The present invention relates generally to fluid circuit connector systems. More specifically, the invention concerns quick-release connectors having couplers with single part unitary valves for controlling fluid leakage.
Fluid circuits are useful in a variety of contexts, particularly providing hot and/or cold therapeutic treatments to sore body parts. The potential effectiveness of a hot or cold treatment increases with the level of temperature control. Precise temperature control can be achieved through a carefully controlled fluid circuit. Fluids have a high rate of heat transfer and the precise temperature may be quickly changed and easily maintained. Examples of devices for delivering hot or cold fluids for therapeutic purposes include United States Patent Publication Number 2001/0039439 A1 to Elkins and U.S. patent application Ser. No. 10/267,247 filed on Oct. 8, 2002, and entitled “Contrast Therapy System and Method”, both of which are incorporated herein by reference.
Therapy devices configured to deliver hot and cold treatments may employ one or more reservoirs of fluid. Often these devices include one hot fluid reservoir and one cold fluid reservoir configured to connect via a fluid circuit to a therapy pad or wrap. The therapy pad or wrap may be configured to fit a specific part of the body. For example, wraps are often designed to apply therapy to a limb, such as an arm or a leg, and pads are often designed to apply therapy to the torso, particularly the back or shoulders.
It may be desirable to easily interchange between wraps or pads of varying capacity and size. Additionally, it may be desirable to eliminate fluid loss such as to reduce mess, the need to refill reservoirs, and to ensure that sore body parts remain dry which is of particular importance when soreness is due to wound or post operative healing.
It is therefore apparent that an urgent need exists for an improved fluid circuit connector system that enables rapid interchangeability, while eliminating leakage.
To achieve the foregoing and in accordance with the present invention, a system for a fluid circuit coupler is provided. Such a system is useful for a system that supplies fluids for any purpose. In some embodiments, such a system may be useful in delivering hot and/or cold fluids for therapy for sore or damaged body parts.
One advantage of the present invention is that the fluid coupler enables rapid coupling and decoupling of portions of a fluid circuit while preventing leakage. The fluid coupler comprises a male coupler, a female coupler, and a seal positioned between the male coupler and the female coupler when they are coupled, thereby preventing fluid from leaking out from the coupled fluid coupler. The female coupler receives the male coupler when in a coupled position.
The male coupler includes a two pieced housing, a unitary valve and a biasing member. The two pieces of the housing may be joined via welding, threading, glue or compression fitting. A cavity runs the length of the housing. The unitary valve and biasing member fit within the cavity and are capable of longitudinal positioning within a configurable range. The unitary valve includes a sealer, which seals the male coupler when it is decoupled from the female coupler.
The female coupler includes a housing, an annulus, a unitary valve and a biasing member. The annulus and the housing may be joined via welding, threading, glue or compression fitting. A cavity runs the length of the housing. The unitary valve and biasing member fit within the cavity and are capable of longitudinal positioning within a configurable range. The unitary valve includes a sealer, which seals the female coupler when it is decoupled from the male coupler.
The fluid coupler is configured to be in one of a coupled position and an uncoupled position. When in the coupled position, the unitary valves are open permitting fluid flow through the coupler. Otherwise, when in the uncoupled position the unitary valves are closed preventing fluid leakage.
These and other features of the present invention will be described in more detail below in the detailed description of the invention and in conjunction with the following figures.
In order that the present invention may be more clearly ascertained, one embodiment will now be described, by way of example, with reference to the accompanying drawings, in which:
The present invention will now be described in detail with reference to several embodiments thereof as illustrated in the accompanying drawings. In the following description, numerous specific details are set forth in order to provide a thorough understanding of the present invention. It will be apparent, however, to one skilled in the art, that the present invention may be practiced without some or all of these specific details. In other instances, well known process steps and/or structures have not been described in detail in order to not unnecessarily obscure the present invention. The features and advantages of the present invention may be better understood with reference to the drawings and discussions that follow.
To facilitate discussion,
It will be understood that in the illustrated embodiment both quick-release connectors 14 may be used to attach to either object fitting 12 or source fitting 18. Other embodiments of the present invention may have quick-release connectors 14 that may be fitting specific. For example, a quick-release connector configured to attach to object fitting 12 may not connect to source fitting 18 and vice versa. This may be desirable for enabling the use of a contrast therapy fluid supply with a variety of therapy wraps and pads that may have different types and or sizes of object fittings.
