In one aspect, the present disclosure relates to noise attenuation and dampening systems and methods for hydraulic fracturing and, in particular, to systems and methods for dampening and directional control of exhaust air flow from a gas turbine of a direct drive turbine fracturing system.
The present disclosure relates generally to a mobile fracking system and, more particularly, to a gas turbine-based mobile fracking system that may provide mechanical power through gearboxes connected to respective gas turbines and respective mechanically driven fluid pumps in a fracturing operation (also referable to as “fracking”). Such a mobile fracking system may include a plurality of such directly driven turbine (DDT) fracturing units for use in well stimulation and hydraulic fracturing operations. In addition to offering potential efficiency advantages compared to diesel fleets or electric fleets, DDT fracturing units may offer flexibility in operating on a wide variety of fuel compositions, while also providing improved reliability, lower emissions and/or smaller foot prints.
In a fracturing operation, a fluid mixture is injected under pressure at a wellbore into a rock formation that bears hydrocarbon to create fractures within a rock. In operation, the pressurized fluid mixture is pressure pumped down to fracture the subsurface geological formation and allows the flow of the hydrocarbon reserves, such as oil and/or gas. The fluid mixture may include water, various chemical additives, and proppants (e.g., sand, ceramic materials, and the like as will be understood by those skilled in the art). For example, and without limitation, the fracturing fluid may comprise a liquid petroleum gas, linear gelled water, gelled water, gelled oil, slick water, slick oil, poly emulsion, foam/emulsion, liquid carbon dioxide (CO2), nitrogen gas (N2), and/or binary fluid and acid.
Mechanical power may be generated by the DDT fracturing units and used to deliver fracturing fluid through mechanically connected fluid pumps to a wellbore at the fracturing operation site. Surface pumping systems including fluid pumps are utilized to accommodate the various fluids and are typically mobilized at well sites on, for example, skids or tractor-trailers. In one conventional example, dedicated sources of power may include gas turbines connected to a source of natural gas that drives the respective gas turbine to produce mechanical power that may be sent to one or more of the surface pumping systems through mechanically connected gearboxes and/or transmission systems to operate the fluid pumps at desired speeds.
The fracturing operation site often encompasses a large footprint with the number of wells or wellheads and supporting components. The supporting components take time to be transported and to be setup for utilization at the fracturing operation sites. Due to the large nature of many fracturing operations, there exists a continued challenge to reduce the environmental impact resulting from fracturing operations. Accordingly, there exists a need for methods and systems for reducing the environmental impact of noise pollution produced by the fracturing operations.
As referenced above, a fracturing operation may include a large number of gas turbines operating substantially concurrently. As a result, an undesirably large amount of noise may be generated by the fracturing operation.
The present disclosure is generally directed to systems and methods for dampening and directional control of exhaust air flow from a gas turbine of, for example, a direct drive turbine fracturing system. According to some embodiments, a mobile fracking system may include a trailer including a rear end, a front end, a bottom end, and a top end defining therebetween an interior space, a gas turbine housed inside the trailer in the interior space, and an exhaust attenuation system configured to receive exhaust gas from the gas turbine via an exhaust duct. The exhaust attenuation system may be attached to a portion of the trailer and may include a lower elongated plenum having an inlet adjacent the proximal end configured to receive exhaust gas from the gas turbine exhaust duct of the gas turbine and an upper noise attenuation system that is movably connected relative to the distal end of the lower elongated plenum. The upper noise attenuation system may be selectively movable between a stowed position, in which an outlet end portion of the upper noise attenuation system is positioned proximate to the distal end of the lower elongated plenum, and an operative position, in which the upper noise attenuation system defines an upper elongated plenum in fluid communication with the distal end of the lower elongated plenum and in which an outlet of the upper noise elongated plenum is spaced away from the distal end of the lower elongated plenum at a second distance that is greater than the first distance.
According to some embodiments, the upper noise attenuation system may include a pair of opposed and cooperating silencer hoods. In such embodiments, each silencer hood may have a planer surface having opposed side edges and a pair of opposing side surfaces that extend outwardly from portions of the respective side edges of the planer surface. Each silencer hood may be configured to be hingeably mounted to portions of a distal end of the lower elongated plenum such that, in the operative position, the pair of opposed silencer hoods are positioned substantially upright, so that the planer surfaces of the respective back edges are in parallel opposition and so that the respective side surface are also in parallel opposition to form the upper elongated plenum.
According to some embodiments, the upper noise attenuation system may optionally include an elongated conduit that has an exterior that is shaped and sized for complementary receipt therein a distal portion of the lower elongated plenum. In such embodiments, in the stowed position, the elongated conduit may be positioned substantially in the lower elongated plenum, such that an outlet end of the elongated conduit is positioned proximate to the distal end of the lower elongated plenum. In the operative position, the elongated conduit may be selectively movable along and about an exhaust axis outwardly away from the distal end of the lower elongated plenum, such that a proximal end of the elongated conduit is positioned proximate the distal end of the lower elongated plenum and the outlet end of the elongated conduit forms the outlet of the upper elongated plenum.
Still other aspects, embodiments, and advantages of these exemplary aspects and embodiments, are discussed in detail below. Moreover, it is to be understood that both the foregoing information and the following detailed description are merely illustrative examples of various aspects and embodiments, and are intended to provide an overview or framework for understanding the nature and character of the claimed aspects and embodiments. Accordingly, these and other objects, along with advantages and features of the present disclosure herein disclosed, will become apparent through reference to the following description and the accompanying drawings. Furthermore, it is to be understood that the features of the various embodiments described herein are not mutually exclusive and may exist in various combinations and permutations.
The accompanying drawings, which are included to provide a further understanding of the embodiments of the present disclosure, are incorporated in and constitute a part of this specification, illustrate embodiments of the present disclosure, and together with the detailed description, serve to explain the principles of the embodiments discussed herein. No attempt is made to show structural details of this disclosure in more detail than may be necessary for a fundamental understanding of the exemplary embodiments discussed herein and the various ways in which they may be practiced. According to common practice, the various features of the drawings discussed below are not necessarily drawn to scale. Dimensions of various features and elements in the drawings may be expanded or reduced to more clearly illustrate the embodiments of the disclosure.
Referring now to the drawings in which like numerals indicate like parts throughout the several views, the following description is provided as an enabling teaching of exemplary embodiments, and those skilled in the relevant art will recognize that many changes may be made to the embodiments described. It also will be apparent that some of the desired benefits of the embodiments described may be obtained by selecting some of the features of the embodiments without utilizing other features. Accordingly, those skilled in the art will recognize that many modifications and adaptations to the embodiments described are possible and may even be desirable in certain circumstances, and are a part of the disclosure. Thus, the following description is provided as illustrative of the principles of the embodiments and not in limitation thereof.
