameras 111, 112. In one embodiment, the display and control unit 115 may be configured to be detachable. The cameras 111, 112 and, if available, camera 113, as well as the display and control unit 115 are connected to a controller 118, which may also be arranged in the head end 108. The controller 118 can pre-process the data of the cameras 111, 112, 113, to produce the 3D-scans and provide suitable views onto the display and control unit 115. In some embodiments the scanner may not have a display and control unit 115, but rather is operated by means of a remote control, such as portable computer 33 for example, which is in continuous connection (cabled or wireless) with the control and evaluation unit 118, such as through medium 35 for example.
It should be appreciated that unless the controller 118 transfers the 3D-scans or the data of the cameras 111, 112, 113, by means of wireless medium 35, the scanner 26 may be provided with a data connection, such as on the base part 104 for example. The data connection can be, for example, a standardized interface for LAN, USB or the like. If appropriate, the data connection can be configured also for introducing a portable storage medium (SD-card, USB-stick etc.). For power supply, a battery may be provided in the base part 104. For charging the battery, a power supply outlet may be provided, preferably on the base part 104. In another embodiment, the battery may be replaced by the user when depleted.
In an embodiment, a first projector 120 is provided in the base part 104. The first projector 120 is aligned in correspondence with the two cameras 111, 112. The relative distance and the relative alignment are pre-set or may be set by the user. The first projector 120 projects the structured light pattern 34 onto the object 22 being scanned.
As used herein, the term “structured light” refers to a two-dimensional pattern of light projected onto a continuous area of an object that conveys information which may be used to determine coordinates of points on the object. A structured light pattern will contain at least three non-collinear pattern elements. Each of the three non-collinear pattern elements conveys information which may be used to determine the point coordinates.
In general, there are two types of structured light patterns, a coded light pattern and an uncoded light pattern. In a coded light pattern, the set of elements are arranged identifiable elements such as collections of lines or pattern regions. In contrast, an uncoded structured light pattern may include a pattern in which the elements are identical and uniformly spaced, such as a pattern of dots or other geometric shapes.
In the exemplary embodiment, the pattern 34 is an uncoded pattern, for example, a periodic pattern. A similarity in the appearance of the periodic pattern elements is resolved by the use of the two cameras 111, 112 together with a projector 120 located at a position not collinear with the two cameras. With this arrangement, epipolar constraints and related mathematical methods may be used to establish the correspondence between periodic elements projected by the projector 120 and the periodic elements observed by the cameras 111, 112. The uncoded pattern 34 may be a point pattern, comprising a regular arrangement of points in a grid. For example, in one embodiment, the uncoded pattern consists of a 100×100 array of points that are projected at an angle of approximately 50° to a distance between 0.5 m to 5 m. The pattern 34 can also be a line pattern or a combined pattern of points and lines, each of which is formed by light points. Lenses 117 in the two cameras 111 and 112 form images of the pattern 34 in their respective image planes B111 and B112 (
The resolution in the 3D coordinates obtained for the object 22 may depend on the distance from the scanner 26 to the object 22. For example, fine structures of the object 22, a relatively high point density may be used, while a relatively low point density may be sufficient to resolve coarse structures. It therefore it may be advantageous to produce, in addition to pattern 34, at least one other pattern 34A (
In one embodiment a second projector 122 may be provided. The second projector 122 may be aligned to produce the second pattern 34A. In another embodiment, the first projector 120 may produce, in addition to pattern 34, the second pattern 34A, where the patterns 34, 34A are offset to each other with respect to time or in another wavelength range. The second pattern 34A may be a pattern different from pattern 34, obtained for example by changing the distance between the points (grid pitch).
In an embodiment, the second pattern 34A overlays the first pattern 34, for example, with a different intensity. A combined pattern may include a first set of light points 34 spaced farther apart but with higher intensity and a second set of light points 34A spaced closer together but with lower intensity. With the combined pattern having spots of differing intensities, it is in some cases possible to overcome issues with different levels of reflected light by properly selecting the exposure times or projected optical power levels.
It is also contemplated that more than two patterns 34, 34A may be used. For example, a defined sequence of differing patterns may be projected over time.
In one embodiment, the monochromatic first pattern 34 (and second pattern 34A) is produced by means of a diffractive optical element 124 (
Two patterns 34, 34A may be produced with two diffractive optical elements, which are produced at different times or illuminated with different wavelengths. With a time-variable diffractive optical element, it is possible to quickly (i.e. with approximately each frame) or slowly (for example manually controlled) change between the patterns 34, 34A, or first pattern 34 may be adapted dynamically to the changing facts or situation (with regard to the density of the light points on the object surface and the reach of the projected first pattern 34). A gradual transition between the patterns 34, 34A is conceivable as well (fade-over). As an alternative to diffractive optical elements, arrays of microlenses or of single lasers can be used. Optionally, also a classical imaging by means of a mask, in particular of a transparency, is possible.
In one embodiment, to improve energy efficiency, the first projector 120 may be configured to produce the first pattern 34 on the objects 22 when the cameras 111, 112 (and if available camera 113) record images of the objects 22 which are provided with the first pattern 34. For this purpose, the two cameras 111, 112 and the projector 120 (and if available the second projector 122) are synchronized, such as coordinated internally with each other for example, with regard to both time and the first pattern 34 (and optionally second pattern 34A). Each recording process starts by the first projector 120 producing the first pattern 34, similar to a flash in photography, and the cameras 111, 112 (and, if available camera 113) following with their records, more precisely their pairs of records (frames), such as one image each from each of the two cameras 111, 112. The recording process can comprise one single frame (shot), or a sequence of a plurality of frames (video). A trigger switch 126, by means of which such a shot or such a video can be triggered, is provided on the grip part 106. After processing of the data, each frame then constitutes a 3D-scan, i.e. a point cloud in the three-dimensional space, in relative coordinates of the scanner 26. In another embodiment, the recording process may be triggered by means of a remote control of the scanner 26. As will be discussed in more detail below, the plurality of frames may be registered relative to each other in space using coordinate data acquired by the tracker 24.
The first projector 120 and the second projector 122 may be arranged in a non-collinear position relative to the one camera 111 or two cameras 111, 112. In one embodiment, the projectors 120, 122 and the one camera 111 or two cameras 111, 112 are positioned in a triangular arrangement. This arrangement of the two cameras 111, 112, as well as of the first projector 120 (and optionally of the second projector 122) makes use of mathematical methods of optics, which are known in the art, as epipolar geometry, according to which one point in the image plane B112 of the second camera 112 can be observed on a (known) epipolar line, in the image plane B111 of the first camera 111, and vice versa, and/or a point which is produced by the first projector 120 from a projector level P121 can be observed on one epipolar line each, in the image planes B111, B112 of the two cameras 111, 112.
In the exemplary embodiment, at least three units (projector 120 and the two cameras 111, 112) are involved, i.e. proceeding from each of the units, two stereo geometries each (with a plurality of epipolar lines each) can be defined with the two other units. Unambiguous triangle relations of points and epipolar lines, from which the correspondence of projections of the first pattern 34 (and optionally second pattern 34A) in the two image levels B111, B112 can be determined, as a result of this arrangement. Due to the additional stereo geometry (compared to a pair of cameras), considerably more of the points of the pattern, which otherwise could not be distinguished, may be identified on a given epipolar line. It should be appreciated that this allows for the identification of the points in an uncoded structured light pattern. The density of features may thus simultaneously be high, and the size of the feature can be kept very low. This provides advantages over other structured light devices that use encoded patterns (having features consisting, for example, of a plurality of points), where the size of the feature has a lower limit, limiting the lateral resolution. If the correspondence has been determined, the three-dimensional coordinates of the points on the surface of the object 22 are determined for the 3D-scan by means of triangulation.
Additional three-dimensional data may be gained by means of photogrammetry from several frames with different camera positions, for example from the color camera 113 or from the part of the signal of the cameras 111, 112, which comes from the ambient light. It can also be advantageous, if the scanner 26 or another unit (not shown) illuminates the object 22 and optionally the background, with white light or infrared light for example. This allows for not only the parts of the object 22 (also illuminated by the pattern 34) and background to be visible, but also areas in between. Such illumination may be desirable if the data of the color camera 113 is used for making the 3D-scans (and not only for the coloration thereof), and for calibrating the cameras 111, 112, if filters are used are used to allow the capture of only a limited spectral range.
The scanning process also shows an aspect of time. Whereas, with stationary devices, a whole sequence of patterns may be projected and images be recorded in order to determine one single 3D-scan, one 3D-scan is produced with each shot of the scanner 26 in the embodiments. In one embodiment, if a second projector 122 or a further diffractive optical element 124 or at least a second pattern 34A in addition to first pattern 34 is provided, it is possible to also record, with one shot, images with different patterns 34, 34A consecutively, so that the 3D-scan will provide a higher resolution.
