The present invention relates to integrated circuits (ICs) and semiconductor devices in general and their methods of manufacture wherein the integrated circuits and semiconductor devices employ camouflaging techniques which make it difficult for the reverse engineer to discern how the semiconductor device functions.
The present invention is related to the following US patents by some of the same inventors as the present inventors:
The creation of complex integrated circuits and semiconductor devices can be an expensive undertaking because of the large number of hours of sophisticated engineering talent involved in designing such devices. Additionally, integrated circuits can include read only memories and/or EEPROMs into which software, in the form of firmware, is encoded. Further, integrated circuits are often used in applications involving the encryption of information. In order to keep the encrypted information confidential, devices should be protected from being reverse engineered. Thus, there can be a variety of reasons for protecting integrated circuits and other semiconductor devices from being reversed engineered.
In order to keep the reverse engineer at bay, different techniques are known in the art to make integrated circuits more difficult to reverse engineer. One technique is to make the connections between transistors difficult to determine forcing the reverse engineer to perform a careful analysis of each transistor (in particular, each CMOS transistor pair for CMOS devices), and thwarting attempts to use automatic circuit and pattern recognition techniques in order to reverse engineer an integrated circuit. Since integrated circuits can have hundreds of thousands or even millions of transistors, forcing the reverse engineer to analyze each transistor carefully in a device can effectively frustrate the reverse engineer's ability to reverse engineer the device successfully.
A conductive layer, such as silicide, is often used during the manufacture of semiconductor devices. In modern CMOS processing, especially with a minimum feature size below 0.5 μm, a silicide layer is utilized to improve the conductivity of gate, source and drain contacts. In accordance with typical design rules, any active region resulting in a source/drain region is silicided.
One reverse engineering technique involves de-layering the completed IC by means of chemical mechanical polishing (CMP) or other etching processes. The etching processes may, under some conditions, reveal the regions between where the silicide was formed on the substrate, and where it was not, i.e. the regions defined by the silicide block mask step and by regions where structures, such as a polysilicon gate, prevent the silicide layer from being deposited on the substrate. These regions may be revealed because, under some kinds of etches, there is an observable difference in topology due to different etching rates for silicided vs. pure silicon. The reverse engineer, by noting the silicided areas vs. non-silicided areas, may make reasonable assumptions as to the function of the device. This information can then be stored into a database for automatic classification of other similar devices.
Some methods of protecting against reverse engineering may be susceptible to discovery under some reverse engineering techniques, such as chemical-mechanical polishing (CMP) or other etching techniques. For example,
As will be described below, the top-down view of the false transistor is different from a top-down view of a true transistor and as such, the difference may be a signature that the transistor is not a true transistor.
For functional or true transistors, as shown in
Therefore, a need exists to provide a semiconductor device and a method of manufacturing semiconductor devices that uses artifact edges to confuse the reverse engineer. Providing artifact edges that are not indicative of the actual device formed will further confuse the reverse engineer and result in incorrect conclusions as to the actual composition, and thus function, of the device.
One aspect of this invention is to make reverse engineering even more difficult and, in particular, to confuse the reverse engineer's study of the artifacts revealed during the reverse engineering process by providing artifacts that are not indicative of the underlying processing and circuit features. The result is that the reverse engineer is given large reason to doubt the validity of typical conclusions. It is believed that it will not only be time consuming to reverse engineer a chip employing the present invention but perhaps impractical, if not impossible.
Another aspect of the present invention is that it does not rely upon modifications or additions to the function of the circuitry that is to be protected from reverse engineering, nor does it require any additional processing steps or equipment. Instead, a highly effective deterrent to reverse engineering is accomplished in a streamlined manner that adds neither processing time nor complexity to the basic circuitry.
The Inventors named herein have previously filed Patent Applications and have received Patents in this general area of technology, that is, relating to the camouflage of integrated circuit devices in order to make it more difficult to reverse engineer them. The present invention can be used harmoniously with the techniques disclosed above in the prior U.S. patents to further confuse the reverse engineer.
The present invention might only be used once in a thousand of instances on the chip in question. Thus, the reverse engineer will have to look very carefully at each transistor or connection. The reverse engineer will be faced with having to find the proverbial needle in a haystack.
Another aspect of the present invention is a method of manufacturing a semiconductor device in which a conductive layer block mask is modified resulting in reverse engineering artifacts that are misleading and not indicative of the true structure of the device.
An aspect of the present invention is to provide a camouflaged circuit structure, comprising: a gate layer having a first gate layer edge and a second gate layer edge; a first active area disposed adjacent said first gate layer edge; a second active area disposed adjacent said second gate layer edge; and a conductive layer having a first artifact edge and a second artifact edge, said conductive layer partially formed over said first active area and said second active area; wherein said first artifact edge of said conductive layer is offset from said first gate layer edge, and said second artifact edge of said conductive layer is offset from said second gate layer edge.
