Systems and methods for safe delivery of electrical stimulation therapy

Information

  • Patent Grant
  • 10220213
  • Patent Number
    10,220,213
  • Date Filed
    Thursday, February 4, 2016
    9 years ago
  • Date Issued
    Tuesday, March 5, 2019
    6 years ago
Abstract
Systems and methods for treating arrhythmias are disclosed. In one embodiment an LCP comprises a housing, a plurality of electrodes for sensing electrical signals emanating from outside of the housing, an energy storage module disposed within the housing, and a control module disposed within the housing and operatively coupled to the plurality of electrodes. The control module may be configured to receive electrical signals via two or more of the plurality of electrodes and determine if the received electrical signals are indicative of a command for the LCP to deliver ATP therapy. If the received electrical signals are indicative of a command for the LCP to deliver ATP therapy, the control module may additionally determine whether a triggered ATP therapy mode of the LCP is enabled. If the triggered ATP therapy mode is enabled, the control module may cause the LCP to deliver ATP therapy via the plurality of electrodes.
Description
TECHNICAL FIELD

The present disclosure generally relates to systems, devices, and methods for treating cardiac arrhythmias, and more particularly, to systems, devices, and methods for detecting cardiac arrhythmias and safely delivering electrical stimulation therapy to treat the detected cardiac arrhythmias.


BACKGROUND

Pacing instruments can be used to treat patients suffering from various heart conditions that may result in a reduced ability of the heart to deliver sufficient amounts of blood to a patient's body. These heart conditions may lead to rapid, irregular, and/or inefficient heart contractions. To help alleviate some of these conditions, various devices (e.g., pacemakers, defibrillators, etc.) can be implanted in a patient's body. Such devices may monitor and provide electrical stimulation to the heart to help the heart operate in a more normal, efficient and/or safe manner. In some cases, a patient may have multiple implanted devices.


SUMMARY

The present disclosure generally relates to systems, devices, and methods for treating cardiac arrhythmias, and more particularly, to systems, devices, and methods for detecting cardiac arrhythmias and safely delivering electrical stimulation therapy, such as anti-tachycardia pacing (ATP) therapy, to treat the detected cardiac arrhythmias.


In one embodiment, a leadless cardiac pacemaker (LCP) may comprise a housing, a plurality of electrodes for sensing electrical signals emanating from outside of the housing, an energy storage module disposed within the housing, and a control module disposed within the housing and operatively coupled to the plurality of electrodes. The control module may be configured to receive electrical signals via two or more of the plurality of electrodes and determine if the received electrical signals are indicative of a command for the LCP to deliver anti-tachyarrhythmia pacing (ATP) therapy. If the received electrical signals are indicative of a command for the LCP to deliver anti-tachyarrhythmia pacing (ATP) therapy, the control module may additionally determine whether a triggered ATP therapy mode of the LCP is enabled. If the triggered ATP therapy mode is enabled, the control module may cause the LCP to deliver ATP therapy via two or more of the plurality of electrodes.


Alternatively, or additionally, in the above embodiment, if the triggered ATP therapy mode is enabled, the control module may be further configured to determine whether to deliver ATP therapy in response to the command, and if it is determined to deliver ATP therapy, deliver ATP therapy via two or more of the plurality of electrodes.


Alternatively, or additionally, in any of the above embodiments, the control module may be further configured to determine to deliver ATP therapy if the triggered ATP therapy mode is enabled.


Alternatively, or additionally, in any of the above embodiments, the control module may be further configured to determine to deliver ATP therapy if a heart rate, determined from the received electrical signals, is above an arrhythmia threshold.


Alternatively, or additionally, in any of the above embodiments, the control module may be further configured to maintain a count of a number of ATP therapy bursts that have been delivered as part of a delivered ATP therapy, and wherein the controller module is further configured to determine to deliver ATP therapy if the number of ATP therapy bursts has not exceeded a ATP therapy burst count threshold.


Alternatively, or additionally, in any of the above embodiments, if the number of ATP therapy bursts has exceeded the ATP therapy burst count threshold, the control module may be further configured to communicate an error signal to another medical device.


Alternatively, or additionally, in any of the above embodiments, the control module may be further configured to determine a signal morphology type of a cardiac signal received via two or more of the plurality of electrodes, and wherein the controller module is further configured to determine to deliver ATP therapy if the determined signal morphology type is of a predetermined signal morphology type.


Alternatively, or additionally, in any of the above embodiments, the predetermined signal morphology type may comprise a Monomorphic Ventricular Tachycardia (MVT).


Alternatively, or additionally, in any of the above embodiments, the predetermined signal morphology type may comprise a Polymorphic Ventricular Tachycardia (PVT).


Alternatively, or additionally, in any of the above embodiments, the predetermined signal morphology type may comprise a Supra Ventricular Tachycardia (SVT).


Alternatively, or additionally, in any of the above embodiments, the signals indicative of a command for the LCP to deliver anti-tachyarrhythmia pacing (ATP) therapy may comprise a plurality of communication pulses produced by a remote medical device.


Alternatively, or additionally, in any of the above embodiments, the signals indicative of a command for the LCP to deliver anti-tachyarrhythmia pacing (ATP) therapy may comprise a plurality of communication pulses as part of a one-way communication path from a remote medical device


Alternatively, or additionally, in any of the above embodiments, the plurality of communication pulses may be free from error checking information for error checking the one-way communication path.


Alternatively, or additionally, in any of the above embodiments, the control module may be further configured to, after deliver ATP therapy via two or more of the plurality of electrodes, deliver post shock pacing therapy.


Alternatively, or additionally, in any of the above embodiments, the control module may be further configured to deliver post shock packing therapy for between about 30-60 seconds after delivering ATP therapy.


In another embodiment, a leadless cardiac pacemaker (LCP) may comprise a housing, a plurality of electrodes for sensing electrical signals emanating from outside of the housing, an energy storage module disposed within the housing, and a control module disposed within the housing and operatively coupled to the plurality of electrodes. The control module may be configured to receive electrical signals via two or more of the plurality of electrodes and determine if the received electrical signals are indicative of a command for the LCP to deliver anti-tachyarrhythmia pacing (ATP) therapy. If the received electrical signals are indicative of a command for the LCP to deliver anti-tachyarrhythmia pacing (ATP) therapy, the control module may further be configured to determine whether a triggered ATP therapy mode of the LCP is enabled. If the triggered ATP therapy mode is enabled, the control module may cause the LCP to deliver ATP therapy via two or more of the plurality of electrodes.


Alternatively, or additionally, in the above embodiment, if the triggered ATP therapy mode is enabled, the control module may be further configured to determine whether to deliver ATP therapy in response to the command, and if it is determined to deliver ATP therapy, deliver ATP therapy via two or more of the plurality of electrodes.


Alternatively, or additionally, in any of the above embodiments, the control module may be further configured to determine to deliver ATP therapy if the triggered ATP therapy mode is enabled.


Alternatively, or additionally, in any of the above embodiments, the control module may be further configured to determine to deliver ATP therapy if a heart rate, determined from the received electrical signals, is above an arrhythmia threshold.


Alternatively, or additionally, in any of the above embodiments, the control module may be further configured to maintain a count of a number of ATP therapy bursts that have been delivered as part of a delivered ATP therapy, and wherein the controller module is further configured to determine to deliver ATP therapy if the number of ATP therapy bursts has not exceeded a ATP therapy burst count threshold.


Alternatively, or additionally, in any of the above embodiments, the control module may be further configured to determine a signal morphology type of a cardiac signal received via two or more of the plurality of electrodes, and wherein the controller module is further configured to determine to deliver ATP therapy if the determined signal morphology type is of a predetermined signal morphology type.


Alternatively, or additionally, in any of the above embodiments, the predetermined signal morphology type may comprise a Monomorphic Ventricular Tachycardia (MVT).


Alternatively, or additionally, in any of the above embodiments, the predetermined signal morphology type may comprise a Polymorphic Ventricular Tachycardia (PVT).


Alternatively, or additionally, in any of the above embodiments, the predetermined signal morphology type may comprise a Supra Ventricular Tachycardia (SVT).


In yet another embodiment, a leadless cardiac pacemaker (LCP) may comprise a housing, a plurality of electrodes for sensing electrical signals emanating from outside of the housing, an energy storage module disposed within the housing, and a control module disposed within the housing and operatively coupled to the plurality of electrode. The control module may be configured to receive electrical signals via two or more of the plurality of electrodes and determine if the received electrical signals are indicative of a command for the LCP to deliver anti-tachyarrhythmia pacing (ATP) therapy. If the received electrical signals are indicative of a command for the LCP to deliver anti-tachyarrhythmia pacing (ATP) therapy, the control module may be configured to deliver ATP therapy via two or more of the plurality of electrodes. The control module may further be configured to maintain a measure related to an amount of ATP therapy delivered as part of the delivered ATP therapy within a predetermined period of time and to continue to allow delivery of ATP therapy if the measure related to the amount of ATP therapy delivered within the predetermined period of time has not exceeded a predetermined ATP therapy threshold. The control may also stop delivery of ATP therapy if the measure related to the amount of ATP therapy delivered within the predetermined period of time has exceeded the predetermined ATP therapy threshold.


Alternatively, or additionally, in any of the above embodiments, the predetermined period of time may be between one hour and twenty-four hours.


Alternatively, or additionally, in any of the above embodiments, the measure related to the amount of ATP therapy delivered as part of the delivered ATP therapy within the predetermined period of time may correspond to an ATP therapy delivered count that is indicative of a number of times a command is received that results in the LCP delivering ATP therapy within the predetermined period of time.


Alternatively, or additionally, in any of the above embodiments, the measure related to the amount of ATP therapy delivered as part of the delivered ATP therapy within the predetermined period of time may correspond to an ATP burst count that is indicative of a number of ATP bursts that are delivered within the predetermined period of time.


Alternatively, or additionally, in any of the above embodiments, the received electrical signals may comprise a plurality of communication pulses produced by a remote medical device.


Alternatively, or additionally, in any of the above embodiments, the received electrical signals may comprise a plurality of communication pulses as part of a one-way communication path from a remote medical device.


Alternatively, or additionally, in any of the above embodiments, the plurality of communication pulses may be free from error checking information for error checking the one-way communication path.


Alternatively, or additionally, in any of the above embodiments, after delivering ATP therapy, the LCP may be further configured to enter a post shock pacing mode.


In still another embodiment, a leadless cardiac pacemaker (LCP) may comprise a housing, a plurality of electrodes for sensing electrical signals emanating from outside of the housing, an energy storage module disposed within the housing, and a control module disposed within the housing and operatively coupled to the plurality of electrodes. The control module may be configured to receive electrical signals via two or more of the plurality of electrodes and determine if the received electrical signals are indicative of a command for the LCP to deliver anti-tachyarrhythmia pacing (ATP) therapy. If the received electrical signals are indicative of a command for the LCP to deliver anti-tachyarrhythmia pacing (ATP) therapy, the control module may further determine whether a triggered ATP therapy mode of the LCP is enabled and determine whether a heart rate determined from the received electrical signals is above an arrhythmia threshold. If the triggered ATP therapy mode is enabled and the heart rate is above the arrhythmia threshold, the control module may cause the LCP to deliver ATP therapy via two or more of the plurality of electrodes.


Alternatively, or additionally, in any of the above embodiments, the control module may further maintain a measure related to the amount of ATP therapy delivered within a predetermined period of time, and wherein the control module may be further configured to determine if the measure related to the amount of ATP therapy delivered within the predetermined period of time exceeds a predetermined ATP therapy threshold, and only cause the LCP to deliver ATP therapy via two or more of the plurality of electrodes if the triggered ATP therapy mode is enabled, the heart rate is above the arrhythmia threshold, and the measure related to the amount of ATP therapy delivered within the predetermined period of time does not exceed the predetermined ATP therapy threshold.


Alternatively, or additionally, in any of the above embodiments, the predetermined period of time is between one hour and twenty-four hours.


The above summary is not intended to describe each embodiment or every implementation of the present disclosure. Advantages and attainments, together with a more complete understanding of the disclosure, will become apparent and appreciated by referring to the following description and claims taken in conjunction with the accompanying drawings.





BRIEF DESCRIPTION OF THE DRAWINGS

The disclosure may be more completely understood in consideration of the following description of various illustrative embodiments in connection with the accompanying drawings, in which:



FIG. 1 is a schematic block diagram of an illustrative leadless cardiac pacemaker (LCP) according to one embodiment of the present disclosure;



FIG. 2 is a schematic block diagram of another illustrative medical device that may be used in conjunction with the LCP of FIG. 1;



FIG. 3 is a schematic diagram of an exemplary medical system that includes multiple LCPs and/or other devices in communication with one another



FIG. 4 is a schematic diagram of a system including an LCP and another medical device, in accordance with another embodiment of the present disclosure;



FIG. 5 is a schematic diagram of a system including a leadless cardiac pacemaker (LCP) and another medical device, in accordance with yet another embodiment of the present disclosure;



FIGS. 6A-6B illustrate example communication pulse sequences, in accordance with yet another embodiment of the present disclosure;



FIG. 7 is a flow diagram of an illustrative method that may be implemented by a medical device or medical device system, such as the illustrative medical devices and medical device systems described with respect to FIGS. 1-5; and



FIG. 8 is a flow diagram of another illustrative method that may be implemented by a medical device or medical device system, such as the illustrative medical devices and medical device systems described with respect to FIGS. 1-5





While the disclosure is amenable to various modifications and alternative forms, specifics thereof have been shown by way of example in the drawings and will be described in detail. It should be understood, however, that the intention is not to limit aspects of the disclosure to the particular illustrative embodiments described. On the contrary, the intention is to cover all modifications, equivalents, and alternatives falling within the spirit and scope of the disclosure.


DESCRIPTION

The following description should be read with reference to the drawings in which similar elements in different drawings are numbered the same. The description and the drawings, which are not necessarily to scale, depict illustrative embodiments and are not intended to limit the scope of the disclosure.


This disclosure describes systems, devices, and methods for detecting and safely treating cardiac arrhythmias. In some medical device systems including a plurality of medical devices, a first device of the system may determine occurrences of cardiac arrhythmias and may command another device to deliver electrical stimulation therapy. In such system, the first device may communicate a command to the second device, where upon reception of the command, the second device initiates delivery of the electrical stimulation therapy. In some medical device systems, it may be important to implement one or more safeguards to help ensure that the second medical device is not incorrectly delivering electrical stimulation therapy. This disclosure details various example safeguard techniques.



FIG. 1 is a conceptual drawing of an exemplary leadless cardiac pacemaker (LCP) that may be implanted into a patient and may operate to sense physiological signals and parameters and deliver one or more types of electrical stimulation therapy to tissues of the patient. Example electrical stimulation therapy includes anti-tachycardia pacing (ATP) therapy, cardiac resynchronization therapy (CRT), bradycardia therapy, various types of pacing therapy including rate responsive pacing therapy, and/or the like. As can be seen in FIG. 1, LCP 100 may be a compact device with all components housed within LCP 100 or directly on housing 120. The illustrative LCP 100 may include communication module 102, pulse generator module 104, electrical sensing module 106, mechanical sensing module 108, processing module 110, energy storage module 112, and electrodes 114.


As depicted in FIG. 1, LCP 100 may include electrodes 114, which can be secured relative to housing 120 but exposed to the tissue and/or blood surrounding LCP 100. Electrodes 114 may generally conduct electrical signals to and from LCP 100 and the surrounding tissue and/or blood. Such electrical signals can include communication pulses, electrical stimulation pulses, and intrinsic cardiac electrical signals. Intrinsic cardiac electrical signals may include electrical signals generated by the heart, and may be represented by an electrocardiogram (ECG). Electrodes 114 can be made up of one or more biocompatible conductive materials such as various metals or alloys that are known to be safe for implantation within a human body. In some instances, electrodes 114 may be generally disposed on either end of LCP 100 and may be in electrical communication with one or more of modules 102, 104, 106, 108, and 110. In embodiments where electrodes 114 are secured directly to housing 120, electrodes 114 may have an insulative portion that electrically isolates electrodes 114 from adjacent electrodes, housing 120, and/or other portions of LCP 100. Some or all of electrodes 114 may be spaced from housing 120 and connected to housing 120 and/or other components of LCP 100 through connecting wires. In such embodiments, the electrodes 114 may be placed on a on a tail that extends from the housing 120. As shown in FIG. 1, in some embodiments, LCP 100 may additionally include electrodes 114′. Electrodes 114′ are similar to electrodes 114 except that electrodes 114′ are disposed on the sides of LCP 100 and increase the number of electrodes by which LCP 100 may deliver communication pulses and electrical stimulation pulses and/or sense for intrinsic cardiac electrical signals, communication pulses, and/or electrical stimulation pulses.


