During manufacturing, storage or transit, many types of objects need to be kept within a particular range or not exceed some temperature value. Thus, it is desirable to monitor the temperature of the object or the environment proximate to the object to verify the conditions to which the object has been exposed.
According to one aspect of the present disclosure, a device and technique for monitoring temperature of an environment of a sensitive object is disclosed. The device includes a housing configured to be disposed within or affixed to a transport container for the object, a sensor coupled to the housing and configured to obtain a plurality of temperature readings, and monitor logic configured to compare the plurality of temperature readings to a temperature threshold. The device also includes counter logic configured to generate an excursion count indicating a quantity of time periods the temperature readings exceeded the temperature threshold, generate a consecutive count indicating a quantity of consecutive temperature readings exceeding the temperature threshold, and generate a cumulative count indicating a cumulative quantity of temperature readings exceeding the temperature threshold.
For a more complete understanding of the present application, the objects and advantages thereof, reference is now made to the following descriptions taken in conjunction with the accompanying drawings, in which:
Embodiments of the present disclosure provide a method, system and computer program product for monitoring temperature of an environment associated with a sensitive object. According to one embodiment, a temperature monitoring device includes a housing configured to be disposed within or affixed to a transport container for the object, a sensor coupled to the housing and configured to obtain a plurality of temperature readings, and monitor logic configured to compare the plurality of temperature readings to a temperature threshold. The device also includes counter logic configured to generate an excursion count indicating a quantity of time periods the temperature readings exceeded the temperature threshold, generate a consecutive count indicating a quantity of consecutive temperature readings exceeding the temperature threshold, and generate a cumulative count indicating a cumulative quantity of temperature readings exceeding the temperature threshold.
As will be appreciated by one skilled in the art, aspects of the present disclosure may be embodied as a system, method or computer program product. Accordingly, aspects of the present disclosure may take the form of an entirely hardware embodiment, an entirely software embodiment (including firmware, resident software, micro-code, etc.) or an embodiment combining software and hardware aspects that may all generally be referred to herein as a “circuit,” “module” or “system.” Furthermore, aspects of the present disclosure may take the form of a computer program product embodied in one or more computer readable medium(s) having computer readable program code embodied thereon.
Any combination of one or more computer usable or computer readable medium(s) may be utilized. The computer readable medium may be a computer readable signal medium or a computer readable storage medium. A computer readable storage medium may include, but not be limited to, an electronic, magnetic, optical, electromagnetic, infrared, or semiconductor system, apparatus, or device, or any suitable combination of the foregoing such as, but not limited to, a portable computer diskette, a hard disk, a random access memory (RAM), a read-only memory (ROM), an erasable programmable read-only memory (EPROM or Flash memory), an optical fiber, a portable compact disc read-only memory (CD-ROM), an optical storage device, a magnetic storage device, or any suitable combination of the foregoing. In the context of this document, a computer readable storage medium may be any tangible medium that can contain, or store a program for use by or in connection with and instruction execution system, apparatus or device.
A computer readable signal medium may include a propagated data signal with computer readable program code embodied therein, for example, in baseband or as part of a carrier wave. Such a propagated signal may take any of a variety of forms, including, but not limited to, electro-magnetic, optical, or any suitable combination thereof. A computer readable signal medium may be any computer readable medium that is not a computer readable storage medium and that can communicate, propagate, or transport a program for use by or in connection with an instruction execution system, apparatus, or device.
Program code embodied on a computer readable medium may be transmitted using any appropriate medium, including but not limited to wireless, wireline, optical fiber cable, RF, etc., or any suitable combination of the foregoing.
Computer program code for carrying out operations for aspects of the present disclosure may be written in any combination of one or more programming languages. The program code may execute entirely on one device or partly on one device and partly on another device.
Aspects of the present disclosure is described below with reference to flowchart illustrations and/or block diagrams of methods, apparatus (systems) and computer program products according to embodiments of the disclosure. It will be understood that each block of the flowchart illustrations and/or block diagrams, and combinations of blocks in the flowchart illustrations and/or block diagrams, can be implemented by computer program instructions. These computer program instructions may be provided to a processor of a general purpose computer, special purpose computer, or other programmable data processing apparatus to produce a machine, such that the instructions, which execute via the processor of the computer or other programmable data processing apparatus, create means for implementing the functions/acts specified in the flowchart and/or block diagram block or blocks.