The phraseology and terminology used herein is for the purpose of description and should not be regarded as limiting. As used herein, the term “plurality” refers to two or more items or components. The terms “comprising,” “including,” “carrying,” “having,” “containing,” and “involving,” whether in the written description or the claims and the like, are open-ended terms, i.e., to mean “including but not limited to.” Thus, the use of such terms is meant to encompass the items listed thereafter, and equivalents thereof, as well as additional items. Only the transitional phrases “consisting of” and “consisting essentially of,” are closed or semi-closed transitional phrases, respectively, with respect to any claims. Use of ordinal terms such as “first,” “second,” “third,” and the like in the claims to modify a claim element does not by itself connote any priority, precedence, or order of one claim element over another or the temporal order in which acts of a method are performed, but are used merely as labels to distinguish one claim element having a certain name from another element having a same name (but for use of the ordinal term) to distinguish claim elements.
As used herein, the term “trailer” refers to any transportation assembly, including, but not limited to, a transport, truck, skid, and/or barge used to transport relatively heavy structures, such as fracturing equipment.
As used herein, the term “directly driven turbine” DDT refers to both the gas turbine and the mechanical energy transport sections of a directly driven turbine fracturing unit. The gas turbine receives hydrocarbon fuel, such as natural gas, and converts the hydrocarbon fuel into mechanical energy that is mechanically transferred via a gearbox to at least one fluid pump. It is further contemplated that a gas turbine as described herein may be a gas fueled turbine, a dual-fuel turbine, and the like.
In one embodiment, a mobile fracking system 10 may include a trailer 12, a gas turbine 14, and an exhaust attenuation system 20 configured to receive exhaust gas from the gas turbine.
The trailer 12 may house at least one or more of the following equipment: (1) an inlet plenum; (2) the gas turbine 14; (3) the exhaust attenuation system 20 to remove exhaust gas from gas turbine into the atmosphere, (4) a gearbox and/or transmission 16 connected to a rotary output of the gas turbine, and (5) a fluid pump 18 operatively connected to the output of the gearbox. Other components not shown in
One skilled in the art will appreciate that the gas turbine 14 may be configured to generate mechanical energy (i.e., rotation of a shaft) from a hydrocarbon fuel source, such as natural gas, liquefied natural gas, condensate, and/or other liquid fuels. As schematically illustrated, the gas turbine shaft is connected to the gearbox such that the gearbox converts the supplied mechanical energy from the rotation of the gas turbine shaft to a downstream shaft assembly that is rotated at a desired speed and torque to the downstream mechanically connected fluid pump. The gas turbine may be a gas turbine, such as the GE family of gas turbines, the Pratt and Whitney family of gas turbines, or any other gas turbine and/or dual-fuel turbine that generates sufficient mechanical power for the production of the desired level of brake horsepower to the downstream fluid pump for fracking operations at one or more well sites.
The trailer 12 may also comprise gas turbine inlet filter(s) configured to provide ventilation air and combustion air via one or more inlet plenums (not shown) to the gas turbine. Additionally, enclosure ventilation inlets may be added to increase the amount of ventilation air, which may be used to cool the gas turbine and ventilate the gas turbine enclosure. The combustion air may be the air that is supplied to the gas turbine to aid in the production of mechanical energy. The inlet plenum may be configured to collect the intake air from the gas turbine inlet filter and supply the intake air to the gas turbine.
In one embodiment and referring to
It is contemplated that the exhaust attenuation system 20 will be constructed of materials that are capable of withstanding extreme temperatures, such as for example and without limitation, to about 1250° F. (676° C.), that are associated with exhaust gases exiting gas turbines.
In embodiments, the upper noise attenuation system 40 may be configured to be selectively movable between a stowed position and an operative, upright, position. In the stowed position, an outlet end portion 42 of the upper noise attenuation system is positioned proximate to the distal end of the lower elongated plenum, and, in the operative position, the upper noise attenuation system defines an upper elongated plenum 50 that is in fluid communication with the distal end of the lower elongated plenum. In this operative position, an outlet 52 of the upper noise elongated plenum is spaced away from the distal end of the lower elongated plenum at a second distance that is greater than the first distance. Further, it is contemplated that the upper noise attenuation system, in the operative position, may extend longitudinally away from the distal end of the lower elongated plenum about the exhaust axis.
The mobile fracking system affects a reduction in sound emission by increasing the effective length of the gas turbine exhaust stack. Attenuation of rectangular duct in the 63 Hz to 250 Hz octave frequency bands may be expressed as:
For example, and without limitation, and taken from Table 1 above, proposed exhaust system may affect a 40% increase in sound attenuation and a maximum in 1.2 dB in sound pressure by selective operative increase in the elongate length of the exhaust plenum from 16.1 ft. to 22.6 ft.
In embodiments, the mobile fracking system 10 may include a first plenum 22 configured to receive exhaust gas from the gas turbine. In this aspect, a first end of the first plenum is connected to, and in fluid communication with, an exhaust outlet of the gas turbine and a second end of the first plenum connected to, and in fluid communication with, the inlet of the lower elongated plenum. For example, the gas turbine may be mounted to or otherwise supported thereon the bottom surface of the trailer and the first plenum may extend longitudinally substantially parallel to the bottom surface.
Optionally, the upper noise attenuation system 40 may include at least one array of baffles 70 that are configured to attenuate noise. The array of baffles 70 may include a plurality of baffles 72 that are distributed parallel to a common axis and that define a plurality of slots 74 defined by and between the plurality of baffles. In one exemplary aspect, the at least one array of baffles 70 may be mounted therein a portion of the upper elongated plenum in communication with the exhaust gas passing therethrough the upper elongated plenum to the outlet to supplement the noise dampening capabilities of the noise attenuation system.