Another aspect of the present invention is a method of confusing a reverse engineer comprising the steps of: providing a false semiconductor device without sidewall spacers having at least one active region; and forming a conductive layer partially over the at least one active region such that an artifact edge of said conductive layer of said false semiconductor device without sidewall spacers mimics an artifact edge of a conductive layer of a true semiconductor device having sidewall spacers.
Another aspect of the present invention is a method of camouflaging an integrated circuit structure comprising the steps of: forming the integrated circuit structure having a plurality of active areas; and forming a conductive block layer mask to thereby form artifact edges of a conductive layer that are located in a same relative locations for non-operational transistors without sidewall spacers as well as operational transistors with sidewall spacers.
Another aspect of the present invention is a method of protecting an integrated circuit design comprising the steps of: modifying a silicide block mask used during the manufacture of a false transistor such that edges of a silicide layer for the false transistor are placed in substantially the same relative locations as edges of a silicide layer for a true transistor; and manufacturing said integrated circuit.
Another aspect of the present invention is a circuit structure comprising: a gate layer having a first gate layer edge and a second gate layer edge; a first active area, said first active area being formed during a single processing step, said first active area having a width, said first active area formed adjacent said first gate layer edge; a second active area, said second active area being formed during a single processing step, said second active area having a width, said second active area formed adjacent said second gate layer edge; a conductive layer having a first artifact edge and a second artifact edge, said conductive layer being formed over said first active area and over said second active area, a width of said conductive layer formed over said first active area being less than said width of said first active area, a width of said conductive layer formed over said second active area being less than said width of said second active area.
Another aspect of the present invention is a method of hiding a circuit function comprising the steps of: forming at least one active region of a device with a single processing step, said at least one active region having a width; and forming a conductive layer partially over the at least one active region wherein a width of said conductive layer is less than the width of the at least one active region.
a depicts artifact edges of a silicide layer that the reverse engineer could see after all the metal and oxide layers have been removed from a false transistor;
b depicts a cross-section of a false transistor;
a depicts prior art artifact edges of a silicide layer that the reverse engineer could see after all the metal and oxide layers have been removed from a true transistor;
b depicts a cross-section of a prior art true transistor;
a depicts artifact edges of a silicide layer that the reverse engineer could see after all the metal and oxide layers have been removed from a false transistor in accordance with one embodiment of the present invention;
b depicts a cross-section of a false transistor in accordance with one embodiment of the present invention; and
The present invention now will be described more fully hereinafter with reference to the accompanying drawings, in which an embodiment of the invention is shown. This invention may be embodied in many different forms and should not be construed as limited to the embodiment set forth herein.
Many methods of manufacturing semiconductor devices are well known in the art. The following discussion focuses on modifying a conductive layer block mask used during the manufacture of semiconductor devices in order to confuse the reverse engineer. The discussion is not intended to provide all of the semiconductor manufacturing details, which are well known in the art.
In order to confuse the reverse engineer, the placement of an artifact edge of a silicide layer that would be seen when a reverse engineer examines devices manufactured with other reverse-engineering-detection-prevention techniques is changed. In reverse-engineering-detection-prevention techniques, false, or non-operational, transistors are used along with true, or operational, transistors. Some false transistors are manufactured without sidewall spacers, see
a is a top-down view and
One skilled in the art will appreciate that the conductive layer block mask 21 will require different modifications depending on the feature size of the device. The offset distance 17 between the artifact edge 18″ of the conductive layer 15 and the edge 11, 13 of the gate layer 14 is preferably approximately equal to the width of the sidewall spacers, which varies depending on the feature size of the device. One skilled in the art will appreciate that the difference between the width of the sidewall spacer 19 and the width of the offset 17 should be within the manufacturing tolerances for the process used, and thus the offset 17 and the width of the sidewall spacer 19 are approximately equal. For 0.35 μm technology, for example, the sidewall spacer width is approximately 0.09 μm. For typical CMOS processes, the conductive layer 15 will be silicide while the gate layer 14 will be polysilicon. One skilled in the art will appreciate that regardless of the feature size of the device, the person laying out the masks should place the artifact edges 18″ of the conductive layer 15 for a false transistor in substantially the same relative locations as the artifact edges 18′ of the conductive layer 15 for a true transistor. Thus, the reverse engineer will be unable to use the artifact edges 18 of the conductive layer 15 to determine if the transistor is a true transistor or a false transistor.