These computer program instructions may also be stored in a computer-readable medium that can direct a computer or other programmable data processing apparatus to function in a particular manner, such that the instructions stored in the computer-readable medium produce an article of manufacture including instruction means which implement the function/act specified in the flowchart and/or block diagram block or blocks.
The computer program instructions may also be loaded onto a computer or other programmable data processing apparatus to cause a series of operational steps to be performed on the computer or other programmable apparatus to produce a computer implemented process such that the instructions which execute on the computer or other programmable apparatus provide processes for implementing the functions/acts specified in the flowchart and/or block diagram block or blocks.
With reference now to the Figures and in particular with reference to
Processor unit 204 serves to execute instructions for software that may be loaded into memory 206. Processor unit 204 may be a set of one or more processors or may be a multi-processor core, depending on the particular implementation. Further, processor unit 204 may be implemented using one or more heterogeneous processor systems in which a main processor is present with secondary processors on a single chip. As another illustrative example, processor unit 204 may be a symmetric multi-processor system containing multiple processors of the same type.
In some embodiments, memory 206 may be a random access memory or any other suitable volatile or non-volatile storage device. Persistent storage 208 may contain one or more components or devices. Persistent storage 208 may be a hard drive, a flash memory, a rewritable optical disk, a rewritable magnetic tape, or some combination of the above. The media used by persistent storage 208 also may be removable such as, but not limited to, a removable hard drive.
Communications interface 210 provides for two-way communications with other data processing systems or devices. Communications interface 210 may include, but is not limited to, a cable modem, or a telephone modem to provide data communication connection to a corresponding type of telephone line. As another example, communications interface 210 may include peripheral interface devices, such as a Universal Serial Bus (USB) interface. Communications interface 210 may also enables the exchange of information across one or more wireless communication networks. Such networks may include cellular or short-range such as IEEE 802.11 wireless local area networks (WLANs) and the exchange of information involving the transmission of radio frequency (RF) signals through an antenna.
Input/output unit 212 enables input and output of data with other devices that may be connected to device 100. In some embodiments, input/output unit 212 may provide a connection for user input through a keypad, keyboard, trackpad, mouse or other device. Further, input/output unit 212 may send output to a printer or other type of output device. Display 214 provides a mechanism to display information to a user such as, but not limited to, a liquid crystal display (LCD).
Instructions for the operating system and applications or programs for system 200 are located on persistent storage 208. These instructions may be loaded into memory 206 for execution by processor unit 204. The processes of the different embodiments may be performed by processor unit 204 using computer implemented instructions, which may be located in a memory, such as memory 206. These instructions are referred to as program code, computer usable program code, or computer readable program code that may be read and executed by a processor in processor unit 204. The program code in the different embodiments may be embodied on different physical or tangible computer readable media, such as memory 206 or persistent storage 208.
Program code 116 is located in a functional form on computer readable media 218 that is selectively removable and may be loaded onto or transferred to device 100 for execution by processor unit 204. Program code 216 and computer readable media 218 form computer program product 220 in these examples. In one example, computer readable media 218 may be in a tangible form, such as, for example, an optical or magnetic disc that is inserted or placed into a drive or other device that is part of persistent storage 208 for transfer onto a storage device, such as a hard drive that is part of persistent storage 208. In a tangible form, computer readable media 218 also may take the form of a persistent storage, such as a hard drive, a thumb drive, or a flash memory that is connected to system 200. The tangible form of computer readable media 218 is also referred to as computer recordable storage media. In some instances, computer readable media 218 may not be removable.
Alternatively, program code 216 may be transferred to device 100 from computer readable media 218 through a communications link to communications interface 210 and/or through a connection to input/output unit 212. The communications link and/or the connection may be physical or wireless in the illustrative examples.