In order to capture the complete scene, the 3D-scans which are produced with the shot need to be registered, meaning that the three-dimensional point clouds of each frame are inserted into a common coordinate system. Registration may be possible, for example, by videogrammetry, such as by using “structure from motion” (SFM) or “simultaneous localization and mapping” (SLAM) techniques for example. The features, such as edges and corners for example, of the objects 22 may be used for common points of reference, or a stationary pattern 37 may be produced. The natural texture and features of objects may be captured by the color camera 113 and may also provide common points of reference.
In one embodiment, a separate projector 130 shown in
Another method for registration is provided by measuring the six degrees of freedom (DOF) of the scanner 26 with a six-DOF laser tracker 24 and a six-DOF target or targets. There are many types of six-DOF laser trackers and six-DOF targets that may be used, and any of these will suit the purpose described below. In an embodiment, the six DOF target 48 is a six-DOF retroreflector, which may be a glass cube-corner retroreflector having edges that are darkened so that a camera internal to the tracker 24 can image the lines. The images of these lines may be analyzed to determine the orientation of the retroreflector. The tracker measures the three DOF associated with the x, y, z position of the retroreflector so that, combined with the orientation of the retroreflector, six degrees of freedom are obtained. In the embodiment depicted in
It should still further be appreciated that the synchronization may be realized by other methods than the transmitting of a signal. In one embodiment, the laser tracker 24 and the scanner 26 have a common clock. In this embodiment, the acquisition time for the image and coordinate data are recorded. The time data may then be used to determine a correspondence between the image and coordinate data to register the images. In one embodiment, the clocks of the laser tracker 24 and scanner 26 a synchronized using the Institute of Electrical and Electronics Engineers (IEEE) standard 1588. In still another embodiment, the operation of the laser tracker 24 and the scanner 26 may be synchronized using polling.
In one embodiment, the registration of the images obtained by the scanner 26 using a combination of the position and orientation data from laser tracker 24 and videogrammetry via the pattern 37 projected by projector 130. This embodiment may provide advantages in verifying that results are self-consistent and that the fixtures mounting the object 22 are stable.
In still other embodiments, movement of the scanner 26 may be automated, such as by mounting the scanner 26 to a manually movable trolley (or on another cart), or on an autonomously moving robot for example. The scanner 26, which is no longer carried by the user, scans its environment in a more defined manner, rather by producing a video than by producing a sequence of discrete images.
The scanner 26 may be configured to produce a video with a high rate of image frames, such as seventy frames per second for example. Since the scanner 26 only moves a short distance between any two adjacent frames, the video will contain redundant information, in other words the two frames which are adjacent with regard to time will differ only very slightly spatially. In order to reduce the amount of data to be saved and/or to be transferred, suitable averaging procedure such as that shown in
A group [F]i of substantially overlapping frames F, single measuring points may be efficiently stored in a common two-dimensional data structure (grid structure), such as a threshold related to surface data and similar to a two-dimensional image for example. The smaller storage capacity used by the data structure permits the scanner 26 to initially save all captured measured values as a vector in the two-dimensional data structure, i.e. gray-tone value/color and distance from the scanner 26 for each of the pixels of the frames F of the group [F]i.
In a second averaging step, an averaging takes place within each group [F]i, in order remove erroneous measurements. For such averaging (with regard to gray tones/colors and/or distances), a defined part of the vector within the central range of the sorted measured values is taken. The central range can be distinguished by means of threshold values. Such averaging corresponds to a replacement of the group [F]i by a key frame Fi with averaged measured values, wherein the key frames Fi still overlap. Each measuring point which is gained is then carried on as a point (corresponding to a three-dimensional vector) of the three-dimensional overall point cloud.
In an optional third step, the measuring points gained by averaging can be brought together with data from another group [F]i, for example by Cartesian averaging.
When an object 22 is circumnavigated by the scanner 26, a ring closure may occur, meaning that the scanner 26 is moved about the object 22 until the video (or the sequence of shots) shows the same or similar view to the first image. The ring closures could be recognized immediately, if it were possible to look at all available data, at any time during the production of the overall point cloud. However, the amount of data and the computing time to perform the operations do not typically allow for such immediate recognition of the ring closure. In one embodiment a method is provided which allows for the rapid determination of a ring closure. In this embodiment, if all measurements are error free, the ring closure may quickly result from the registration of the 3D-scan in the common coordinate system. However, in a typical scanning operation an error may occur resulting in an offset of two similar frames F. An embodiment for automatically recognizing the ring closure shown in
A frustum, or more precisely a viewing frustum, is usually a truncated-pyramid-shaped area of space, which extends from the image plane, in correspondence with the viewing direction, into the infinite. In the present invention, a frustum V is formed for each frame in a first step, such frustum comprising (at least approximately) 80% of the captured points from the three-dimensional point cloud, i.e. a finite part of said area of space of the assigned 3D scan, which is determined from the frame F. The latest frustum Vn is assigned to the latest frame Fn. In a second step, the latest frustum Vn is then compared to the past frusta V by forming the intersection. The frustum out of a previous frusta Vj, with which there is the largest intersection, is selected for carrying out an analysis.
In a third step, within the latest frustum Vn and the selected frustum Vj each, features are evaluated, such as edges and corners for example, in a known manner In a fourth step, the detected features are compared to each other, for example with regard to their embedded geometry, and the coinciding features are identified. Depending on the degree of coincidence, it is determined in a fifth step, whether there is a ring closure or not.
In this method, common features are generated from the identified, coinciding features. Using a “bundle adjustment” technique, the error of measurement may be corrected in a sixth step, such as the 3D scans are corrected up to a defined depth of penetration into space for example, or the three-dimensional point cloud is in some places and to a certain degree displaced, so that the offset is eliminated in the frames, 3D scans and frusta which are substantially identical. If correction is not completely possible, after the sixth step (with the “bundle adjustment”), a certain deviation of data and consequently a certain error of measurement which is not corrected, still remains, this certain deviation (i.e. the error which cannot be corrected) may be used as a measure for the quality of the measurements and of the data as a whole.
The movement of the scanner 26 and the image frames may also be processed by a method of image tracking, in other words the scanner 26 tracks the relative movement of its environment using the images acquired by a camera, such as camera 113 for example. If image tracking gets lost, such as when the scanner 26 is moved too fast for example, there is a simple possibility of resuming image tracking. For this purpose, the latest video image, as it is provided by the camera, and the last video still image from tracking provided by it, are represented side by side (or one above the other) on the display and control unit 115 for the operator. The operator may then move the scanner 26 until the two images coincide.
It should be appreciated that the method of registering the images via the ring closure and image tracking methods may also be combined with the tracking of the scanner 26 by the six-DOF laser tracker 24. In an embodiment, the laser tracker 24 may determine the position and orientation of the scanner 26 until the scanner 26 is at a position or angle where the light beam 26 is not reflected back to the aperture 30. Once this occurs, the registration of images switches from using the laser tracker 24 coordinate data to a secondary method, such as image tracking for example. Using the combined methods of registration provides advantages in avoiding having to move the laser tracker 24 to scan the opposite side of the object 22.
Referring now to
Next, the query block 208 determines if the scanning of the object 22 is completed. In an embodiment, if the query block 208 returns a negative value, the method 200 proceeds to block 210 where the indexing variables are incremented and the method 200 loops back to block 204 where the image frames (F2, F3 . . . FN) and block 206 where the coordinates (C2, C3 . . . CY) are acquired. This continues until the scanning of the object 22 desired by the operator is completed.
Once the scan is completed, the query block 208 returns a positive value and proceeds to block 212 where the image frames FN and the coordinates CY are registered to each other. Finally, in block 214 the coordinates of the points on the object 22 are determined in the laser tracker 24 frame of reference.
Referring now to
In this embodiment, the scanner 26 also includes a second 6DOF retroreflector 222. The second retroreflector 222 is mounted to the scanner 26 with its reflective elements configured to reflect light that in incoming from a direction substantially opposite from that of the first retroreflector 48. In other words, the second retroreflector 222 is configured to reflect light that is traveling towards the front of the scanner 26. In one embodiment, the second retroreflector is mounted to the base 104. Is should be appreciated that while the retroreflectors 48, 222 are illustrated in the embodiments as being arranged on the head end 108 or the base 104, this is for exemplary purposes and the claimed invention should not be so limited. In other embodiments, the retroreflectors 48, 222 may be mounted on other areas of the scanner 26 or on the same area of the scanner 26. In some embodiments, the scanner 26 may have additional retroreflectors, such as four retroreflectors for example, that each are oriented to direct light from different directions. Such six-DOF retroreflectors 48, 222 may be rotated by toward the six-DOF laser trackers if the SMRs are held in magnetic nests. However, such rotation may not be possible if the SMRs are clamped in place. The six-DOF retroreflectors may also be glass cube corners directly embedded into the scanner and held stationary. Of course, as discussed hereinabove, other types of six-DOF targets may be used with laser trackers, some which involve illuminated markers in addition to a retroreflector, and some which require active (electrically powered) retroreflective targets.