In embodiments and referring to
As exemplarily shown in the figures, the pair of opposed silencer hoods 46 may include an upper silencer hood 54 and a lower silencer hood 56 that are configured to cooperatively slideably engage relative to each other when moving therebetween the stowed position and the operative position. In this example, the respective opposed upper and lower silencer hoods may be opened in a sequential manner. First, the upper silencer hood may be raised independently from the lower silencer hood. As shown, an anchor point mounted on a back surface of the planar surface of the upper silencer hood proximate a bottom edge of the back surface may be connected to a wire that is operative connected to a spooling system that is configured for selective movement of the connected silencer hood between the stowed and operative positions. In operation, the spooling system is operated to open or otherwise urge the upper silencer hood to the operative position and may comprise a winch, such as, for example and without limitation, an electric winch, a hydraulic winch, a pneumatic winch, and the like. It is contemplated that, once the upper silencer hood is in the operative position, tension may be maintained on the wire to aid in maintaining the upper silencer hood in the operative position until the upper silencer hood is lowered to the stowed position for transport. Optionally, a mechanical limit switch on the spooling system that may be configured to determine distance the wire is required to move to open and close the respective silencer hoods 46.
Similarly, the lower silencer hood 56 may be raised independently from the upper silencer hood 54. As shown, an anchor point mounted on a back surface of the planar surface of the lower silencer hood proximate a bottom edge of the back surface may be connected to a wire that is operative connected to the spooling system. In operation, after the upper silencer hood is positioned in the operative position, the spooling system of the lower silencer hood may be operated to open or otherwise urge the lower silencer hood to the operative position. It is contemplated that, once the lower silencer hood is in the operative position, tension may be maintained on the wire to aid in maintaining the lower silencer hood in the operative position until the lower silencer hood is lowered to the stowed position for transport. In this example, the lower silencer hood would be lowered first in sequence when the respective opposed upper and lower silencer hoods are closed or otherwise moved to the stowed position.
As noted above, the respective upper and lower silencer hoods 54, 56 may be maneuvered to and about the operative and the stowed positions through the use of one or more actuators, such as linear actuators and/or rotary actuators, and in some embodiments, one or more cables and/or one or more mechanical linkages. In some embodiments, the one or more actuators may be electrically-actuated, pneumatically-actuated, and/or hydraulically-actuated (e.g., via hydraulic cylinders and/or hydraulic motors). For example, the respective upper and lower silencer hoods 54, 56 may be maneuvered to and about the operative and the stowed positions through the use of a spooling system comprising electrical, mechanical, and/or pneumatic winches that contain spooled wire that are connected to the anchor points strategically positioned on the respective upper and lower silencer hoods 54, 56.
Optionally, the exhaust attenuation system shown in
Similarly, the second pair of opposing retention braces 99 includes a third brace 100 spaced proximally from the first brace and mounted to exterior portions the lower elongated plenum and a fourth brace 102 spaced proximally from the first brace and mounted to an opposed exterior portions of the lower elongated plenum. In this aspect, each brace of the second pair of opposing retention braces includes a bar 95 extending between a first end mount 96 and an opposing second end mount 97 such that, when the respective first and second end mounts are positioned therein the lower elongated plenum, the bar is spaced from an exterior surface of the lower elongated plenum and defines a slot 98 that is sized and shaped for receipt of respective side surfaces of the pair of silencer hoods when the pair of silencer hoods is positioned in the stowed position.
In embodiments, the upper noise attenuation system 40 may include at least one array of baffles configured to attenuate noise that is mounted therein at least a portion of the planer surface of at least one or in each of the opposed silencer hoods.
In other embodiments and referring to
In this aspect, to operatively move or otherwise urge the elongated conduit 110 about and between the stowed and operative positions, the upper noise attenuation system 40 may include at least one guide 120 mounted to an exterior surface (e.g., at an upper end thereof) of the lower elongated plenum 30. As will be appreciated, the guide 120 may define an elongated enclosed slot extending parallel to the exhaust axis. A rod 122 having a distal end mounted to an outermost edge surface of the outlet end 112 of the elongated conduit 110 may be provided that is configured for operative slideably receipt therein the slot of the guide 120. To operatively move the rod 122 and thereby move the elongated conduit 110 relative to the lower elongated plenum 30, a means for selective axial movement of the rod 122 and thus for movement of the elongated conduit 110 may be provided for selective movement of the elongated conduit 110 between the stowed position (see, e.g.,
As illustrated in
In this embodiment, the upper noise attenuation system may include at least one array of baffles configured to attenuate noise that may be mounted therein an outlet end of the elongated conduit.
It is contemplated that the means for selective axial movement of the rod for selective movement of the elongated conduit 110 between the stowed position and the operative position of the elongated conduit 110 may comprise one or more actuators, such as linear actuators and/or rotary actuators, and in some embodiments, one or more cables and/or one or more mechanical linkages. In some embodiments, the one or more actuators may be electrically-actuated, pneumatically-actuated, and/or hydraulically-actuated (e.g., via hydraulic cylinders and/or hydraulic motors). For example, selective movement of the elongated conduit 110 between the stowed position and the operative position of the elongated conduit 110 may be provided by the spooling system described above. In this aspect, the spooling system may comprise electrical, mechanical, and/or pneumatic winches that contain spooled wire and that are configured to spool wire onto each drum via the pulleys to affect the axial movement of the rod.
Optionally, the exhaust attenuation system 20 may further comprise a supervisory control system that is configured to utilize a series of digital input and output signals that will result in the controlled operation of the upper noise attenuation system 40. In this aspect, the exhaust attenuation system 20 may comprise a plurality of positional feedback sensors in communication with the supervisory control system. The positional feedback sensors are operatively mounted to respective portions of the upper noise attenuation system 40 such that the sensors may actuate when the upper noise attenuation system 40 is positioned in the stowed position and when in the operative, upright, position.
Each positional feedback sensor may comprise, for example and without limitation, a digital proximity switch that is configured to actuate when the positional feedback sensor's electromagnetic detection field comes in contact with a portion of the metallic surface of the exhaust stack. Upon actuation, each digital proximity switch is configured to send a digital signal to the supervisory control system indicative of the position of the respective upper and lower silencer hoods 54, 56 or, optionally, the respective position of the elongated conduit 110 relative to the distal end of the lower elongated plenum.
Optionally, it is contemplated that the positional feedback sensor may be an analog position sensor that is configured to provide positional feedback to the supervisory control system of the positions of the respective upper and lower silencer hoods 54, 56 or, optionally, the respective position of the elongated conduit 110 relative to the distal end of the lower elongated plenum. In this exemplary aspect, the analog position sensor may be configured to transmit a scaled current or voltage signal that depending on the value allows the control system to identify the accurate position of the upper noise attenuation system 40. An exemplary analog position sensor, such as a Sick absolute encoder, models AFS/AFM60 SSI, would be suitable for this application.