The different components illustrated for system 200 are not meant to provide architectural limitations to the manner in which different embodiments may be implemented. The different illustrative embodiments may be implemented in a data processing system including components in addition to or in place of those illustrated for system 200. Other components shown in
In the embodiment illustrated in
Temperature threshold data 330 includes one or more temperature thresholds 3321-n. For example, temperature thresholds 3321-n may include a particular temperature of interest where exceeding the temperature (e.g., exceeding ascending or descending) is of concern or interest. Temperature thresholds 3321-n may include preprogrammed temperatures or may be programmable (e.g., selected and/or set by a user). Interval data 350 may include a particular time interval at which temperature samples or readings are taken and/or obtained (e.g., one reading per minute). Interval data 350 may be preprogrammed, selected and/or set by a user, static and/or dynamic. For example, the temperature sampling interval may remain constant or may vary in response to changes in the temperature readings (e.g., increasing the frequency of sampling if the temperature reaches or exceeds a particular threshold 3321-n). Temperature reading data 360 comprises the temperature readings obtained by sensor 308.
Counter data 340 comprises count information associated with the different temperature readings obtained using sensor 308 relative to one or more of temperature thresholds 3321-n. In some embodiments, counter data 340 includes a count or indication of a quantity of temperature readings that exceed a particular temperature threshold 3321-n. For example, in the embodiment illustrated in
Excursion count 342 comprises a count or indication of a quantity of excursions exceeding a particular temperature threshold 332. For example, excursion count 342 comprises a count or indication of a quantity of times a series of temperature readings initially exceeds a particular temperature threshold 332. A “series” of temperature readings may comprise a single temperature reading or multiple consecutive temperature readings. Thus, in some embodiments, each temperature reading initially exceeding a particular threshold 332 (i.e., a transition from an immediately preceding temperature reading that does not exceed a particular temperature threshold 332 to a successive temperature reading that does exceed the particular temperature threshold 332) represents an excursion of the particular threshold, thereby resulting in an increment of excursion count 342 associated with the particular temperature threshold 332.
Consecutive count 344 comprises a count or indication of a quantity of consecutive temperature readings exceeding a particular temperature threshold 332. In some embodiments, consecutive count 344 may represent a maximum count or indication of a maximum quantity of consecutive temperature readings that have exceeded a particular temperature threshold 332 based on one or more different excursion time periods. For example, in some embodiments, time period count 348 comprises a count or indication of a quantity of consecutive temperature readings occurring during a particular excursion time period (e.g., a time period where one or temperature readings have exceeded a particular temperature threshold 332). Thus, different excursion time periods may have different quantities of consecutive readings exceeding the particular temperature threshold 332 (e.g., one excursion time period having five consecutive readings exceeding a threshold and another excursion time period having nine consecutive readings exceeding the threshold). Accordingly, in some embodiments, consecutive count 344 may represent a maximum count or indication of a maximum quantity of consecutive temperature readings that have exceeded a particular temperature threshold 332 as measured across multiple different excursion time periods (e.g., in the above example, consecutive count 344 would be nine). Therefore, in some embodiments, consecutive count 344 may be incremented responsive to an instance of consecutive readings exceeding the consecutive readings from a previous excursion time period. Using the above example as an illustration, if a successive excursion time period results in thirteen consecutive temperature readings exceeding the particular threshold 332, consecutive count 344 would be incremented from nine to thirteen.
Cumulative count 346 comprises a count or indication of a total quantity of temperature readings that have exceeded a particular temperature threshold 332. Thus, in some embodiments, cumulative count 346 is incremented each time a temperature reading exceeds a particular temperature threshold 332.
In operation, monitor logic 320 reads the temperature readings obtained by sensor 308 and compares the readings, represented in
As illustrated in
Thus, as illustrated by
At decisional block 608, a determination is made (e.g., by counter logic 322) whether an immediately preceding temperature reading exceeded the temperature threshold. If not, the method proceeds to block 610, where counter logic 322 increments excursion count 342. If an immediately preceding temperature reading did exceed the temperature threshold, the method proceeds to block 612. At block 612, counter logic 322 increments time period count 348 corresponding to the current excursion period. At block 614, counter logic determines a value of consecutive count 344. At decisional block 616, a determination is made (e.g., by counter logic 322) whether time period count 348 for the current excursion period exceeds consecutive count 344. If so, the method proceeds to block 618, where counter logic 322 increments consecutive count 344. If not, the method returns to block 602. After block 618, the method returns to block 602.
At decisional block 604, if a determination is made that the temperature reading does not exceed the temperature threshold, the method proceeds to block 620, where counter logic resets time period count 348.