Electrodes 114 and/or 114′ may have any of a variety of sizes and/or shapes, and may be spaced at any of a variety of distances. For example, electrodes 114 may have a diameter of two to twenty millimeters (mm). However, in other embodiments, electrodes 114 and/or 114′ may have a diameter of two, three, five, seven millimeters (mm), or any other suitable diameter, dimension and shape. Example lengths for electrodes 114 and/or 114′ include a length of zero, one, three, five, ten millimeters (mm), or any other suitable length. As used herein, the length is a dimension of electrodes 114 and/or 114′ that extends away from housing 120. Additionally, at least some of electrodes 114 and/or 114′ may be spaced from one another by a distance of twenty, thirty, forty, fifty millimeters (mm), or any other suitable distance. The electrodes 114 and/or 114′ of a single device may have different sizes with respect to each other, and the spacing of the electrodes on the device may not be uniform.


Communication module 102 may be electrically coupled to electrodes 114 and/or 114′ and configured to deliver communication pulses to tissues of the patient for communicating with other devices such as sensors, programmers, other medical devices, and the like. Communication pulses, as used herein, may be any modulated signal that conveys information to another device, either by itself or in conjunction with one or more other modulated signals. In some embodiments, communication pulses are limited to only including sub-threshold signals which convey information. Such other devices may be located either external or internal to the patient's body. Communication module 102 may additionally be configured to sense for communication pulses delivered by the other devices, which are located externally to LCP 100. Irrespective of the location, LCP and the other devices may communicate with each other via communication module 102 to accomplish one or more desired functions. Some example functions include storing communicated data, using communicated data for determining occurrences of arrhythmias, coordinating delivery of electrical stimulation therapy such as triggering an ATP therapy, and/or other functions.


LCP 100 and the other devices may use the delivered communication pulses to communicate raw information, processed information, messages, and/or other data. Raw information may include information such as sensed electrical signals (e.g. a sensed ECG), signals gathered from coupled sensors, and the like. In some embodiments, the raw information may include signals that have been filtered using one or more signal processing techniques. Processed information may include any information that has been determined by LCP 100. For example, processed information may include a determined heart rate, timings of determined heartbeats, timings of other determined events, determinations of threshold crossings, expirations of monitored time periods, and determined parameters such as activity parameters, blood-oxygen parameters, blood pressure parameters, heart sound parameters, and the like. Messages may include instructions or commands directing another device to take action, notifications of imminent actions of the sending device, requests for reading from the receiving device or writing data to the receiving device.


In at least some embodiments, communication module 102 (or LCP 100) may further include switching circuitry to selectively connect one or more of electrodes 114 and/or 114′ to communication module 102 in order to select via which electrodes 114 and/or 114′ communication module 102 delivers the communication pulses. Additionally, communication module 102 may be configured to use one or more methods for communicating with other devices. For example, communication module 102 may communicate via conducted signals, radiofrequency (RF) signals, optical signals, acoustic signals, inductive coupling, and/or any other signals or methods suitable for communication.


Pulse generator module 104 of LCP 100 may also be electrically connected to one or more of electrodes 114 and/or 114′. Pulse generator module 104 may be configured to generate electrical stimulation pulses and deliver the electrical stimulation pulses to tissues of a patient via electrodes 114 and/or 114′ electrodes in order to effectuate one or more electrical stimulation therapies. Electrical stimulation pulses as used herein are meant to encompass any electrical signals that may be delivered to tissue of a patient for purposes of treatment of any type of disease or abnormality. When used to treat heart diseases or abnormalities, the electrical stimulation pulses may generally be configured so as to capture the heart of the patient—cause the heart to contract in response to the delivered electrical stimulation pulse. One example of these electrical stimulation pulses include pacing pulses. In at least embodiments where pulse generator 104 is configured to generate specific types of electrical stimulation pulses termed defibrillation/cardioversion pulses, pulse generator module 104 may include one or more capacitor elements or other charge storage devices.


Pulse generator module 104 may include capability to modify the electrical stimulation pulses, such as by adjusting a pulse width or amplitude of the electrical stimulation pulses, in order to ensure that the delivered electrical stimulation pulses consistently capture the heart. Pulse generator module 104 may use energy stored in energy storage module 112 to generate the electrical stimulation pulses. In at least some embodiments, pulse generator module 104 (or LCP 100) may further include switching circuitry to selectively connect one or more of electrodes 114 and/or 114′ to pulse generator module 104 in order to select via which electrodes 114 and/or 114′ pulse generator 104 delivers the electrical stimulation pulses.


In some embodiments, LCP 100 may include electrical sensing module 106 and mechanical sensing module 108. Electrical sensing module 106 may be configured to sense intrinsic cardiac electrical signals conducted from electrodes 114 and/or 114′ to electrical sensing module 106. For example, electrical sensing module 106 may be electrically connected to one or more electrodes 114 and/or 114′ and electrical sensing module 106 may be configured to receive cardiac electrical signals conducted through electrodes 114 and/or 114′. In some embodiments, the cardiac electrical signals may represent local information from the chamber in which LCP 100 is implanted. For instance, if LCP 100 is implanted within a ventricle of the heart, cardiac electrical signals sensed by LCP 100 through electrodes 114 and/or 114′ may represent ventricular cardiac electrical signals. Mechanical sensing module 108 may include, or be electrically connected to, various sensors, such as accelerometers, blood pressure sensors, heart sound sensors, blood-oxygen sensors, and/or other sensors which measure one or more physiological parameters of the heart and/or patient. Mechanical sensing module 108 may gather signals from the sensors indicative of the various physiological parameters. Both electrical sensing module 106 and mechanical sensing module 108 may be further connected to processing module 110 and may provide signals representative of the sensed cardiac electrical signals and/or physiological signals to processing module 110. Although described with respect to FIG. 1 as separate sensing modules, in some embodiments, electrical sensing module 106 and mechanical sensing module 108 may be combined into a single module.


Processing module 110 may be configured to control the operation of LCP 100. For example, processing module 110 may be configured to receive cardiac electrical signals from electrical sensing module 106 and/or physiological signals from mechanical sensing module 108. Based on the received signals, processing module 110 may determine occurrences and types of arrhythmias. Processing module 110 may further receive information from communication module 102. In some embodiments, processing module 110 may additionally use such received information to determine occurrences and types of arrhythmias. However, in other embodiments, LCP 100 may use the received information instead of the signals received from electrical sensing module 106 and/or mechanical sensing module 108—for instance if the received information is more accurate than the signals received from electrical sensing module 106 and/or mechanical sensing module 108 or if electrical sensing module 106 and/or mechanical sensing module 108 have been disabled or omitted from LCP 100.


Based on any determined arrhythmias, processing module 110 may then control pulse generator module 104 to generate electrical stimulation pulses in accordance with one or more electrical stimulation therapies to treat the determined arrhythmias. For example, processing module 110 may control pulse generator module 104 to generate pacing pulses with varying parameters and in different sequences to effectuate one or more electrical stimulation therapies. In controlling pulse generator module 104 to deliver bradycardia pacing therapy, processing module 110 may control pulse generator module 104 to deliver pacing pulses designed to capture the heart of the patient at a regular interval to prevent the heart of a patient from falling below a predetermined threshold. For ATP therapy, processing module 110 may control pulse generator module 104 to deliver pacing pulses at a rate faster than an intrinsic heart rate of a patient in attempt to force the heart to beat in response to the delivered pacing pulses rather than in response to intrinsic cardiac electrical signals. Processing module 110 may then control pulse generator module 104 to reduce the rate of delivered pacing pulses down to a safe level. In CRT, processing module 110 may control pulse generator module 104 to deliver pacing pulses in coordination with another device to cause the heart to contract more efficiently. Additionally, in cases where pulse generator module 104 is capable of generating defibrillation and/or cardioversion pulses for defibrillation/cardioversion therapy, processing module 110 may control pulse generator module 104 to generate such defibrillation and/or cardioversion pulses. In other embodiments, processing module 110 may control pulse generator module 104 to generate electrical stimulation pulses to provide electrical stimulation therapies different than those described herein to treat one or more detected cardiac arrhythmias.


Aside from controlling pulse generator module 104 to generate different types of electrical stimulation pulses and in different sequences, in some embodiments, processing module 110 may also control pulse generator module 104 to generate the various electrical stimulation pulses with varying pulse parameters. For example, each electrical stimulation pulse may have a pulse width and a pulse amplitude. Processing module 110 may control pulse generator module 104 to generate the various electrical stimulation pulses with specific pulse widths and pulse amplitudes. For example, processing module 110 may cause pulse generator module 104 to adjust the pulse width and/or the pulse amplitude of electrical stimulation pulses if the electrical stimulation pulses are not effectively capturing the heart. Such control of the specific parameters of the various electrical stimulation pulses may ensure that LCP 100 is able to provide effective delivery of electrical stimulation therapy.


In some embodiments, processing module 110 may further control communication module 102 to send information to other devices. For example, processing module 110 may control communication module 102 to generate one or more communication pulses for communicating with other devices of a system of devices. For instance, processing module 110 may control communication module 102 to generate communication pulses in particular sequences, where the specific sequences convey different data to other devices. Communication module 102 may also conduct any received communication signals to processing module 110 for potential action by processing module 110.


In further embodiments, processing module 110 may additionally control switching circuitry by which communication module 102 and pulse generator module 104 deliver communication pulses and electrical stimulation pulses to tissue of the patient. As described above, both communication module 102 and pulse generator module 104 may include circuitry for connecting one or more electrodes 114 and/114′ to communication module 102 and pulse generator module 104 so those modules may deliver the communication pulses and electrical stimulation pulses to tissue of the patient. The specific combination of one or more electrodes by which communication module 102 and pulse generator module 104 deliver communication pulses and electrical stimulation pulses influence the reception of communication pulses and/or the effectiveness of electrical stimulation pulses. Although it was described that each of communication module 102 and pulse generator module 104 may include switching circuitry, in some embodiments LCP 100 may have a single switching module connected to all of communication module 102, pulse generator module 104, and electrodes 114 and/or 114′. In such embodiments, processing module 110 may control the single switching module to connect modules 102/104 and electrodes 114/114′.


In some embodiments, processing module 110 may include a pre-programmed chip, such as a very-large-scale integration (VLSI) chip or an application specific integrated circuit (ASIC). In such embodiments, the chip may be pre-programmed with control logic in order to control the operation of LCP 100. By using a pre-programmed chip, processing module 110 may use less power than other programmable circuits while able to maintain basic functionality, thereby increasing the battery life of LCP 100. In other embodiments, processing module 110 may include a programmable microprocessor or the like. Such a programmable microprocessor may allow a user to adjust the control logic of LCP 100 after manufacture, thereby allowing for greater flexibility of LCP 100 than when using a pre-programmed chip.


Processing module 110, in additional embodiments, may further include a memory circuit and processing module 110 may store information on and read information from the memory circuit. In other embodiments, LCP 100 may include a separate memory circuit (not shown) that is in communication with processing module 110, such that processing module 110 may read and write information to and from the separate memory circuit. The memory circuit, whether part of processing module 110 or separate from processing module 110 may have address lengths of, for example, eight bits. However, in other embodiments, the memory circuit may have address lengths of sixteen, thirty-two, or sixty-four bits, or any other bit length that is suitable. Additionally, the memory circuit may be volatile memory, non-volatile memory, or a combination of both volatile memory and non-volatile memory.


Energy storage module 112 may provide a power source to LCP 100 for its operations. In some embodiments, energy storage module 112 may be a non-rechargeable lithium-based battery. In other embodiments, the non-rechargeable battery may be made from other suitable materials known in the art. Because LCP 100 is an implantable device, access to LCP 100 may be limited. In such circumstances, it is necessary to have sufficient energy capacity to deliver therapy over an extended period of treatment such as days, weeks, months, or years. In some embodiments, energy storage module 112 may a rechargeable battery in order to facilitate increasing the useable lifespan of LCP 100. In still other embodiments, energy storage module 112 may be other types of energy storage devices such as capacitors.


To implant LCP 100 inside a patient's body, an operator (e.g., a physician, clinician, etc.), may fix LCP 100 to the cardiac tissue of the patient's heart. To facilitate fixation, LCP 100 may include one or more anchors 116. Anchor 116 may include any number of fixation or anchoring mechanisms. For example, anchor 116 may include one or more pins, staples, threads, screws, helix, tines, and/or the like. In some embodiments, although not shown, anchor 116 may include threads on its external surface that may run along at least a partial length of anchor 116. The threads may provide friction between the cardiac tissue and the anchor to help fix anchor 116 within the cardiac tissue. In other embodiments, anchor 116 may include other structures such as barbs, spikes, or the like to facilitate engagement with the surrounding cardiac tissue.



FIG. 2 depicts an embodiment of another device, medical device (MD) 200, which may operate to sense physiological signals and parameters and deliver one or more types of electrical stimulation therapy to tissues of the patient. In the embodiment shown, MD 200 may include a communication module 202, a pulse generator module 204, an electrical sensing module 206, a mechanical sensing module 208, a processing module 210, and an energy storage module 218. Each of modules 202, 204, 206, 208, and 210 may be similar to modules 102, 104, 106, 108, and 110 of LCP 100. Additionally, energy storage module 218 may be similar to energy storage module 112 of LCP 100. However, in some embodiments, MD 200 may have a larger volume within housing 220. In such embodiments, MD 200 may include a larger energy storage module 218 and/or a larger processing module 210 capable of handling more complex operations than processing module 110 of LCP 100.


While MD 200 may be another leadless device such as shown in FIG. 1, in some instances MD 200 may include leads, such as leads 212. Leads 212 may include electrical wires that conduct electrical signals between electrodes 214 and one or more modules located within housing 220. In some cases, leads 212 may be connected to and extend away from housing 220 of MD 200. In some embodiments, leads 212 are implanted on, within, or adjacent to a heart of a patient. Leads 212 may contain one or more electrodes 214 positioned at various locations on leads 212 and various distances from housing 220. Some leads 212 may only include a single electrode 214, while other leads 212 may include multiple electrodes 214. Generally, electrodes 214 are positioned on leads 212 such that when leads 212 are implanted within the patient, one or more of the electrodes 214 are positioned to perform a desired function. In some cases, the one or more of the electrodes 214 may be in contact with the patient's cardiac tissue. In other cases, the one or more of the electrodes 214 may be positioned subcutaneously but adjacent the patient's heart. The electrodes 214 may conduct intrinsically generated electrical cardiac signals to leads 212. Leads 212 may, in turn, conduct the received electrical cardiac signals to one or more of the modules 202, 204, 206, and 208 of MD 200. In some cases, MD 200 may generate electrical stimulation signals, and leads 212 may conduct the generated electrical stimulation signals to electrodes 214. Electrodes 214 may then conduct the electrical stimulation signals to the cardiac tissue of the patient (either directly or indirectly). MD 200 may also include one or more electrodes 214 not disposed on a lead 212. For example, one or more electrodes 214 may be connected directly to housing 220.


Leads 212, in some embodiments, may additionally contain one or more sensors, such as accelerometers, blood pressure sensors, heart sound sensors, blood-oxygen sensors, and/or other sensors which are configured to measure one or more physiological parameters of the heart and/or patient. In such embodiments, mechanical sensing module 208 may be in electrical communication with leads 212 and may receive signals generated from such sensors.


While not required, in some embodiments MD 200 may be an implantable medical device. In such embodiments, housing 220 of MD 200 may be implanted in, for example, a transthoracic region of the patient. Housing 220 may generally include any of a number of known materials that are safe for implantation in a human body and may, when implanted, hermetically seal the various components of MD 200 from fluids and tissues of the patient's body. In such embodiments, leads 212 may be implanted at one or more various locations within the patient, such as within the heart of the patient, adjacent to the heart of the patient, adjacent to the spine of the patient, or any other desired location.


In some embodiments, MD 200 may be an implantable cardiac pacemaker (ICP). In these embodiments, MD 200 may have one or more leads, for example leads 212, which are implanted on or within the patient's heart. The one or more leads 212 may include one or more electrodes 214 that are in contact with cardiac tissue and/or blood of the patient's heart. MD 200 may be configured to sense intrinsically generated cardiac electrical signals and determine, for example, one or more cardiac arrhythmias based on analysis of the sensed signals. MD 200 may be configured to deliver CRT, ATP therapy, bradycardia therapy, and/or other therapy types via leads 212 implanted within the heart. In some embodiments, MD 200 may additionally be configured to provide defibrillation/cardioversion therapy.


In some instances, MD 200 may be an implantable cardioverter-defibrillator (ICD). In such embodiments, MD 200 may include one or more leads implanted within a patient's heart. MD 200 may also be configured to sense electrical cardiac signals, determine occurrences of tachyarrhythmias based on the sensed electrical cardiac signals, and deliver defibrillation and/or cardioversion therapy in response to determining an occurrence of a tachyarrhythmia (for example by delivering defibrillation and/or cardioversion pulses to the heart of the patient). In other embodiments, MD 200 may be a subcutaneous implantable cardioverter-defibrillator (SICD). In embodiments where MD 200 is an SICD, one of leads 212 may be a subcutaneously implanted lead. In at least some embodiments where MD 200 is an SICD, MD 200 may include only a single lead which is implanted subcutaneously but outside of the chest cavity, however this is not required.


In some embodiments, MD 200 may not be an implantable medical device. Rather, MD 200 may be a device external to the patient's body, and electrodes 214 may be skin-electrodes that are placed on a patient's body. In such embodiments, MD 200 may be able to sense surface electrical signals (e.g. electrical cardiac signals that are generated by the heart or electrical signals generated by a device implanted within a patient's body and conducted through the body to the skin). In such embodiments, MD 200 may be configured to deliver various types of electrical stimulation therapy, including, for example, defibrillation therapy.