It should be appreciated that since the retroreflectors 48, 222 are arranged in a fixed geometric relationship, the laser tracker 24 will be able to determine the relative positions of the retroreflectors 48, 222 to each other at any point in time. Therefore, as the scanner 26 approaches a point in space where the laser tracker 24 will switch from one retroreflector to the other retroreflector, the laser tracker 24 will be able to automatically reposition and redirect the beam of light 28 onto the desired retroreflector.
While the invention has been described in detail in connection with only a limited number of embodiments, it should be readily understood that the invention is not limited to such disclosed embodiments. Rather, the invention can be modified to incorporate any number of variations, alterations, substitutions or equivalent arrangements not heretofore described, but which are commensurate with the spirit and scope of the invention. Additionally, while various embodiments of the invention have been described, it is to be understood that aspects of the invention may include only some of the described embodiments. Accordingly, the invention is not to be seen as limited by the foregoing description, but is only limited by the scope of the appended claims.
The Present Application is a continuation-in-part application of U.S. patent application Ser. No. 13/443,946 filed on Apr. 11, 2012, which is a nonprovisional application of U.S. Patent Application Ser. No. 61/592,049 filed on Jan. 30, 2012 and U.S. patent application Ser. No. 61/475,703 filed on Apr. 15, 2011, all of which are incorporated herein by reference in their entirety.
Number | Name | Date | Kind |
---|---|---|---|
2612994 | Woodland | Oct 1952 | A |
2682804 | Clifford et al. | Jul 1954 | A |
2484641 | Keuffel et al. | Mar 1957 | A |
2784641 | Keuffel et al. | Mar 1957 | A |
3339457 | Pun | Sep 1967 | A |
3365717 | Holscher | Jan 1968 | A |
3464770 | Schmidt | Sep 1969 | A |
3497695 | Smith et al. | Feb 1970 | A |
3508828 | Froome et al. | Apr 1970 | A |
3619058 | Hewlett et al. | Nov 1971 | A |
3627429 | Jaenicke et al. | Dec 1971 | A |
3658426 | Vyce | Apr 1972 | A |
3728025 | Madigan et al. | Apr 1973 | A |
3740141 | DeWitt, Jr. | Jun 1973 | A |
3779645 | Nakazawa et al. | Dec 1973 | A |
3813165 | Hines et al. | May 1974 | A |
3832056 | Shipp et al. | Aug 1974 | A |
3900260 | Wendt | Aug 1975 | A |
3914052 | Wiklund | Oct 1975 | A |
4113381 | Epstein | Sep 1978 | A |
4178515 | Tarasevich | Dec 1979 | A |
4297030 | Chaborski | Oct 1981 | A |
4403857 | Holscher | Sep 1983 | A |
4413907 | Lane | Nov 1983 | A |
4453825 | Buck et al. | Jun 1984 | A |
4498764 | Bolkow et al. | Feb 1985 | A |
4521107 | Chaborski et al. | Jun 1985 | A |
4531833 | Ohtomo | Jul 1985 | A |
4537475 | Summers et al. | Aug 1985 | A |
4560270 | Wiklund et al. | Dec 1985 | A |
4632547 | Kaplan et al. | Dec 1986 | A |
4652130 | Tank | Mar 1987 | A |
4689489 | Cole | Aug 1987 | A |
4692023 | Ohtomo et al. | Sep 1987 | A |
4699508 | Bolkow et al. | Oct 1987 | A |
4707129 | Hashimoto et al. | Nov 1987 | A |
4714339 | Lau et al. | Dec 1987 | A |
4731812 | Akerberg | Mar 1988 | A |
4731879 | Sepp et al. | Mar 1988 | A |
4767257 | Kato | Aug 1988 | A |
4777660 | Gould et al. | Oct 1988 | A |
4790651 | Brown et al. | Dec 1988 | A |
4839507 | May | Jun 1989 | A |
4983021 | Fergason | Jan 1991 | A |
5002388 | Ohishi et al. | Mar 1991 | A |
5051934 | Wiklund | Sep 1991 | A |
5069524 | Watanabe et al. | Dec 1991 | A |
5082364 | Russell | Jan 1992 | A |
5090131 | Deer | Feb 1992 | A |
5121242 | Kennedy | Jun 1992 | A |
5137354 | Devos et al. | Aug 1992 | A |
5138154 | Hotelling | Aug 1992 | A |
5162862 | Bartram et al. | Nov 1992 | A |
5198868 | Saito et al. | Mar 1993 | A |
5237384 | Fukunaga et al. | Aug 1993 | A |
5263103 | Kosinski | Nov 1993 | A |
5267014 | Prenninger | Nov 1993 | A |
5301005 | Devos et al. | Apr 1994 | A |
5313409 | Wiklund et al. | May 1994 | A |
5319434 | Croteau et al. | Jun 1994 | A |
5347306 | Nitta | Sep 1994 | A |
5392521 | Allen | Feb 1995 | A |
5400130 | Tsujimoto et al. | Mar 1995 | A |
5402193 | Choate | Mar 1995 | A |
5416321 | Sebastian et al. | May 1995 | A |
5440112 | Sakimura et al. | Aug 1995 | A |
5440326 | Quinn | Aug 1995 | A |
5448505 | Novak | Sep 1995 | A |
5455670 | Payne et al. | Oct 1995 | A |
5500737 | Donaldson et al. | Mar 1996 | A |
5532816 | Spann et al. | Jul 1996 | A |
5534992 | Takeshima et al. | Jul 1996 | A |
5594169 | Field et al. | Jan 1997 | A |
D378751 | Smith | Apr 1997 | S |
5671160 | Julian | Sep 1997 | A |
5698784 | Hotelling et al. | Dec 1997 | A |
5724264 | Rosenberg et al. | Mar 1998 | A |
5737068 | Kaneko et al. | Apr 1998 | A |
5742379 | Reifer | Apr 1998 | A |
5754284 | Leblanc et al. | May 1998 | A |
5764360 | Meier | Jun 1998 | A |
5767952 | Ohtomo et al. | Jun 1998 | A |
5771623 | Pernstich et al. | Jun 1998 | A |
5817243 | Shaffer | Oct 1998 | A |
5825350 | Case, Jr. et al. | Oct 1998 | A |
5828057 | Hertzman et al. | Oct 1998 | A |
5861956 | Bridges et al. | Jan 1999 | A |
5880822 | Kubo | Mar 1999 | A |
5886775 | Houser et al. | Mar 1999 | A |
5886777 | Hirunuma | Mar 1999 | A |
5892575 | Marino | Apr 1999 | A |
5893214 | Meier et al. | Apr 1999 | A |
5898421 | Quinn | Apr 1999 | A |
5926388 | Kimbrough et al. | Jul 1999 | A |
5930030 | Scifres | Jul 1999 | A |
5957559 | Rueb et al. | Sep 1999 | A |
5973788 | Pettersen et al. | Oct 1999 | A |
5991011 | Damm | Nov 1999 | A |
6017125 | Vann | Jan 2000 | A |
6023326 | Katayama et al. | Feb 2000 | A |
6034722 | Viney et al. | Mar 2000 | A |
6036319 | Rueb et al. | Mar 2000 | A |
6052190 | Sekowski et al. | Apr 2000 | A |
D427087 | Kaneko et al. | Jun 2000 | S |
6085155 | Hayase et al. | Jul 2000 | A |
6097491 | Hartrumpf | Aug 2000 | A |
6097897 | Ide | Aug 2000 | A |
6100540 | Ducharme et al. | Aug 2000 | A |
6111563 | Hines | Aug 2000 | A |
6122058 | Van Der Werf et al. | Sep 2000 | A |
6133998 | Monz et al. | Oct 2000 | A |
6166809 | Pettersen et al. | Dec 2000 | A |
6171018 | Ohtomo et al. | Jan 2001 | B1 |
6193371 | Snook | Feb 2001 | B1 |