Thus, embodiments of the present disclosure enable monitoring of a temperature environment while providing a user with a variety of types of information corresponding to one or more monitored thresholds such as the quantity of excursions exceeding a temperature threshold, the quantity of consecutive readings when the threshold had been exceeded, and the cumulative quantity of readings exceeding the threshold.
The terminology used herein is for the purpose of describing particular embodiments only and is not intended to be limiting of the disclosure. As used herein, the singular forms “a”, “an” and “the” are intended to include the plural forms as well, unless the context clearly indicates otherwise. It will be further understood that the terms “comprises” and/or “comprising,” when used in this specification, specify the presence of stated features, integers, steps, operations, elements, and/or components, but do not preclude the presence or addition of one or more other features, integers, steps, operations, elements, components, and/or groups thereof.
The corresponding structures, materials, acts, and equivalents of all means or step plus function elements in the claims below are intended to include any structure, material, or act for performing the function in combination with other claimed elements as specifically claimed. The description of the present disclosure has been presented for purposes of illustration and description, but is not intended to be exhaustive or limited to the disclosure in the form disclosed. Many modifications and variations will be apparent to those of ordinary skill in the art without departing from the scope and spirit of the disclosure. The embodiment was chosen and described in order to best explain the principles of the disclosure and the practical application, and to enable others of ordinary skill in the art to understand the disclosure for various embodiments with various modifications as are suited to the particular use contemplated.
The flowchart and block diagrams in the Figures illustrate the architecture, functionality, and operation of possible implementations of systems, methods and computer program products according to various embodiments of the present invention. In this regard, each block in the flowchart or block diagrams may represent a module, segment, or portion of code, which comprises one or more executable instructions for implementing the specified logical function(s). It should also be noted that, in some alternative implementations, the functions noted in the block may occur out of the order noted in the figures. For example, two blocks shown in succession may, in fact, be executed substantially concurrently, or the blocks may sometimes be executed in the reverse order, depending upon the functionality involved. It will also be noted that each block of the block diagrams and/or flowchart illustration, and combinations of blocks in the block diagrams and/or flowchart illustration, can be implemented by special purpose hardware-based systems that perform the specified functions or acts, or combinations of special purpose hardware and computer instructions.
Number | Name | Date | Kind |
---|---|---|---|
3230358 | Davis et al. | Jan 1966 | A |
3499323 | Sturges | Mar 1970 | A |
3961323 | Hartkorn | Jun 1976 | A |
4462023 | Nielsen et al. | Jul 1984 | A |
4496829 | Black et al. | Jan 1985 | A |
4575803 | Moore | Mar 1986 | A |
4604871 | Chiu et al. | Aug 1986 | A |
4621502 | Ibrahim et al. | Nov 1986 | A |
4685061 | Whitaker | Aug 1987 | A |
4750197 | Denekamp et al. | Jun 1988 | A |