FIG. 3 illustrates an embodiment of a medical device system and a communication pathway through which multiple medical devices 302, 304, 306, and/or 310 of the medical device system may communicate. In the embodiment shown, medical device system 300 may include LCPs 302 and 304, external medical device 306, and other sensors/devices 310. External device 306 may be a device disposed external to a patient's body, as described previously with respect to MD 200. Other sensors/devices 310 may be any of the devices described previously with respect to MD 200, such as ICPs, ICDs, and SICDs. Other sensors/devices 310 may also include various diagnostic sensors that gather information about the patient, such as accelerometers, blood pressure sensors, or the like. In some cases, other sensors/devices 310 may include an external programmer device that may be used to program one or more devices of system 300.


Various devices of system 300 may communicate via communication pathway 308. For example, LCPs 302 and/or 304 may sense intrinsic cardiac electrical signals and may communicate such signals to one or more other devices 302/304, 306, and 310 of system 300 via communication pathway 308. In one embodiment, one or more of devices 302/304 may receive such signals and, based on the received signals, determine an occurrence of an arrhythmia. In some cases, device or devices 302/304 may communicate such determinations to one or more other devices 306 and 310 of system 300. In some cases, one or more of devices 302/304, 306, and 310 of system 300 may take action based on the communicated determination of an arrhythmia, such as by delivering a suitable electrical stimulation to the heart of the patient. One or more of devices 302/304, 306, and 310 of system 300 may additionally communicate command or response messages via communication pathway. The command messages may cause a receiving device to take a particular action whereas response messages may include requested information or a confirmation that a receiving device did, in fact, receive a communicated message or data.


It is contemplated that the various devices of system 300 may communicate via pathway 308 using RF signals, inductive coupling, optical signals, acoustic signals, or any other signals suitable for communication. Additionally, in at least some embodiments, the various devices of system 300 may communicate via pathway 308 using multiple signal types. For instance, other sensors/device 310 may communicate with external device 306 using a first signal type (e.g. RF communication) but communicate with LCPs 302/304 using a second signal type (e.g. conducted communication). Further, in some embodiments, communication between devices may be limited. For instance, as described above, in some embodiments, LCPs 302/304 may communicate with external device 306 only through other sensors/devices 310, where LCPs 302/304 send signals to other sensors/devices 310, and other sensors/devices 310 relay the received signals to external device 306.


In some cases, the various devices of system 300 may communicate via pathway 308 using conducted communication signals. Accordingly, devices of system 300 may have components that allow for such conducted communication. For instance, the devices of system 300 may be configured to transmit conducted communication signals (e.g. current and/or voltage pulses) into the patient's body via one or more electrodes of a transmitting device, and may receive the conducted communication signals (e.g. pulses) via one or more electrodes of a receiving device. The patient's body may “conduct” the conducted communication signals (e.g. pulses) from the one or more electrodes of the transmitting device to the electrodes of the receiving device in the system 300. In such embodiments, the delivered conducted communication signals (e.g. pulses) may differ from pacing pulses, defibrillation and/or cardioversion pulses, or other electrical stimulation therapy signals. For example, the devices of system 300 may deliver electrical communication pulses at an amplitude/pulse width that is sub-threshold. That is, the communication pulses have an amplitude/pulse width designed to not capture the heart. In some cases, the amplitude/pulse width of the delivered electrical communication pulses may be above the capture threshold of the heart, but may be delivered during a refractory period of the heart and/or may be incorporated in or modulated onto a pacing pulse, if desired.


Delivered electrical communication pulses may be modulated in any suitable manner to encode communicated information. In some cases, the communication pulses may be pulse width modulated and/or amplitude modulated. Alternatively, or in addition, the time between pulses may be modulated to encode desired information. In some cases, a predefined sequence of communication pules may represent a corresponding symbol (e.g. a logic “1” symbol, a logic “0” symbol, an ATP therapy trigger symbol, etc.). In some cases, conducted communication pulses may be voltage pulses, current pulses, biphasic voltage pulses, biphasic current pulses, or any other suitable electrical pulse as desired.



FIGS. 4 and 5 show illustrative medical device systems that may be configured to operate according to techniques disclosed herein. For example, the systems may include multiple devices that are implanted within a patient and are configured to sense physiological signals, determine occurrences of cardiac arrhythmias, and deliver electrical stimulation to treat detected cardiac arrhythmias. In FIG. 4, an LCP 402 is shown fixed to the interior of the right ventricle of the heart 410, and a pulse generator 406 is shown coupled to a lead 412 having one or more electrodes 408a-408c. In some cases, the pulse generator 406 may be part of a subcutaneous implantable cardioverter-defibrillator (SICD), and the one or more electrodes 408a-408c may be positioned subcutaneously adjacent the heart. LCP 402 may communicate with the SICD, such as via communication pathway 308. The locations of LCP 402, pulse generator 406, lead 412, and electrodes 408a-c depicted in FIG. 4 are just exemplary. In other embodiments of system 400, LCP 402 may be positioned in the left ventricle, right atrium, or left atrium of the heart, as desired. In still other embodiments, LCP 402 may be implanted externally adjacent to heart 410 or even remote from heart 410.


In FIG. 5, an LCP 502 is shown fixed to the interior of the left ventricle of the heart 510, and a pulse generator 506 is shown coupled to a lead 512 having one or more electrodes 504a-504c. In some cases, the pulse generator 506 may be part of an implantable cardiac pacemaker (ICP) and/or an implantable cardioverter-defibrillator (ICD), and the one or more electrodes 504a-504c may be positioned in the heart 510. In some cases, LCP 502 may communicate with the implantable cardiac pacemaker (ICP) and/or an implantable cardioverter-defibrillator (ICD), such as via communication pathway 308. As with FIG. 4, the locations of LCP 502, pulse generator 506, lead 512, and electrodes 504a-c depicted in FIG. 5 are just exemplary. In other embodiments of system 500, LCP 502 may be positioned in the right ventricle, right atrium, or left atrium of the heart, as desired. In still other embodiments, LCP 502 may be implanted externally adjacent to heart 510 or even remote from heart 510. Additionally, in some embodiments lead 512 and/or electrodes 504a-c may be disposed in different chambers of heart 510, or pulse generator may include additional leads and/or electrodes that are disposed within or adjacent to heart 510.


The medical device systems 400 and 500 may also include an external support device, such as external support devices 420 and 520. External support devices 420 and 520 can be used to perform functions such as device identification, device programming and/or transfer of real-time and/or stored data between devices using one or more of the communication techniques described herein. As one example, communication between external support device 420 and the pulse generator 406 is performed via a wireless mode, and communication between the pulse generator 406 and LCP 402 is performed via a conducted communication mode. In some embodiments, communication between the LCP 402 and external support device 420 is accomplished by sending communication information through the pulse generator 406. However, in other embodiments, communication between the LCP 402 and external support device 420 may be via a communication module.



FIGS. 4-5 only illustrate a few embodiments of medical device systems that may be configured to operate according to techniques disclosed herein. Other example medical device systems may include additional or different medical devices and/or configurations. For instance, other medical device systems that are suitable to operate according to techniques disclosed herein may include additional LCPs implanted within the heart. Another example medical device system may include a plurality of LCPs with or without other devices such as pulse generator 406 or 506, with at least one LCP capable of delivering defibrillation therapy. Still another example may include one or more LCPs implanted along with a transvenous pacemaker and with or without an implanted SICD. In yet other embodiments, the configuration or placement of the medical devices, leads, and/or electrodes may be different from those depicted in FIGS. 4 and 5. Accordingly, it should be recognized that numerous other medical device systems, different from those depicted in FIGS. 4 and 5, may be operated in accordance with techniques disclosed herein. As such, the embodiments systems shown in FIGS. 4 and 5 should not be viewed as limiting in any way.


Using the system of FIG. 4 as one exemplary embodiment, LCP 402 and the ICD (which can be a non-subcutaneously implanted device, or a subcutaneously implanted device—an SICD), which can include pulse generator 406, may determine occurrences of cardiac arrhythmias and coordinate to safely deliver electrical stimulation therapy. In one embodiment, after the ICD determines an occurrence of a cardiac arrhythmia, such as a tachyarrhythmia, the ICD may communicate a command to LCP 402 to deliver ATP therapy.



FIGS. 6A-6B depict example electrical signals representing communication pulse sequences that the ICD may communicate to LCP 402 to command LCP 402 to deliver electrical stimulation therapy. In the embodiments of FIGS. 6A-6B, the communication pulses may have a predefined amplitude and pulse width and may be spaced apart in a predetermined pattern. For instance, in the embodiment of FIG. 6A, the communication pulse sequence includes four individual communication pulses 601a-601d all having a common amplitude 603 and pulse width 605. Communication pulses 601a and 601b are spaced apart from one another by a time delay 606. Likewise, communication pulses 601c and 601d are spaced apart from one another by the time delay 606. Pulses 601b and 601c are spaced apart by a longer time delay 607. This may provide a relatively simple communication pulse pattern that should be distinguishable from noise that might be present on the electrodes of the LCP 402.



FIG. 6B depicts another embodiment. In this embodiment, the sequence of communication pulse starts with a single pulse 601a, followed by two communication pulses 601b and 601c after a time delay 607. Communication pulses 601b and 601c are spaced part by a shorter time delay 606. Finally, communication pulse 601d is spaced apart from communication pulse 601c by time delay 607. Again, this may provide another relatively simple communication pulse pattern that should be distinguishable from noise that might be present on the electrodes of the LCP 402.


It should be understood that the example communication pulse sequences depicted in FIGS. 6A-6B are only illustrative. In other embodiments, pulse amplitudes 603 and pulse widths 605 may be varied between the individual communication pulses 601a-601d. In additional or alternative embodiments, the spacing between 601a-601d may be different than depicted in FIGS. 6A-6B. In still further embodiments, the number of communication pulses in the communication pulse sequence indicating a command for LCP 402 to deliver ATP therapy may have more or fewer communication pulses. In at least some embodiments, the communication pulse sequence may not include any error checking information (e.g. parity bits) that may be used to error check the communication pulse sequence as a valid communication pulse sequence—e.g. that it came from the ICD and is a valid command for LCP 402 to deliver ATP therapy.


In some example systems, the ICD and LCP 402 may only communicate via a one-way communication path whereby the ICD sends communications to the LCP 402, but the LCP 402 does not send communications back to the ICD. In such embodiments, LCP 402 may listen for the predetermined communication pulse sequence indicating a command for LCP 402 to deliver ATP therapy, such as the illustrative communication pulse sequences shown in FIGS. 6A-6B. Upon receiving a predetermined pulse sequence, LCP 402 may deliver ATP therapy. In systems that employ one-way communication from the ICD to LCP 402 and/or that do not have any error checking scheme in place to help ensure the validity of the received communication pulse sequence commanding LCP 402 to deliver ATP therapy, it may beneficial to include one or more safeguard features so that LCP 402 does not erroneously deliver ATP therapy when not actually commanded to by the ICD (e.g. due to noise or the like). Delivery of ATP therapy when the therapy is unnecessary may be harmful to the patient under some circumstances.


One example safeguard feature that LCP 402 may provide is a triggered ATP therapy mode. For example, after receiving the electrical signals indicative of a command to deliver ATP therapy, LCP 402 may check to see if its triggered ATP therapy mode is enabled. If the triggered ATP therapy mode is enabled, LCP 402 may then proceed. If the triggered ATP therapy mode is not enabled, LCP 402 may not proceed to delivery ATP therapy. In general, the triggered ATP therapy mode may comprise a mode wherein LCP 402 will deliver ATP therapy in response to receiving the electrical signals indicative of a command to deliver ATP therapy. In some embodiments of a triggered ATP therapy mode, while an ATP therapy mode is active, LCP 402 may still deliver ATP therapy in response to other inputs, for example sensed cardiac electrical signals. However, in other embodiments, when a triggered ATP therapy mode is active, LCP 402 may only deliver ATP therapy in response to receiving the electrical signals indicative of a command to deliver ATP therapy.


The triggered ATP therapy mode may be enabled, for example, only when LCP 402 is part of a medical system where one of the other devices in the system is configured to communicate a command to the LCP 402 to deliver ATP therapy. Due to the relatively simplistic nature of the communication pulse sequence, in some instances it may be possible for LCP 402 to receive/interpret noise signals that replicate or can be interpreted as the communication pulse sequence of the command for the LCP 402 to deliver ATP therapy. In embodiments where LCP 402 is not part of a system where a device can communicate a command to the LCP 402 to deliver ATP therapy, disabling the triggered ATP therapy mode of LCP 402 may help prevent LCP 402 from erroneously delivering ATP therapy due to received noise signals.


This triggered ATP therapy mode safety feature may be particularly useful in situations where LCP 402 does not communicate with other devices, or at least the devices that may communicate a command to LCP 402 to deliver ATP therapy, as LCP 402 may have no capability to double check with the other devices or confirm receipt of the command. The triggered ATP therapy mode may also be useful in systems where there is no error checking scheme to validate that the command came from another valid medical device and is a valid command. However, such a safety feature may be useful in systems that do include two-way communication and/or an error checking scheme as well.


In other embodiments, either in addition to the triggered ATP therapy mode or as an alternative to the triggered ATP therapy mode, LCP 402 may include an arrhythmia threshold safety feature. For example, the ICD of the above described system may monitor a heart rate parameter. When the ICD detects that the heart rate has risen to be equal to or greater than a predetermined threshold, the ICD may determine an occurrence of an arrhythmia, such as a tachycardia. When this happens, the ICD may communicate a command to LCP 402 to deliver ATP therapy. However, in some cases, the ICD may erroneously determine that the heart rate is above the predetermined threshold. For instance, the ICD may count R-waves to determine a heart rate. In some situations, the ICD may also erroneously count T-waves or P-waves as R-waves, thereby erroneously detecting a heart rate greater than the true heart rate.


In these embodiments where LCP 402 includes an arrhythmia threshold safety feature, after receiving the command to deliver ATP therapy, LCP 402 may determine a heart rate based on cardiac signals it receives from the heart. After determining the heart rate, LCP 402 may compare its determined heart rate to the arrhythmia threshold. If the determined heart rate is greater than or equal to the arrhythmia threshold, LCP 402 may proceed to deliver ATP therapy to the heart of the patient. If the determined heart rate is not greater than or equal to the arrhythmia threshold, LCP 402 may not proceed to deliver ATP therapy to the heart of the patient. This arrhythmia threshold safety feature may help prevent unnecessary delivery of ATP therapy to the patient due to heart rate detection errors by the ICD.


Of course, in some example systems, the triggered ATP therapy mode and the arrhythmia threshold safety feature may both be implemented to provide a multi-tiered safety approach. For example, after receiving a command for LCP 402 to deliver ATP therapy, LCP 402 may check if the triggered ATP therapy mode is enabled. Only if LCP 402 determines that the triggered ATP therapy mode is enabled does the LCP 402 determine a heart rate and compare the determined heart rate to the arrhythmia threshold. If LCP 402 determines that the heart rate is equal to or greater than the arrhythmia threshold, the LCP 402 may then be allowed to deliver ATP therapy.


In still other embodiments, again in addition to either the triggered ATP therapy mode or the arrhythmia threshold safety feature, or both, or as an alternative to either, some systems may include an ATP therapy burst count threshold safety feature. In these embodiments, LCP 402 may track the number of ATP therapy bursts that have been delivered as part of ATP therapy delivery. After receiving a command to deliver ATP therapy, and before delivering the ATP therapy, LCP 402 may compare the number of ATP therapy bursts to the ATP therapy burst count threshold. If the number of ATP therapy bursts is less than the ATP therapy burst count threshold, LCP 402 may proceed with delivering the ATP therapy. However, if the number of ATP therapy bursts equals or exceeds the ATP therapy burst count threshold, LCP 402 may not proceed with delivering the ATP therapy.


In some embodiments, an ATP therapy burst may refer to a sequence of delivered pacing pulses, and LCP 402 may deliver multiple ATP therapy bursts during a single delivery of ATP therapy. That is, LCP 402 may use multiple ATP therapy bursts in an attempt to terminate an arrhythmia after being commanded to deliver ATP therapy. However, in other embodiments, a single ATP therapy burst may refer to a single delivery of ATP therapy by LCP 402, even where a single delivery of ATP therapy includes delivering multiple sequences or bursts of pacing pulses.