6222465 | Kumar et al. | Apr 2001 | B1 |
6262801 | Shibuya et al. | Jul 2001 | B1 |
6295174 | Ishinabe et al. | Sep 2001 | B1 |
6317954 | Cunningham et al. | Nov 2001 | B1 |
6324024 | Shirai et al. | Nov 2001 | B1 |
6330379 | Hendriksen | Dec 2001 | B1 |
6344846 | Hines | Feb 2002 | B1 |
6347290 | Bartlett | Feb 2002 | B1 |
6351483 | Chen | Feb 2002 | B1 |
6353764 | Imagawa et al. | Mar 2002 | B1 |
6369794 | Sakurai et al. | Apr 2002 | B1 |
6369880 | Steinlechner | Apr 2002 | B1 |
6433866 | Nichols | Aug 2002 | B1 |
6437859 | Ohtomo et al. | Aug 2002 | B1 |
6445446 | Kumagai et al. | Sep 2002 | B1 |
6462810 | Muraoka et al. | Oct 2002 | B1 |
6463393 | Giger | Oct 2002 | B1 |
6490027 | Rajchel et al. | Dec 2002 | B1 |
6501543 | Hedges et al. | Dec 2002 | B2 |
6532060 | Kindaichi et al. | Mar 2003 | B1 |
6559931 | Kawamura et al. | May 2003 | B2 |
6563569 | Osawa et al. | May 2003 | B2 |
6567101 | Thomas | May 2003 | B1 |
6573883 | Bartlett | Jun 2003 | B1 |
6573981 | Kumagai et al. | Jun 2003 | B2 |
6583862 | Perger | Jun 2003 | B1 |
6587244 | Ishinabe et al. | Jul 2003 | B1 |
6611617 | Crampton | Aug 2003 | B1 |
6624916 | Green et al. | Sep 2003 | B1 |
6630993 | Hedges et al. | Oct 2003 | B1 |
6633367 | Gogolla | Oct 2003 | B2 |
6646732 | Ohtomo et al. | Nov 2003 | B2 |
6650222 | Darr | Nov 2003 | B2 |
6667798 | Markendorf et al. | Dec 2003 | B1 |
6668466 | Bieg et al. | Dec 2003 | B1 |
6678059 | Cho et al. | Jan 2004 | B2 |
6681031 | Cohen et al. | Jan 2004 | B2 |
6727984 | Becht | Apr 2004 | B2 |
6727985 | Giger | Apr 2004 | B2 |
6754370 | Hall-Holt et al. | Jun 2004 | B1 |
6765653 | Shirai et al. | Jul 2004 | B2 |
6802133 | Jordil et al. | Oct 2004 | B2 |
6847436 | Bridges | Jan 2005 | B2 |
6859744 | Giger | Feb 2005 | B2 |
6864966 | Giger | Mar 2005 | B2 |
6935036 | Raab | Aug 2005 | B2 |
6957493 | Kumagai et al. | Oct 2005 | B2 |
6964113 | Bridges et al. | Nov 2005 | B2 |
6965843 | Raab et al. | Nov 2005 | B2 |
6980881 | Greenwood et al. | Dec 2005 | B2 |
6996912 | Raab | Feb 2006 | B2 |
6996914 | Istre et al. | Feb 2006 | B1 |
7022971 | Ura et al. | Apr 2006 | B2 |
7023531 | Gogolla et al. | Apr 2006 | B2 |
7055253 | Kaneko | Jun 2006 | B2 |
7072032 | Kumagai et al. | Jul 2006 | B2 |
7086169 | Bayham et al. | Aug 2006 | B1 |
7095490 | Ohtomo et al. | Aug 2006 | B2 |
7099000 | Connolly | Aug 2006 | B2 |
7129927 | Mattsson | Oct 2006 | B2 |
7130035 | Ohtomo et al. | Oct 2006 | B2 |
7168174 | Piekutowski | Jan 2007 | B2 |
7177014 | Mori et al. | Feb 2007 | B2 |
7193695 | Sugiura | Mar 2007 | B2 |
7196776 | Ohtomo et al. | Mar 2007 | B2 |
7222021 | Ootomo et al. | May 2007 | B2 |
7224444 | Stierle et al. | May 2007 | B2 |
7230689 | Lau | Jun 2007 | B2 |
7233316 | Smith et al. | Jun 2007 | B2 |
7246030 | Raab et al. | Jul 2007 | B2 |
7248374 | Bridges | Jul 2007 | B2 |
7253891 | Toker et al. | Aug 2007 | B2 |
7256899 | Faul et al. | Aug 2007 | B1 |
7262863 | Schmidt et al. | Aug 2007 | B2 |
7274802 | Kumagai et al. | Sep 2007 | B2 |
7285793 | Husted | Oct 2007 | B2 |
7286246 | Yoshida | Oct 2007 | B2 |
7304729 | Yasutomi et al. | Dec 2007 | B2 |
7307710 | Gatsios et al. | Dec 2007 | B2 |
7312862 | Zumbrunn et al. | Dec 2007 | B2 |
7321420 | Yasutomi et al. | Jan 2008 | B2 |
7325326 | Istre et al. | Feb 2008 | B1 |
7327446 | Cramer et al. | Feb 2008 | B2 |
7336346 | Aoki et al. | Feb 2008 | B2 |
7336375 | Faul et al. | Feb 2008 | B1 |
7339655 | Nakamura et al. | Mar 2008 | B2 |
7345748 | Sugiura et al. | Mar 2008 | B2 |
7352446 | Bridges et al. | Apr 2008 | B2 |
7372558 | Kaufman et al. | May 2008 | B2 |
7388654 | Raab et al. | Jun 2008 | B2 |
7388658 | Glimm | Jun 2008 | B2 |
7401783 | Pryor | Jul 2008 | B2 |
7429112 | Metcalfe | Sep 2008 | B2 |
7446863 | Nishita et al. | Nov 2008 | B2 |
7453554 | Yang et al. | Nov 2008 | B2 |
7466401 | Cramer et al. | Dec 2008 | B2 |
7471377 | Liu et al. | Dec 2008 | B2 |
7474388 | Ohtomo et al. | Jan 2009 | B2 |
7480037 | Palmateer et al. | Jan 2009 | B2 |
7492444 | Osada | Feb 2009 | B2 |
7503123 | Matsuo et al. | Mar 2009 | B2 |
7511824 | Sebastian et al. | Mar 2009 | B2 |
7518709 | Oishi et al. | Apr 2009 | B2 |
7535555 | Nishizawa et al. | May 2009 | B2 |
7541965 | Ouchi et al. | Jun 2009 | B2 |
7552539 | Piekutowski | Jun 2009 | B2 |
7555766 | Kondo et al. | Jun 2009 | B2 |
7562459 | Fourquin et al. | Jul 2009 | B2 |
7564538 | Sakimura et al. | Jul 2009 | B2 |
7565216 | Soucy | Jul 2009 | B2 |
7583375 | Cramer et al. | Sep 2009 | B2 |
7586586 | Constantikes | Sep 2009 | B2 |
7613501 | Scherch | Nov 2009 | B2 |
7614019 | Rimas Ribikauskas et al. | Nov 2009 | B2 |
D605959 | Apotheloz | Dec 2009 | S |
7634374 | Chouinard et al. | Dec 2009 | B2 |
7634381 | Westermark et al. | Dec 2009 | B2 |
7692628 | Smith et al. | Apr 2010 | B2 |
7701559 | Bridges et al. | Apr 2010 | B2 |
7701566 | Kumagai et al. | Apr 2010 | B2 |
7705830 | Westerman et al. | Apr 2010 | B2 |
7710396 | Smith et al. | May 2010 | B2 |
7724380 | Horita et al. | May 2010 | B2 |
7728963 | Kirschner | Jun 2010 | B2 |
7738083 | Luo et al. | Jun 2010 | B2 |
7751654 | Lipson et al. | Jul 2010 | B2 |
7761814 | Rimas-Ribikauskas et al. | Jul 2010 | B2 |
7765084 | Westermark et al. | Jul 2010 | B2 |
7782298 | Smith et al. | Aug 2010 | B2 |
7800758 | Bridges et al. | Sep 2010 | B1 |
7804051 | Hingerling et al. | Sep 2010 | B2 |
7804602 | Raab | Sep 2010 | B2 |
7812736 | Collingwood et al. | Oct 2010 | B2 |
7812969 | Morimoto et al. | Oct 2010 | B2 |
7876457 | Rueb | Jan 2011 | B2 |
7894079 | Altendorf et al. | Feb 2011 | B1 |
7903237 | Li | Mar 2011 | B1 |
7929150 | Schweiger | Apr 2011 | B1 |
7954250 | Crampton | Jun 2011 | B2 |
7976387 | Venkatesh et al. | Jul 2011 | B2 |
7983872 | Makino et al. | Jul 2011 | B2 |
7990523 | Schlierbach et al. | Aug 2011 | B2 |
7990550 | Aebischer et al. | Aug 2011 | B2 |
8087315 | Goossen et al. | Jan 2012 | B2 |
8094121 | Obermeyer et al. | Jan 2012 | B2 |
8094212 | Jelinek | Jan 2012 | B2 |
8125629 | Dold et al. | Feb 2012 | B2 |
8151477 | Tait | Apr 2012 | B2 |
8190030 | Leclair et al. | May 2012 | B2 |
8217893 | Quinn et al. | Jul 2012 | B2 |
