A mobile electronic device (a smartphone, a tablet computer, a laptop computer, and so forth) may contain a radio and an antenna for purposes of wireless communicating with nearby electronic devices, wireless access points, and so forth. The antenna may be an omnidirectional antenna, which, in general, has a uniform gain in a given plane.
Although a person may be in the vicinity of an electronic device (a laptop computer, a smartphone, a tablet computer, and so forth), which the person wants to physically locate and use, the electronic device's physical location may not be readily apparent to the person. For example, although the electronic device and the person may be in the same room, the device may be hidden behind another object in the room. As another example, the electronic device may have a physical appearance that is similar to the physical appearances of other electronic devices in the room (the electronic device may be a laptop computer in a laboratory containing other laptop computers, for example). As another example, the person may have identified the electronic device from a network scan. However, the person may be unaware of the electronic device's physical appearance or even the particular classification of the device (whether the device is a television, a portable computer or a smartphone, for example).
In accordance with example implementations that are described herein, a person searching for the physical location of a nearby electronic device (called an “object” herein) may use a mobile electronic device to assist in the searching. As examples, the object may be a laptop computer, a desktop computer, a tablet computer, a gaming station, a smartphone, a wearable electronic tag, a television, and so forth. In the following discussion, the person using the mobile electronic device to search for an object is a “user” of the mobile electronic device. As examples, the mobile electronic device that aids in the search for the object may be any portable electronic device having a camera and a display, such as a smartphone, a tablet computer, a laptop computer, a wristband-based computer, and so forth.
In the search for the object, the user may manipulate the position of the mobile electronic device to pan the electronic device's camera about the room while the user concurrently observes the electronic device's camera viewfinder. In this context, a “camera viewfinder” refers to an image that is displayed by the mobile electronic device and represents the image that is currently being captured by the electronic device's camera. In accordance with example implementations, the mobile electronic device provides an output (an indicator image on the camera viewfinder, a sound, a flashing light, and so forth) to alert the user to the object's appearance in the viewfinder so that, given the camera's image capturing direction and the viewfinder image, the user may identify the physical location of that object. In accordance with some implementations, the mobile electronic device displays an image near or at the center of the viewfinder when the electronic device determines that the object appears near or at the center of the viewfinder, for purposes of directing the user's attention to the object.
In accordance with example implementations, the object being located radiates electromagnetic energy, and the mobile electronic device has multiple antennas that the electronic device uses to sense this radiated electromagnetic energy. More specifically, in accordance with example implementations, the mobile electronic device includes an omnidirectional antenna and a unidirectional antenna. In accordance with example implementations, the omnidirectional antenna has an antenna gain pattern that is generally independent of the direction of the received energy from a transmitting source (such as the object); and the unidirectional antenna has a gain pattern that is sensitive to which direction the energy is received.
In this manner, the unidirectional antenna has a maximum peak gain in a particular direction. The orientation of the unidirectional antenna changes with the orientation of the mobile electronic device, and for a given orientation of the mobile electronic device, the difference between the maximum gain direction of the unidirectional antenna and the direction of the energy propagating from the object may be described by an angular vector. In accordance with example implementations, the angular vector may be represented in a spherical coordinate system as having an azimuth component and an altitude component.
In accordance with example implementations, the unidirectional antenna is aligned with a camera viewfinder of the mobile electronic device (i.e., aligned with the camera's field of vision) so that the maximum gain direction of the unidirectional antenna is aligned, or registered, with (parallel with, for example) the optical axis of the electronic device's camera. As further described herein, the mobile electronic device may measure the signal strengths of energies that are received by its unidirectional and omnidirectional antennas for purposes of constructing an indicator. In this manner, the mobile electronic device may use this indicator to determine when the camera is capturing an image of the object so that the electronic device may alert the user of the device.
Referring to
In accordance with example implementations, the mobile electronic device 150 includes a unidirectional antenna 224 that has a maximum gain along a direction that coincides with (parallel to, for example) the optical axis of the camera 200 so that the antenna 224 is most sensitive to energy (if any) that is emitted from an object that is displayed in a predetermined portion (a central portion, for example) of the viewfinder 161. In accordance with example implementations, an object detection engine 210 (
For the example depicted in
For the example depicted in
In accordance with example implementations, the object detection engine 210 determines one or multiple differences in the radio frequency (RF) signals that are received by the omnidirectional antenna 220 and the unidirectional antenna 224, and the object detection engine 210 uses the difference(s) to detect whether the object appears in the viewfinder 161. For example, in accordance with example implementations, the object detection engine 210 may make this determination based on one or multiple of the following characteristics: a difference in signal strengths; a timing difference; a phase difference; a weighted or unweighted combination of one or multiple of these differences; and so forth.
As a more specific example, in accordance with some implementations, the object detection engine 210 determines a received signal strength indicator (RSSI) associated with the omnidirectional antenna 220 and determines a RSSI associated with the unidirectional antenna 224. The RSSIs may be provided by a radio of the mobile electronic device 150, for example. Based on the RSSIs, the object detection engine 210 may make a determination of whether the camera 200 of the electronic device 150 is pointing toward the object emitting the energy (i.e., determine whether the object appears in the viewfinder 161).