The positional feedback sensors allow the operator to know the position of the respective upper and lower silencer hoods 54, 56 or, optionally, the respective position of the elongated conduit 110 relative to the distal end of the lower elongated plenum and to further allow for the protection of equipment on the gas turbine skid. For example, the supervisory control system may generate an interlock signal that would prohibit the ignition of the gas turbine engine upon receipt of a signal from the respective positional feedback sensors that indicates that the upper noise attenuation system 40 is in the closed position. Thus, the interlock signal preventing turbine operation into a sealed cavity prevents the possibility of serious damage to the turbine engine due to undesired backpressure.
In operational aspects, it is contemplated that the upper noise attenuation system 40 may be actuated to move between the stowed and operative positions by manual operation of a physical lever. In this aspect, and if the spooling system includes a pneumatic winch, the selective actuation of the manual level may allow for the flow of air to the pneumatic motor resulting in rotary motion at the winch. Optionally, if the spooling system includes a hydraulic winch, the selective actuation of the manual level may allow for the flow of hydraulic oil into the stator of the hydraulic motor to produce the desired rotary motion and torque to actuate the upper noise attenuation system 40. In a further, exemplary aspect, if the spooling system includes an electrical winch, a switching device may be provided that is configured to allow for the selective application of current to the electric winch motor. The switching device may exemplarily be in the form of a toggle switch that allows the electrical circuit to the motor to be completed upon actuation such that the electric motor performs the desired rotary motion.
In a further optional aspect, the supervisory control system of the exhaust attenuation system 20 may comprise a SCADA (supervisory control and data acquisition) system. Exemplarily, if pneumatic and/or hydraulic winches are used, a directional control valve with an electrical coil may be positioned between the respective pressurized sources of air or oil and the downstream pneumatic or hydraulic motors. Operationally, an operation signal transmitted or outputted to the directional control valve from the SCADA system upon operator input. In this aspect, the operation signal could be a PWM signal with reverse polarity. For example, when the operator pushes an input on a human machine interface, which is identified by the programmable logistical controller, and the necessary output operation signal is sent to the directional control valve that allows for proportional flow of the required air or oil media to the winch motor. Optionally, this methodology may also be used for an electrical winch but, in this aspect, the output operation signal would energize a relay that allows for low voltage, high current power to reach the electrical motor and perform the proportional operation function. It is contemplated that these actuation functions may be made fully autonomous by implementing a start-up sequence such that, when the operator selects to start the unit, a series of sequenced signal outputs are driven around the frac pump trailer that will verify that the exhaust attenuation system 20 is in the open, operative position, the auxiliary power is verified to be on line, the necessary safety and communication checks performed, and then the gas turbine is allowed to start. In this exemplary aspect, a single input to actuate the exhaust attenuation system 20 to move to the open, operative position may initiate the issuance of a series of outputs from the SCADA system, which may save the operator time and may reduce complexity of how to individually perform these sequential outputs.
This application is a continuation of U.S. Non-Provisional application Ser. No. 16/948,290, filed Sep. 11, 2020, titled “TURBINE ENGINE EXHAUST DUCT SYSTEM AND METHODS FOR NOISE DAMPENING AND ATTENUATION,” which claims priority to and the benefit of, U.S. Provisional Application No. 62/704,567, filed May 15, 2020, titled “TURBINE ENGINE EXHAUST DUCT SYSTEM FOR NOISE DAMPENING AND ATTENUATION,” and U.S. Provisional Application No. 62/899,957, filed Sep. 13, 2019, titled “TURBINE ENGINE EXHAUST DUCT SYSTEM FOR NOISE DAMPENING AND ATTENUATION,” the disclosures of both of which are incorporated herein by reference in their entireties.
Although only a few exemplary embodiments have been described in detail herein, those skilled in the art will readily appreciate that many modifications are possible in the exemplary embodiments without materially departing from the novel teachings and advantages of the embodiments of the present disclosure. Accordingly, all such modifications are intended to be included within the scope of the embodiments of the present disclosure as defined in the following claims.