Quick-release connector 14 may be connected to object fitting 12 by depressing latch buttons 26 with a squeezing motion, as illustrated in
As shown in
Releasing quick-release connector 14 may be accomplished by simply reversing the above process. First, depress latch buttons 26 spreading latch arms 24 and causing latch tabs 22 to release from latch recesses 20. Second, pull quick-release connector 14 from object fitting 12.
Source fitting 18 similarly includes latch recesses configured to receive latch tabs 22 of quick lock connector 14. Therefore, quick-release connector 14, which is attached to the other end of tube set 16, may be connected to and released from source fitting 18 in the same manner as described with regard to object fitting 12. It will be understood that both quick-release connectors 14 are constructed in the same manner and may be used to attach to either object fitting 12 or source fitting 18.
Each fluid coupler includes a pair of coupler housings 32. Coupler housings 32 may include two types. A male coupler housing 34 may be configured for insertion into a female housing 36. Object fitting 12 may include one of each type of housing, as shown in
Fluid coupler 30 may include a seal 38 to prevent fluid from escaping between male coupler housing 34 and female coupler housing 36. Seal 38 may be an O-ring type seal that is configured to sit in place in a groove cut in male housing 36. It will be understood that seal 38 may include other suitable sealing gaskets or mechanisms and may be configured to sit in place in either the male of female coupler housing.
In operation, quick-release connector 14 and object fitting 12, or source fitting 18, will fully latch prior to male coupler housing 34 and female coupler housing 36 bottoming out against one another. This ensures that the quick-lock connector engages properly and prevents the coupler housings from interfering with a proper latch between quick-lock connector 14 and one of the fittings.
Each coupler housing 32 includes a valve assembly. It follows that each fluid coupler 30 then includes two valve assemblies. A valve assembly may be configured to open a fluid flow path between two tube ends. Tubes may be press fit over the ends of coupler housings 32 to enable fluid communication between the tubes and the fluid coupler.
Unitary valve 40 may include a biasing member 44 configured to bias the unitary valve into engagement with housing seat 43. Unitary valve 40 may include a stabilizer 45 formed integral with biasing member 44 and configured to aid in the alignment of valve assembly 40. A valve seat surface 46 may be formed integral with stabilizer 45 and biasing member 44 and configured to engage housing seat 43 to close unitary valve 40 and prevent leakage from the end of a tube connected therewith. Unitary valve 40 further includes a valve stem 48 formed integral with valve seat 46, stabilizer 45, and biasing member 44. Valve stem 48 may be configured to receive a force opposing biasing member 44 to open unitary valve 40, as will be explained in detail below.
Unitary valve 40 may include a retainer 50 configured to hold the unitary valve within fluid coupler housing 32. Retainer 50 may include retainer prongs 51. Fluid coupler housing 32 may include retainer detents 52 configured to receive retainer prongs 51 of retainer 50 and secure unitary valve 40 inside bore 42 of fluid coupler housing 32.
Coupler housings 32 may include a barb 54 positioned near one end of each coupler housing and configured to aid in retaining a press fit tube that has been pressed onto the coupler housing. Each housing may also include a flange 56 configured to limit the distance that a press fit tube may extend over coupler housing 32. A tube is fully press fit when the end of the tube abuts flange 56. In the depicted embodiment, the tube seals off retainer detents 52 preventing fluid from escaping from these openings. It will be understood that this sealing function may not occur if detents 52 do not open up to the outside of housing 32.
As depicted in
In the coupled fluid coupler of
As noted above, stabilizer 45 includes a series of radial fins extending radically from a central region. Stabilizer 45 includes a plurality of valve guides 60 positioned on the ends of fins and configured to engage the interior wall of bore 42 in coupler housing 32. Engaging the interior wall of bore 42 in coupler housing 32 provides an alignment function for unitary valve 40. The geometry of stabilizer 45 may be configured to provide a stabilizing function to the unitary valve, while minimizing the interference with fluid flow when the valve assembly is open.