8237934 | Cooke et al. | Aug 2012 | B1 |
8244023 | Yamada | Aug 2012 | B2 |
8279430 | Dold et al. | Oct 2012 | B2 |
8314939 | Kato | Nov 2012 | B2 |
8320708 | Kurzweil et al. | Nov 2012 | B2 |
8360240 | Kallabis | Jan 2013 | B2 |
8379224 | Piasse et al. | Feb 2013 | B1 |
8387961 | Im | Mar 2013 | B2 |
8405604 | Pryor et al. | Mar 2013 | B2 |
8422034 | Steffensen et al. | Apr 2013 | B2 |
8437011 | Steffensen et al. | May 2013 | B2 |
8438747 | Ferrari | May 2013 | B2 |
8467071 | Steffey et al. | Jun 2013 | B2 |
8467072 | Cramer et al. | Jun 2013 | B2 |
8483512 | Moeller | Jul 2013 | B2 |
8509949 | Bordyn et al. | Aug 2013 | B2 |
8525983 | Bridges et al. | Sep 2013 | B2 |
8537371 | Steffensen et al. | Sep 2013 | B2 |
8537375 | Steffensen et al. | Sep 2013 | B2 |
8553212 | Jaeger et al. | Oct 2013 | B2 |
8593648 | Cramer et al. | Nov 2013 | B2 |
8619265 | Steffey et al. | Dec 2013 | B2 |
8630314 | York | Jan 2014 | B2 |
8638984 | Roithmeier | Jan 2014 | B2 |
8654354 | Steffensen et al. | Feb 2014 | B2 |
8659749 | Bridges | Feb 2014 | B2 |
8670114 | Bridges et al. | Mar 2014 | B2 |
8681317 | Moser et al. | Mar 2014 | B2 |
8699756 | Jensen | Apr 2014 | B2 |
8717545 | Sebastian et al. | May 2014 | B2 |
8740396 | Brown et al. | Jun 2014 | B2 |
8772719 | Böokem et al. | Jul 2014 | B2 |
8773667 | Edmonds et al. | Jul 2014 | B2 |
8848203 | Bridges et al. | Sep 2014 | B2 |
8874406 | Rotvold et al. | Oct 2014 | B2 |
8902408 | Bridges | Dec 2014 | B2 |
8931183 | Jonas | Jan 2015 | B2 |
9151830 | Bridges | Oct 2015 | B2 |
9207309 | Bridges | Dec 2015 | B2 |
20010045534 | Kimura | Nov 2001 | A1 |
20020033940 | Hedges et al. | Mar 2002 | A1 |
20020093646 | Muraoka | Jul 2002 | A1 |
20020148133 | Bridges et al. | Oct 2002 | A1 |
20020179866 | Hoeller et al. | Dec 2002 | A1 |
20030014212 | Ralston et al. | Jan 2003 | A1 |
20030033041 | Richey | Feb 2003 | A1 |
20030035195 | Blech et al. | Feb 2003 | A1 |
20030048459 | Gooch | Mar 2003 | A1 |
20030090682 | Gooch et al. | May 2003 | A1 |
20030112449 | Tu et al. | Jun 2003 | A1 |
20030125901 | Steffey et al. | Jul 2003 | A1 |
20030133092 | Rogers | Jul 2003 | A1 |
20030179362 | Osawa et al. | Sep 2003 | A1 |
20030206285 | Lau | Nov 2003 | A1 |
20030227616 | Bridges | Dec 2003 | A1 |
20040035277 | Hubbs | Feb 2004 | A1 |
20040041996 | Abe | Mar 2004 | A1 |
20040075823 | Lewis et al. | Apr 2004 | A1 |
20040100705 | Hubbs | May 2004 | A1 |
20040170363 | Angela | Sep 2004 | A1 |
20040189944 | Kaufman et al. | Sep 2004 | A1 |
20040218104 | Smith et al. | Nov 2004 | A1 |
20040223139 | Vogel | Nov 2004 | A1 |
20050058179 | Phipps | Mar 2005 | A1 |
20050147477 | Clark | Jul 2005 | A1 |
20050179890 | Cramer et al. | Aug 2005 | A1 |
20050185182 | Raab et al. | Aug 2005 | A1 |
20050197145 | Chae et al. | Sep 2005 | A1 |
20050254043 | Chiba | Nov 2005 | A1 |
20050284937 | Xi et al. | Dec 2005 | A1 |
20060009929 | Boyette et al. | Jan 2006 | A1 |
20060053647 | Raab et al. | Mar 2006 | A1 |
20060055662 | Rimas-Ribikauskas et al. | Mar 2006 | A1 |
20060055685 | Rimas-Ribikauskas et al. | Mar 2006 | A1 |
20060066836 | Bridges et al. | Mar 2006 | A1 |
20060103853 | Palmateer | May 2006 | A1 |
20060132803 | Clair et al. | Jun 2006 | A1 |
20060140473 | Brooksby et al. | Jun 2006 | A1 |
20060141435 | Chiang | Jun 2006 | A1 |
20060145703 | Steinbichler et al. | Jul 2006 | A1 |
20060146009 | Syrbe et al. | Jul 2006 | A1 |
20060161379 | Ellenby et al. | Jul 2006 | A1 |
20060164384 | Smith et al. | Jul 2006 | A1 |
20060164385 | Smith et al. | Jul 2006 | A1 |
20060164386 | Smith et al. | Jul 2006 | A1 |
20060222237 | Du et al. | Oct 2006 | A1 |
20060222314 | Zumbrunn et al. | Oct 2006 | A1 |
20060235611 | Deaton et al. | Oct 2006 | A1 |
20060262001 | Ouchi et al. | Nov 2006 | A1 |
20060279246 | Hashimoto et al. | Dec 2006 | A1 |
20070016386 | Husted | Jan 2007 | A1 |
20070019212 | Gatsios et al. | Jan 2007 | A1 |
20070024842 | Nishizawa et al. | Feb 2007 | A1 |
20070090309 | Hu et al. | Apr 2007 | A1 |
20070121095 | Lewis | May 2007 | A1 |
20070127013 | Hertzman et al. | Jun 2007 | A1 |
20070130785 | Bublitz et al. | Jun 2007 | A1 |
20070236452 | Venkatesh et al. | Oct 2007 | A1 |
20070247615 | Bridges et al. | Oct 2007 | A1 |
20070285672 | Mukai et al. | Dec 2007 | A1 |
20080002866 | Fujiwara | Jan 2008 | A1 |
20080024795 | Yamamoto et al. | Jan 2008 | A1 |
20080043409 | Kallabis | Feb 2008 | A1 |
20080107305 | Vanderkooy et al. | May 2008 | A1 |
20080122786 | Pryor et al. | May 2008 | A1 |
20080203299 | Kozuma et al. | Aug 2008 | A1 |
20080229592 | Hinderling et al. | Sep 2008 | A1 |
20080239281 | Bridges | Oct 2008 | A1 |
20080246974 | Wilson et al. | Oct 2008 | A1 |
20080250659 | Bellerose et al. | Oct 2008 | A1 |
20080279446 | Hassebrook et al. | Nov 2008 | A1 |
20080297808 | Riza et al. | Dec 2008 | A1 |
20080302200 | Tobey | Dec 2008 | A1 |
20080309949 | Rueb | Dec 2008 | A1 |
20080316497 | Taketomi et al. | Dec 2008 | A1 |
20080316503 | Smarsh et al. | Dec 2008 | A1 |
20090000136 | Crampton | Jan 2009 | A1 |
20090009747 | Wolf et al. | Jan 2009 | A1 |
20090033621 | Quinn et al. | Feb 2009 | A1 |
20090046271 | Constantikes | Feb 2009 | A1 |
20090066932 | Bridges et al. | Mar 2009 | A1 |
20090109426 | Cramer et al. | Apr 2009 | A1 |
20090153817 | Kawakubo | Jun 2009 | A1 |
20090157226 | De Smet | Jun 2009 | A1 |
20090171618 | Kumagai et al. | Jul 2009 | A1 |
20090187373 | Atwell et al. | Jul 2009 | A1 |
20090190125 | Foster et al. | Jul 2009 | A1 |
20090205088 | Crampton et al. | Aug 2009 | A1 |
20090213073 | Obermeyer et al. | Aug 2009 | A1 |
20090239581 | Lee | Sep 2009 | A1 |
20090240372 | Bordyn et al. | Sep 2009 | A1 |
20090240461 | Makino et al. | Sep 2009 | A1 |
20090240462 | Lee | Sep 2009 | A1 |
20090244277 | Nagashima et al. | Oct 2009 | A1 |
20090260240 | Bernhard | Oct 2009 | A1 |
20100008543 | Yamada et al. | Jan 2010 | A1 |
20100025746 | Chapman et al. | Feb 2010 | A1 |
20100058252 | Ko | Mar 2010 | A1 |
20100091112 | Veeser et al. | Apr 2010 | A1 |
20100103431 | Demopoulos | Apr 2010 | A1 |
20100128259 | Bridges et al. | May 2010 | A1 |