This application is a continuation of U.S. Non-Provisional application Ser. No. 16/948,290, filed Sep. 11, 2020, titled “TURBINE ENGINE EXHAUST DUCT SYSTEM AND METHODS FOR NOISE DAMPENING AND ATTENUATION,” which claims priority to and the benefit of, U.S. Provisional Application No. 62/704,567, filed May 15, 2020, titled “TURBINE ENGINE EXHAUST DUCT SYSTEM FOR NOISE DAMPENING AND ATTENUATION,” and U.S. Provisional Application No. 62/899,957, filed Sep. 13, 2019, titled “TURBINE ENGINE EXHAUST DUCT SYSTEM FOR NOISE DAMPENING AND ATTENUATION,” the disclosures of both of which are incorporated herein by reference in their entireties.
Number | Name | Date | Kind |
---|---|---|---|
2498229 | Adler | Feb 1950 | A |
3191517 | Solzman | Jun 1965 | A |
3257031 | Dietz | Jun 1966 | A |
3378074 | Kiel | Apr 1968 | A |
3739872 | McNair | Jun 1973 | A |
3773438 | Hall et al. | Nov 1973 | A |
3791682 | Mitchell | Feb 1974 | A |
3796045 | Foster | Mar 1974 | A |
3820922 | Buse et al. | Jun 1974 | A |
4010613 | McInerney | Mar 1977 | A |
4031407 | Reed | Jun 1977 | A |
4086976 | Holm et al. | May 1978 | A |
4222229 | Uram | Sep 1980 | A |
4269569 | Hoover | May 1981 | A |
4311395 | Douthitt et al. | Jan 1982 | A |
4357027 | Zeitlow | Nov 1982 | A |
4402504 | Christian | Sep 1983 | A |
4457325 | Green | Jul 1984 | A |
4470771 | Hall et al. | Sep 1984 | A |
4483684 | Black | Nov 1984 | A |
4574880 | Handke | Mar 1986 | A |
4754607 | Mackay | Jul 1988 | A |
4782244 | Wakimoto | Nov 1988 | A |
4796777 | Keller | Jan 1989 | A |
4913625 | Gerlowski | Apr 1990 | A |
4983259 | Duncan | Jan 1991 | A |
4990058 | Eslinger | Feb 1991 | A |
5537813 | Davis et al. | Jul 1996 | A |
5553514 | Walkowc | Sep 1996 | A |
5560195 | Anderson et al. | Oct 1996 | A |
5622245 | Reik | Apr 1997 | A |
5651400 | Corts et al. | Jul 1997 | A |
5678460 | Walkowc | Oct 1997 | A |
5717172 | Griffin, Jr. et al. | Feb 1998 | A |
5983962 | Gerardot | Nov 1999 | A |
6041856 | Thrasher et al. | Mar 2000 | A |
6050080 | Horner | Apr 2000 | A |
6071188 | O'Neill et al. | Jun 2000 | A |
6123751 | Nelson et al. | Sep 2000 | A |
6129335 | Yokogi | Oct 2000 | A |
6145318 | Kaplan et al. | Nov 2000 | A |
6230481 | Jahr | May 2001 | B1 |
6279309 | Lawlor, II et al. | Aug 2001 | B1 |
6321860 | Reddoch | Nov 2001 | B1 |
6334746 | Nguyen et al. | Jan 2002 | B1 |
6530224 | Conchieri | Mar 2003 | B1 |
6543395 | Green | Apr 2003 | B2 |
6655922 | Flek | Dec 2003 | B1 |
6765304 | Baten et al. | Jul 2004 | B2 |
6786051 | Kristich et al. | Sep 2004 | B2 |
6851514 | Han et al. | Feb 2005 | B2 |
6859740 | Stephenson et al. | Feb 2005 | B2 |
6901735 | Lohn | Jun 2005 | B2 |
7065953 | Kopko | Jun 2006 | B1 |
7222015 | Davis et al. | May 2007 | B2 |
7388303 | Seiver | Jun 2008 | B2 |
7545130 | Latham | Jun 2009 | B2 |
7552903 | Dunn et al. | Jun 2009 | B2 |
7563076 | Brunet et al. | Jul 2009 | B2 |
7627416 | Batenburg et al. | Dec 2009 | B2 |
7677316 | Butler et al. | Mar 2010 | B2 |
7721521 | Kunkle et al. | May 2010 | B2 |
7730711 | Kunkle et al. | Jun 2010 | B2 |
7845413 | Shampine et al. | Dec 2010 | B2 |
7900724 | Promersberger et al. | Mar 2011 | B2 |
7921914 | Bruins et al. | Apr 2011 | B2 |
7938151 | Höckner | May 2011 | B2 |
7980357 | Edwards | Jul 2011 | B2 |
8083504 | Williams et al. | Dec 2011 | B2 |
8186334 | Ooyama | May 2012 | B2 |
8196555 | Ikeda et al. | Jun 2012 | B2 |
8316936 | Roddy et al. | Nov 2012 | B2 |
8414673 | Raje et al. | Apr 2013 | B2 |
8506267 | Gambier et al. | Aug 2013 | B2 |
8575873 | Peterson et al. | Nov 2013 | B2 |
8616005 | Cousino, Sr. et al. | Dec 2013 | B1 |
8621873 | Robertson et al. | Jan 2014 | B2 |
8672606 | Glynn et al. | Mar 2014 | B2 |
8714253 | Sherwood et al. | May 2014 | B2 |
8770329 | Spitler | Jul 2014 | B2 |
8789601 | Broussard et al. | Jul 2014 | B2 |
8794307 | Coquilleau et al. | Aug 2014 | B2 |
8801394 | Anderson | Aug 2014 | B2 |
8851441 | Acuna et al. | Oct 2014 | B2 |
8905056 | Kendrick | Dec 2014 | B2 |
8973560 | Krug | Mar 2015 | B2 |
8997904 | Cryer et al. | Apr 2015 | B2 |
9032620 | Frassinelli et al. | May 2015 | B2 |
9057247 | Kumar et al. | Jun 2015 | B2 |
9103193 | Coli et al. | Aug 2015 | B2 |
9121257 | Coli et al. | Sep 2015 | B2 |
9140110 | Coli et al. | Sep 2015 | B2 |
9187982 | Dehring et al. | Nov 2015 | B2 |
9212643 | Deliyski | Dec 2015 | B2 |
9341055 | Weightman et al. | May 2016 | B2 |
9346662 | Van Vliet et al. | May 2016 | B2 |
9366114 | Coli et al. | Jun 2016 | B2 |
9376786 | Numasawa | Jun 2016 | B2 |
9394829 | Cabeen et al. | Jul 2016 | B2 |
9395049 | Vicknair et al. | Jul 2016 | B2 |
9401670 | Minato et al. | Jul 2016 | B2 |
9410410 | Broussard et al. | Aug 2016 | B2 |
9410546 | Jaeger et al. | Aug 2016 | B2 |
9429078 | Crowe et al. | Aug 2016 | B1 |
9493997 | Liu et al. | Nov 2016 | B2 |
9512783 | Veilleux et al. | Dec 2016 | B2 |