In some embodiments that include an ATP therapy burst count threshold, the ATP therapy burst counter may be related to a particular time frame. For instance, the ATP therapy burst count threshold may be a threshold for a delivery of a number of ATP therapy bursts within a time frame such as one hour, two hours, twelve hours, twenty-four hours, or any other suitable time frame. Upon delivering a first ATP therapy burst, LCP 402 may begin a timer and increment the ATP therapy burst counter. Upon delivery of each subsequent ATP therapy burst, LCP 402 may increment the ATP therapy burst counter and compare the value of the ATP therapy burst counter with the ATP therapy burst count threshold. If the value of the ATP therapy burst counter equals or exceeds the ATP therapy burst count threshold, LCP 402 may not deliver the ATP therapy. Upon the timer reaching the end of the predetermined time frame, LCP 402 may reset both the ATP therapy burst counter and the timer back to zero. The timer may begin running again upon being reset or upon the next delivery of an ATP therapy burst. As one illustrative embodiment, the ATP therapy burst count threshold may have a value of ten ATP therapy bursts, and the timer may have a reset period of twenty-four hours. In this embodiment, if LCP 402 determines that the timer is on hour twenty, and that the ATP therapy burst counter is at ten, LCP 402 may determine the number of ATP therapy bursts equals or exceeds the ATP therapy burst count threshold. In such an embodiment, LCP 402 may not deliver ATP therapy. After the timer reaches twenty-four hours, LCP 402 may reset the timer and the ATP therapy burst counter.


It should be understood that the use of ten ATP therapy bursts as a value for the ATP therapy burst count threshold and a time frame of twenty four hours is just one embodiment. The ATP therapy burst count threshold may have any suitable value for any time frame. Additionally, in other embodiments, instead of keeping a running timer based on when ATP therapy was delivered, LCP 402 may track the number of ATP therapy bursts based on a time of day. For instance, if the time frame is hourly, LCP 402 may reset the ATP therapy burst counter at the beginning of each hour (or after each elapsed time of one hour).


In embodiments where LCP 402 is capable of two-way communication, after determining that the ATP therapy burst counter exceeds the ATP therapy burst count threshold for the allotted time frame, LCP 402 may communicate an error message. The error message may be communicated to a user of the system (either by being directly received by a device external to the patient or relayed through the ICD), and the user may take appropriate action.


In at least some embodiments, the ICD may track the number of commands sent to LCP 402 to delivery ATP therapy and the number of ATP therapies delivered by LCP 402. The ICD may additionally compare the tracked number of communicated commands to the number of delivered ATP therapies. If the ICD determines a difference between the two values equal to or greater than a threshold, the ICD may communicate an error message to another device and/or take other actions.


Of course, the ATP therapy burst count threshold safety feature may be combined with either the triggered ATP therapy mode safety feature or the arrhythmia threshold safety feature, or both, to provide a multi-layered safety feature. For example, when paired with the triggered ATP therapy mode, after receiving a command for LCP 402 to deliver ATP therapy, LCP 402 may first check if the triggered ATP therapy mode is enabled. Only if LCP 402 determines that the triggered ATP therapy mode is enabled does the LCP 402 increase the ATP therapy burst counter and compare the ATP therapy burst counter to the ATP therapy burst count threshold. If LCP 402 determines that the ATP therapy burst counter is less than the ATP therapy burst count threshold, the LCP 402 is allowed to proceed with delivering ATP therapy. Alternatively, the ATP therapy burst count threshold safety feature may be paired with the arrhythmia threshold safety feature. In such embodiments, after receiving a command to deliver ATP therapy, LCP 402 may determine a heart rate and compare the determined heart rate to the arrhythmia threshold. If LCP 402 determines that the heart rate is equal to or greater than the arrhythmia threshold, LCP 402 may be allowed to proceed to increase the ATP therapy burst counter. After increasing the ATP therapy burst counter, LCP 402 may compare the ATP therapy burst counter to the ATP therapy burst count threshold. If LCP 402 determines that the ATP therapy burst counter is less than the ATP therapy burst count threshold, LCP 402 may be allowed to proceed with delivering ATP therapy.


In still other embodiments, all three of the triggered ATP therapy mode safety feature, the arrhythmia threshold safety feature, and the ATP therapy burst count threshold safety feature may be combined in a multi-tiered manner. One embodiment of how the safety features may be combined is illustrated in the flow diagram of FIG. 7. The flow diagram in FIG. 7 illustrates an example method 700 that may be implemented by LCP 402 before delivering ATP therapy. Flow diagram 700 begins at step 702, where LCP 402 receives a command to delivery ATP therapy. At block 704, the LCP 402 may determine whether its triggered ATP therapy mode is enabled.


If LCP 402 determines that the triggered ATP therapy mode is not enabled, LCP 402 may exit out of the flow diagram without performing ATP therapy, as shown at 706. If, however, LCP 402 determines that triggered ATP therapy mode is enabled, LCP 402 may proceed to determine a heart rate, as shown at 708. After determining a heart rate, LCP 402 may determine whether the heart rate is equal to or greater than an arrhythmia threshold, as shown at 710. If LCP 402 determines that the heart rate is less than the arrhythmia threshold, LCP 402 may exit out of the flow diagram without performing ATP therapy, as shown at 706.


If LCP 402 determines that the heart rate is equal to or greater than the arrhythmia threshold, LCP 402 may proceed to determine if an ATP therapy burst counter is equal to or greater than the ATP therapy burst count threshold, as shown at 712. If LCP 402 determines that the ATP therapy burst counter is equal to or greater than the ATP therapy burst count threshold, LCP 402 may exit out of the flow diagram without performing ATP therapy, as shown at 706. However, if LCP 402 determines that the ATP therapy burst counter is less than the ATP therapy burst count threshold, LCP 402 may proceed to deliver an ATP therapy burst, as shown at 714. LCP 402 may additionally increment ATP therapy burst counter, as shown at 716. Although block 716 is depicted after block 714, in other embodiments, block 716 may occur before block 714, or in a substantially simultaneous manner. After delivering ATP therapy, LCP 402 may exit out of the flow diagram, as shown at 706.


Of course, in other embodiments, the specific blocks detailed in FIG. 7 may be performed in different orders. For example, LCP 402 may determine whether the ATP therapy burst counter equals or exceeds the ATP therapy burst count threshold before determining a heart rate and whether the heart rate is equal to or greater than the arrhythmia threshold. In some embodiments, LCP 402 may also increase a therapy request counter in addition to the ATP therapy burst counter. In embodiments where the ICD also tracks the number of commands to deliver ATP therapy it sends to LCP 402, this therapy request counter may be useful for determining whether LCP 402 is receiving erroneous commands to perform ATP therapy.


In some embodiments, after delivering ATP therapy, LCP 402 may wait for a shock and enter a post shock pacing mode. In the post shock pacing mode, LCP 402 may deliver pacing pulses to the heart of the patient. Generally, LCP 402 may deliver the pacing pulses at a rate slower than during the delivered ATP therapy bursts. However, LCP 402 may deliver the pacing pulses at a higher rate than when in a normal pacing mode, but this is not required. Additionally, in some embodiments, the pulse amplitude of the delivered pacing pulses while LCP 402 is in the post shock pacing mode may be greater than the pulse amplitude of the pacing pulses delivered by LCP 402 when not in the post shock pacing mode—e.g. when LCP 402 is in a normal pacing mode. In even other embodiments, the pulse width of the delivered pacing pulses while LCP 402 is in the post shock pacing mode may be greater than the pulse width of the pacing pulses delivered by LCP 402 when not in the post shock pacing mode. Of course, in still other embodiments, both of the pulse amplitude and the pulse width of the delivered pacing pulses may be elevated relative to a normal pacing mode. In various embodiments, LCP 402 may remain in the post shock pacing mode between about thirty to sixty seconds, or any other suitable period of time, after delivering ATP therapy. After exiting the post shock pacing mode, LCP 402 may revert to a normal pacing mode.



FIG. 8 is a flow diagram of an illustrative post shock pacing mode 800 of an illustrative LCP 402. In some embodiments, post shock pacing mode 800 may be a branch of flow chart 700. For example, after LCP 402 delivers ATP therapy, instead of exiting the flow diagram at 706, branch 718 of FIG. 7 may flow into step 802 of post shock pacing mode 800. When so provided, after delivering ATP therapy, LCP 402 may determine whether a post shock pacing mode of the LCP 402 is enabled, as shown at 802. In some embodiments, the received command to deliver ATP therapy may also include an instruction to enable or disable a post shock pacing mode. In such embodiments, the ICD may only need to send a single communication to LCP 402 to both command LCP 402 to deliver ATP therapy and to indicate that LCP 402 should enter, or not enter, a post shock pacing mode after delivering the ATP therapy. In other embodiments, whether the post shock pacing mode is enabled may be a programmable parameter, as will be discussed subsequently. If LCP 402 determines that the post shock pacing mode is disabled, then LCP 402 may exit the flow diagram, as shown at 812.


However, if LCP 402 determines that the post shock pacing mode is enabled, LCP 402 may load post shock pacing mode parameters, as shown at 804. In some embodiments, the post shock pacing mode parameters include a pacing pulse amplitude. In other embodiments, the post shock pacing mode parameters include a pacing pulse width. In still other embodiments, the post shock pacing mode parameters include a pacing rate of the pacing pulses to be delivered while in the post shock pacing mode. Of course, in yet other embodiments, the post shock pacing mode parameters may include any combination of these parameters. The post shock pacing mode parameters may be preprogrammed into a memory of LCP 402. Although, in other embodiments, the command from the ICD to LCP 402 to deliver ATP therapy may include one or more post shock pacing mode parameters.


After loading the post shock pacing mode parameters, LCP 402 may initialize a post shock pacing mode timer, as at 806. LCP 402 may then enter loop 808 to determine when the post shock pacing mode timer has reached the post shock pacing mode timer max value, which corresponds to the length of time LCP 402 is in the post shock pacing mode. After determining that the post shock pacing mode timer has reached its maximum value, LCP 402 loads the normal pacing mode parameters and returns to the normal pacing mode, as shown at 810, and exits the flow diagram at 812.


In some additional, or alternative embodiments, the system of LCP 402 and the ICD may include the ability to distinguish between different types of arrhythmias. For instance, the ICD may have one or more normal beat templates stored in memory. After determining a potential occurrence of an arrhythmia, for example by comparing a determined heart rate to a heart rate threshold, the ICD may isolate a QRS complex of the current beat from sensed cardiac electrical signals. The ICD may then compare the QRS of the current beat to the normal beat template. For example, the ICD may perform a correlation analysis between the current beat and the normal beat template. If the correlation between the beats is equal to or greater than a first correlation threshold, the ICD may determine that no arrhythmia is occurring.


However, if the correlation between the beats is less than a first correlation threshold, the ICD may further isolate the QRS complex from a previous beat (or capture a new current beat and use the beat it compared with the normal beat template as the previous beat). The ICD may then compare the current beat with the previous beat. For example, the ICD may perform a correlation analysis between the two beats. If the ICD determines that the correlation between the two beats is equal to or greater than a second correlation threshold, the ICD may determine that the arrhythmia is a Monomorphic Ventricular Tachycardia (MVT). If the ICD determines that the correlation between the two beats is less than a second correlation threshold, the ICD may further compare the width of the QRS complex of the current beat with the width of the QRS complex of the normal beat template. If the width of the QRS complex of the current beat is narrower than the QRS complex of the normal beat template, the ICD may determine that the arrhythmia is a Supraventricular Tachycardia (SVT). If the width of the QRS complex of the current beat is wider than the QRS complex of the normal beat template, the ICD may determine that the arrhythmia is a Polymorphic Ventricular Tachycardia (PVT).


Where the ICD is able to determine a type of the tachycardia, the ICD may communicate with LCP 402 to deliver different electrical stimulation therapy. For instance, in some embodiments, if the ICD determines that the type of arrhythmia is a PVT or an SVT, the ICD may not communicate a command to LCP 402 to deliver ATP therapy. Instead, the ICD may deliver defibrillation and/or cardioversion therapy to the heart to treat the arrhythmias. If the ICD determines that the type of arrhythmia is an MVT, then the ICD may communicate a command to LCP 402 to deliver ATP therapy. However, in other embodiments, the ICD may communicate a command to LCP 402 if the ICD determines that the arrhythmia is an SVT and/or a PVT.


In still other embodiments, the ICD may coordinate delivery of electrical stimulation therapy with LCP 402 based on the determined type of arrhythmia. For instance, if the determined type of arrhythmia is an MVT, the ICD may communicate a command to LCP 402 to deliver ATP therapy but may not begin charging its charge storage device for delivery of defibrillation and/or cardioversion therapy. Instead, the ICD may monitor received cardiac electrical signals during and after the ATP therapy delivered by LCP 402. The ICD may determine, based on the received cardiac electrical signals, whether the delivered ATP therapy has terminated the arrhythmia. If the ICD determines that the ATP therapy did not terminate the arrhythmia, the ICD may then begin to charge is charge storage device and deliver defibrillation and/or cardioversion therapy once the charge storage device is charged.


Where the ICD determines that the type of arrhythmia is a PVT or an SVT, the ICD may still send the command to LCP 402 to deliver ATP therapy. However, along with sending the command, the ICD may also being charging its charge storage device for delivery of defibrillation and/or cardioversion therapy. The ICD may also monitor received cardiac electrical signals while charging its charge storage device and during and after LCP 402 delivers ATP therapy. If the ICD determines that the ATP therapy successfully terminated the arrhythmia, the ICD may cease charging its charge storage device and may not deliver defibrillation and/or cardioversion therapy. However, if the ICD determines that the ATP therapy did not terminate the arrhythmia, the ICD may complete charging its charge storage device and deliver defibrillation and/or cardioversion therapy. In these embodiments, the ICD may preserve battery life by only initiating charging upon detection of an arrhythmia for certain types of arrhythmias. Of course, in other embodiments, the ICD may wait to initiate charging if the determined type of arrhythmia is also an MVT and/or SVT. In still other embodiments, the ICD may initiate charging when the determined type of arrhythmia is an MVT.


In additional, or alternative, embodiments where the ICD may discriminate between various arrhythmia types, the ICD may further communicate different ATP therapy parameters to LCP 402. As discussed above, the ICD may include ATP therapy parameters in the command to deliver ATP therapy. Accordingly, if the ICD determines that the type of arrhythmia is an MVT, the ICD may communicate ATP therapy parameters different than those that the ICD would communicate if the determine type of arrhythmia is a PVT and/or an SVT.


In some embodiments, LCP 402 may have stored in memory different ATP therapy parameters associated with the different arrhythmia types. In such embodiments, instead of the ICD communicating specific ATP therapy parameters, the ICD may merely communicated a determined type of arrhythmia. In still other embodiments, LCP 402 may be able to discriminate between different arrhythmia types. In such embodiments, instead of the ICD communicating ATP therapy parameters or a type of arrhythmia, LCP 402 may determine a type of arrhythmia and used the ATP therapy parameters stored in its memory that are associated with that type of arrhythmia.


As discussed with respect to FIGS. 4 and 5, the systems that may implement these disclosed techniques may, at some times, be in communication with an external support device, such as external support devices 420 and 520. When an external support device is in communication with a medical device system implementing one or more of the disclosed techniques, such as the system of FIG. 4, a user may interact with the external support device to program various features of the devices. For example, a user may interact with the external support device to enable or disable the triggered ATP therapy mode of LCP 402. The user may set or adjust the values of arrhythmia threshold, the ATP therapy burst count threshold, the time frame associated with the ATP therapy burst count threshold, the various ATP therapy parameters, the associations between the ATP therapy parameters and the arrhythmia types, the length of the post shock pacing mode timer, and the other various parameters discussed herein.


Additionally, although many of the above described techniques were described with respect to a system including and LCP and an ICD (again, which could be either a non-subcutaneously implanted device or a subcutaneously implanted device—e.g. an SICD), the disclosed techniques may be implemented in a variety of other systems. For instance, many of the disclosed techniques were described as being implemented by LCP 402. In other systems, other devices that provide electrical stimulation therapy and receive commands to deliver the electrical stimulation therapy may implement one or more of the disclosed techniques—for instance an ICD or SICD or cardiac pacemaker that receives commands from another device to delivery electrical stimulation therapy. In systems that include more than two devices, two or more of the devices of the system may individually implement one or more of the disclosed techniques. For instance, some system may include multiple LCPs. In such systems, each LCP may individually perform one or more of the disclosed techniques before delivering ATP therapy.


Further, the disclosed techniques should also not be viewed as limited to only ATP therapy. In other embodiments, medical device system may operate to provide other types of electrical stimulation therapy. Such systems may also implement one or more of the disclosed techniques except, instead of performing one or more of the disclosed techniques before delivering ATP therapy, the devices may perform one or more of the disclosed techniques before delivering other electrical stimulation therapy, such as CRT, defibrillation and/or cardioversion therapy, bradycardia therapy, and other types of electrical stimulation therapy.


In general, those skilled in the art will recognize that the present disclosure may be manifested in a variety of forms other than the specific embodiments described and contemplated herein. For instance, as described herein, various embodiments include one or more modules described as performing various functions. However, other embodiments may include additional modules that split the described functions up over more modules than that described herein. Additionally, other embodiments may consolidate the described functions into fewer modules. Accordingly, departure in form and detail may be made without departing from the scope and spirit of the present disclosure as described in the appended claims.