20100142798 | Weston et al. | Jun 2010 | A1 |
20100149518 | Nordenfelt et al. | Jun 2010 | A1 |
20100149525 | Lau | Jun 2010 | A1 |
20100158361 | Grafinger et al. | Jun 2010 | A1 |
20100176270 | Lau et al. | Jul 2010 | A1 |
20100207938 | Yau et al. | Aug 2010 | A1 |
20100225746 | Shpunt et al. | Sep 2010 | A1 |
20100234094 | Gagner et al. | Sep 2010 | A1 |
20100235786 | Maizels et al. | Sep 2010 | A1 |
20100245851 | Teodorescu | Sep 2010 | A1 |
20100250175 | Briggs et al. | Sep 2010 | A1 |
20100250188 | Brown | Sep 2010 | A1 |
20100251148 | Brown | Sep 2010 | A1 |
20100265316 | Sali et al. | Oct 2010 | A1 |
20100277747 | Rueb et al. | Nov 2010 | A1 |
20100284082 | Shpunt et al. | Nov 2010 | A1 |
20100299103 | Yoshikawa | Nov 2010 | A1 |
20110001958 | Bridges et al. | Jan 2011 | A1 |
20110003507 | Van Swearingen et al. | Jan 2011 | A1 |
20110007154 | Vogel et al. | Jan 2011 | A1 |
20110013281 | Mimura et al. | Jan 2011 | A1 |
20110023578 | Grasser | Feb 2011 | A1 |
20110025827 | Shpunt et al. | Feb 2011 | A1 |
20110032509 | Bridges et al. | Feb 2011 | A1 |
20110035952 | Roithmeier | Feb 2011 | A1 |
20110043620 | Svanholm et al. | Feb 2011 | A1 |
20110043808 | Isozaki et al. | Feb 2011 | A1 |
20110052006 | Gurman et al. | Mar 2011 | A1 |
20110069322 | Hoffer, Jr. | Mar 2011 | A1 |
20110107611 | Desforges et al. | May 2011 | A1 |
20110107612 | Ferrari et al. | May 2011 | A1 |
20110107613 | Tait | May 2011 | A1 |
20110107614 | Champ | May 2011 | A1 |
20110109502 | Sullivan | May 2011 | A1 |
20110112786 | Desforges et al. | May 2011 | A1 |
20110123097 | Van Coppenolle et al. | May 2011 | A1 |
20110128625 | Larsen et al. | Jun 2011 | A1 |
20110166824 | Haisty et al. | Jul 2011 | A1 |
20110169924 | Haisty et al. | Jul 2011 | A1 |
20110170534 | York | Jul 2011 | A1 |
20110173827 | Bailey et al. | Jul 2011 | A1 |
20110175745 | Atwell et al. | Jul 2011 | A1 |
20110176145 | Edmonds et al. | Jul 2011 | A1 |
20110179281 | Chevallier-Mames et al. | Jul 2011 | A1 |
20110181872 | Dold et al. | Jul 2011 | A1 |
20110260033 | Steffensen et al. | Oct 2011 | A1 |
20110301902 | Panagas et al. | Dec 2011 | A1 |
20120050255 | Thomas et al. | Mar 2012 | A1 |
20120062706 | Keshavmurthy et al. | Mar 2012 | A1 |
20120065928 | Rotvold et al. | Mar 2012 | A1 |
20120099117 | Hanchett et al. | Apr 2012 | A1 |
20120105821 | Moser et al. | May 2012 | A1 |
20120120391 | Dold et al. | May 2012 | A1 |
20120120415 | Steffensen et al. | May 2012 | A1 |
20120124850 | Ortleb et al. | May 2012 | A1 |
20120154577 | Yoshikawa et al. | Jun 2012 | A1 |
20120188559 | Becker et al. | Jul 2012 | A1 |
20120206716 | Cramer et al. | Aug 2012 | A1 |
20120206808 | Brown et al. | Aug 2012 | A1 |
20120218563 | Spruck et al. | Aug 2012 | A1 |
20120236320 | Steffey et al. | Sep 2012 | A1 |
20120242795 | Kane et al. | Sep 2012 | A1 |
20120262550 | Bridges | Oct 2012 | A1 |
20120262573 | Bridges et al. | Oct 2012 | A1 |
20120262728 | Bridges et al. | Oct 2012 | A1 |
20120265479 | Bridges et al. | Oct 2012 | A1 |
20120317826 | Jonas | Dec 2012 | A1 |
20130037694 | Steffensen et al. | Feb 2013 | A1 |
20130096873 | Rosengaus et al. | Apr 2013 | A1 |
20130100282 | Siercks et al. | Apr 2013 | A1 |
20130128284 | Steffey et al. | May 2013 | A1 |
20130155386 | Bridges et al. | Jun 2013 | A1 |
20130162469 | Zogg et al. | Jun 2013 | A1 |
20130197852 | Grau et al. | Aug 2013 | A1 |
20130201470 | Cramer et al. | Aug 2013 | A1 |
20130293684 | Becker et al. | Nov 2013 | A1 |
20140002806 | Buchel et al. | Jan 2014 | A1 |
20140028805 | Tohme et al. | Jan 2014 | A1 |
20140267629 | Tohme et al. | Sep 2014 | A1 |
20140320643 | Markendorf | Oct 2014 | A1 |
20150331159 | Bridges et al. | Nov 2015 | A1 |
20150365653 | Tohme et al. | Dec 2015 | A1 |
20150373321 | Bridges | Dec 2015 | A1 |
Number | Date | Country |
---|---|---|
2811444 | Mar 2012 | CA |
589856 | Jul 1977 | CH |
1263807 | Aug 2000 | CN |
1290850 | Apr 2001 | CN |
1362692 | Aug 2002 | CN |
1474159 | Feb 2004 | CN |
1531659 | Sep 2004 | CN |
1608212 | Apr 2005 | CN |
1926400 | Mar 2007 | CN |
101031817 | Sep 2007 | CN |
101203730 | Jun 2008 | CN |
101297176 | Oct 2008 | CN |
101371160 | Feb 2009 | CN |
101427155 | May 2009 | CN |
101750012 | Jun 2010 | CN |
101776982 | Jul 2010 | CN |
201548192 | Aug 2010 | CN |
7704949 | Jun 1977 | DE |
3530922 | Apr 1986 | DE |
3827458 | Feb 1990 | DE |
10022054 | Nov 2001 | DE |
10160090 | Jul 2002 | DE |
202004004945 | Oct 2004 | DE |
102004024171 | Sep 2005 | DE |
102005019058 | Dec 2005 | DE |
102006013185 | Sep 2007 | DE |
202006020299 | May 2008 | DE |
60319016 | Apr 2009 | DE |
102007058692 | Jun 2009 | DE |
102009040837 | Mar 2011 | DE |
0166106 | Jan 1986 | EP |
598523 | May 1994 | EP |
0598523 | May 1994 | EP |
0797076 | Sep 1997 | EP |
0919831 | Jun 1999 | EP |
0957336 | Nov 1999 | EP |
1067363 | Jan 2001 | EP |
1519141 | Mar 2005 | EP |
1607767 | Dec 2005 | EP |
2136178 | Dec 2009 | EP |
2177868 | Apr 2010 | EP |
2219011 | Aug 2010 | EP |
2259010 | Dec 2010 | EP |
2259013 | Dec 2010 | EP |
2322901 | May 2011 | EP |
2446300 | May 2012 | EP |
1543636 | Apr 1979 | GB |
2503179 | Dec 2013 | GB |
2503390 | Dec 2013 | GB |
2516528 | Jan 2015 | GB |
2518544 | Mar 2015 | GB |
2518769 | Apr 2015 | GB |
2518998 | Apr 2015 | GB |
S57147800 | Sep 1982 | JP |
S6097288 | May 1985 | JP |
2184788 | Jul 1990 | JP |
H0331715 | Feb 1991 | JP |
H0371116 | Mar 1991 | JP |
H0465631 | Mar 1992 | JP |
H05257005 | Oct 1993 | JP |
H05302976 | Nov 1993 | JP |
H6097288 | Apr 1994 | JP |
H06229715 | Aug 1994 | JP |
H0665818 | Sep 1994 | JP |
H06265355 | Sep 1994 | JP |
H074967 | Jan 1995 | JP |
H08145679 | Jun 1996 | JP |
H0914965 | Jan 1997 | JP |
H102722 | Jan 1998 | JP |
H10107357 | Apr 1998 | JP |
H10317874 | Dec 1998 | JP |
11502629 | Mar 1999 | JP |
H11304465 | Nov 1999 | JP |
H11513495 | Nov 1999 | JP |
H11337642 | Dec 1999 | JP |
2000503476 | Mar 2000 | JP |
2000275042 | Oct 2000 | JP |
2000346645 | Dec 2000 | JP |
2001013247 | Jan 2001 | JP |
2001165662 | Jun 2001 | JP |
2001513204 | Aug 2001 | JP |
2001272468 | Oct 2001 | JP |
2001284317 | Oct 2001 | JP |
2001353112 | Dec 2001 | JP |