9534473 | Morris et al. | Jan 2017 | B2 |
9546652 | Yin | Jan 2017 | B2 |
9550501 | Ledbetter | Jan 2017 | B2 |
9556721 | Jang et al. | Jan 2017 | B2 |
9562420 | Morris et al. | Feb 2017 | B2 |
9570945 | Fischer | Feb 2017 | B2 |
9579980 | Cryer et al. | Feb 2017 | B2 |
9587649 | Oehring | Mar 2017 | B2 |
9611728 | Oehring | Apr 2017 | B2 |
9617808 | Liu et al. | Apr 2017 | B2 |
9638101 | Crowe et al. | May 2017 | B1 |
9638194 | Wiegman et al. | May 2017 | B2 |
9650871 | Oehring et al. | May 2017 | B2 |
9656762 | Kamath et al. | May 2017 | B2 |
9689316 | Crom | Jun 2017 | B1 |
9739130 | Young | Aug 2017 | B2 |
9764266 | Carter | Sep 2017 | B1 |
9777748 | Lu et al. | Oct 2017 | B2 |
9803467 | Tang et al. | Oct 2017 | B2 |
9803793 | Davi et al. | Oct 2017 | B2 |
9809308 | Aguilar et al. | Nov 2017 | B2 |
9829002 | Crom | Nov 2017 | B2 |
9840897 | Larson | Dec 2017 | B2 |
9840901 | Oering et al. | Dec 2017 | B2 |
9850422 | Lestz et al. | Dec 2017 | B2 |
9856131 | Moffitt | Jan 2018 | B1 |
9863279 | Laing et al. | Jan 2018 | B2 |
9869305 | Crowe et al. | Jan 2018 | B1 |
9879609 | Crowe et al. | Jan 2018 | B1 |
9893500 | Oehring et al. | Feb 2018 | B2 |
9893660 | Peterson et al. | Feb 2018 | B2 |
9920615 | Zhang et al. | Mar 2018 | B2 |
9945365 | Hernandez et al. | Apr 2018 | B2 |
9964052 | Millican et al. | May 2018 | B2 |
9970278 | Broussard et al. | May 2018 | B2 |
9981840 | Shock | May 2018 | B2 |
9995102 | Dillie et al. | Jun 2018 | B2 |
9995218 | Oehring et al. | Jun 2018 | B2 |
10008880 | Vicknair et al. | Jun 2018 | B2 |
10008912 | Davey et al. | Jun 2018 | B2 |
10018096 | Wallimann et al. | Jul 2018 | B2 |
10020711 | Oehring et al. | Jul 2018 | B2 |
10024123 | Steffenhagen et al. | Jul 2018 | B2 |
10029289 | Wendorski et al. | Jul 2018 | B2 |
10030579 | Austin et al. | Jul 2018 | B2 |
10036238 | Oehring | Jul 2018 | B2 |
10040541 | Wilson et al. | Aug 2018 | B2 |
10060349 | Álvarez et al. | Aug 2018 | B2 |
10082137 | Graham et al. | Sep 2018 | B2 |
10094366 | Marica | Oct 2018 | B2 |
10100827 | Devan et al. | Oct 2018 | B2 |
10107084 | Coli et al. | Oct 2018 | B2 |
10107085 | Coli et al. | Oct 2018 | B2 |
10114061 | Frampton et al. | Oct 2018 | B2 |
10119381 | Oehring et al. | Nov 2018 | B2 |
10134257 | Zhang et al. | Nov 2018 | B2 |
10138098 | Sorensen et al. | Nov 2018 | B2 |
10151244 | Giancotti et al. | Dec 2018 | B2 |
10174599 | Shampine et al. | Jan 2019 | B2 |
10184397 | Austin et al. | Jan 2019 | B2 |
10196258 | Kalala et al. | Feb 2019 | B2 |
10221856 | Hernandez et al. | Mar 2019 | B2 |
10227854 | Glass | Mar 2019 | B2 |
10227855 | Coli et al. | Mar 2019 | B2 |
10246984 | Payne et al. | Apr 2019 | B2 |
10247182 | Zhang et al. | Apr 2019 | B2 |
10254732 | Oehring et al. | Apr 2019 | B2 |
10267439 | Pryce et al. | Apr 2019 | B2 |
10280724 | Hinderliter | May 2019 | B2 |
10287943 | Schiltz | May 2019 | B1 |
10303190 | Shock | May 2019 | B2 |
10316832 | Byrne | Jun 2019 | B2 |
10317875 | Pandurangan | Jun 2019 | B2 |
10337402 | Austin et al. | Jul 2019 | B2 |
10358035 | Cryer | Jul 2019 | B2 |
10371012 | Davis et al. | Aug 2019 | B2 |
10374485 | Morris et al. | Aug 2019 | B2 |
10378326 | Morris et al. | Aug 2019 | B2 |
10393108 | Chong et al. | Aug 2019 | B2 |
10407990 | Oehring et al. | Sep 2019 | B2 |
10408031 | Oehring et al. | Sep 2019 | B2 |
10415348 | Zhang et al. | Sep 2019 | B2 |
10415557 | Crowe et al. | Sep 2019 | B1 |
10415562 | Kajita et al. | Sep 2019 | B2 |
RE47695 | Case et al. | Nov 2019 | E |
10465689 | Crom | Nov 2019 | B2 |
10526882 | Oehring et al. | Jan 2020 | B2 |
10563649 | Zhang et al. | Feb 2020 | B2 |
10577910 | Stephenson | Mar 2020 | B2 |
10598258 | Oehring et al. | Mar 2020 | B2 |
10610842 | Chong | Apr 2020 | B2 |
10711787 | Darley | Jul 2020 | B1 |
10738580 | Fischer et al. | Aug 2020 | B1 |
10753153 | Fischer et al. | Aug 2020 | B1 |
10753165 | Fischer et al. | Aug 2020 | B1 |
10794165 | Fischer et al. | Oct 2020 | B2 |
10794166 | Reckels et al. | Oct 2020 | B2 |
10801311 | Cui et al. | Oct 2020 | B1 |
10815764 | Yeung et al. | Oct 2020 | B1 |
10815978 | Glass | Oct 2020 | B2 |
10830032 | Zhang et al. | Nov 2020 | B1 |
10865624 | Cui et al. | Dec 2020 | B1 |
10865631 | Zhang et al. | Dec 2020 | B1 |
10895202 | Yeung et al. | Jan 2021 | B1 |
10907459 | Yeung et al. | Feb 2021 | B1 |
10954770 | Yeung et al. | Mar 2021 | B1 |
10961908 | Yeung et al. | Mar 2021 | B1 |
10961912 | Yeung et al. | Mar 2021 | B1 |
10961914 | Yeung et al. | Mar 2021 | B1 |
10995564 | Miller et al. | May 2021 | B2 |
20040016245 | Pierson | Jan 2004 | A1 |
20040187950 | Cohen et al. | Sep 2004 | A1 |
20050139286 | Poulter | Jun 2005 | A1 |
20050226754 | Orr et al. | Oct 2005 | A1 |
20060061091 | Osterloh | Mar 2006 | A1 |
20060260331 | Andreychuk | Nov 2006 | A1 |
20070029090 | Andreychuk et al. | Feb 2007 | A1 |
20070066406 | Keller et al. | Mar 2007 | A1 |
20070107981 | Sicotte | May 2007 | A1 |
20070181212 | Fell | Aug 2007 | A1 |
