Vessel sealing system using capacitive RF dielectric heating

Information

  • Patent Grant
  • 7780662
  • Patent Number
    7,780,662
  • Date Filed
    Wednesday, February 23, 2005
    20 years ago
  • Date Issued
    Tuesday, August 24, 2010
    14 years ago
Abstract
An electrosurgical system for sealing vessels using capacitive (RF) dielectric heating and a method thereof are provided. The system includes an electrosurgical instrument having an end effector with parallel plate electrodes that will clamp onto a vessel and maintain a specified gap distance; however, the electrodes will be coated with a non-conductive dielectric material. Such an end effector will ensure that direct conduction between the electrodes does not occur through tissue or fluids and effectively creates a parallel plate capacitor with a dielectric, e.g., tissue and coating, in between the plates. The electrosurgical instrument will be activated with an AC signal at a specified RF frequency, e.g., a Debye resonance frequency, via an electrosurgical generator. An effective AC current will flow through the tissue and cause heating due to fictional losses from rotating polar molecules in the tissue.
Description
BACKGROUND

1. Technical Field


The present disclosure is directed to electrosurgical systems, and, in particular, to an electrosurgical system for vessel sealing using capacitive radio frequency (RF) dielectric heating.


2. Description of the Related Art


Electrosurgical generators are employed by surgeons in conjunction with an electrosurgical tool to cut, coagulate, desiccate and/or seal patient tissue. High frequency electrical energy, e.g., radio frequency (RF) energy, is produced by the electrosurgical generator and applied to the tissue by the electrosurgical tool. Both monopolar and bipolar configurations are commonly used during electrosurgical procedures.


Electrosurgical generators typically include power supply circuits, front panel interface circuits, and RF output stage circuits. Many electrical designs for electrosurgical generators are known in the field. In certain electrosurgical generator designs, the RF output stage can be adjusted to control the RMS (root mean square) output power. The methods of controlling the RF output stage may include changing the duty cycle, or changing the amplitude of the driving signal to the RF output stage. The method of controlling the RF output stage is described herein as changing an input to the RF output stage.


Electrosurgical techniques have been used to seal or fuse small diameter blood vessels, vascular bundles and tissue. In this application, two layers of tissue are grasped and clamped together while electrosurgical power is applied. By applying a unique combination of pressure, gap distance between opposing seal surfaces and controlling the electrosurgical energy, the two tissue layers are welded or fused together into a single mass with limited demarcation between tissue layers. Tissue fusion is similar to vessel sealing, except that a vessel or duct is not necessarily sealed in this process. For example, tissue fusion may be used instead of staples for surgical anastomosis.


One of the issues associated with electrosurgical sealing or fusion of tissue is undesirable collateral damage to tissue due to the various thermal effects associated with electrosurgically energizing tissue. The tissue at the operative site is heated by electrosurgical current typically applied by the electrosurgical instrument. Healthy tissue adjacent to the operative site may become thermally damaged if too much heat is allowed to build up at the operative site or adjacent the sealing surfaces. For example, during sealing, the heat may conduct or spread to the adjacent tissue and cause a significant region of tissue necrosis. This is known as thermal spread. Thermal spread becomes important when electrosurgical instruments are used in close proximity to delicate anatomical structures. Therefore, an electrosurgical generator that reduces the possibility of thermal spread would offer a better opportunity for a successful surgical outcome.


Another issue associated with electrosurgical tissue sealing or tissue fusion is the buildup of eschar on the surgical instrument. Eschar is a deposit which is created from tissue that is charred by heat. Surgical tools often lose effectiveness when coated with eschar.


In order to effect a proper seal with larger vessels, two predominant mechanical parameters must be accurately controlled—the pressure applied to the vessel and the gap between the electrodes both of which affect thickness of the sealed vessel. More particularly, accurate application of the pressure is important to oppose the walls of the vessel, to reduce the tissue impedance to a low enough value that allows enough electrosurgical energy through the tissue, to overcome the forces of expansion during tissue heating and to contribute to the end tissue thickness which is an indication of a good seal. It has been determined that a fused vessel wall is optimum between about 0.001 and about 0.006 inches. Below this range, the seal may shred or tear and above this range the lumens may not be properly or effectively sealed.