Additionally, false transistors manufactured in accordance with the invention are preferably used not to completely disable a multiple transistor circuit, but rather to cause the circuit to function in an unexpected or non-intuitive manner. For example, what appears to be an OR gate to the reverse engineer might really function as an AND gate. Alternatively, what appears as an inverting input might really be non-inverting. The possibilities are endless and are almost sure to cause the reverse engineer so much grief that he or she would give up as opposed to pressing forward to discover how to reverse engineer the integrated circuit device on which this technique is utilized.
Having described the invention in connection with certain preferred embodiments thereof, modification will now certainly suggest itself to those skilled in the art. As such, the invention is not to be limited to the disclosed embodiments, except as is specifically required by the appended claims.
This application claims the benefit of U.S. Provisional Patent Application No. 60/428,634 filed Nov. 22, 2002, the contents of which are hereby incorporated herein by reference. This application is related to co-pending U.S. patent application Ser. No. 09/758,792 entitled “Circuit Protection Implemented Using a Double Polysilicon Layer CMOS Process” filed on Jan. 11, 2001 by J. P. Baukus, Lap Wai Chow and W. C. Clark.
Number | Name | Date | Kind |
---|---|---|---|
3673471 | Klein et al. | Jun 1972 | A |
3946426 | Sanders | Mar 1976 | A |
4017888 | Christie et al. | Apr 1977 | A |
4101344 | Kooi et al. | Jul 1978 | A |
4139864 | Vetter | Feb 1979 | A |
4164461 | Schilling | Aug 1979 | A |
4196443 | Dingwall | Apr 1980 | A |
4267578 | Vetter | May 1981 | A |
4291391 | Chatterjee et al. | Sep 1981 | A |
4295897 | Tubbs et al. | Oct 1981 | A |
4314268 | Yoshioka et al. | Feb 1982 | A |
4317273 | Guterman et al. | Mar 1982 | A |
4322736 | Sasaki et al. | Mar 1982 | A |
4374454 | Jochems | Feb 1983 | A |
4409434 | Basset et al. | Oct 1983 | A |
4435895 | Parrillo | Mar 1984 | A |
4471376 | Morcom et al. | Sep 1984 | A |
4530150 | Shirato | Jul 1985 | A |
4581628 | Miyauchi et al. | Apr 1986 | A |
4583011 | Pechar | Apr 1986 | A |
4603381 | Guttag et al. | Jul 1986 | A |
4623255 | Suszko | Nov 1986 | A |
4727493 | Taylor, Sr. | Feb 1988 | A |
4753897 | Lund et al. | Jun 1988 | A |
4766516 | Ozdemir et al. | Aug 1988 | A |
4799096 | Koeppe | Jan 1989 | A |
4821085 | Haken et al. | Apr 1989 | A |
4830974 | Chang et al. | May 1989 | A |
4939567 | Kenney | Jul 1990 | A |
4962484 | Takeshima et al. | Oct 1990 | A |
4975756 | Haken et al. | Dec 1990 | A |
4998151 | Korman et al. | Mar 1991 | A |
5030796 | Swanson et al. | Jul 1991 | A |
5050123 | Castro | Sep 1991 | A |
5061978 | Mizutani et al. | Oct 1991 | A |
5065208 | Shah et al. | Nov 1991 | A |
5068697 | Noda et al. | Nov 1991 | A |
5070378 | Yamagata | Dec 1991 | A |
5073812 | Shimura | Dec 1991 | A |
5101121 | Sourgen | Mar 1992 | A |
5117276 | Thomas et al. | May 1992 | A |
5121089 | Larson et al. | Jun 1992 | A |
5121186 | Wong et al. | Jun 1992 | A |
5132571 | McCollum et al. | Jul 1992 | A |
5138197 | Kuwana | Aug 1992 | A |
5146117 | Larson | Sep 1992 | A |
5168340 | Nishimura | Dec 1992 | A |
5177589 | Kobayashi et al. | Jan 1993 | A |
5202591 | Walden | Apr 1993 | A |
5225699 | Nakamura | Jul 1993 | A |
5227649 | Chapman | Jul 1993 | A |
5231299 | Ning et al. | Jul 1993 | A |
5302539 | Haken et al. | Apr 1994 | A |