2002089184 | Mar 2002 | JP |
2002098762 | Apr 2002 | JP |
2002139310 | May 2002 | JP |
2002209361 | Jul 2002 | JP |
2003506691 | Feb 2003 | JP |
2004508954 | Mar 2004 | JP |
2004108939 | Apr 2004 | JP |
2004527751 | Sep 2004 | JP |
3109969 | Jun 2005 | JP |
2005265700 | Sep 2005 | JP |
2006003127 | Jan 2006 | JP |
2006058091 | Mar 2006 | JP |
2006084460 | Mar 2006 | JP |
2006220514 | Aug 2006 | JP |
2006276012 | Oct 2006 | JP |
2006526844 | Nov 2006 | JP |
2007504459 | Mar 2007 | JP |
2007165331 | Jun 2007 | JP |
2007523357 | Aug 2007 | JP |
2007256872 | Oct 2007 | JP |
2008027308 | Feb 2008 | JP |
2008514967 | May 2008 | JP |
2008544215 | Dec 2008 | JP |
2009014639 | Jan 2009 | JP |
2009134761 | Jun 2009 | JP |
2009229350 | Oct 2009 | JP |
2010169633 | Aug 2010 | JP |
2011158371 | Aug 2011 | JP |
2011526706 | Oct 2011 | JP |
2013525787 | Oct 2011 | JP |
H04504468 | Oct 2011 | JP |
2012509464 | Apr 2012 | JP |
2012530909 | Dec 2012 | JP |
5302976 | Oct 2013 | JP |
381361 | Feb 2000 | TW |
9012284 | Oct 1990 | WO |
9534849 | Dec 1995 | WO |
0109642 | Feb 2001 | WO |
0177613 | Oct 2001 | WO |
0223121 | Mar 2002 | WO |
0237466 | May 2002 | WO |
02084327 | Oct 2002 | WO |
03062744 | Jul 2003 | WO |
03073121 | Sep 2003 | WO |
2004063668 | Jul 2004 | WO |
2005026772 | Mar 2005 | WO |
2006039682 | Apr 2006 | WO |
2006052259 | May 2006 | WO |
2006055770 | May 2006 | WO |
2007079601 | Jul 2007 | WO |
2007084209 | Jul 2007 | WO |
2007123604 | Nov 2007 | WO |
2007124010 | Nov 2007 | WO |
2008052348 | May 2008 | WO |
2008119073 | Oct 2008 | WO |
WO2008121919 | Oct 2008 | WO |
2010057169 | May 2010 | WO |
2010100043 | Sep 2010 | WO |
2010107434 | Sep 2010 | WO |
2010141120 | Dec 2010 | WO |
2010148525 | Dec 2010 | WO |
2011035290 | Mar 2011 | WO |
2011057130 | May 2011 | WO |
2011107729 | Sep 2011 | WO |
2011112277 | Sep 2011 | WO |
2012142074 | Oct 2012 | WO |
2010148526 | Dec 2012 | WO |
2014143644 | Sep 2014 | WO |
2014149701 | Sep 2014 | WO |
2014149704 | Sep 2014 | WO |
2014149705 | Sep 2014 | WO |
2014149706 | Sep 2014 | WO |
2014149702 | Sep 2015 | WO |
Entry |
---|
“A New Generation of Total Stations from Leica Geosystems.” K. Zeiske. Leica Geosystems AG, May 1999, 8 pages. |
“DLP-Based Structured Light 3D Imaging Technologies and Applications” by J. Geng; Proceedings of SPIE, vol. 7932. Published Feb. 11, 2011, 15 pages. |
“Fiber Optic Rotary Joints Product Guide”; Moog Inc; MS1071, rev. 2; p. 1-4; 2010; Retrieved on Nov. 13, 2013 from http://www.moog.com/literature/ICD/Moog-Fiber-Optic-Rotary-Joint—Catalog-en.pdf;. |
“Technical Brief: Fiber Optic Rotary Joint”; Document No. 303; Moog Inc; p. 1-6; 2008; Retrieved on Nov. 13, 2013 from http://www.moog.com/literature/MCG/FORJtechbrief.pdf. |
2x2 High Speed Lithium Niobate Interferometric Switch; [on-line]; JDS Uniphase Corporation; 2007; Retreived from www.jdsu.com. |
AO Modulator—M040-8J-FxS; [online—technical data sheet]; Gooch & Housego; Nov. 2006; Retrieved from http://www.goochandhousego.com/. |
Automated Precision, Inc., Product Specifications, Radian, Featuring INNOVO Technology, info@apisensor.com, Copyright 2011, 2 pages. |
Cao, et al.; “VisionWand: Interaction Techniques for Large Displays using a Passive Wand Tracked in 3D”; Proceedings of the 16th Annual ACM Symposium on User Interface Software and Technology, UIST; vol. 5, issue 2; pp. 173-182; Jan. 2003. |
Chen, Junewen, “Novel Laser Range Finding Algorithms”, Proceedings of SPIE, vol. 6100, Jan. 1, 2006, pp. 61001Q-61001Q-8, XP55031002, ISSN: 0277-786X, DOI: 10.1117/12.645131. |
Parker, et al “Instrument for Setting Radio Telescope Surfaces” (4 pp) XP 55055817A. |
Rahman, et al., “Spatial-Geometric Approach to Physical Mobile Interaction Based on Accelerometer and IR Sensory Data Fusion”, ACM Transactions on Multimedia Computing, Communications and Applications, vol. 6, No. 4, Article 28, Publication date: Novembe. |
Sladek, J., et al: “The Hybrid Contact-Optical Coordinate Measuring System.” Measurement, vol. 44, No. 3, Mar. 1, 2011, pp. 503-510. |
Stone, et al. “Automated Part Tracking on the Construction Job Site” 8 pp; XP 55055816A; National Institute of Standards and Technology. |
Turk, et al., “Perceptual Interfaces”, UCSB Technical Report 2003-33, pp. 1-43 [Retreived Aug. 11, 2011, http://www.cs.ucsb.edu/research/tech—reports/reports/2003-33.pdf] (2003). |
Computer Giants Embrace On-Chip Optics; Mar. 27, 2008; [on-line]; Optics.org; [Retreived on Apr. 2, 2008]; Retreived from http://optics.org/cws/article/research/33521. |
Cuypers, et al “Optical Measurement Techniques for Mobile and Large-Scale Dimensional Metrology” (2009) ; Optics and Lasers in Engineering pp. 292-300; vol. 47; Elsevier Ltd. XP 25914917A. |
English Abstract of CN1362692; Applicant: Univ Tianjin; Published Date: Aug. 7, 2002; 1 pg. |
English Abstract of JP2005010585; Applicant: TDK Corp; Published Date: Jan. 13, 2005; 1 pg. |
English Abstract of JPH06214186; Applicant: Eastman Kodak Co Ltd; Published Date: Aug. 5, 1994; 1 pg. |
English Abstract of JPH09113223; Applicant: Fuji Xerox Co Ltd; Published Date: May 2, 1997; 1 pg. |
EOSpace—High-Speed Switches; [on-line technical brochure]; [Retrieved May 18, 2009]; Retrieved from http://www.cospace.com/Switches.htm. |
FARO Laser Tracker ION; 2 pages; revised Apr. 23, 2010; FARO Technologies, Inc., www.lasertracker.faro.com. |
FARO Technical Institute, Basic Measurement Training Workbook, Version 1.0, FARO Laster Tracker, Jan. 2008, Students Book, FAO CAM2 Measure. |
Hanwei Xiong et al: “The Development of Optical Fringe Measurement System integrated with a CMM for Products Inspection.” Proceedings of SPIE, vol. 7855, Nov. 3, 2010, pp. 78551W-7855W-8, XP055118356. ISSN: 0277-786X. |
Hecht,Photonic Frontiers:Gesture Recognition: Lasers Bring Gesture Recognition to the Home, Laser Focus World, pp. 1-5, Retrieved on Mar. 3, 2011:http://www.optoiq.com/optoiq-2/en-us/index/photonics-technologies-applications/Ifw-display/Ifw-display/Ifw-arti. |
Hui, Elliot E., et al, “Single-Step Assembly of Complex 3-D Microstructures”, Jan. 23, 2000, IEEE; pp. 602-607. |