In the depicted embodiment biasing member 44 of unitary valve 40 is a ribbon spring. Each ribbon spring may include a set of compression limits 62. Compression limits 62 prevent either one of the ribbon springs in a coupler from being over compressed preventing the opposing valve from opening. For example, if one ribbon spring is less stiff than the opposing spring it will bottoms out on compression limits 62 first and the other spring will begin to compress as housings 34 and 36 are pressed further together. In this way, the other valve will fully unseat and open a flow path before male housing 34 is completely inserted into female housing 36. Other configurations for biasing member 44 may be used including a coil type spring, an elastic member, or other structure capable of biasing the unitary valve.
Unitary valve 40 may be inserted into bore 42 in a tube-attaching end 63 of coupler housing 32. When unitary valve 40 is fully inserted and the ribbon spring preloaded, retainer detents 52, positioned close to tube-attaching end 63, may be configured to receive retainer prong 51 extending from retainer 50. This configuration holds the unitary valve in place inside the coupler housing. This process applies to both the male coupler housing and the female coupler housing.
For example, a misalignment that causes two of the valve guides 60 to contact bore 42 of the coupler housing can occur simultaneously with the surface of valve seat 46 fully engaging housing seat 43, as illustrated in
In some embodiments, the Male Fluid Coupler 1110 may couple with the Female Fluid Coupler 1130 and decoupled indefinitely through pushing the couplers together and pulling them apart. In some alternative embodiments, the coupling of the Male Fluid Coupler 1110 and the Female Fluid Coupler 1130 may require torsional force or oblique forces to couple or decouple.
As the Male Fluid Coupler 1110 and the Female Fluid Coupler 1130 slide further together, the Valve Stem 1321 of each coupler housing engage one another causing two Biasing Members 1124 and 1134 to compress. Compressing Biasing Members 1124 and 1134 permits the rest of Unitary Valves 1122 and 1132 to slide away from the coupling ends of coupling housings. As each Unitary Valve 1122 and 1132 slides away from the coupling end of coupling housings, Seals 1123 and 1133 separate from the Male Fluid Coupler Housing Top 1111 and Annulus 1144, respectively, opening a path for fluid to flow through. As stated earlier, the Seal 1121 seals the two housings prior to either unitary valve opening.
In some embodiments, Valve Stem 1321 includes an X-shaped cross section, which allows opposed valve stems to engage as intended with an increased amount of misalignment between the opposed valve stems while maintaining an adequate flow passage. Alternatively, in some embodiments other shapes of Valve Stem 1321 may be employed.
In some embodiments, Top Alignment Fins 1322 include a plurality of valve guides positioned on the ends of fins and configured to engage the interior wall of the cavity in coupler housing. Engaging the interior wall of cavity in coupler housing provides an alignment function for each Unitary Valve 1122 and 1132. The geometry of top alignment fins may be configured to provide a stabilizing function to each Unitary Valve 1122 and 1132, while minimizing the interference with fluid flow when the valve assembly is open.
The range of movement of each Biasing Members 1124 and 1134 of each Unitary Valve 1122 and 1132, respectively, is restricted in a predetermined range. Such restrictions prevent either one of the Biasing Members 1124 and 1134 in a coupler from being over compressed, preventing the opposing Unitary Valve 1122 or 1132 from opening. For example, if one biasing member is less stiff than the opposing biasing member, the enlarged portion of the top alignment fins will bottom out against either the Annulus 1144, or the narrow Bottom Opening 1215 of the Male Fluid Coupler Housing Top 1111, causing the stiffer biasing member to compress as Male Fluid Coupler 1110 and the Female Fluid Coupler 1130 are pressed further together. In this way, the other valve will fully unseat and open a flow path before Male Fluid Coupler 1110 is completely inserted into the Female Fluid Coupler 1130.
The Unitary Valve 1122 rests upon the top base of the Biasing Member 1124. The Seal 1123 encircles the Unitary Valve 1122 by resting within the groove of the Unitary Valve 1122. In some embodiments, the bottom alignment fins of the Unitary Valve 1122 may rest within the resistive coils of the Biasing Member 1124 to ensure proper alignment of the Unitary Valve 1122 in relation to the Biasing Member 1124. In some embodiments, the regions around the groove of the Unitary Valve 1122 may be enlarged as to prevent the Unitary Valve 1122 from slipping below the top base of the Biasing Member 1124 and into the resistive coils.