4972099 | Amanao et al. | Nov 1990 | A |
5244146 | Jefferson et al. | Sep 1993 | A |
5254992 | Keen et al. | Oct 1993 | A |
5262758 | Nam et al. | Nov 1993 | A |
5313848 | Santin et al. | May 1994 | A |
5403093 | Flynn et al. | Apr 1995 | A |
5424720 | Kirkpatrick | Jun 1995 | A |
5442669 | Medin | Aug 1995 | A |
5452335 | Slater et al. | Sep 1995 | A |
5528228 | Wilk | Jun 1996 | A |
5798694 | Reber et al. | Aug 1998 | A |
5835012 | Wilk | Nov 1998 | A |
5844862 | Cocatre-Zilgien | Dec 1998 | A |
5867809 | Soga et al. | Feb 1999 | A |
RE36200 | Berrian et al. | Apr 1999 | E |
5917416 | Read | Jun 1999 | A |
5936523 | West | Aug 1999 | A |
6034607 | Vidaillac | Mar 2000 | A |
6046674 | Irwin et al. | Apr 2000 | A |
6046678 | Wilk | Apr 2000 | A |
6185513 | Plettner et al. | Feb 2001 | B1 |
6275779 | Pohle et al. | Aug 2001 | B1 |
6286992 | Kyrtsos | Sep 2001 | B1 |
6320512 | Nicholson et al. | Nov 2001 | B1 |
6326892 | De La Forterie | Dec 2001 | B1 |
6411916 | Pellerin | Jun 2002 | B1 |
6424930 | Wood | Jul 2002 | B1 |
6438502 | Awtrey et al. | Aug 2002 | B1 |
6501390 | Chainer et al. | Dec 2002 | B1 |
6555789 | Owens et al. | Apr 2003 | B2 |
6570508 | Kvenvold | May 2003 | B1 |
6643608 | Hershey et al. | Nov 2003 | B1 |
6712276 | Abali et al. | Mar 2004 | B1 |
6753830 | Gelbman | Jun 2004 | B2 |
6771177 | Alderman | Aug 2004 | B2 |
6806808 | Watters et al. | Oct 2004 | B1 |
6811305 | Laycock | Nov 2004 | B2 |
6847912 | Forster | Jan 2005 | B2 |
6850861 | Faiola et al. | Feb 2005 | B1 |
6856247 | Wallace | Feb 2005 | B1 |
6865516 | Richardson | Mar 2005 | B1 |
6889165 | Lind et al. | May 2005 | B2 |
6924781 | Gelbman | Aug 2005 | B1 |
6950028 | Zweig | Sep 2005 | B2 |
6970100 | Lovegreen et al. | Nov 2005 | B2 |
6985408 | Quine | Jan 2006 | B2 |
7004621 | Roberts et al. | Feb 2006 | B2 |
7057495 | Debord et al. | Jun 2006 | B2 |
7081811 | Johnston et al. | Jul 2006 | B2 |
7102526 | Zweig | Sep 2006 | B2 |
7140768 | Prabhakar | Nov 2006 | B2 |
7142110 | Schmidtberg et al. | Nov 2006 | B2 |
7165015 | Roberts | Jan 2007 | B2 |
7225107 | Buxton et al. | May 2007 | B2 |
7250858 | Schmidtberg et al. | Jul 2007 | B2 |
7253731 | Joao | Aug 2007 | B2 |
7378954 | Wendt | May 2008 | B2 |
7409310 | Wade | Aug 2008 | B1 |
7417417 | Williams et al. | Aug 2008 | B2 |
7455225 | Hadfield et al. | Nov 2008 | B1 |
7482920 | Joao | Jan 2009 | B2 |
7487037 | Schmidtberg | Feb 2009 | B2 |
7495400 | Testin | Feb 2009 | B2 |
7552029 | Elwood et al. | Jun 2009 | B2 |
7680622 | Dupuy et al. | Mar 2010 | B2 |
8154417 | Hauenstein et al. | Apr 2012 | B2 |
20020163436 | Singh et al. | Nov 2002 | A1 |
20030198135 | Beatty et al. | Oct 2003 | A1 |
20040113783 | Yagesh | Jun 2004 | A1 |
20050157774 | DiLuiso et al. | Jul 2005 | A1 |
20050270709 | Plemmons et al. | Dec 2005 | A1 |
20070008119 | Pohle et al. | Jan 2007 | A1 |
20070056369 | Griffin et al. | Mar 2007 | A1 |
20070203650 | Jensen et al. | Aug 2007 | A1 |
20070215599 | Kahler | Sep 2007 | A1 |
20070243621 | Zweig | Oct 2007 | A1 |
20070285238 | Batra | Dec 2007 | A1 |
20080052044 | Shoenfeld | Feb 2008 | A1 |
20080082043 | Janssen | Apr 2008 | A1 |
20080110391 | Taylor et al. | May 2008 | A1 |
20080120188 | Mobley et al. | May 2008 | A1 |
20080125915 | Berenbaum et al. | May 2008 | A1 |
20080144697 | Stewart et al. | Jun 2008 | A1 |
20100244574 | Nishino et al. | Sep 2010 | A1 |
20110006109 | Nemet et al. | Jan 2011 | A1 |
Number | Date | Country |
---|---|---|
WO 9909637 | Feb 1999 | WO |
9935453 | Jul 1999 | WO |
WO 0150103 | Jul 2001 | WO |
Number | Date | Country | |
---|---|---|---|
20120114010 A1 | May 2012 | US |