Integrated Optical Amplitude Modulator; [on-line technical data sheet]; [Retrieved Oct. 14, 2010]; Jenoptik; Retrieved from http://www.jenoptik.com/cms/products.nsf/0/A6DF20B50AEE7819C12576FE0074E8E6/$File/amplitudemodulators—en.pdf?Open. |
Tracker3; Ultra-Portable Laser Tracking System; 4 pages; 2010 Automated Precision Inc.; www.apisensor.com. |
Katowski “Optical 3-D Measurement Techniques-Applications in inspection, quality control and robotic” Vienna, Austria, Sep. 18-20, 1989. |
Kester, Walt, Practical Analog Design Techniques, Analog Devices, Section 5, Undersampling Applications, Copyright 1995, pp. 5-1 to 5-34. |
Kollorz et al.,“Gesture recognition with a time-of-flight camera”,Int. Jo. of Intelligent Sys Tech and Applications,vol. 5, No. 3/4,p. 334-343,Retreived Aug. 11, 2011;http://www5.informatik.uni-erlangen.de/Forschung/Publikationen/2008/Kollorz08-GRW.pdf, 2008. |
LaserTRACER-measureing sub-micron in space; http://www.etalon-ag.com/index.php/en/products/lasertracer; 4 pages; Jun. 28, 2011; ETALON AG. |
Leica Absolute Tracker AT401-ASME B89.4.19-2006 Specifications; Hexagon Metrology; Leica Geosystems Metrology Products, Switzerland; 2 pages; www.leica-geosystems.com/metrology. |
Leica Geosystems AG ED—“Leica Laser Tracker System”, Internet Citation, Jun. 28, 2012, XP002678836, Retrieved from the Internet: URL:http://www.a-solution.com.au/pages/downloads/LTD500—Brochure—EN.pdf. |
Leica Geosystems Metrology, “Leica Absolute Tracker AT401, White Paper,” Hexagon AB; 2010. |
Leica Geosystems: “TPS1100 Professional Series”, 1999, Retrieved from the Internet: URL:http://www.estig.ibeja.pt/-legvm/top—civil/TPS1100%20-%20A%20New%20Generation%20of%20Total%20Stations.pdf, [Retrieved on Jul. 9, 2012 ] the whole document. |
Li, et al., “Real Time Hand Gesture Recognition using a Range Camera”, Australasian Conference on Robotics and Automation (ACRA), [Retreived Aug. 10, 2011, http://www.araa.asn.au/acra/acra2009/papers/pap128s1.pdf] pp. 1-7 (2009). |
Lightvision—High Speed Variable Optical Attenuators (VOA); [on-line]; A publication of Lightwaves 2020, Feb. 1, 2008; Retrieved from http://www.lightwaves2020.com/home/. |
Maekynen, A. J. et al., Tracking Laser Radar for 3-D Shape Measurements of Large Industrial Objects Based on Time-of-Flight Laser Rangefinding and Position-Sensitive Detection Techniques, IEEE Transactions on Instrumentation and Measurement, vol. 43, No. |
Making the Big Step from Electronics to Photonics by Modulating a Beam of Light with Electricity; May 18, 2005; [on-line]; [Retrieved May 7, 2009]; Cornell University News Service; Retrieved from http://www.news.cornell.edu/stories/May05/LipsonElectroOptica. |
Matsumaru, K, “Mobile Robot with Preliminary-Announcement and Display Function of Forthcoming Motion Using Projection Equipment,” Robot and Human Interactive Communication, 2006. RO-MAN06. The 15th IEEE International Symposium, pp. 443-450, Sep. 6-8. |
MEMS Variable Optical Attenuators Single/Multi-Channel; [on-line]; Jan. 17, 2005; Retrieved from www.ozoptics.com. |
Nanona High Speed & Low Loss Optical Switch; [on-line technical data sheet]; [Retrieved Oct. 14, 2010]; Retrieved from http://www.bostonati.com/products/PI-FOS.pdf. |
New River Kinematics, SA ARM—“The Ultimate Measurement Software for Arms, Software Release!”, SA Sep. 30, 2010 [On-line], http://www.kinematics.com/news/software-release-sa20100930.html (1 of 14), [Retrieved Apr. 13, 2011 11:40:47 AM]. |
Optical Circulator (3-Ports & 4-Ports); [on-line technical data sheet]; Alliance Fiber Optic Products, Inc. REV.D Jan. 15, 2004; Retrieved from www.afop.com. |
Optical Circulators Improve Bidirectional Fiber Systems; By Jay S. Van Delden; [online]; [Retrieved May 18, 2009]; Laser Focus World; Retrieved from http://www.laserfocusworld.com/display—article/28411/12/nonc/nonc/News/Optical-circulators-improve-bidirecti. |
Ou-Yang, Mang, et al., “High-Dynamic-Range Laser Range Finders Based on a Novel Multimodulated Frequency Method”, Optical Engineering, vol. 45, No. 12, Jan. 1, 2006, p. 123603, XP55031001, ISSN: 0091-3286, DOI: 10.1117/1.2402517. |
PCMM System Specifications Leica Absolute Tracker and Leica T-Products; Hexagon Metrology; Leica Geosystems Metrology Products, Switzerland; 8 pages; www.leica-geosystems.com/metrology. |
Poujouly, Stephane, et al., “A Twofold Modulation Frequency Laser Range Finder; A Twofold Modulation Frequency Laser Range Finder”, Journal of Optics. A, Pure and Applied Optics, Institute of Physics Publishing, Bristol, GB, vol. 4, No. 6, Nov. 1, 2. |
Poujouly, Stephane, et al., Digital Laser Range Finder: Phase-Shift Estimation by Undersampling Technique; IEEE, Copyright 1999. |
RS Series Remote Controlled Optical Switch; [on-line technical data sheet]; Sercalo Microtechnology, Ltd. [Retrieved Oct. 14, 2010]; Retreived from http://www.sercalo.com/document/PDFs/DataSheets/RS%20datasheet.pdf. |
Super-Nyquist Operation of the AD9912 Yields a High RF Output Signal; Analog Devices, Inc., AN-939 Application Note; www.analog.com; Copyright 2007. |
Burge, James H., et al, Use of a commerical laser tracker for optical alignment, Proc, of SPIE vol. 6676, Sep. 21, 2007, pp. 66760E-1-6 6760E-12. |
Chen, Jihua, et al, Research on the Principle of 5/6-DOF Laser Tracking Metrology, Journal of Astronautic Metrology and Measurement vol. 27, No. 3, May 31, 2007, pp. 58-62. |
Newport Company “Fiber Optic Scribes” https://web.archive.org/web/20120903063012/http://www.newport.com/Fiber-Optic-Scribes/835171/1033/info.aspx; 2012, 2 pages. |
Newport Corporation “Projects in Fiber Optics: Applications Handbook”, 1986; 3 pages. |
Takeuchi et al., “Ultraprecision 3D Micromachining of Glass”; Annals of the CIRP; Jan. 4, 1996; vol. 45; 401-404 pages. |
Thorlabs “Ruby Dualscribe Fiber Optic Scribe” a Mechanical Drawing, 2014, 1 page. |
Number | Date | Country | |
---|---|---|---|
20140028805 A1 | Jan 2014 | US |
Number | Date | Country | |
---|---|---|---|
61475703 | Apr 2011 | US | |
61592049 | Jan 2012 | US |
Number | Date | Country | |
---|---|---|---|
Parent | 13443946 | Apr 2012 | US |
Child | 14044311 | US |