In some embodiments, the Unitary Valve 1122 remains in the space created by the coupling of the Male Fluid Coupler Housing Top 1111 and the Male Fluid Coupler Housing Bottom 1112. In some embodiments, the Bottom of the Male Fluid Coupler Housing Top 1111 may be narrower and tapered than the rest of the cavity. Moreover, the enlargement of the top alignment fins of the Unitary Valve 1122 prevents the movement of the Unitary Valve 1122 further into the cavity of Male Fluid Coupler Housing Bottom 1112. Likewise, the enlarged groove of the Unitary Valve 1122 may prevent the Unitary Valve 1122 from extending too far into the cavity of the Male Fluid Coupler Housing Top 1111. Therefore, the Unitary Valve 1122 may slide longitudinally within the space created by the coupling of the Male Fluid Coupler Housing Top 1111 and the Male Fluid Coupler Housing Bottom 1112 with a predetermined and restrictive manner. The top alignment fins of the Unitary Valve 1122 may stabilize said movement of the Unitary Valve 1122.
In some embodiments, the Male Fluid Coupler 1110 may be assembled as to apply a longitudinally compressive force upon the Biasing Member 1124. As a result the resistive coils may apply upward pressure upon the Unitary Valve 1122, thus pushing the Unitary Valve 1122 upward and forcing the Seal 1123 encircling the Unitary Valve 1122 to come into contact with the tapered and narrower bottom opening of the Male Fluid Coupler Housing Top 1111. In doing so, the cavity is effectively blocked by the Unitary Valve 1122 and Seal 1123, thereby preventing fluid flow through the Male Fluid Coupler 1110.
In some embodiments, the Female Fluid Coupler 1130 may include a Receptacle 1141 on one end of its central cavity, and a Flow Valve 1143 on the opposite end of the central cavity. Under select circumstances, fluid may flow through the central cavity from the Receptacle 1141 end to the Flow Valve 1143. The Receptacle 1141 may be configured to receive the Male Fluid Coupler 1110. The Flow Valve 1143 may prevent backflow of the fluid through the Female Fluid Coupler 1130.
In some embodiments, the Female Fluid Coupler 1130 includes a Female Fluid Coupler Housing 1131, a Unitary Valve 1132, a Biasing Member 1134, a Seal 1133 and an Annulus 1144. Fluid Coupler Housing 1131 may be encircled by Barbs 1142, providing purchase for coupling of tubing to the Fluid Coupler Housing 1131. Tubing may be plastic, metal or alternate suitable material. Alternatively, in some embodiments, other methods of coupling tubing to the Female Fluid Coupler Housing 1131 may be utilized, such as glue, compression coupling or welding. Much like the Male Fluid Coupler 1110, in some embodiments, the Annulus 1144 may be screwed into the Female Fluid Coupler Housing 1131. The Biasing Member 1134 may sit within the Female Fluid Coupler Housing 1131, wherein the base of the Biasing Member 1134 rests on a constriction of the Female Fluid Coupler Housing 1131. Such an embodiment enables the Biasing Member 1134 to be compressed, without the Biasing Member 1134 slipping out of the Female Fluid Coupler Housing 1131 through the bottom opening of the Female Fluid Coupler Housing 1131.
The Unitary Valve 1132 rests upon the top of the Biasing Member 1134. The Seal 1133 encircles the Unitary Valve 1132 by resting within a groove of the Unitary Valve 1132. In some embodiments, the Unitary Valve 1132, Biasing Member 1134, and Seal 1133 may be identical to the Unitary Valve 1122, Biasing Member 1124, and Seal 1123 found in the Male Fluid Coupler 1110, for ease of manufacturing. Alternatively, different geometries or materials may be utilized to effectuate distinct purposes.
In some embodiments, the bottom alignment fins of the Unitary Valve 1132 may rest within the resistive coils of the Biasing Member 1134 to ensure proper alignment of the Unitary Valve 1132 in relation to the Biasing Member 1134. In some embodiments, the regions around the groove of the Unitary Valve 1132 may be enlarged as to prevent the Unitary Valve 1132 from slipping into the Biasing Member 1134.