With respect to smaller vessels, the pressure applied to the tissue tends to become less relevant whereas the gap distance between the electrically conductive surfaces becomes more significant for effective sealing. In other words, the chances of the two electrically conductive surfaces touching during activation increases as the vessels become smaller.


As mentioned above, in order to properly and effectively seal larger vessels, a greater closure force between opposing jaw members is required. It is known that a large closure force between the jaws typically requires a large moment about the pivot for each jaw. This presents a challenge because the jaw members are typically affixed with pins which are positioned to have a small moment arms with respect to the pivot of each jaw member. A large force, coupled with a small moment arm, is undesirable because the large forces may shear the pins. As a result, designers must compensate for these large closure forces by either designing instruments with metal pins and/or by designing instruments which at least partially offload these closure forces to reduce the chances of mechanical failure. As can be appreciated, if metal pivot pins are employed, the metal pins must be insulated to avoid the pin acting as an alternate current path between the jaw members which may prove detrimental to effective sealing.


Increasing the closure forces between electrodes may have other undesirable effects, e.g., it may cause the opposing electrodes to come into close contact with one another which may result in a short circuit or arcing between the electrodes, and a small closure force may cause pre-mature movement of the tissue during compression and prior to activation.


Thus, a need exists to develop an electrosurgical system which effectively seals vascular tissue and solves the aforementioned problems by providing an instrument which enables a large closure force between the opposing jaws members, reduces the chances of short circuiting the opposing jaws during activation and reduces the possibility of thermal spread.


SUMMARY

An electrosurgical system for sealing vessels using capacitive (RF) dielectric heating and a method thereof are provided. The present disclosure provides a system and method where tissue sealing is caused by capacitive heating, along with pressure and time. The system includes an electrosurgical tool or instrument having an end effector with parallel plate electrodes that will clamp onto a vessel, or tissue, and maintain a specified gap distance; however, the electrodes will be coated with a non-conductive dielectric material. Such an end effector will ensure that direct conduction between the electrodes does not occur through tissue or fluids and effectively creates a parallel plate capacitor with a dielectric, e.g., tissue and coating, in between the plates. The electrosurgical instrument will be activated with an AC signal at a specified RF frequency, e.g., a Debye resonance frequency, via an electrosurgical generator. An effective AC current will flow through the tissue and cause heating due to frictional losses from rotating polar molecules in the tissue.


Advantageously, the capacitive RF dielectric system of the present disclosure will provide more uniform heating, e.g., reduced thermal spread, due to a more uniform electric field generated between the electrodes than with a conventional ohmic heating system and will eliminate arcing since there will be no direct conduction between electrodes. Additionally, a more accurate temperature measurement is achieved with a single temperature sensor due to the uniform heat distribution. Furthermore, since the surface contacting tissue will be coated with a, preferably, non-stick, dielectric material, tissue sticking to the end effector will be reduced.





BRIEF DESCRIPTION OF THE DRAWINGS

The above and other aspects, features, and advantages of the present disclosure will become more apparent in light of the following detailed description when taken in conjunction with the accompanying drawings in which:



FIG. 1 is a schematic diagram illustrating the principles of one embodiment of the present disclosure;



FIG. 2 is a simplified block diagram of an electrosurgical system which may be used with the present disclosure;



FIG. 3 is a perspective view of one embodiment of a surgical instrument having bipolar forceps which may be configured according to the present disclosure;



FIG. 4 is an enlarged, perspective view of the end effector assembly of the forceps of FIG. 3 shown in an open configuration;



FIG. 5 is an enlarged, perspective view of the end effector assembly of the forceps of FIG. 3 shown in a closed configuration;



FIG. 6 is a right, perspective view of the forceps of FIG. 3 shown grasping tissue;



FIG. 7 is a perspective view of an endoscopic forceps which may be configured according to the present disclosure;



FIG. 8 is a simplified block diagram of one embodiment of a power control circuit for use with an electrosurgical generator; and



FIG. 9 is a flowchart illustrating one method for sealing tissue according to the present disclosure.