20070277982 | Shampine et al. | Dec 2007 | A1 |
20070295569 | Manzoor et al. | Dec 2007 | A1 |
20080098891 | Feher | May 2008 | A1 |
20080161974 | Alston | Jul 2008 | A1 |
20080264625 | Ochoa | Oct 2008 | A1 |
20080264649 | Crawford | Oct 2008 | A1 |
20090064685 | Busekros et al. | Mar 2009 | A1 |
20090124191 | Van Becelaere et al. | May 2009 | A1 |
20100071899 | Coquilleau et al. | Mar 2010 | A1 |
20100218508 | Brown et al. | Sep 2010 | A1 |
20100300683 | Looper et al. | Dec 2010 | A1 |
20100310384 | Stephenson et al. | Dec 2010 | A1 |
20110052423 | Gambier et al. | Mar 2011 | A1 |
20110054704 | Karpman et al. | Mar 2011 | A1 |
20110085924 | Shampine et al. | Apr 2011 | A1 |
20110197988 | Van Vliet et al. | Aug 2011 | A1 |
20110241888 | Lu et al. | Oct 2011 | A1 |
20110265443 | Ansari | Nov 2011 | A1 |
20110272158 | Neal | Nov 2011 | A1 |
20120048242 | Surnilla et al. | Mar 2012 | A1 |
20120199001 | Chillar et al. | Aug 2012 | A1 |
20120310509 | Pardo et al. | Dec 2012 | A1 |
20130068307 | Hains et al. | Mar 2013 | A1 |
20130087045 | Sullivan et al. | Apr 2013 | A1 |
20130087945 | Kusters et al. | Apr 2013 | A1 |
20130259707 | Yin | Oct 2013 | A1 |
20130284455 | Kajaria et al. | Oct 2013 | A1 |
20130300341 | Gillette | Nov 2013 | A1 |
20130306322 | Sanborn | Nov 2013 | A1 |
20140013768 | Laing et al. | Jan 2014 | A1 |
20140044517 | Saha et al. | Feb 2014 | A1 |
20140048253 | Andreychuk | Feb 2014 | A1 |
20140090742 | Coskrey et al. | Apr 2014 | A1 |
20140130422 | Laing et al. | May 2014 | A1 |
20140147291 | Burnette | May 2014 | A1 |
20140216736 | Leugemors et al. | Aug 2014 | A1 |
20140277772 | Lopez et al. | Sep 2014 | A1 |
20140290266 | Veilleux, Jr. et al. | Oct 2014 | A1 |
20140318638 | Harwood et al. | Oct 2014 | A1 |
20150078924 | Zhang et al. | Mar 2015 | A1 |
20150101344 | Jarrier et al. | Apr 2015 | A1 |
20150114652 | Lestz et al. | Apr 2015 | A1 |
20150129210 | Chong et al. | May 2015 | A1 |
20150135659 | Jarrier et al. | May 2015 | A1 |
20150159553 | Kippel et al. | Jun 2015 | A1 |
20150192117 | Bridges | Jul 2015 | A1 |
20150204148 | Liu et al. | Jul 2015 | A1 |
20150204322 | Iund et al. | Jul 2015 | A1 |
20150211512 | Wiegman et al. | Jul 2015 | A1 |
20150217672 | Shampine et al. | Aug 2015 | A1 |
20150252661 | Glass | Sep 2015 | A1 |
20150275891 | Chong et al. | Oct 2015 | A1 |
20150340864 | Compton | Nov 2015 | A1 |
20150369351 | Hermann et al. | Dec 2015 | A1 |
20160032703 | Broussard et al. | Feb 2016 | A1 |
20160102581 | Del Bono | Apr 2016 | A1 |
20160105022 | Oehring et al. | Apr 2016 | A1 |
20160108713 | Dunaeva et al. | Apr 2016 | A1 |
20160177675 | Morris et al. | Jun 2016 | A1 |
20160186671 | Austin et al. | Jun 2016 | A1 |
20160215774 | Oklejas et al. | Jul 2016 | A1 |
20160230525 | Lestz et al. | Aug 2016 | A1 |
20160244314 | Van Vliet et al. | Aug 2016 | A1 |
20160248230 | Tawy et al. | Aug 2016 | A1 |
20160253634 | Thomeer et al. | Sep 2016 | A1 |
20160258267 | Payne et al. | Sep 2016 | A1 |
20160273346 | Tang et al. | Sep 2016 | A1 |
20160290114 | Oehring et al. | Oct 2016 | A1 |
20160319650 | Oehring et al. | Nov 2016 | A1 |
20160348479 | Oehring et al. | Dec 2016 | A1 |
20160369609 | Morris et al. | Dec 2016 | A1 |
20170009905 | Arnold | Jan 2017 | A1 |
20170016433 | Chong et al. | Jan 2017 | A1 |
20170030177 | Oehring et al. | Feb 2017 | A1 |
20170038137 | Turney | Feb 2017 | A1 |
20170074076 | Joseph et al. | Mar 2017 | A1 |
20170082110 | Lammers | Mar 2017 | A1 |
20170089189 | Norris et al. | Mar 2017 | A1 |
20170145918 | Oehring et al. | May 2017 | A1 |
20170191350 | Johns et al. | Jul 2017 | A1 |
20170218727 | Oehring et al. | Aug 2017 | A1 |
20170226839 | Broussard et al. | Aug 2017 | A1 |
20170226998 | Zhang et al. | Aug 2017 | A1 |
20170227002 | Mikulski et al. | Aug 2017 | A1 |
20170234165 | Kersey et al. | Aug 2017 | A1 |
20170234308 | Buckley | Aug 2017 | A1 |
20170248034 | Dzieciol et al. | Aug 2017 | A1 |
20170275149 | Schmidt | Sep 2017 | A1 |
20170292409 | Aguilar et al. | Oct 2017 | A1 |
20170302135 | Cory | Oct 2017 | A1 |
20170305736 | Haile et al. | Oct 2017 | A1 |
20170334448 | Schwunk | Nov 2017 | A1 |
20170335842 | Robinson et al. | Nov 2017 | A1 |
20170350471 | Steidl et al. | Dec 2017 | A1 |
20170370199 | Witkowski et al. | Dec 2017 | A1 |
20180034280 | Pedersen | Feb 2018 | A1 |
20180038328 | Louven et al. | Feb 2018 | A1 |
20180041093 | Miranda | Feb 2018 | A1 |
20180045202 | Crom | Feb 2018 | A1 |
20180038216 | Zhang et al. | Mar 2018 | A1 |
20180058171 | Roesner et al. | Mar 2018 | A1 |
20180156210 | Oehring et al. | Jun 2018 | A1 |
20180172294 | Owen | Jun 2018 | A1 |
20180183219 | Oehring et al. | Jun 2018 | A1 |
20180186442 | Maier | Jul 2018 | A1 |
20180187662 | Hill et al. | Jul 2018 | A1 |
20180209415 | Zhang et al. | Jul 2018 | A1 |
20180223640 | Keihany et al. | Aug 2018 | A1 |
20180224044 | Penney | Aug 2018 | A1 |
20180229998 | Shock | Aug 2018 | A1 |
20180258746 | Broussard et al. | Sep 2018 | A1 |