In some embodiments, the Unitary Valve 1132 remains in the space created by the coupling of the Female Fluid Coupler Housing 1131 and the Annulus 1144. The Annulus 1144 may be narrower and more tapered than the cavity of the Female Fluid Coupler Housing 1131. The enlargement of the top alignment fins of the Unitary Valve 1132 prevents the movement of the Unitary Valve 1132 further into the cavity of Female Fluid Coupler Housing 1131. Likewise, the enlarged groove of the Unitary Valve 1132 may prevent the Unitary Valve 1132 from extending too far above the Annulus 1144. Therefore, the Unitary Valve 1132 may slide longitudinally within the space created by the coupling of the Annulus 1144 and the Female Fluid Coupler Housing 1131, within a predetermined and restrictive manner. The top alignment fins of the Unitary Valve 1132 may stabilize said movement of the Unitary Valve 1132.
In some embodiments, the Female Fluid Coupler 1130 may be assembled as to apply a longitudinally compressive force upon the Biasing Member 1134. As a result the Biasing Member 1134 may apply upward pressure upon the Unitary Valve 1132, thus pushing the Unitary Valve 1132 upward and forcing the Seal 1133 encircling the Unitary Valve 1132 to come into contact with the tapered and narrower Annulus 1144. In doing so, the cavity of the Female Fluid Coupler 1130 is effectively blocked by the Unitary Valve 1132 and Seal 1133, thereby preventing fluid flow through the Female Fluid Coupler 1130.
The Male Fluid Coupler Housing Top 1111 includes a Top Opening 1211, which enabled fluid to flow through the center of the Male Fluid Coupler Housing Top 1111 to the Bottom Opening 1215 through a cavity. In some embodiments, the Bottom Opening 1215 may be narrower and tapered than the rest of the cavity. Additionally, in some embodiments, an Outer Ridge 1212 and an Inner Ridge 1213 may encircle the circumference of the Male Fluid Coupler Housing Top 1111. A groove may exist between the Outer Ridge 1212 and the Inner Ridge 1213. The base of the Male Fluid Coupler Housing Top 1111 may include helical Threads 1214 for coupling the Male Fluid Coupler Housing Top 1111 to the remainder of the male fluid coupler housing. Alternatively, in some embodiments, other fastening methods, such as welding, compression fitting or glue may be utilized to attach the Male Fluid Coupler Housing Top 1111 to the remainder of the male fluid coupler housing.
The Male Fluid Coupler Housing Bottom 1112 may include a Top Opening 1221 which enabled fluid to flow through the center of the Male Fluid Coupler Housing Bottom 1112 to the Bottom Opening 1225 through a cavity. The Top Opening 1221 may include helical threading for receiving the Male Fluid Coupler Housing Top 1111. As stated earlier, other fastening methods, such as welding, compression fitting or glue may be utilized to attach the Male Fluid Coupler Housing Top 1111 to the Male Fluid Coupler Housing Bottom 1112.
In some embodiments, a Ridge 1222 may encircle the circumference of the Male Fluid Coupler Housing Bottom 1112. Additionally, in some embodiments, one or more wedge shaped ridges, or Barbs 1223, may encircle the circumference of the Male Fluid Coupler Housing Bottom 1112 providing purchase for coupling of tubing to the Fluid Coupler Housing Bottom 1112. Tubing may be plastic, metal or alternate suitable material. Alternatively, in some embodiments, other methods of coupling tubing to the Male Fluid Coupler Housing Bottom 1112 may be utilized, such as glue, compression coupling or welding.
In some embodiments, the interior cavity of the Male Fluid Coupler Housing Bottom 1112 may narrow at a Constriction 1224. Such a Constriction 1224 may be utilized to restrain a Biasing Member 1124 within the male fluid coupler housing.
The Biasing Member 1124 may be a helical spring, ribbon spring, piston or any other member capable of exerting force. Additionally, in some embodiments, the Biasing Member 1124 may include a metal, plastic or any other suitable material. In some embodiments, the Biasing Member 1124 may include Bases 1341 and 1343. Resistive Coils 1342 of the Biasing Member 1124 may exert an outward longitudinal force against the Bases 1341 and 1343 when under a compressive force.