DETAILED DESCRIPTION

Embodiments of the present disclosure will be described herein below with reference to the accompanying drawings. In the following description, well-known functions or constructions are not described in detail to avoid obscuring the disclosure in unnecessary detail. In the figures, like reference numerals represent like elements.


An electrosurgical system for sealing vessels using capacitive (RF) dielectric heating and a method thereof are provided. Capacitive RF dielectric heating is employed in an electrosurgical system to heat/desiccate tissue for sealing purposes. Generally, a high voltage RF frequency AC signal is applied to a set of parallel electrodes on opposite sides of a dielectric, e.g., tissue or electrode coatings, forming a capacitive circuit. A tissue to be sealed is sandwiched or placed between the electrodes so that an AC displacement current flows through the tissue as a result of polar molecules in the tissue aligning and rotating in opposite fashion to the applied AC electric field. Direct conduction does not occur but instead an effective AC current flows through the parallel electrodes due to polar molecules with effective charges rotating back and forth. Heating occurs because these polar molecules encounter interactions with neighboring molecules resulting in lattice and frictional losses as they rotate. Since the internal polar molecules of the tissue are being heated, the system does not rely on thermal conduction and does not require electrodes to contact a surface of the tissue as in conventional ohmic heating systems. The combination of the heat generated, along with pressure applied and a specified gap distance, will effectively seal the tissue held between the electrodes.


An exemplary electrical equivalent circuit of the principle described above is shown in FIG. 1 as a capacitor 1 having parallel electrodes 2, 3 coupled to an RF energy source 4, the parallel electrodes 2, 3 being placed around a medium 5, e.g., a dielectric, to be heated. Voltage losses of the dielectric increase as the frequency of the applied signal is increased due to higher speed interactions with the neighboring molecules. The higher the frequency of the alternating field the greater the energy imparted into the medium 5, e.g. tissue, until the frequency is so high that the rotating molecules can no longer keep up with the external field due to lattice limitations. The frequency at which that occurs is called a “Debye resonance” and is the frequency at which the maximum energy can be imparted into a medium for a given electric field strength and, therefore, the maximum heating. This high frequency limitation is inversely proportional to the complexity of the polar molecule. For example, proteins with amino acid polar side groups or chains have a slower rotation limitation, and thus lower Debye resonance, than simple polar water molecules. These Debye resonance frequencies also shift with temperature as the medium 5 is heated.


In the electrosurgical system of the present disclosure, the RF frequency or composite signal of several RF frequencies are selected to correlate with the dominant Debye resonance frequency groups of the tissue that is being heated. These Debye resonances are dependent on the polar molecular makeup of the tissue and thus a plurality of tissue types may be researched for different Debye resonance frequencies to be stored in the electrosurgical system to appropriately heat a selected tissue.


The system is constructed to provide an AC RF signal displacement current at an RF frequency in the range of 3 MHz to 300 MHz. This range includes the HF (3 MHz to 30 MHz) and VHF (30 MHz to 300 MHz) frequencies in the lower regions of the radio frequency (RF) range. Superior results are achieved by operating in the frequency range of 3 MHz-30 MHz.


The frequency or composite frequency groups of the RF signal used in the electrosurgical system will track with and change with temperature to account for the fact that the Debye resonance frequencies of the polar molecular constituents of the tissue also shift with temperature.


It is contemplated that the RF signal power level and electric field strength can be adjusted automatically by a computer control system which changes the load current to control heating rates and account for different tissue types. The power level is controlled by measuring the current and field strength across the load. The voltage (AC field strength) is then adjusted, which in turn varies the current, until measurements of the current and field strength indicate that the desired power level has been achieved.


An electrosurgical system 6, which can be used to practice this disclosure, is shown in FIG. 2. The system 6 can be used for sealing vessels 400 and other tissues including ducts, veins, arteries and vascular tissue. The system 6 includes an electrosurgical generator 7 and a surgical tool, also referred to herein as a surgical instrument 10. The surgical instrument 10 is illustrated by way of example, and as will become apparent from the discussion below, other instruments can be utilized. The electrosurgical generator 6 includes several interconnected sub-units, including an RF drive circuit 7A, a power control circuit 7B, a variable D.C. power supply 7C and an output amplifier 7D. The surgical instrument 10 is electrically connected to the electrosurgical generator 7 using a plug 200 for receiving controlled electrosurgical power therefrom. The surgical instrument 10 has some type of end effector member 100, such as a forceps or hemostat, capable of grasping and holding the vessels and tissues of the patient. The member 100, also referred to simply as end effector 100, is assumed, in this embodiment, to be capable of applying and maintaining a relatively constant level of pressure on the vessel 400.