20180266412 | Stokkevag et al. | Sep 2018 | A1 |
20180278124 | Oehring et al. | Sep 2018 | A1 |
20180283102 | Cook | Oct 2018 | A1 |
20180283618 | Cook | Oct 2018 | A1 |
20180284817 | Cook et al. | Oct 2018 | A1 |
20180290877 | Shock | Oct 2018 | A1 |
20180291781 | Pedrini | Oct 2018 | A1 |
20180298731 | Bishop | Oct 2018 | A1 |
20180298735 | Conrad | Oct 2018 | A1 |
20180307255 | Bishop | Oct 2018 | A1 |
20180328157 | Bishop | Nov 2018 | A1 |
20180334893 | Oehring | Nov 2018 | A1 |
20180363435 | Coli et al. | Dec 2018 | A1 |
20180363436 | Coli et al. | Dec 2018 | A1 |
20180363437 | Coli et al. | Dec 2018 | A1 |
20180363438 | Coli et al. | Dec 2018 | A1 |
20190003272 | Morris et al. | Jan 2019 | A1 |
20190003329 | Morris et al. | Jan 2019 | A1 |
20190010793 | Hinderliter | Jan 2019 | A1 |
20190063341 | Davis | Feb 2019 | A1 |
20190067991 | Davis et al. | Feb 2019 | A1 |
20190071992 | Feng | Mar 2019 | A1 |
20190072005 | Fisher et al. | Mar 2019 | A1 |
20190078471 | Braglia et al. | Mar 2019 | A1 |
20190091619 | Huang | Mar 2019 | A1 |
20190106316 | Van Vliet et al. | Apr 2019 | A1 |
20190106970 | Oehring | Apr 2019 | A1 |
20190112908 | Coli et al. | Apr 2019 | A1 |
20190112910 | Oehring et al. | Apr 2019 | A1 |
20190119096 | Haile et al. | Apr 2019 | A1 |
20190120024 | Oehring et al. | Apr 2019 | A1 |
20190120031 | Gilje | Apr 2019 | A1 |
20190120134 | Goleczka et al. | Apr 2019 | A1 |
20190128247 | Douglas, III | May 2019 | A1 |
20190128288 | Konada et al. | May 2019 | A1 |
20190131607 | Gillette | May 2019 | A1 |
20190136677 | Shampine et al. | May 2019 | A1 |
20190153843 | Headrick | May 2019 | A1 |
20190154020 | Glass | May 2019 | A1 |
20190264667 | Byrne | May 2019 | A1 |
20190178234 | Beisel | Jun 2019 | A1 |
20190178235 | Coskrey et al. | Jun 2019 | A1 |
20190185312 | Bush et al. | Jun 2019 | A1 |
20190203572 | Morris et al. | Jul 2019 | A1 |
20190204021 | Morris et al. | Jul 2019 | A1 |
20190211814 | Weightman et al. | Jul 2019 | A1 |
20190217258 | Bishop | Jul 2019 | A1 |
20190226317 | Payne et al. | Jul 2019 | A1 |
20190245348 | Hinderliter et al. | Aug 2019 | A1 |
20190249652 | Stephenson et al. | Aug 2019 | A1 |
20190249754 | Oehring et al. | Aug 2019 | A1 |
20190257297 | Botting et al. | Aug 2019 | A1 |
20190277295 | Clyburn et al. | Sep 2019 | A1 |
20190309585 | Miller et al. | Oct 2019 | A1 |
20190316447 | Oehring et al. | Oct 2019 | A1 |
20190316456 | Beisel et al. | Oct 2019 | A1 |
20190323337 | Glass et al. | Oct 2019 | A1 |
20190330923 | Gable et al. | Oct 2019 | A1 |
20190331117 | Gable et al. | Oct 2019 | A1 |
20190338762 | Curry et al. | Nov 2019 | A1 |
20190345920 | Surjaatmadja et al. | Nov 2019 | A1 |
20190356199 | Morris et al. | Nov 2019 | A1 |
20190376449 | Carrell | Dec 2019 | A1 |
20200003205 | Stokkevåg et al. | Jan 2020 | A1 |
20200011165 | George et al. | Jan 2020 | A1 |
20200040878 | Morris | Feb 2020 | A1 |
20200049136 | Stephenson | Feb 2020 | A1 |
20200049153 | Headrick et al. | Feb 2020 | A1 |
20200071998 | Oehring et al. | Mar 2020 | A1 |
20200072201 | Marica | Mar 2020 | A1 |
20200088202 | Sigmar et al. | Mar 2020 | A1 |
20200095854 | Hinderliter | Mar 2020 | A1 |
20200132058 | Mollatt | Apr 2020 | A1 |
20200141219 | Oehring et al. | May 2020 | A1 |
20200141907 | Meck et al. | May 2020 | A1 |
20200166026 | Marica | May 2020 | A1 |
20200206704 | Chong | Jul 2020 | A1 |
20200224645 | Buckley | Jul 2020 | A1 |
20200256333 | Surjaatmadja | Aug 2020 | A1 |
20200263498 | Fischer et al. | Aug 2020 | A1 |
20200263525 | Reid | Aug 2020 | A1 |
20200263526 | Fischer et al. | Aug 2020 | A1 |
20200263527 | Fischer et al. | Aug 2020 | A1 |
20200263528 | Fischer et al. | Aug 2020 | A1 |
20200267888 | Putz | Aug 2020 | A1 |
20200309113 | Hunter et al. | Oct 2020 | A1 |
20200325752 | Clark et al. | Oct 2020 | A1 |
20200325760 | Markham | Oct 2020 | A1 |
20200325761 | Williams | Oct 2020 | A1 |
20200332784 | Zhang et al. | Oct 2020 | A1 |
20200332788 | Cui et al. | Oct 2020 | A1 |
20200340313 | Fischer et al. | Oct 2020 | A1 |
20200340340 | Oehring et al. | Oct 2020 | A1 |
20200340344 | Reckels et al. | Oct 2020 | A1 |
20200340404 | Stockstill | Oct 2020 | A1 |
20200347725 | Morris | Nov 2020 | A1 |
20200392826 | Cui et al. | Dec 2020 | A1 |
20200392827 | George et al. | Dec 2020 | A1 |
20200398238 | Zhong et al. | Dec 2020 | A1 |
20200400000 | Ghasripoor et al. | Dec 2020 | A1 |
20200400005 | Han et al. | Dec 2020 | A1 |
20200408071 | Li et al. | Dec 2020 | A1 |
20200408144 | Feng et al. | Dec 2020 | A1 |
20200408147 | Zhang et al. | Dec 2020 | A1 |
20210071574 | Feng et al. | Mar 2021 | A1 |
20210071579 | Li et al. | Mar 2021 | A1 |
20210071654 | Brunson | Mar 2021 | A1 |
20210071752 | Cui et al. | Mar 2021 | A1 |
Number | Date | Country | |
---|---|---|---|
62899957 | Sep 2019 | US | |
62704567 | May 2020 | US |
Number | Date | Country | |
---|---|---|---|
Parent | 16948290 | Sep 2020 | US |
Child | 17182294 | US |