The Unitary Valve 1122 may include a Valve Stem 1321. Top Alignment Fins 1322 and Bottom Alignment Fins 1324 are coupled to the Valve Stem 1321 to ensure that the Unitary Valve 1122 remains stable within the coupler housing. Additionally, in some embodiments, a Groove 1323 may exist between the Top Alignment Fins 1322 and Bottom Alignment Fins 1324.
It will be understood that in the illustrated embodiment both Quick-Release Connectors 1410 and 1450 may be used to attach to either Object Fitting 1410 or Source Fitting 1460. Other embodiments of the present invention may have Quick-Release Connectors 1410 and 1450 that may be fitting specific. For example, a quick-release connector configured to attach to Object Fitting 1410 may not connect to Source Fitting 1460 and vice versa. This may be desirable for enabling the use of a contrast therapy fluid supply with a variety of therapy wraps and pads that may have different types and or sizes of object fittings.
The Object Fitting 1410 may include a Housing 1411, Fluid Channels 1412, a Female Fluid Coupler 1130a and Male Fluid Coupler 1110a. The Fluid Channels 1412 may include plastic or rubber tubing, or may be integrated into the Housing 1411. The Housing 1411 may be injection molded, carved, compacted with sintering, rotational molded, thermoformed, or any other suitable manufacturing process. Additionally, the Housing 1411 may be plastic, metal, ceramic, wood or any other suitable material.
The Object Fitting 1410 may be coupled with the Quick-Release Connector 1430 along the illustrated Path 1420. The Quick-Release Connector 1430 includes a Housing 1431, Fluid Channels 1442, a Female Fluid Coupler 1130b and Male Fluid Coupler 1110b. It may be seen that the Female Fluid Coupler 1130b engages the Male Fluid Coupler 1110a located on the Object Fitting 1410; and likewise, the Male Fluid Coupler 1110b is engaged by the Female Fluid Coupler 1130a located on the Object Fitting 1410. Such a coupling arrangement ensures proper fitting and correct fluid directional flow. The Housing 1431 may be injection molded, carved, compacted with sintering, rotational molded, thermoformed, or any other suitable manufacturing process. Additionally, the Housing 1431 may be plastic, metal, ceramic, wood or any other suitable material.
The Fluid Channels 1442 may include plastic or rubber tubing, or may be integrated into the Housing 1431. The Fluid Channels 1442 may exit the Housing 1431 and extend any desired distance, as illustrated at 1441. Tube Set 1440 includes the Fluid Channels 1442, extending along 1441. In the Tube Set 1440, the Fluid Channels 1442 may be fused together, or may be surrounded by a common sheath, as to minimize the possibility of tangles and general visual clutter.
The Fluid Channels 1442 enter the Quick-Release Connector 1450. The Quick-Release Connector 1450 includes a Housing 1451, Fluid Channels 1442, a female fluid coupler and male fluid coupler. The female fluid coupler and male fluid coupler may be seen engaging their complementary male fluid coupler and female fluid coupler, respectively, located in the Source Fitting 1460, resulting in Joined Fluid Couplers 1100. The Housing 1451 may be injection molded, carved, compacted with sintering, rotational molded, thermoformed, or any other suitable manufacturing process. Additionally, the Housing 1451 may be plastic, metal, ceramic, wood or any other suitable material. Moreover, the Fluid Channels 1442 may include plastic or rubber tubing, or may be integrated into the Housing 1451.
Although the present invention has been described in considerable detail with reference to exemplary embodiments, modifications and variations may be made to the disclosed embodiments while remaining within the subject and spirit of the invention. Therefore, the spirit and scope of the appended claims should not be limited to the description of the versions contained herein.
This is a continuation-in-part of U.S. application Ser. No. 10/326,714 filed on Dec. 19, 2002, now U.S. Pat. No. 7,191,798, and entitled “Fluid Circuit Connector System”, which is hereby fully incorporated by reference.