Claims
  • 1. A leadless cardiac pacemaker (LCP) comprising: a housing;a plurality of electrodes for sensing electrical signals emanating from outside of the housing;an energy storage module disposed within the housing;a control module disposed within the housing and operatively coupled to the plurality of electrodes, wherein the control module is configured to: receive electrical signals via two or more of the plurality of electrodes;determine whether the received electrical signals are indicative of a command for the LCP to deliver anti-tachyarrhythmia pacing (ATP) therapy;when the received electrical signals are indicative of a command for the LCP to deliver anti-tachyarrhythmia pacing (ATP) therapy, determine whether a triggered ATP therapy mode of the LCP is enabled; when the received electrical signals are indicative of a command for the LCP to deliver ATP therapy and the triggered ATP therapy mode is enabled, deliver ATP therapy via two or more of the plurality of electrodes; andwhen the received electrical signals are indicative of a command for the LCP to deliver therapy and the LCP is in a safe mode in which the triggered ATP therapy mode is not enabled, not delivering ATP therapy via two or more of the plurality of electrodes.
  • 2. The LCP of claim 1, wherein when the triggered ATP therapy mode is enabled, the control module of the LCP is further configured to determine whether to deliver ATP therapy before delivering the ATP therapy via the two or more of the plurality of electrodes, and wherein the control module is configured to determine to deliver ATP therapy based at least in part on whether a heart rate, determined from the received electrical signals, is above an arrhythmia threshold, and when the control module determines to deliver the ATP therapy, the control module delivers the ATP therapy via the two or more of the plurality of electrodes.
  • 3. The LCP of claim 1, wherein the control module is configured to maintain a count of a number of ATP therapy bursts that have been delivered as part of the delivered ATP therapy, and wherein the control module is further configured to continue to deliver ATP therapy when the number of ATP therapy bursts has not exceeded a ATP therapy burst count threshold.
  • 4. The LCP of claim 1, wherein the control module is configured to determine a signal morphology type of a cardiac signal received via two or more of the plurality of electrodes, and wherein when the triggered ATP therapy mode is enabled, the control module of the LCP is further configured to determine whether to deliver ATP therapy before delivering the ATP therapy via the two or more of the plurality of electrodes, and wherein the control module is configured to determine to deliver ATP therapy based at least in part on whether the determined signal morphology type is of a predetermined signal morphology type, and when the control module determines to deliver the ATP therapy, the control module delivers the ATP therapy via the two or more of the plurality of electrodes.
  • 5. The LCP of claim 4, wherein the predetermined signal morphology type comprises a Monomorphic Ventricular Tachycardia (MVT).
  • 6. The LCP of claim 4, wherein the predetermined signal morphology type comprises a Polymorphic Ventricular Tachycardia (PVT).
  • 7. The LCP of claim 4, wherein the predetermined signal morphology type comprises a Supra Ventricular Tachycardia (SVT).
  • 8. A leadless cardiac pacemaker (LCP) comprising: a housing;a plurality of electrodes for sensing electrical signals emanating from outside of the housing;an energy storage module disposed within the housing;a control module disposed within the housing and operatively coupled to the plurality of electrodes, wherein the control module is configured to: receive electrical signals via two or more of the plurality of electrodes;determine whether the received electrical signals are indicative of a command for the LCP to deliver anti-tachyarrhythmia pacing (ATP) therapy;when the received electrical signals are indicative of a command for the LCP to deliver anti-tachyarrhythmia pacing (ATP) therapy, deliver ATP therapy via two or more of the plurality of electrodes;maintain a measure related to an amount of ATP therapy delivered as part of the delivered ATP therapy within a predetermined period of time;continue to allow delivery of ATP therapy when the measure related to the amount of ATP therapy delivered within the predetermined period of time has not exceeded a predetermined ATP therapy threshold; andstop delivery of ATP therapy when the measure related to the amount of ATP therapy delivered within the predetermined period of time has exceeded the predetermined ATP therapy threshold.
  • 9. The LCP of claim 8, wherein the predetermined period of time is between one hour and twenty-four hours.
  • 10. The LCP of claim 8, wherein the measure related to the amount of ATP therapy delivered as part of the delivered ATP therapy within the predetermined period of time corresponds to an ATP therapy delivered count that is indicative of a number of times a command is received that results in the LCP delivering ATP therapy within the predetermined period of time.
  • 11. The LCP of claim 8, wherein the measure related to the amount of ATP therapy delivered as part of the delivered ATP therapy within the predetermined period of time corresponds to an ATP burst count that is indicative of a number of ATP bursts that are delivered within the predetermined period of time.
  • 12. The LCP of claim 8, wherein the received electrical signals comprise a plurality of communication pulses produced by a remote medical device.
  • 13. The LCP of claim 8, wherein the received electrical signals comprise a plurality of communication pulses as part of a one-way communication path from a remote medical device.
  • 14. The LCP of claim 13, wherein the plurality of communication pulses are free from error checking information for error checking the one-way communication path.
  • 15. The LCP of claim 8, wherein after delivering ATP therapy, the LCP is further configured to enter a post shock pacing mode.
  • 16. A leadless cardiac pacemaker (LCP) comprising: a housing;a plurality of electrodes for sensing electrical signals emanating from outside of the housing;an energy storage module disposed within the housing;a control module disposed within the housing and operatively coupled to the plurality of electrodes, wherein the control module is configured to: receive electrical signals via two or more of the plurality of electrodes;determine whether the received electrical signals are indicative of a command for the LCP to deliver anti-tachyarrhythmia pacing (ATP) therapy;when the received electrical signals are indicative of a command for the LCP to deliver anti-tachyarrhythmia pacing (ATP) therapy: determine whether a triggered ATP therapy mode of the LCP is enabled;determine whether a heart rate determined from the received electrical signals is above an arrhythmia threshold;when the triggered ATP therapy mode is enabled and the heart rate is above the arrhythmia threshold, deliver ATP therapy via two or more of the plurality of electrodes; andwhen either the triggered ATP therapy mode is not enabled or the heart rate is not above the arrhythmia threshold, not delivering ATP therapy via two or more of the plurality of electrodes.
  • 17. The LCP of claim 16, wherein the control module maintains a measure related to the amount of ATP therapy delivered within a predetermined period of time, and wherein the control module is configured to determine whether the measure related to the amount of ATP therapy delivered within the predetermined period of time exceeds a predetermined ATP therapy threshold, and only delivers ATP therapy via two or more of the plurality of electrodes when the triggered ATP therapy mode is enabled, the heart rate is above the arrhythmia threshold, and the measure related to the amount of ATP therapy delivered within the predetermined period of time does not exceed the predetermined ATP therapy threshold.
  • 18. The LCP of claim 17, wherein the predetermined period of time is between one hour and twenty-four hours.
CROSS REFERENCE TO RELATED APPLICATIONS

This application claims the benefit of U.S. provisional Patent Application Ser. No. 62/113,150 filed on Feb. 6, 2015, the disclosures of each incorporated herein by reference.