5308682 | Morikawa | May 1994 | A |
5309015 | Kuwata et al. | May 1994 | A |
5317197 | Roberts | May 1994 | A |
5336624 | Walden | Aug 1994 | A |
5341013 | Koyanagi et al. | Aug 1994 | A |
5345105 | Sun et al. | Sep 1994 | A |
5354704 | Yang et al. | Oct 1994 | A |
5369299 | Byrne et al. | Nov 1994 | A |
5371390 | Mohsen | Dec 1994 | A |
5376577 | Roberts et al. | Dec 1994 | A |
5384472 | Yin | Jan 1995 | A |
5384475 | Yahata | Jan 1995 | A |
5399441 | Bearinger et al. | Mar 1995 | A |
5404040 | Hshieh et al. | Apr 1995 | A |
5412237 | Komori et al. | May 1995 | A |
5441902 | Hsieh et al. | Aug 1995 | A |
5468990 | Daum | Nov 1995 | A |
5475251 | Kuo et al. | Dec 1995 | A |
5506806 | Fukushima | Apr 1996 | A |
5531018 | Saia et al. | Jul 1996 | A |
5539224 | Ema | Jul 1996 | A |
5541614 | Lam et al. | Jul 1996 | A |
5571735 | Mogami et al. | Nov 1996 | A |
5576988 | Kuo et al. | Nov 1996 | A |
5611940 | Zettler | Mar 1997 | A |
5638946 | Zavracky | Jun 1997 | A |
5677557 | Wuu et al. | Oct 1997 | A |
5679595 | Chen et al. | Oct 1997 | A |
5719422 | Burr et al. | Feb 1998 | A |
5719430 | Goto | Feb 1998 | A |
5721150 | Pasch | Feb 1998 | A |
5783375 | Twist | Jul 1998 | A |
5783846 | Baukus et al. | Jul 1998 | A |
5821590 | Lee et al. | Oct 1998 | A |
5834356 | Bothra et al. | Nov 1998 | A |
5838047 | Yamauchi et al. | Nov 1998 | A |
5854510 | Sur, Jr. et al. | Dec 1998 | A |
5858843 | Doyle et al. | Jan 1999 | A |
5866933 | Baukus et al. | Feb 1999 | A |
5880503 | Matsumoto et al. | Mar 1999 | A |
5888887 | Li et al. | Mar 1999 | A |
5895241 | Lu et al. | Apr 1999 | A |
5920097 | Horne | Jul 1999 | A |
5930663 | Baukus et al. | Jul 1999 | A |
5930667 | Oda | Jul 1999 | A |
5973375 | Baukus et al. | Oct 1999 | A |
5977593 | Hara | Nov 1999 | A |
5998257 | Lane et al. | Dec 1999 | A |
6037627 | Kitamura et al. | Mar 2000 | A |
6046659 | Loo et al. | Apr 2000 | A |
6054659 | Lee et al. | Apr 2000 | A |
6057520 | Goodwin-Johansson | May 2000 | A |
6064110 | Baukus et al. | May 2000 | A |
6080614 | Neilson et al. | Jun 2000 | A |
6093609 | Chuang | Jul 2000 | A |
6117762 | Baukus et al. | Sep 2000 | A |
6137318 | Takaaki | Oct 2000 | A |
6153484 | Donaton et al. | Nov 2000 | A |
6154388 | Oh | Nov 2000 | A |
6215158 | Choi | Apr 2001 | B1 |
6261912 | Hsiao et al. | Jul 2001 | B1 |
6294816 | Baukus et al. | Sep 2001 | B1 |
6326675 | Scott et al. | Dec 2001 | B1 |
6365453 | Deboer et al. | Apr 2002 | B1 |
6503787 | Choi | Jan 2003 | B1 |
6740942 | Baukus et al. | May 2004 | B2 |
20020058368 | Tseng | May 2002 | A1 |
20020173131 | Clark, Jr. et al. | Nov 2002 | A1 |
20020190355 | Baukus et al. | Dec 2002 | A1 |
20030057476 | Morita et al. | Mar 2003 | A1 |
Number | Date | Country |
---|---|---|
0 186 855 | Jul 1986 | EP |
0 364 769 | Apr 1990 | EP |
0 463 373 | Jan 1992 | EP |
0 528 302 | Feb 1993 | EP |
0 585 601 | Mar 1994 | EP |
0 764 985 | Mar 1997 | EP |
0 883 184 | Dec 1998 | EP |
0 920 057 | Jun 1999 | EP |
1 193 758 | Apr 2002 | EP |
1 202 353 | May 2002 | EP |
2 486 717 | Jan 1982 | FR |
58-190064 | Nov 1983 | JP |
61-147551 | Jul 1986 | JP |
63-129647 | Jun 1988 | JP |
02-046762 | Feb 1990 | JP |
02-188944 | Jul 1990 | JP |
02-237038 | Sep 1990 | JP |
04-028092 | Jan 1992 | JP |
10-256398 | Sep 1998 | JP |
9821734 | May 1998 | WO |
9857373 | Dec 1998 | WO |
00-44012 | Jul 2000 | WO |
Number | Date | Country | |
---|---|---|---|
20040099912 A1 | May 2004 | US |
Number | Date | Country | |
---|---|---|---|
60428634 | Nov 2002 | US |