The member 100 is provided in the form of bipolar electrosurgical forceps using two generally opposing electrodes disposed on inner opposing surfaces of the member 100, and which are both electrically coupled to the output of the electrosurgical generator 7. During use, different electric potentials are applied to each electrode. When the forceps are utilized to clamp or grasp the vessel 400 therebetween, the electrical energy output from the electrosurgical generator 7 is transferred through the intervening tissue. Both open surgical procedures and endoscopic surgical procedures can be performed with suitably adapted surgical instruments 10. It should also be noted that the member 100 could be monopolar forceps that utilize one active electrode, with the other (return) electrode or pad being attached externally to the patient, or a combination of bipolar and monopolar forceps.


By way of further explanation, FIG. 3 is a perspective view of one embodiment of the surgical instrument 10 having a bipolar end effector implemented as forceps 100 while FIGS. 4 and 5 are enlarged, perspective views of a distal end of the bipolar forceps 100 shown in FIG. 3.


Referring now to FIGS. 3-6, a forceps 10 for use with open surgical procedures includes elongated shaft portions 12a and 12b each having a proximal end 16a and 16b, respectively, and a distal end 14a and 14b, respectively. In the drawings and in the descriptions which follow, the term “proximal”, as is traditional, will refer to the end of the forceps 10 which is closer to the user, while the term “distal” will refer to the end which is further from the user.


The forceps 10 includes an end effector assembly 100 which attaches to distal ends 14a and 14b of shafts 12a and 12b, respectively. As explained in more detail below, the end effector assembly 100 includes pair of opposing jaw members 110 and 120 which are pivotably connected about a pivot pin 150.


Preferably, each shaft 12a and 12b includes a handle 17a and 17b disposed at the proximal end 16a and 16b thereof which each define a finger hole 18a and 18b, respectively, therethrough for receiving a finger of the user. As can be appreciated, finger holes 18a and 18b facilitate movement of the shafts 12a and 12b relative to one another which, in turn, pivot the jaw members 110 and 120 from an open position (FIG. 4) wherein the jaw members 110 and 120 are disposed in spaced relation relative to one another to a clamping or closed position (FIG. 5) wherein the jaw members 110 and 120 cooperate to grasp tissue 400 (FIG. 6) therebetween.


A ratchet 30 is preferably included for selectively locking the jaw members 110 and 120 relative to one another at various positions during pivoting. As best shown in FIG. 6, a first ratchet interface, e.g., 30a, extends from the proximal end 16a of shaft member 12a towards a second ratchet interface 30b in a generally vertically aligned manner such that the inner facing surfaces of each ratchet 30a and 30b abut one another upon closure about the tissue 400. Preferably, each ratchet interface 30a and 30b includes a plurality of flanges 32a and 32b, respectively, which project from the inner facing surface of each ratchet interface 30a and 30b such that the ratchet interfaces 30a and 30b interlock in at least one position. In the embodiment shown in FIG. 6, the ratchet interfaces 30a and 30b interlock at several different positions.


Preferably, each position associated with the cooperating ratchet interfaces 30a and 30b holds a specific, i.e., constant, strain energy in the shaft members 12a and 12b which, in turn, transmits a specific closing force to the jaw members 110 and 120. It is envisioned that the ratchet 30 may include graduations or other visual markings which enable the user to easily and quickly ascertain and control the amount of closure force desired between the jaw members. A design without a ratchet system or similar system would require the user to hold the jaw members 110 and 120 together by applying constant force to the handles 17a and 17b which may yield inconsistent results.


As best illustrated in FIG. 3, one of the shafts, e.g., 12b, includes a proximal shaft connector 19 which is designed to connect the forceps 10 to a source of electrosurgical energy such as an electrosurgical generator 7, which will be described below in detail. More particularly, proximal shaft connector 19 is formed by a cover 19a and a flange 19b which extends proximally from shaft 12b. Preferably, cover 19a and flange 19b mechanically cooperate to secure an electrosurgical cable 210 to the forceps 10 such that the user may selectively apply electrosurgical energy as needed.