Number | Name | Date | Kind |
---|---|---|---|
26663 | French | Jan 1860 | A |
128220 | Gardner et al. | Jun 1872 | A |
267435 | Leiter | Nov 1882 | A |
301931 | Smith et al. | Jul 1884 | A |
430721 | Winkler | Jun 1890 | A |
691270 | Jones | Jan 1902 | A |
787920 | Hofmann | Apr 1905 | A |
889964 | Powell | Sep 1908 | A |
1817277 | Uhlig | Aug 1931 | A |
2322449 | Johnson et al. | Jun 1943 | A |
2451218 | Hengst | Oct 1948 | A |
2504569 | Murphy et al. | Apr 1950 | A |
2518299 | Fernandez | Aug 1950 | A |
2666656 | Bruning | Jan 1954 | A |
2726658 | Chessey | Dec 1955 | A |
2773531 | La Verne Johnson | Dec 1956 | A |
2896977 | Hansen | Jul 1959 | A |
2911974 | Spence | Nov 1959 | A |
3132688 | Nowak | May 1964 | A |
3140365 | Voland | Jul 1964 | A |
3191972 | Collar | Jun 1965 | A |
3283780 | Sutton | Nov 1966 | A |
3284842 | Jennings, Jr. | Nov 1966 | A |
3460801 | Norton | Aug 1969 | A |
3548819 | Davis et al. | Dec 1970 | A |
3556470 | Ehrens et al. | Jan 1971 | A |
3586048 | Arnold | Jun 1971 | A |
3612059 | Ersek | Oct 1971 | A |
3648765 | Starr | Mar 1972 | A |
3683902 | Artemenko et al. | Aug 1972 | A |
3687161 | Grguric et al. | Aug 1972 | A |
3744555 | Fletcher et al. | Jul 1973 | A |
3788348 | Johnson | Jan 1974 | A |
3869871 | Rybalko et al. | Mar 1975 | A |
3871381 | Roslonski | Mar 1975 | A |
3886936 | Wehrenberg | Jun 1975 | A |
3901225 | Sconce | Aug 1975 | A |
3916929 | Brown | Nov 1975 | A |
3993053 | Grossan | Nov 1976 | A |
3995621 | Fletcher et al. | Dec 1976 | A |
4099522 | Alenares | Jul 1978 | A |
4149529 | Copeland et al. | Apr 1979 | A |
4149541 | Gammons et al. | Apr 1979 | A |
4184537 | Sauder | Jan 1980 | A |
4196772 | Adamski et al. | Apr 1980 | A |
4200121 | Walter et al. | Apr 1980 | A |
4273290 | Quinn | Jun 1981 | A |
4338944 | Arkans | Jul 1982 | A |
4459468 | Bailey | Jul 1984 | A |
4552132 | Ruscigno | Nov 1985 | A |
4587959 | Ruderian | May 1986 | A |
4669476 | Gordon et al. | Jun 1987 | A |
4691762 | Elkins et al. | Sep 1987 | A |
4703957 | Blenkush | Nov 1987 | A |
4733692 | Kotake et al. | Mar 1988 | A |
4823651 | England | Apr 1989 | A |
4844072 | French et al. | Jul 1989 | A |
4846176 | Golden | Jul 1989 | A |
4877181 | Stewart | Oct 1989 | A |
4910978 | Gordon et al. | Mar 1990 | A |
4913316 | Richter | Apr 1990 | A |
4962761 | Golden | Oct 1990 | A |
4989790 | Martin et al. | Feb 1991 | A |
5013013 | Spedding | May 1991 | A |
5038852 | Johnson et al. | Aug 1991 | A |
5051562 | Bailey et al. | Sep 1991 | A |
5072875 | Zacoi | Dec 1991 | A |
5077980 | Weber | Jan 1992 | A |
5080089 | Mason et al. | Jan 1992 | A |
5086771 | Molloy | Feb 1992 | A |
5143064 | Cochran | Sep 1992 | A |
D331115 | Stout | Nov 1992 | S |
D333350 | Redira, Jr. | Feb 1993 | S |
5183039 | Sarian et al. | Feb 1993 | A |
5230335 | Johnson, Jr. et al. | Jul 1993 | A |
5232020 | Mason et al. | Aug 1993 | A |