US Referenced Citations (1174)
Number Name Date Kind
3835864 Rasor et al. Sep 1974 A
3943936 Rasor et al. Mar 1976 A
4142530 Wittkampf Mar 1979 A
4151513 Menken et al. Apr 1979 A
4157720 Greatbatch Jun 1979 A
4170999 Allen et al. Oct 1979 A
RE30366 Rasor et al. Aug 1980 E
4243045 Maas Jan 1981 A
4250884 Hartlaub et al. Feb 1981 A
4256115 Bilitch Mar 1981 A
4263919 Levin Apr 1981 A
4310000 Lindemans Jan 1982 A
4312354 Walters Jan 1982 A
4323081 Wiebusch Apr 1982 A
4357946 Dutcher et al. Nov 1982 A
4365639 Goldreyer Dec 1982 A
4375817 Engle et al. Mar 1983 A
4384505 Cotton et al. May 1983 A
4387717 Brownlee et al. Jun 1983 A
4440173 Hudziak et al. Apr 1984 A
4476868 Thompson Oct 1984 A
4494950 Fischell Jan 1985 A
4511633 Bruno et al. Apr 1985 A
4522208 Buffet Jun 1985 A
4537200 Widrow Aug 1985 A
4556063 Thompson et al. Dec 1985 A
4562841 Brockway et al. Jan 1986 A
4577633 Berkovits et al. Mar 1986 A
4587970 Holley et al. May 1986 A
4593702 Kepski et al. Jun 1986 A
4593955 Leiber Jun 1986 A
4630611 King Dec 1986 A
4635639 Hakala et al. Jan 1987 A
4674508 DeCote Jun 1987 A
4712554 Garson Dec 1987 A
4726380 Vollmann et al. Feb 1988 A
4729376 DeCote Mar 1988 A
4754753 King Jul 1988 A
4759366 Callaghan Jul 1988 A
4776338 Lekholm et al. Oct 1988 A
4787389 Tarjan Nov 1988 A
4793353 Borkan Dec 1988 A
4819662 Heil et al. Apr 1989 A
4830006 Haluska et al. May 1989 A
4858610 Callaghan et al. Aug 1989 A
4880005 Pless et al. Nov 1989 A
4886064 Strandberg Dec 1989 A
4887609 Cole, Jr. Dec 1989 A
4895151 Grevis et al. Jan 1990 A
4928688 Mower May 1990 A
4949719 Pless et al. Aug 1990 A
4967746 Vandegriff Nov 1990 A
4987897 Funke Jan 1991 A
4989602 Sholder et al. Feb 1991 A
5012806 De Bellis May 1991 A
5036849 Hauck et al. Aug 1991 A
5040534 Mann et al. Aug 1991 A
5058581 Silvian Oct 1991 A
5078134 Heilman et al. Jan 1992 A
5107850 Olive Apr 1992 A
5109845 Yuuchi et al. May 1992 A
5113859 Funke May 1992 A
5113869 Nappholz et al. May 1992 A
5117824 Keimel et al. Jun 1992 A
5127401 Grevious et al. Jul 1992 A
5133353 Hauser Jul 1992 A
5144950 Stoop et al. Sep 1992 A
5161527 Nappholz et al. Nov 1992 A
5170784 Ramon et al. Dec 1992 A
5179945 Van Hofwegen et al. Jan 1993 A
5188105 Keimel Feb 1993 A
5193539 Schulman et al. Mar 1993 A
5193540 Schulman et al. Mar 1993 A
5228437 Schroeppel Jul 1993 A
5241961 Henry Sep 1993 A
5243977 Trabucco et al. Sep 1993 A
5259387 dePinto Nov 1993 A
5265601 Mehra Nov 1993 A
5269326 Verrier Dec 1993 A
5284136 Hauck et al. Feb 1994 A
5300107 Stokes et al. Apr 1994 A
5301677 Hsung Apr 1994 A
5305760 McKown et al. Apr 1994 A
5312439 Loeb May 1994 A
5312441 Mader et al. May 1994 A
5313953 Yomtov et al. May 1994 A
5314459 Swanson et al. May 1994 A
5318597 Hauck et al. Jun 1994 A
5324316 Schulman et al. Jun 1994 A
5331966 Bennett et al. Jul 1994 A
5334222 Salo et al. Aug 1994 A
5342408 Decoriolis et al. Aug 1994 A
5354316 Keimel Oct 1994 A
5370667 Alt Dec 1994 A
5372606 Lang et al. Dec 1994 A
5376106 Stahmann et al. Dec 1994 A
5383915 Adams Jan 1995 A
5388578 Yomtov et al. Feb 1995 A
5404877 Nolan et al. Apr 1995 A
5405367 Schulman et al. Apr 1995 A
5411031 Yomtov May 1995 A
5411525 Swanson et al. May 1995 A
5411535 Fujii et al. May 1995 A
5456691 Snell Oct 1995 A
5456692 Smith, Jr. et al. Oct 1995 A
5458622 Alt Oct 1995 A
5466246 Silvian Nov 1995 A
5468254 Hahn et al. Nov 1995 A
5472453 Alt Dec 1995 A
5480413 Greenhut et al. Jan 1996 A
5507782 Kieval et al. Apr 1996 A
5522866 Fernald Jun 1996 A
5540727 Tockman et al. Jul 1996 A
5545186 Olson et al. Aug 1996 A
5545202 Dahl et al. Aug 1996 A
5560369 Mcclure et al. Oct 1996 A
5571146 Jones et al. Nov 1996 A
5591214 Lu Jan 1997 A
5620466 Haefner et al. Apr 1997 A
5620471 Duncan Apr 1997 A
5634938 Swanson et al. Jun 1997 A
5649968 Alt et al. Jul 1997 A
5662688 Haefner et al. Sep 1997 A
5674259 Gray Oct 1997 A
5683426 Greenhut et al. Nov 1997 A
5683432 Goedeke et al. Nov 1997 A
5706823 Wodlinger Jan 1998 A
5709215 Perttu et al. Jan 1998 A
5720295 Greenhut et al. Feb 1998 A
5720770 Nappholz et al. Feb 1998 A
5725559 Alt et al. Mar 1998 A
5728154 Crossett et al. Mar 1998 A
5741314 Daly et al. Apr 1998 A
5741315 Lee et al. Apr 1998 A
5752976 Duffin et al. May 1998 A
5752977 Grevious et al. May 1998 A
5755736 Gillberg et al. May 1998 A
5755737 Prieve et al. May 1998 A
5759199 Snell et al. Jun 1998 A
5774501 Halpern et al. Jun 1998 A
5792195 Carlson et al. Aug 1998 A
5792202 Rueter Aug 1998 A
5792203 Schroeppel Aug 1998 A
5792205 Alt et al. Aug 1998 A
5792208 Gray Aug 1998 A
5814089 Stokes et al. Sep 1998 A
5827216 Igo et al. Oct 1998 A
5836985 Goyal et al. Nov 1998 A
5836987 Baumann et al. Nov 1998 A
5842977 Lesho et al. Dec 1998 A
5855593 Olson et al. Jan 1999 A
5873894 Vandegriff et al. Feb 1999 A
5891184 Lee et al. Apr 1999 A
5893882 Peterson et al. Apr 1999 A
5897586 Molina Apr 1999 A
5899876 Flower May 1999 A
5899928 Sholder et al. May 1999 A
5919214 Ciciarelli et al. Jul 1999 A
5931857 Prieve et al. Aug 1999 A
5935078 Feierbach Aug 1999 A
5941906 Barreras et al. Aug 1999 A
5944744 Paul et al. Aug 1999 A
5954757 Gray Sep 1999 A
5978713 Prutchi et al. Nov 1999 A
5987352 Klein et al. Nov 1999 A
5987356 DeGroot Nov 1999 A
5991660 Goyal Nov 1999 A
5991661 Park et al. Nov 1999 A
5999848 Gord et al. Dec 1999 A
5999857 Weijand et al. Dec 1999 A
6016445 Baura Jan 2000 A
6026320 Carlson et al. Feb 2000 A
6029085 Olson et al. Feb 2000 A
6041250 dePinto Mar 2000 A
6044298 Salo et al. Mar 2000 A
6044300 Gray Mar 2000 A
6055454 Heemels Apr 2000 A
6073050 Griffith Jun 2000 A
6076016 Feierbach Jun 2000 A
6077236 Cunningham Jun 2000 A
6080187 Alt et al. Jun 2000 A
6083248 Thompson Jul 2000 A
6091991 Warren Jul 2000 A
6106551 Crossett et al. Aug 2000 A
6115636 Ryan Sep 2000 A
6128526 Stadler et al. Oct 2000 A
6141581 Olson et al. Oct 2000 A
6141588 Cox et al. Oct 2000 A
6141592 Pauly Oct 2000 A
6144879 Gray Nov 2000 A
6162195 Igo et al. Dec 2000 A
6164284 Schulman et al. Dec 2000 A
6167310 Grevious Dec 2000 A
6201993 Kruse et al. Mar 2001 B1
6208894 Schulman et al. Mar 2001 B1
6211799 Post et al. Apr 2001 B1
6221011 Bardy Apr 2001 B1
6240316 Richmond et al. May 2001 B1
6240317 Villaseca et al. May 2001 B1
6256534 Dahl Jul 2001 B1
6259947 Olson et al. Jul 2001 B1
6266558 Gozani et al. Jul 2001 B1
6266567 Ishikawa et al. Jul 2001 B1
6270457 Bardy Aug 2001 B1
6272377 Sweeney et al. Aug 2001 B1
6273856 Sun et al. Aug 2001 B1
6277072 Bardy Aug 2001 B1
6280380 Bardy Aug 2001 B1
6285907 Kramer et al. Sep 2001 B1
6292698 Duffin et al. Sep 2001 B1
6295473 Rosar Sep 2001 B1
6297943 Carson Oct 2001 B1
6298271 Weijand Oct 2001 B1
6307751 Bodony et al. Oct 2001 B1
6312378 Bardy Nov 2001 B1
6315721 Schulman et al. Nov 2001 B2
6330477 Casavant Dec 2001 B1
6336903 Bardy Jan 2002 B1
6345202 Richmond et al. Feb 2002 B2
6351667 Godie Feb 2002 B1
6351669 Hartley et al. Feb 2002 B1
6353759 Hartley et al. Mar 2002 B1
6358203 Bardy Mar 2002 B2
6361780 Ley et al. Mar 2002 B1
6368284 Bardy Apr 2002 B1
6371922 Baumann et al. Apr 2002 B1
6393316 Gillberg et al. May 2002 B1
6398728 Bardy Jun 2002 B1
6400982 Sweeney et al. Jun 2002 B2
6400986 Sun et al. Jun 2002 B1
6400990 Silvian Jun 2002 B1
6408208 Sun Jun 2002 B1
6409674 Brockway et al. Jun 2002 B1
6411848 Kramer et al. Jun 2002 B2
6424865 Ding Jul 2002 B1
6434429 Kraus et al. Aug 2002 B1
6438410 Hsu et al. Aug 2002 B2
6438417 Rockwell et al. Aug 2002 B1
6438421 Stahmann et al. Aug 2002 B1
6440066 Bardy Aug 2002 B1
6441747 Khair et al. Aug 2002 B1
6442426 Kroll Aug 2002 B1
6442432 Lee Aug 2002 B2
6442433 Linberg Aug 2002 B1
6443891 Grevious Sep 2002 B1
6445953 Bulkes et al. Sep 2002 B1
6453200 Koslar Sep 2002 B1
6459929 Hopper et al. Oct 2002 B1
6470215 Kraus et al. Oct 2002 B1
6471645 Warkentin et al. Oct 2002 B1
6480745 Nelson et al. Nov 2002 B2
6487443 Olson et al. Nov 2002 B2
6490487 Kraus et al. Dec 2002 B1
6498951 Larson et al. Dec 2002 B1
6507755 Gozani et al. Jan 2003 B1
6507759 Prutchi et al. Jan 2003 B1
6512940 Brabec et al. Jan 2003 B1
6522915 Ceballos et al. Feb 2003 B1
6526311 Begemann Feb 2003 B2
6539253 Thompson et al. Mar 2003 B2
6542775 Ding et al. Apr 2003 B2
6553258 Stahmann et al. Apr 2003 B2
6561975 Pool et al. May 2003 B1
6564106 Guck et al. May 2003 B2
6564807 Schulman et al. May 2003 B1
6574506 Kramer et al. Jun 2003 B2
6584351 Ekwall Jun 2003 B1
6584352 Combs et al. Jun 2003 B2
6597948 Rockwell et al. Jul 2003 B1
6597951 Kramer et al. Jul 2003 B2
6599250 Webb et al. Jul 2003 B2
6622046 Fraley et al. Sep 2003 B2
6628985 Sweeney et al. Sep 2003 B2
6647292 Bardy et al. Nov 2003 B1
6647434 Kamepalli Nov 2003 B1
6666844 Igo et al. Dec 2003 B1
6689117 Sweeney et al. Feb 2004 B2
6690959 Thompson Feb 2004 B2
6694189 Begemann Feb 2004 B2
6704602 Berg et al. Mar 2004 B2
6718204 DeGroot et al. Apr 2004 B2
6718212 Parry et al. Apr 2004 B2
6721597 Bardy et al. Apr 2004 B1
6725093 Ben-Haim et al. Apr 2004 B1
6738670 Almendinger et al. May 2004 B1
6746797 Benson et al. Jun 2004 B2
6749566 Russ Jun 2004 B2
6758810 Lebel et al. Jul 2004 B2
6763269 Cox Jul 2004 B2
6778860 Ostroff et al. Aug 2004 B2
6788971 Sloman et al. Sep 2004 B1
6788974 Bardy et al. Sep 2004 B2
6804558 Haller et al. Oct 2004 B2
6807442 Myklebust et al. Oct 2004 B1
6847844 Sun et al. Jan 2005 B2
6871095 Stahmann et al. Mar 2005 B2
6878112 Linberg et al. Apr 2005 B2
6885889 Chinchoy Apr 2005 B2
6892094 Ousdigian et al. May 2005 B2
6897788 Khair et al. May 2005 B2
6904315 Panken et al. Jun 2005 B2
6922592 Thompson et al. Jul 2005 B2
6931282 Esler Aug 2005 B2
6934585 Schloss et al. Aug 2005 B1
6957107 Rogers et al. Oct 2005 B2
6978176 Lattouf Dec 2005 B2
6985773 Von Arx et al. Jan 2006 B2
6990375 Kloss et al. Jan 2006 B2
7001366 Ballard Feb 2006 B2
7003350 Denker et al. Feb 2006 B2
7006864 Echt et al. Feb 2006 B2
7013178 Reinke et al. Mar 2006 B2
7027871 Burnes et al. Apr 2006 B2
7031771 Brown et al. Apr 2006 B2
7050849 Echt et al. May 2006 B2
7060031 Webb et al. Jun 2006 B2
7063693 Guenst Jun 2006 B2
7082336 Ransbury et al. Jul 2006 B2
7085606 Flach et al. Aug 2006 B2
7092758 Sun et al. Aug 2006 B2
7110824 Amundson et al. Sep 2006 B2
7120504 Osypka Oct 2006 B2
7130681 Gebhardt et al. Oct 2006 B2
7139613 Reinke et al. Nov 2006 B2
7142912 Wagner et al. Nov 2006 B2
7146225 Guenst et al. Dec 2006 B2
7146226 Lau et al. Dec 2006 B2
7149581 Goedeke Dec 2006 B2
7149588 Lau et al. Dec 2006 B2
7158839 Lau Jan 2007 B2
7162307 Patrias Jan 2007 B2
7164952 Lau et al. Jan 2007 B2
7177700 Cox Feb 2007 B1
7181505 Haller et al. Feb 2007 B2
7184830 Echt et al. Feb 2007 B2
7186214 Ness Mar 2007 B2
7191015 Lamson et al. Mar 2007 B2
7200437 Nabutovsky et al. Apr 2007 B1
7200439 Zdeblick et al. Apr 2007 B2
7206423 Feng et al. Apr 2007 B1
7209785 Kim et al. Apr 2007 B2
7209790 Thompson et al. Apr 2007 B2
7211884 Davis et al. May 2007 B1
7212871 Morgan May 2007 B1
7226440 Gelfand et al. Jun 2007 B2
7228183 Sun et al. Jun 2007 B2
7236821 Cates et al. Jun 2007 B2
7236829 Farazi et al. Jun 2007 B1
7254448 Almendinger et al. Aug 2007 B2
7260433 Falkenberg et al. Aug 2007 B1
7260436 Kilgore et al. Aug 2007 B2
7270669 Sra Sep 2007 B1
7272448 Morgan et al. Sep 2007 B1
7277755 Falkenberg et al. Oct 2007 B1
7280872 Mosesov et al. Oct 2007 B1
7288096 Chin Oct 2007 B2
7289847 Gill et al. Oct 2007 B1
7289852 Heltinstine et al. Oct 2007 B2
7289853 Campbell et al. Oct 2007 B1
7289855 Nghiem et al. Oct 2007 B2
7302294 Kamath et al. Nov 2007 B2
7305266 Kroll Dec 2007 B1
7310556 Bulkes Dec 2007 B2
7319905 Morgan et al. Jan 2008 B1
7333853 Mazar et al. Feb 2008 B2
7336994 Hettrick et al. Feb 2008 B2
7347819 Lebel et al. Mar 2008 B2
7366572 Heruth et al. Apr 2008 B2
7373207 Lattouf May 2008 B2
7384403 Sherman Jun 2008 B2
7386342 Falkenberg et al. Jun 2008 B1
7392090 Sweeney et al. Jun 2008 B2
7406105 DelMain et al. Jul 2008 B2
7406349 Seeberger et al. Jul 2008 B2
7410497 Hastings et al. Aug 2008 B2
7425200 Brockway et al. Sep 2008 B2
7433739 Salys et al. Oct 2008 B1
7496409 Greenhut et al. Feb 2009 B2
7496410 Heil Feb 2009 B2
7502652 Gaunt et al. Mar 2009 B2
7512448 Malick et al. Mar 2009 B2
7515969 Tockman et al. Apr 2009 B2
7526342 Chin et al. Apr 2009 B2
7529589 Williams et al. May 2009 B2
7532933 Hastings et al. May 2009 B2
7536222 Bardy et al. May 2009 B2
7536224 Ritscher et al. May 2009 B2
7539541 Quiles et al. May 2009 B2
7544197 Kelsch et al. Jun 2009 B2
7558631 Cowan et al. Jul 2009 B2
7565195 Kroll et al. Jul 2009 B1
7565197 Haubrich et al. Jul 2009 B2
7583995 Sanders Sep 2009 B2
7584002 Burnes et al. Sep 2009 B2
7590455 Heruth et al. Sep 2009 B2
7606621 Brisken et al. Oct 2009 B2
7610088 Chinchoy Oct 2009 B2
7610092 Cowan et al. Oct 2009 B2
7610099 Almendinger et al. Oct 2009 B2
7610104 Kaplan et al. Oct 2009 B2
7616991 Mann et al. Nov 2009 B2
7617001 Penner et al. Nov 2009 B2
7617007 Williams et al. Nov 2009 B2
7630767 Poore et al. Dec 2009 B1
7634313 Kroll et al. Dec 2009 B1
7637867 Zdeblick Dec 2009 B2
7640060 Zdeblick Dec 2009 B2
7647109 Hastings et al. Jan 2010 B2
7650186 Hastings et al. Jan 2010 B2
7657311 Bardy et al. Feb 2010 B2
7668596 Von Arx et al. Feb 2010 B2
7682316 Anderson et al. Mar 2010 B2
7691047 Ferrari Apr 2010 B2
7702392 Echt et al. Apr 2010 B2
7713194 Zdeblick May 2010 B2
7713195 Zdeblick May 2010 B2
7720543 Dudding et al. May 2010 B2
7729783 Michels et al. Jun 2010 B2
7734333 Ghanem et al. Jun 2010 B2
7734343 Ransbury et al. Jun 2010 B2
7738958 Zdeblick et al. Jun 2010 B2
7738964 Von Arx et al. Jun 2010 B2
7742812 Ghanem et al. Jun 2010 B2
7742816 Masoud et al. Jun 2010 B2
7742822 Masoud et al. Jun 2010 B2
7743151 Vallapureddy et al. Jun 2010 B2
7747335 Williams Jun 2010 B2
7751881 Cowan et al. Jul 2010 B2
7758521 Morris et al. Jul 2010 B2
7761150 Ghanem et al. Jul 2010 B2
7761164 Verhoef et al. Jul 2010 B2
7765001 Echt et al. Jul 2010 B2
7769452 Ghanem et al. Aug 2010 B2
7783362 Whitehurst et al. Aug 2010 B2
7792588 Harding Sep 2010 B2
7797059 Bornzin et al. Sep 2010 B1
7801596 Fischell et al. Sep 2010 B2
7809438 Echt et al. Oct 2010 B2
7840281 Kveen et al. Nov 2010 B2
7844331 Li et al. Nov 2010 B2
7844348 Swoyer et al. Nov 2010 B2
7846088 Ness Dec 2010 B2
7848815 Brisken et al. Dec 2010 B2
7848823 Drasler et al. Dec 2010 B2
7860455 Fukumoto et al. Dec 2010 B2
7871433 Lattouf Jan 2011 B2
7877136 Moffitt et al. Jan 2011 B1
7877142 Moaddeb et al. Jan 2011 B2