The proximal end of the cable 210 includes a plug 200 having a pair of prongs 202a and 202b which are dimensioned to electrically and mechanically engage the electrosurgical energy generator. The interior of cable 210 houses at least a pair of leads which conduct the different electrical potentials from the electrosurgical generator to the jaw members 110 and 120. The cable 210 may also include a plurality of other leads coupled to sensors, e.g., a temperature sensor, voltage sensor, current sensor, tissue type sensor, etc., for providing feedback to the electrosurgical generator 7, as explained in greater detail below. FIG. 2 shows a tissue type sensor 153 for determining a type of tissue to be sealed coupled to the generator 7 via cable 210 to provide tissue type feedback to the generator as will be described below.


As best seen in FIGS. 4 and 5, the two opposing jaw members 110 and 120 of the end effector assembly 100 are pivotable about pin 150 from the open position to the closed position for grasping tissue 400 therebetween. Jaw members 110 and 120 are generally symmetrical and include similar component features which cooperate to permit facile rotation about pivot pin 150 to effect the grasping and sealing of tissue 400. As a result and unless otherwise noted, jaw member 110 and the operative features associated therewith will initially be described herein in detail and the similar component features with respect to jaw member 120 will be briefly summarized thereafter.


Jaw member 110 includes an insulated outer housing 114 which is dimensioned to mechanically engage an electrode 112 and a proximally extending flange 130 which is dimensioned to seat a distal connector 300. Preferably, outer insulative housing 114 extends along the entire length of jaw member 110 to reduce alternate or stray current paths during sealing and/or incidental burning of tissue 400. The inner facing surface of flange 130 includes an electrically conductive plate which conducts electrosurgical energy to the electrode 112 upon activation.


Likewise, jaw member 120 include similar elements which include: an outer housing 124 which engages an electrode 122; a proximally extending flange 140 which seats the opposite face of the distal connector 300; an electrically conductive plate which conducts electrosurgical energy to the electrode 122 upon activation.


Each electrode 112, 122 of the first and second jaw members will be coated with a non-conductive dielectric material 113, 123 that itself will not be heated since the dielectric material will be selected to have a Debye resonance at much higher frequency then a Debye resonance of the tissue to be sealed. Advantageously, the dielectric material will increase the dielectric constant of the gaps between the electrodes 112, 122 and the tissue 400 to be heated thus improving energy transfer to the tissue 400.


Preferably, the dielectric material 113, 123 is molded onto the jaw members 110, 120 (e.g., overmolding, injection molding, etc.), stamped onto the jaw members 110, 120 or deposited (e.g., deposition) onto the jaw members 110, 120. The dielectric material may also be pre-formed and slideably attached to the jaw members and/or attached to the electrodes 112, 112 in a snap-fit manner. Other techniques involve thermally spraying the dielectric material onto the surface of the jaw member 110, 120. Alternatively, the dielectric material 113, 123 can be molded onto the inner-facing surface of the jaw members 110, 120 or, in some cases, it may be preferable to adhere the dielectric material to the inner facing surfaces of the jaw members 110, 120 by any known method of adhesion.


Preferably, the dielectric material is a material having superior non-stick properties, for example, KAPTON®, polytetrafluoroethylene (PTFE), etc., which will reduce the amount of tissue that sticks to the end effector and thus improves the overall efficacy of the instrument. KAPTON® is a polyimide film commercially available from Dupont of Wilmington, Del.


Since the Debye resonance frequency of the tissue will shift with a change in temperature of the tissue, the end effector 100 will include at least one temperature sensor 152. The temperature sensor 152 may be any known temperature sensor in the art, for example, a thermocouple, thermistor, resistance temperature detector (RTD), semiconductor temperature device, infrared temperature sensor, etc. The temperature sensor 152 will be coupled to the generator 7 via cable 210 to provide temperature feedback to the generator as will be described below.