5234166 | Foster et al. | Aug 1993 | A |
D344343 | McNew | Feb 1994 | S |
5314455 | Johnson, Jr. et al. | May 1994 | A |
5316041 | Ramacier, Jr. et al. | May 1994 | A |
5324318 | Smith | Jun 1994 | A |
5324319 | Mason et al. | Jun 1994 | A |
5330519 | Mason et al. | Jul 1994 | A |
5344436 | Fontenot et al. | Sep 1994 | A |
5368234 | Foster et al. | Nov 1994 | A |
5372608 | Johnson | Dec 1994 | A |
5383919 | Kelly et al. | Jan 1995 | A |
5386823 | Chen | Feb 1995 | A |
D358216 | Dye | May 1995 | S |
5411541 | Bell et al. | May 1995 | A |
5417720 | Mason | May 1995 | A |
5433083 | Kuramarohit | Jul 1995 | A |
5439473 | Jorgensen | Aug 1995 | A |
5441533 | Johnson et al. | Aug 1995 | A |
5449379 | Hadtke | Sep 1995 | A |
5456701 | Stout | Oct 1995 | A |
5466250 | Johnson, Jr. et al. | Nov 1995 | A |
5466251 | Brunson et al. | Nov 1995 | A |
5476489 | Koewler | Dec 1995 | A |
5486207 | Mahawili | Jan 1996 | A |
5499766 | Foster et al. | Mar 1996 | A |
5507792 | Mason et al. | Apr 1996 | A |
D369866 | Baughn | May 1996 | S |
5555579 | Wu | Sep 1996 | A |
5562604 | Yablon et al. | Oct 1996 | A |
5603728 | Pachys | Feb 1997 | A |
5617811 | Johnson | Apr 1997 | A |
5647051 | Neer | Jul 1997 | A |
5662695 | Mason et al. | Sep 1997 | A |
5668565 | Robinson | Sep 1997 | A |
5711155 | DeVilbiss et al. | Jan 1998 | A |
RE35744 | Foster et al. | Mar 1998 | E |
D393719 | Nichols | Apr 1998 | S |
5741220 | Brink | Apr 1998 | A |
5755275 | Rose et al. | May 1998 | A |
5755733 | Morita | May 1998 | A |
5755755 | Panyard | May 1998 | A |
5865841 | Kolen et al. | Feb 1999 | A |
5891188 | Maytal | Apr 1999 | A |
5894615 | Alexander | Apr 1999 | A |
5904291 | Knapp | May 1999 | A |
5968072 | Hite et al. | Oct 1999 | A |
6050297 | Ostrowski et al. | Apr 2000 | A |
6117164 | Gildersleeve et al. | Sep 2000 | A |
6149617 | McNally et al. | Nov 2000 | A |
6270055 | Szeteli et al. | Aug 2001 | B1 |
6295819 | Mathiprakasam et al. | Oct 2001 | B1 |
6299626 | Viranyi | Oct 2001 | B1 |
6352550 | Gildersleeve et al. | Mar 2002 | B1 |
6440159 | Edwards et al. | Aug 2002 | B1 |
6551347 | Elkins | Apr 2003 | B1 |
6699267 | Voorhees et al. | Mar 2004 | B2 |
6827728 | Ellingboe et al. | Dec 2004 | B2 |
6957697 | Chambers | Oct 2005 | B2 |
7000682 | Chambers | Feb 2006 | B2 |
7191798 | Edelman et al. | Mar 2007 | B2 |
7211104 | Edelman | May 2007 | B2 |
20010018604 | Elkins | Aug 2001 | A1 |
20010039439 | Elkins et al. | Nov 2001 | A1 |
20020019657 | Elkins | Feb 2002 | A1 |
20020026226 | Ein | Feb 2002 | A1 |
20020032473 | Kushnir et al. | Mar 2002 | A1 |
20040068310 | Edelman | Apr 2004 | A1 |
Number | Date | Country |
---|---|---|
3343664 | Mar 1985 | DE |
3410413 | Oct 1985 | DE |
2 175 496 | Dec 1986 | GB |
246899 | Mar 1926 | IT |
577-350 | Oct 1977 | SU |
Number | Date | Country | |
---|---|---|---|
Parent | 10326714 | Dec 2002 | US |
Child | 11676921 | US |