7881786 Jackson Feb 2011 B2
7881798 Miesel et al. Feb 2011 B2
7881810 Chitre et al. Feb 2011 B1
7890173 Brisken et al. Feb 2011 B2
7890181 Denzene et al. Feb 2011 B2
7890192 Kelsch et al. Feb 2011 B1
7894885 Bartal et al. Feb 2011 B2
7894894 Stadler et al. Feb 2011 B2
7894907 Cowan et al. Feb 2011 B2
7894910 Cowan et al. Feb 2011 B2
7894915 Chitre et al. Feb 2011 B1
7899537 Kroll et al. Mar 2011 B1
7899541 Cowan et al. Mar 2011 B2
7899542 Cowan et al. Mar 2011 B2
7899554 Williams et al. Mar 2011 B2
7901360 Yang et al. Mar 2011 B1
7904170 Harding Mar 2011 B2
7907993 Ghanem et al. Mar 2011 B2
7920928 Yang et al. Apr 2011 B1
7925343 Min et al. Apr 2011 B1
7930022 Zhang et al. Apr 2011 B2
7930040 Kelsch et al. Apr 2011 B1
7937135 Ghanem et al. May 2011 B2
7937148 Jacobson May 2011 B2
7937161 Hastings et al. May 2011 B2
7941214 Kleckner et al. May 2011 B2
7945333 Jacobson May 2011 B2
7946997 Hübinette May 2011 B2
7949404 Hill May 2011 B2
7949405 Feher May 2011 B2
7953486 Daum et al. May 2011 B2
7953493 Fowler et al. May 2011 B2
7962202 Bhunia Jun 2011 B2
7974702 Fain et al. Jul 2011 B1
7979136 Young et al. Jul 2011 B2
7983753 Severin Jul 2011 B2
7991467 Markowitz et al. Aug 2011 B2
7991471 Ghanem et al. Aug 2011 B2
7996087 Cowan et al. Aug 2011 B2
8000791 Sunagawa et al. Aug 2011 B2
8000807 Morris et al. Aug 2011 B2
8001975 DiSilvestro et al. Aug 2011 B2
8002700 Ferek-Petric et al. Aug 2011 B2
8010209 Jacobson Aug 2011 B2
8019419 Panescu et al. Sep 2011 B1
8019434 Quiles et al. Sep 2011 B2
8027727 Freeberg Sep 2011 B2
8027729 Sunagawa et al. Sep 2011 B2
8032219 Neumann et al. Oct 2011 B2
8036743 Savage et al. Oct 2011 B2
8036746 Sanders Oct 2011 B2
8046079 Bange et al. Oct 2011 B2
8046080 Von Arx et al. Oct 2011 B2
8050297 Delmain et al. Nov 2011 B2
8050759 Stegemann et al. Nov 2011 B2
8050774 Kveen et al. Nov 2011 B2
8055345 Li et al. Nov 2011 B2
8055350 Roberts Nov 2011 B2
8060212 Rios et al. Nov 2011 B1
8065018 Haubrich et al. Nov 2011 B2
8073542 Doerr Dec 2011 B2
8078278 Penner Dec 2011 B2
8078283 Cowan et al. Dec 2011 B2
8095123 Gray Jan 2012 B2
8102789 Rosar et al. Jan 2012 B2
8103359 Reddy Jan 2012 B2
8103361 Moser Jan 2012 B2
8112148 Giftakis et al. Feb 2012 B2
8114021 Robertson et al. Feb 2012 B2
8121680 Falkenberg et al. Feb 2012 B2
8123684 Zdeblick Feb 2012 B2
8126545 Flach et al. Feb 2012 B2
8131334 Lu et al. Mar 2012 B2
8140161 Willerton et al. Mar 2012 B2
8150521 Crowley et al. Apr 2012 B2
8160672 Kim et al. Apr 2012 B2
8160684 Ghanem et al. Apr 2012 B2
8160702 Mann et al. Apr 2012 B2
8160704 Freeberg Apr 2012 B2
8165694 Carbanaru et al. Apr 2012 B2
8175715 Cox May 2012 B1
8180451 Hickman et al. May 2012 B2
8185213 Kveen et al. May 2012 B2
8187161 Li et al. May 2012 B2
8195293 Limousin et al. Jun 2012 B2
8204595 Pianca et al. Jun 2012 B2
8204605 Hastings et al. Jun 2012 B2
8209014 Doerr Jun 2012 B2
8214043 Matos Jul 2012 B2
8224244 Kim et al. Jul 2012 B2
8229556 Li Jul 2012 B2
8233985 Bulkes et al. Jul 2012 B2
8265748 Liu et al. Sep 2012 B2
8265757 Mass et al. Sep 2012 B2
8262578 Bharmi et al. Oct 2012 B1
8280521 Haubrich et al. Oct 2012 B2
8285387 Utsi et al. Oct 2012 B2
8290598 Boon et al. Oct 2012 B2
8290600 Hastings et al. Oct 2012 B2
8295939 Jacobson Oct 2012 B2
8301254 Mosesov et al. Oct 2012 B2
8315701 Cowan et al. Nov 2012 B2
8315708 Berthelsdorf et al. Nov 2012 B2
8321021 Kisker et al. Nov 2012 B2
8321036 Brockway et al. Nov 2012 B2
8332036 Hastings et al. Dec 2012 B2
8335563 Stessman Dec 2012 B2
8335568 Heruth et al. Dec 2012 B2
8340750 Prakash et al. Dec 2012 B2
8340780 Hastings et al. Dec 2012 B2
8352025 Jacobson Jan 2013 B2
8352028 Wenger Jan 2013 B2
8352038 Mao et al. Jan 2013 B2
8359098 Lund et al. Jan 2013 B2
8364261 Stubbs et al. Jan 2013 B2
8364276 Willis Jan 2013 B2
8369959 Meskens Feb 2013 B2
8369962 Abrahamson Feb 2013 B2
8380320 Spital Feb 2013 B2
8386051 Rys Feb 2013 B2
8391981 Mosesov Mar 2013 B2
8391990 Smith et al. Mar 2013 B2
8406874 Liu et al. Mar 2013 B2
8406879 Shuros et al. Mar 2013 B2
8406886 Gaunt et al. Mar 2013 B2
8412352 Griswold et al. Apr 2013 B2
8417340 Goossen Apr 2013 B2
8417341 Freeberg Apr 2013 B2
8423149 Hennig Apr 2013 B2
8428722 Verhoef et al. Apr 2013 B2
8433402 Ruben et al. Apr 2013 B2
8433409 Johnson et al. Apr 2013 B2
8433420 Bange et al. Apr 2013 B2
8437842 Zhang et al. May 2013 B2
8447412 Dal Molin et al. May 2013 B2
8452413 Young et al. May 2013 B2
8457740 Osche Jun 2013 B2
8457742 Jacobson Jun 2013 B2
8457744 Janzig et al. Jun 2013 B2
8457761 Wariar Jun 2013 B2
8478407 Demmer et al. Jul 2013 B2
8478408 Hastings et al. Jul 2013 B2
8478431 Griswold et al. Jul 2013 B2
8494632 Sun et al. Jul 2013 B2
8504156 Bonner et al. Aug 2013 B2
8509910 Sowder et al. Aug 2013 B2
8515559 Roberts et al. Aug 2013 B2
8525340 Eckhardt et al. Sep 2013 B2
8527068 Ostroff Sep 2013 B2
8532785 Crutchfield et al. Sep 2013 B1
8532790 Griswold Sep 2013 B2
8538526 Stahmann et al. Sep 2013 B2
8541131 Lund et al. Sep 2013 B2
8542131 Jahn Sep 2013 B2
8543205 Ostroff Sep 2013 B2
8547248 Zdeblick et al. Oct 2013 B2
8548605 Ollivier Oct 2013 B2
8554333 Wu et al. Oct 2013 B2
8565882 Matos Oct 2013 B2
8565897 Regnier et al. Oct 2013 B2
8571678 Wang Oct 2013 B2
8577327 Makdissi et al. Nov 2013 B2
8588926 Moore et al. Nov 2013 B2
8612002 Faltys et al. Dec 2013 B2
8615310 Khairkhahan et al. Dec 2013 B2
8626280 Allavatam et al. Jan 2014 B2
8626294 Sheldon et al. Jan 2014 B2
8634908 Cowan Jan 2014 B2
8634912 Bornzin et al. Jan 2014 B2
8634919 Hou et al. Jan 2014 B1
8639335 Peichel et al. Jan 2014 B2
8644934 Hastings et al. Feb 2014 B2
8649859 Smith et al. Feb 2014 B2
8670842 Bornzin et al. Mar 2014 B1
8676319 Knoll Mar 2014 B2
8676335 Katoozi et al. Mar 2014 B2
8700173 Edlund Apr 2014 B2
8700181 Bornzin et al. Apr 2014 B2
8705599 dal Molin et al. Apr 2014 B2
8718766 Wahlberg May 2014 B2
8718773 Willis et al. May 2014 B2
8725260 Shuros et al. May 2014 B2
8738133 Shuros et al. May 2014 B2
8738147 Hastings et al. May 2014 B2
8744555 Allavatam et al. Jun 2014 B2
8744572 Greenhut et al. Jun 2014 B1
8747314 Stahmann et al. Jun 2014 B2
8755884 Demmer et al. Jun 2014 B2
8758365 Bonner et al. Jun 2014 B2
8768483 Schmitt et al. Jul 2014 B2
8774572 Hamamoto Jul 2014 B2
8781605 Bornzin et al. Jul 2014 B2
8788035 Jacobson Jul 2014 B2
8788053 Jacobson Jul 2014 B2
8798740 Samade et al. Aug 2014 B2
8798745 Jacobson Aug 2014 B2
8798762 Fain et al. Aug 2014 B2
8798770 Reddy Aug 2014 B2
8805505 Roberts Aug 2014 B1
8805528 Corndorf Aug 2014 B2
8812109 Blomqvist et al. Aug 2014 B2
8818504 Bodner et al. Aug 2014 B2
8827913 Havel et al. Sep 2014 B2
8831747 Min et al. Sep 2014 B1
8855789 Jacobson Oct 2014 B2
8868186 Kroll Oct 2014 B2
8886339 Faltys et al. Nov 2014 B2
8903473 Rogers et al. Dec 2014 B2
8903500 Smith et al. Dec 2014 B2
8903513 Ollivier Dec 2014 B2
8909336 Navarro-Paredes et al. Dec 2014 B2
8914131 Bornzin et al. Dec 2014 B2
8923795 Makdissi et al. Dec 2014 B2
8923963 Bonner et al. Dec 2014 B2
8938300 Rosero Jan 2015 B2
8942806 Sheldon et al. Jan 2015 B2
8958892 Khairkhahan et al. Feb 2015 B2
8977358 Ewert et al. Mar 2015 B2
8989873 Locsin Mar 2015 B2
8996109 Karst et al. Mar 2015 B2
9002467 Smith et al. Apr 2015 B2
9008776 Cowan et al. Apr 2015 B2
9008777 Dianaty et al. Apr 2015 B2
9014818 Deterre et al. Apr 2015 B2
9017341 Bornzin et al. Apr 2015 B2
9020611 Khairkhahan et al. Apr 2015 B2
9037262 Regnier et al. May 2015 B2
9042984 Demmer et al. May 2015 B2
9072911 Hastings et al. Jul 2015 B2
9072913 Jacobson Jul 2015 B2
9155882 Grubac et al. Oct 2015 B2
9168372 Fain Oct 2015 B2
9168380 Greenhut et al. Oct 2015 B1
9168383 Jacobson et al. Oct 2015 B2
9180285 Moore et al. Nov 2015 B2
9192774 Jacobson Nov 2015 B2
9205225 Khairkhahan et al. Dec 2015 B2
9216285 Boling et al. Dec 2015 B1
9216293 Berthiaume et al. Dec 2015 B2
9216298 Jacobson Dec 2015 B2
9227077 Jacobson Jan 2016 B2
9238145 Wenzel et al. Jan 2016 B2
9242102 Khairkhahan et al. Jan 2016 B2
9242113 Smith et al. Jan 2016 B2
9248300 Rys et al. Feb 2016 B2
9265436 Min et al. Feb 2016 B2
9265962 Dianaty et al. Feb 2016 B2
9272155 Ostroff Mar 2016 B2
9278218 Karst et al. Mar 2016 B2
9278229 Reinke et al. Mar 2016 B1
9283381 Grubac et al. Mar 2016 B2
9283382 Berthiaume et al. Mar 2016 B2
9289612 Sambelashvili et al. Mar 2016 B1
9302115 Molin et al. Apr 2016 B2
9333364 Echt et al. May 2016 B2
9358387 Suwito et al. Jun 2016 B2
9358400 Jacobson Jun 2016 B2
9364675 Deterre et al. Jun 2016 B2
9370663 Moulder Jun 2016 B2
9375580 Bonner et al. Jun 2016 B2
9375581 Baru et al. Jun 2016 B2
9381365 Kibler et al. Jul 2016 B2
9393424 Demmer et al. Jul 2016 B2
9393436 Doerr Jul 2016 B2
9399139 Demmer et al. Jul 2016 B2
9399140 Cho et al. Jul 2016 B2
9409033 Jacobson Aug 2016 B2
9427594 Bornzin et al. Aug 2016 B1
9433368 Stahmann et al. Sep 2016 B2
9433780 Régnier et al. Sep 2016 B2
9468772 Demmer Oct 2016 B2
9492668 Sheldon et al. Nov 2016 B2
9492669 Demmer et al. Nov 2016 B2
9492674 Schmidt et al. Nov 2016 B2
9492677 Greenhut et al. Nov 2016 B2
9511233 Sambelashvili Dec 2016 B2
9511236 Varady et al. Dec 2016 B2
9511237 Deterre et al. Dec 2016 B2
9522276 Shen et al. Dec 2016 B2
9522280 Fishler et al. Dec 2016 B2
9526522 Wood et al. Dec 2016 B2
9526891 Eggen et al. Dec 2016 B2
9526909 Stahmann et al. Dec 2016 B2
9561382 Persson et al. Feb 2017 B2
9566012 Greenhut et al. Feb 2017 B2
9669230 Koop Jun 2017 B2
9844675 Hareland et al. Dec 2017 B2
20010034487 Cao et al. Oct 2001 A1
20020013613 Haller et al. Jan 2002 A1
20020032470 Linberg Mar 2002 A1
20020035376 Bardy et al. Mar 2002 A1
20020035377 Bardy et al. Mar 2002 A1
20020035378 Bardy et al. Mar 2002 A1
20020035380 Rissmann et al. Mar 2002 A1
20020035381 Bardy et al. Mar 2002 A1
20020042629 Bardy et al. Apr 2002 A1
20020042630 Bardy et al. Apr 2002 A1
20020042634 Bardy et al. Apr 2002 A1
20020049475 Bardy et al. Apr 2002 A1
20020052636 Bardy et al. May 2002 A1
20020068958 Bardy et al. Jun 2002 A1
20020072773 Bardy et al. Jun 2002 A1
20020082665 Haller et al. Jun 2002 A1
20020091414 Bardy et al. Jul 2002 A1
20020095196 Linberg Jul 2002 A1
20020099423 Berg et al. Jul 2002 A1
20020103510 Bardy et al. Aug 2002 A1
20020107545 Rissmann et al. Aug 2002 A1
20020107546 Ostroff et al. Aug 2002 A1
20020107547 Erlinger et al. Aug 2002 A1
20020107548 Bardy et al. Aug 2002 A1
20020107549 Bardy et al. Aug 2002 A1
20020107559 Sanders et al. Aug 2002 A1
20020120299 Ostroff et al. Aug 2002 A1
20020173830 Starkweather et al. Nov 2002 A1
20020193846 Pool et al. Dec 2002 A1
20030009203 Lebel et al. Jan 2003 A1
20030028082 Thompson Feb 2003 A1
20030040779 Engmark et al. Feb 2003 A1
20030041866 Linberg et al. Mar 2003 A1
20030045805 Sheldon et al. Mar 2003 A1
20030088278 Bardy et al. May 2003 A1
20030097153 Bardy et al. May 2003 A1
20030105497 Zhu et al. Jun 2003 A1
20030114908 Flach Jun 2003 A1
20030144701 Mehra et al. Jul 2003 A1
20030187460 Chin et al. Oct 2003 A1
20030187461 Chin Oct 2003 A1
20040024435 Leckrone et al. Feb 2004 A1
20040068302 Rodgers et al. Apr 2004 A1
20040087938 Leckrone et al. May 2004 A1
20040088035 Guenst et al. May 2004 A1
20040102830 Williams May 2004 A1
20040127959 Amundson et al. Jul 2004 A1
20040133242 Chapman et al. Jul 2004 A1
20040147969 Mann et al. Jul 2004 A1
20040147973 Hauser Jul 2004 A1
20040167558 Igo et al. Aug 2004 A1
20040167587 Thompson Aug 2004 A1
20040171959 Stadler et al. Sep 2004 A1
20040172067 Saba Sep 2004 A1
20040172071 Bardy et al. Sep 2004 A1
20040172077 Chinchoy Sep 2004 A1
20040172104 Berg et al. Sep 2004 A1
20040176817 Wahlstrand et al. Sep 2004 A1
20040176818 Wahlstrand et al. Sep 2004 A1
20040176830 Fang Sep 2004 A1
20040186529 Bardy et al. Sep 2004 A1
20040204673 Flaherty Oct 2004 A1
20040210292 Bardy et al. Oct 2004 A1
20040210293 Bardy et al. Oct 2004 A1
20040210294 Bardy et al. Oct 2004 A1
20040215308 Bardy et al. Oct 2004 A1
20040220624 Ritscher et al. Nov 2004 A1
20040220626 Wagner Nov 2004 A1
20040220639 Mulligan et al. Nov 2004 A1
20040249431 Ransbury et al. Dec 2004 A1
20040260348 Bakken et al. Dec 2004 A1
20040267303 Guenst Dec 2004 A1
20050061320 Lee et al. Mar 2005 A1
20050070962 Echt et al. Mar 2005 A1
20050102003 Grabek et al. May 2005 A1
20050149138 Min et al. Jul 2005 A1
20050159781 Hsu Jul 2005 A1
20050165466 Morris et al. Jul 2005 A1
20050182465 Ness Aug 2005 A1
20050203410 Jenkins Sep 2005 A1
20050283208 Von Arx et al. Dec 2005 A1
20050288743 Ahn et al. Dec 2005 A1
20060025822 Zhang Feb 2006 A1
20060042830 Maghribi et al. Mar 2006 A1
20060052829 Sun et al. Mar 2006 A1
20060052830 Spinelli et al. Mar 2006 A1
20060064135 Brockway Mar 2006 A1
20060064149 Belacazar et al. Mar 2006 A1
20060085039 Hastings et al. Apr 2006 A1
20060085041 Hastings et al. Apr 2006 A1
20060085042 Hastings et al. Apr 2006 A1
20060095078 Tronnes May 2006 A1
20060106442 Richardson et al. May 2006 A1
20060116746 Chin Jun 2006 A1
20060135999 Bodner et al. Jun 2006 A1
20060136004 Cowan et al. Jun 2006 A1
20060161061 Echt et al. Jul 2006 A1
20060200002 Guenst Sep 2006 A1
20060206151 Lu Sep 2006 A1
20060212079 Routh et al. Sep 2006 A1
20060241701 Markowitz et al. Oct 2006 A1
20060241705 Neumann et al. Oct 2006 A1
20060247672 Vidlund et al. Nov 2006 A1
20060259088 Pastore et al. Nov 2006 A1
20060265018 Smith et al. Nov 2006 A1
20070004979 Wojciechowicz et al. Jan 2007 A1
20070016098 Kim et al. Jan 2007 A1
20070027508 Cowan Feb 2007 A1
20070078490 Cowan et al. Apr 2007 A1
20070088394 Jacobson Apr 2007 A1
20070088396 Jacobson Apr 2007 A1
20070088397 Jacobson Apr 2007 A1
20070088398 Jacobson Apr 2007 A1
20070088405 Jacobson Apr 2007 A1
20070135882 Drasler et al. Jun 2007 A1
20070135883 Drasler et al. Jun 2007 A1
20070150037 Hastings et al. Jun 2007 A1
20070150038 Hastings et al. Jun 2007 A1
20070156190 Cinbis Jul 2007 A1
20070219525 Gelfand et al. Sep 2007 A1
20070219590 Hastings et al. Sep 2007 A1
20070225545 Ferrari Sep 2007 A1
20070233206 Frikart et al. Oct 2007 A1
20070239244 Morgan et al. Oct 2007 A1
20070255376 Michels et al. Nov 2007 A1
20070276444 Gelbart et al. Nov 2007 A1
20070293900 Sheldon et al. Dec 2007 A1
20070293904 Gelbart et al. Dec 2007 A1
20070299480 Hill Dec 2007 A1
20080004663 Jorgenson Jan 2008 A1
20080021505 Hastings et al. Jan 2008 A1
20080021519 De Geest et al. Jan 2008 A1
20080021532 Kveen et al. Jan 2008 A1