Thus, referring to
In accordance with some implementations, the object detection engine 210 may identify an object using a technique 400 that is depicted in
Referring to
As shown in
Although
In accordance with example implementations, the object detection engine 210 augments the detection of the object by sensing one or multiple outputs of the object other than radiated energy. For example, in accordance with some implementations, the object detection engine 210 may communicate with the object to cause the object to generate a light or sound cue, which the engine 210 uses (in addition to the antenna strength delta indicator) for purposes of identifying the target object. In accordance with further example implementations, the object detection 210 may identify the target object using other techniques, such as signal delay propagation measurements, infrared (IR) polling, radio frequency (RF) fingerprinting, audio or visual cues, image recognition, and so forth. In accordance with further example implementations, the object may communicate metadata, which describes the configuration information about the object. In the manner, the object detection engine 210 may assign weights to the above-described antenna strength delta indicator 500 and one or multiple other indicators to derive a composite indicator that the object detection engine 210 uses to determine whether the object appears in the camera viewfinder 161.
In accordance with some implementations, a user may desire to locate a given object and request configuration information for the object. For example, such configuration information may identify characteristics of the object's hard disk drive, memory, central processing unit (CPU), basic input/output operating system (BIOS), operating system (OS), software configuration (firewall, encryption status, etc.), and so forth. Moreover, the configuration information may indicate whether the object complies with certain policy compliance specifications.
More specifically, in accordance with example implementations, the object detection engine 210 may perform a technique 600 that is depicted in
In accordance with further example implementations, the object detection engine 210 indirectly obtains the configuration information. More specifically, referring to
As mentioned above, in accordance with example implementations, the object detection engine 210 may cause the object to begin polling at the onset of a process to locate the object. It is noted that the object may, at the time of the request, be in reduced power consumption state, such as a sleep or idle state. The object detection engine 210 may therefore use a wake from sleep protocol, such as one of the protocols used for Bluetooth or wireless local area networks (WLANs), for purposes of awakening the object and causing the object to begin polling.
In accordance with further example implementations, the object may contain an “always-on” component. For example, the object may be a network client, which contains an embedded controller. When powered by a battery or AC source, the embedded controller may remain operational, even for a low power consumption state. The embedded controller may adhere to a duty cycle to, for low power consumption states of the client, periodically wake up a wireless radio of the client at regular intervals to configure the client for wireless communication. After transitioning to a higher power consumption state, the network client may poll at a more frequent frequency to allow for more robust and accurate detection.
In accordance with example implementations, the object may include information (MAC addresses, and so forth) in its polling data, which the object detection engine 210 may use to augment the object's location determination. The object may provide information within its beacon (such as a serial number) for purposes of aiding its detection. The object may also provide other information within its beacon, such as serial number or metadata providing information about configuration parameters of the object.
Referring to
In accordance with example implementations, the mobile electronic device 150 may be a physical machine, such as physical machine 800 that is depicted in
In accordance with further example implementations, one, multiple or all of the components of the object detection engine 210 may be formed from dedicated hardware components. Thus, depending on the particular implementation, the object detection engine 210 may be formed from hardware, from software, or from a combination of hardware and software.
While the present invention has been described with respect to a limited number of embodiments, those skilled in the art, having the benefit of this disclosure, will appreciate numerous modifications and variations therefrom. It is intended that the appended claims cover all such modifications and variations as fall within the true spirit and scope of this present invention.
Filing Document | Filing Date | Country | Kind |
---|---|---|---|
PCT/US2016/020098 | 2/29/2016 | WO | 00 |
Publishing Document | Publishing Date | Country | Kind |
---|---|---|---|
WO2017/151097 | 9/8/2017 | WO | A |
Number | Name | Date | Kind |
---|---|---|---|
4873546 | Zahn et al. | Oct 1989 | A |
6431679 | Li et al. | Aug 2002 | B1 |
6552661 | Lastinger et al. | Apr 2003 | B1 |
7239894 | Corbett et al. | Jul 2007 | B2 |
8009099 | Kalliola et al. | Aug 2011 | B2 |
20020054292 | Orelli et al. | May 2002 | A1 |
20030123108 | Lin et al. | Jul 2003 | A1 |
20080150804 | Kalliola | Jun 2008 | A1 |
20090278949 | McMahan | Nov 2009 | A1 |
20100066999 | Tatarczyk et al. | Mar 2010 | A1 |
20110287789 | Yang | Nov 2011 | A1 |
20130002402 | Guttman | Jan 2013 | A1 |
20140274143 | Trantow | Sep 2014 | A1 |
20150062335 | Murakami et al. | Mar 2015 | A1 |
20150084744 | Havens | Mar 2015 | A1 |
Number | Date | Country |
---|---|---|
1215887 | Jun 2002 | EP |
WO-2015075072 | May 2015 | WO |
Entry |
---|
Sani, A.A, et al, “Directional Antenna Diversity for Mobile Devices: Characterization and Solutions”, Sep. 20-24, 2010. |
Number | Date | Country | |
---|---|---|---|
20190007621 A1 | Jan 2019 | US |