20080065183 Whitehurst et al. Mar 2008 A1
20080065185 Worley Mar 2008 A1
20080071318 Brooke et al. Mar 2008 A1
20080109054 Hastings et al. May 2008 A1
20080119911 Rosero May 2008 A1
20080130670 Kim et al. Jun 2008 A1
20080154139 Shuros et al. Jun 2008 A1
20080154322 Jackson et al. Jun 2008 A1
20080228234 Stancer Sep 2008 A1
20080234771 Chinchoy et al. Sep 2008 A1
20080243217 Wildon Oct 2008 A1
20080269814 Rosero Oct 2008 A1
20080269825 Chinchoy et al. Oct 2008 A1
20080275518 Ghanem et al. Nov 2008 A1
20080275519 Ghanem et al. Nov 2008 A1
20080288039 Reddy Nov 2008 A1
20080294208 Willis et al. Nov 2008 A1
20080294210 Rosero Nov 2008 A1
20080306359 Zdeblick et al. Dec 2008 A1
20090018599 Hastings et al. Jan 2009 A1
20090024180 Kisker et al. Jan 2009 A1
20090036941 Corbucci Feb 2009 A1
20090048646 Katoozi et al. Feb 2009 A1
20090062895 Stahmann et al. Mar 2009 A1
20090082827 Kveen et al. Mar 2009 A1
20090082828 Ostroff Mar 2009 A1
20090088813 Brockway et al. Apr 2009 A1
20090131907 Chin et al. May 2009 A1
20090135886 Robertson et al. May 2009 A1
20090138058 Cooke et al. May 2009 A1
20090143835 Pastore et al. Jun 2009 A1
20090171408 Solem Jul 2009 A1
20090171414 Kelly et al. Jul 2009 A1
20090204163 Shuros et al. Aug 2009 A1
20090204170 Hastings et al. Aug 2009 A1
20090210024 M Aug 2009 A1
20090216292 Pless et al. Aug 2009 A1
20090234407 Hastings et al. Sep 2009 A1
20090234411 Sambelashvili et al. Sep 2009 A1
20090266573 Engmark et al. Oct 2009 A1
20090275998 Burnes et al. Nov 2009 A1
20090275999 Burnes et al. Nov 2009 A1
20090299438 Nolan et al. Dec 2009 A1
20090299447 Jensen et al. Dec 2009 A1
20100013668 Kantervik Jan 2010 A1
20100016911 Willis et al. Jan 2010 A1
20100023085 Wu et al. Jan 2010 A1
20100030061 Canfield et al. Feb 2010 A1
20100030327 Chatel Feb 2010 A1
20100042108 Hibino Feb 2010 A1
20100056871 Govari et al. Mar 2010 A1
20100063375 Kassab et al. Mar 2010 A1
20100063562 Cowan et al. Mar 2010 A1
20100094367 Sen Apr 2010 A1
20100114209 Krause et al. May 2010 A1
20100114214 Morelli et al. May 2010 A1
20100125281 Jacobson et al. May 2010 A1
20100168761 Kassab et al. Jul 2010 A1
20100168819 Freeberg Jul 2010 A1
20100198288 Ostroff Aug 2010 A1
20100198304 Wang Aug 2010 A1
20100217367 Belson Aug 2010 A1
20100228308 Cowan et al. Sep 2010 A1
20100234906 Koh Sep 2010 A1
20100234924 Willis Sep 2010 A1
20100241185 Mahapatra et al. Sep 2010 A1
20100249729 Morris et al. Sep 2010 A1
20100286744 Echt et al. Nov 2010 A1
20100312309 Harding Dec 2010 A1
20110022113 Zdeblick et al. Jan 2011 A1
20110071586 Jacobson Mar 2011 A1
20110077708 Ostroff Mar 2011 A1
20110112600 Cowan et al. May 2011 A1
20110118588 Komblau et al. May 2011 A1
20110118810 Cowan et al. May 2011 A1
20110137187 Yang et al. Jun 2011 A1
20110144720 Cowan et al. Jun 2011 A1
20110152970 Jollota et al. Jun 2011 A1
20110160558 Rassatt et al. Jun 2011 A1
20110160565 Stubbs et al. Jun 2011 A1
20110160801 Markowitz et al. Jun 2011 A1
20110160806 Lyden et al. Jun 2011 A1
20110166620 Cowan et al. Jul 2011 A1
20110166621 Cowan et al. Jul 2011 A1
20110184491 Kivi Jul 2011 A1
20110190835 Brockway et al. Aug 2011 A1
20110208260 Jacobson Aug 2011 A1
20110218587 Jacobson Sep 2011 A1
20110230734 Fain et al. Sep 2011 A1
20110237967 Moore et al. Sep 2011 A1
20110245890 Brisben et al. Oct 2011 A1
20110251660 Griswold Oct 2011 A1
20110251662 Griswold et al. Oct 2011 A1
20110270099 Ruben et al. Nov 2011 A1
20110270339 Murray, III et al. Nov 2011 A1
20110270340 Pellegrini et al. Nov 2011 A1
20110276102 Cohen Nov 2011 A1
20110282423 Jacobson Nov 2011 A1
20120004527 Thompson et al. Jan 2012 A1
20120016305 Jollota et al. Jan 2012 A1
20120029323 Zhao Feb 2012 A1
20120041508 Rousso et al. Feb 2012 A1
20120059433 Cowan et al. Mar 2012 A1
20120059436 Fontaine et al. Mar 2012 A1
20120065500 Rogers et al. Mar 2012 A1
20120078322 Dal Molin et al. Mar 2012 A1
20120089198 Ostroff Apr 2012 A1
20120093245 Makdissi et al. Apr 2012 A1
20120095521 Hintz Apr 2012 A1
20120095539 Khairkhahan et al. Apr 2012 A1
20120101540 O'Brien et al. Apr 2012 A1
20120101553 Reddy Apr 2012 A1
20120109148 Bonner et al. May 2012 A1
20120109149 Bonner et al. May 2012 A1
20120109236 Jacobson et al. May 2012 A1
20120109259 Bond et al. May 2012 A1
20120116489 Khairkhahan et al. May 2012 A1
20120150251 Giftakis et al. Jun 2012 A1
20120158111 Khairkhahan et al. Jun 2012 A1
20120165827 Khairkhahan et al. Jun 2012 A1
20120172690 Anderson et al. Jul 2012 A1
20120172891 Lee Jul 2012 A1
20120172892 Grubac et al. Jul 2012 A1
20120172942 Berg Jul 2012 A1
20120197350 Roberts et al. Aug 2012 A1
20120197373 Khairkhahan et al. Aug 2012 A1
20120215285 Tahmasian et al. Aug 2012 A1
20120232565 Kveen et al. Sep 2012 A1
20120277600 Greenhut Nov 2012 A1
20120277606 Ellingson et al. Nov 2012 A1
20120283795 Stancer et al. Nov 2012 A1
20120283807 Deterre et al. Nov 2012 A1
20120290025 Keimel Nov 2012 A1
20120296381 Matos Nov 2012 A1
20120303078 Li et al. Nov 2012 A1
20120303082 Dong et al. Nov 2012 A1
20120316613 Keefe et al. Dec 2012 A1
20130012151 Hankins Jan 2013 A1
20130023975 Locsin Jan 2013 A1
20130035748 Bonner et al. Feb 2013 A1
20130041422 Jacobson Feb 2013 A1
20130053908 Smith et al. Feb 2013 A1
20130053915 Holmstrom et al. Feb 2013 A1
20130053921 Bonner et al. Feb 2013 A1
20130060298 Splett et al. Mar 2013 A1
20130066169 Rys et al. Mar 2013 A1
20130072770 Rao et al. Mar 2013 A1
20130079798 Tran et al. Mar 2013 A1
20130079861 Reinert et al. Mar 2013 A1
20130085350 Schugt et al. Apr 2013 A1
20130085403 Gunderson et al. Apr 2013 A1
20130085550 Polefko et al. Apr 2013 A1
20130096649 Martin et al. Apr 2013 A1
20130103047 Steingisser et al. Apr 2013 A1
20130103109 Jacobson Apr 2013 A1
20130110008 Bourget et al. May 2013 A1
20130110127 Bornzin et al. May 2013 A1
20130110192 Tran et al. May 2013 A1
20130110219 Bornzin et al. May 2013 A1
20130116529 Min et al. May 2013 A1
20130116738 Samade et al. May 2013 A1
20130116740 Bornzin et al. May 2013 A1
20130116741 Bornzin et al. May 2013 A1
20130123872 Bornzin et al. May 2013 A1
20130123875 Varady et al. May 2013 A1
20130131591 Berthiaume et al. May 2013 A1
20130131693 Berthiaume et al. May 2013 A1
20130138006 Bornzin et al. May 2013 A1
20130150695 Biela et al. Jun 2013 A1
20130150911 Perschbacher et al. Jun 2013 A1
20130150912 Perschbacher et al. Jun 2013 A1
20130184776 Shuros et al. Jul 2013 A1
20130196703 Masoud et al. Aug 2013 A1
20130197609 Moore et al. Aug 2013 A1
20130231710 Jacobson Sep 2013 A1
20130238072 Deterre et al. Sep 2013 A1
20130238073 Makdissi et al. Sep 2013 A1
20130253342 Griswold et al. Sep 2013 A1
20130253343 Waldhauser et al. Sep 2013 A1
20130253344 Griswold et al. Sep 2013 A1
20130253345 Griswold et al. Sep 2013 A1
20130253346 Griswold et al. Sep 2013 A1
20130253347 Griswold et al. Sep 2013 A1
20130261497 Pertijs et al. Oct 2013 A1
20130265144 Banna et al. Oct 2013 A1
20130268042 Hastings et al. Oct 2013 A1
20130274828 Willis Oct 2013 A1
20130274847 Ostroff Oct 2013 A1
20130282070 Cowan et al. Oct 2013 A1
20130282073 Cowan et al. Oct 2013 A1
20130296727 Sullivan et al. Nov 2013 A1
20130303872 Taff et al. Nov 2013 A1
20130324825 Ostroff et al. Dec 2013 A1
20130325081 Karst et al. Dec 2013 A1
20130345770 Dianaty et al. Dec 2013 A1
20140012344 Hastings et al. Jan 2014 A1
20140018876 Ostroff Jan 2014 A1
20140018877 Demmer et al. Jan 2014 A1
20140031836 Ollivier Jan 2014 A1
20140039570 Carroll et al. Feb 2014 A1
20140039591 Drasler et al. Feb 2014 A1
20140043146 Makdissi et al. Feb 2014 A1
20140046395 Regnier et al. Feb 2014 A1
20140046420 Moore et al. Feb 2014 A1
20140058240 Mothilal et al. Feb 2014 A1
20140058494 Ostroff et al. Feb 2014 A1
20140074114 Khairkhahan et al. Mar 2014 A1
20140074186 Faltys et al. Mar 2014 A1
20140094891 Pare et al. Apr 2014 A1
20140100627 Min Apr 2014 A1
20140107723 Hou et al. Apr 2014 A1
20140121719 Bonner et al. May 2014 A1
20140121720 Bonner et al. May 2014 A1
20140121722 Sheldon et al. May 2014 A1
20140128935 Kumar et al. May 2014 A1
20140135865 Hastings et al. May 2014 A1
20140142648 Smith et al. May 2014 A1
20140148675 Nordstrom et al. May 2014 A1
20140148815 Wenzel et al. May 2014 A1
20140155950 Hastings et al. Jun 2014 A1
20140169162 Romano et al. Jun 2014 A1
20140172060 Bomzin et al. Jun 2014 A1
20140180306 Grubac et al. Jun 2014 A1
20140180366 Edlund Jun 2014 A1
20140207149 Hastings et al. Jul 2014 A1
20140207210 Willis et al. Jul 2014 A1
20140214104 Greenhut et al. Jul 2014 A1
20140222098 Baru et al. Aug 2014 A1
20140222109 Moulder Aug 2014 A1
20140228913 Molin et al. Aug 2014 A1
20140236172 Hastings et al. Aug 2014 A1
20140243848 Auricchio et al. Aug 2014 A1
20140255298 Cole et al. Sep 2014 A1
20140257324 Fain Sep 2014 A1
20140257422 Herken Sep 2014 A1
20140257444 Cole et al. Sep 2014 A1
20140276929 Foster et al. Sep 2014 A1
20140303704 Suwito et al. Oct 2014 A1
20140309706 Jacobson Oct 2014 A1
20140330326 Thompson-Nauman Nov 2014 A1
20140337922 Sievert et al. Nov 2014 A1
20140379041 Foster Dec 2014 A1
20150025612 Haasl et al. Jan 2015 A1
20150039041 Smith et al. Feb 2015 A1
20150051609 Schmidt et al. Feb 2015 A1
20150051610 Schmidt et al. Feb 2015 A1
20150051611 Schmidt et al. Feb 2015 A1
20150051612 Schmidt et al. Feb 2015 A1
20150051613 Schmidt et al. Feb 2015 A1
20150051614 Schmidt et al. Feb 2015 A1
20150051615 Schmidt et al. Feb 2015 A1
20150051616 Haasl et al. Feb 2015 A1
20150051682 Schmidt et al. Feb 2015 A1
20150057520 Foster et al. Feb 2015 A1
20150057558 Stahmann et al. Feb 2015 A1
20150057721 Stahmann et al. Feb 2015 A1
20150088155 Stahmann et al. Mar 2015 A1
20150105836 Bonner et al. Apr 2015 A1
20150157861 Aghassian Jun 2015 A1
20150173655 Demmer et al. Jun 2015 A1
20150190638 Smith et al. Jul 2015 A1
20150196756 Stahmann et al. Jul 2015 A1
20150196757 Stahmann et al. Jul 2015 A1
20150196758 Stahmann et al. Jul 2015 A1
20150196769 Stahmann et al. Jul 2015 A1
20150217119 Nikolski et al. Aug 2015 A1
20150221898 Chi et al. Aug 2015 A1
20150224315 Stahmann Aug 2015 A1
20150224320 Stahmann Aug 2015 A1
20150258345 Smith et al. Sep 2015 A1
20150290467 Ludwig Oct 2015 A1
20150290468 Zhang Oct 2015 A1
20150297905 Greenhut et al. Oct 2015 A1
20150297907 Zhang Oct 2015 A1
20150305637 Greenhut et al. Oct 2015 A1
20150305638 Zhang Oct 2015 A1
20150305639 Greenhut et al. Oct 2015 A1
20150305640 Reinke et al. Oct 2015 A1
20150305641 Stadler et al. Oct 2015 A1
20150305642 Reinke et al. Oct 2015 A1
20150306374 Seifert et al. Oct 2015 A1
20150306375 Marshall et al. Oct 2015 A1
20150306406 Crutchfield et al. Oct 2015 A1
20150306407 Crutchfield et al. Oct 2015 A1
20150306408 Greenhut et al. Oct 2015 A1
20150321016 O'Brien et al. Nov 2015 A1
20150328459 Chin et al. Nov 2015 A1
20150360041 Stahmann et al. Dec 2015 A1
20160015322 Anderson et al. Jan 2016 A1
20160023000 Cho et al. Jan 2016 A1
20160030757 Jacobson Feb 2016 A1
20160033177 Barot et al. Feb 2016 A1
20160121127 Klimovitch et al. May 2016 A1
20160121128 Fishler et al. May 2016 A1
20160121129 Persson et al. May 2016 A1
20160213919 Suwito et al. Jul 2016 A1
20160213937 Reinke et al. Jul 2016 A1
20160213939 Carney et al. Jul 2016 A1
20160228026 Jackson Aug 2016 A1
20160228701 Huelskamp et al. Aug 2016 A1
20160317825 Jacobson Nov 2016 A1
20160367823 Cowan et al. Dec 2016 A1
20170014629 Ghosh et al. Jan 2017 A1
20170035315 Jackson Feb 2017 A1
20170043173 Sharma et al. Feb 2017 A1
20170043174 Greenhut et al. Feb 2017 A1
Foreign Referenced Citations (50)
Number Date Country
2008279789 Oct 2011 AU
2008329620 May 2014 AU
2014203793 Jul 2014 AU
1003904 Jan 1977 CA
202933393 May 2013 CN
0362611 Apr 1990 EP
503823 Sep 1992 EP
1702648 Sep 2006 EP
1904170 Apr 2008 EP
1978866 Oct 2008 EP
1904166 Jun 2011 EP
2433675 Jan 2013 EP
2441491 Jan 2013 EP
2452721 Nov 2013 EP
1948296 Jan 2014 EP
2662113 Jan 2014 EP
2471452 Dec 2014 EP
2760541 May 2016 EP
2833966 May 2016 EP
2000051373 Feb 2000 JP
2002502640 Jan 2002 JP
2004512105 Apr 2004 JP
2005508208 Mar 2005 JP
2005245215 Sep 2005 JP
2008540040 Nov 2008 JP
5199867 Feb 2013 JP
9500202 Jan 1995 WO
9528987 Nov 1995 WO
9528988 Nov 1995 WO
0636134 Nov 1996 WO
9724981 Jul 1997 WO
9826840 Jun 1998 WO
9939767 Aug 1999 WO
0234330 Jan 2003 WO
02098282 May 2003 WO
2005000206 Apr 2005 WO
2005042089 May 2005 WO
2006065394 Jun 2006 WO
2006069215 Jun 2006 WO
2006086435 Aug 2006 WO
2006113659 Oct 2006 WO
2006124833 Nov 2006 WO
2006124833 May 2007 WO
2007075974 Jul 2007 WO
2009006531 Jan 2009 WO
2012054102 Apr 2012 WO
2013080038 Jun 2013 WO
2013098644 Aug 2013 WO
2013184787 Dec 2013 WO
2014120769 Aug 2014 WO
Non-Patent Literature Citations (10)
Entry
US 8,886,318, 11/2014, Jacobson et al. (withdrawn)
Hachisuka et al., “Development and Performance Analysis of an Intra-Body Communication Device,” The 12th International Conference on Solid State Sensors, Actuators and Microsystems, vol. 4A1.3, pp. 1722-1725, 2003.
Seyedi et al., “A Survey on Intrabody Communications for Body Area Network Application,” IEEE Transactions on Biomedical Engineering,vol. 60(8): 2067-2079, 2013.
Wegmüller, “Intra-Body Communication for Biomedical Sensor Networks,” Diss. ETH, No. 17323, 1-173, 2007.
Notification of Transmittal of the International Search Report and the Written Opinion of the International Searching Authority, or the Declaration, dated Jan. 29, 2016, 15 pages.
Spickler et al., “Totally Self-Contained Intracardiac Pacemaker,” Journal of Electrocardiology, vol. 3(3&4): 324-331, 1970.
“Instructions for Use System 1, Leadless Cardiac Pacemaker (LCP) and Delivery Catheter,” Nanostim Leadless Pacemakers, pp. 1-28, 2013.
Notification of Transmittal of the International Search Report and the Written Opinion of the International Searching Authority, or the Declaration for Application No. PCT/US2016/016608, 2016, 11 pages, dated Apr. 21, 2016.
(PCT/US2017/029540) PCT Notification of Transmittal of the International Search Report and the Written Opinion of the International Searching Authority, dated Jun. 28, 2017, 11 pages.
(PCT/US2016/013139) PCT Notification of Transmittal of the International Search Report and the Written Opinion of the International Searching Authority, dated Apr. 14, 2016, 12 pages.
Related Publications (1)
Number Date Country
20160228701 A1 Aug 2016 US
Provisional Applications (1)
Number Date Country
62113150 Feb 2015 US