It is envisioned that one of the jaw members, e.g., 120, includes at least one stop member 151 disposed on an inner facing surface of the electrode surface 112 (and/or 122). Alternatively or in addition, the stop member 151 may be positioned adjacent to the electrode 112, 122 or proximate the pivot pin 150. The stop member(s) is preferably designed to facilitate gripping and manipulation of tissue 400 and to define a gap “G” (FIG. 6) between opposing jaw members 110 and 120 during sealing. Preferably the separation distance during sealing or the gap distance “G” is within the range of about 0.001 inches (˜0.03 millimeters) to about 0.006 inches (˜0.16 millimeters).


A detailed discussion of these and other envisioned stop members 151 as well as various manufacturing and assembling processes for attaching, disposing, depositing and/or affixing the stop members 151 to the electrodes surfaces 112, 122 are described in commonly-assigned, co-pending PCT Application Ser. No. PCT/US01/11222 entitled “BIPOLAR ELECTROSURGICAL FORCEPS WITH NON-CONDUCTIVE STOP MEMBERS” which is hereby incorporated by reference in its entirety herein.



FIG. 7 is a perspective view of another embodiment of a surgical instrument 70 having end effector members or forceps 700 that are suitable for an endoscopic surgical procedure. The end effector member 700 is depicted as sealing the tubular vessel 400 through a cannula assembly 702.


The surgical instrument 70 for use with endoscopic surgical procedures includes a drive rod assembly 704 which is coupled to a handle assembly 706. The drive rod assembly 704 includes an elongated hollow shaft portion 708 having a proximal end and a distal end. An end effector assembly 700 is attached to the distal end of shaft 708 and includes a pair of opposing jaw members. Preferably, handle assembly 706 is attached to the proximal end of shaft 708 and includes an activator 710 for imparting movement of the forceps jaw members of end effector member 700 from an open position, wherein the jaw members are disposed in spaced relation relative to one another, to a clamping or closed position, wherein the jaw members cooperate to grasp tissue therebetween.


Similar to end effector 100, end effector 700 will include first and second jaw members, each having an electrode for imparting electrosurgical energy to tissue 400. Each electrode will be coated with a non-conductive dielectric material as described above in reference to end effector 100. Alternatively, a non-conductive pad may be selectively mounted atop the inner facing surface of each electrode or the electrodes may be manufactured with the pad mounted thereon.


Activator 710 includes a movable handle 712 having an aperture 714 defined therein for receiving at least one of the operator's fingers and a fixed handle 716 having an aperture 718 defined therein for receiving an operator's thumb. Movable handle 712 is selectively moveable from a first position relative to fixed handle 716 to a second position in the fixed handle 716 to close the jaw members. Preferably, fixed handle 716 includes a channel 720 which extends proximally for receiving a ratchet 722 which is coupled to movable handle 712. This structure allows for progressive closure of the end effector assembly, as well as a locking engagement of the opposing jaw members. In some cases it may be preferable to include other mechanisms to control and/or limit the movement of handle 712 relative to handle 716 such as, e.g., hydraulic, semi-hydraulic and/or gearing systems. As with instrument 10, a stop is also provided to maintain a minimum gap between the jaw members.


The handle 716 includes handle sections 716a and 716b, and is generally hollow such that a cavity is formed therein for housing various internal components. For example, the cavity can house a PC board which controls the electrosurgical energy being transmitted from the electrosurgical generator 7 to each jaw member, via connector 200. More particularly, electrosurgical energy generated from the electrosurgical generator 7 is transmitted to the handle PC board by a cable 210. The PC board converts the electrosurgical energy from the generator into two different electrical potentials which are transmitted to each jaw member by a separate terminal clip. The handle 716 may also house circuitry that communicates with the generator 7, for example, identifying characteristics of the electrosurgical tool 70 for use by the electrosurgical generator 7, transmitting temperature values, transmitting calculated impedance values, etc.


A lost motion mechanism may be positioned between each of the handle sections 716a and 716b for maintaining a predetermined or maximum clamping force for sealing tissue between the jaw members. It is also contemplated that other endoscopic vessel sealing instruments may be utilized with the present disclosure such as the vessel sealer and dividers, e.g., the LIGASURE ATLAS™ and LIGASURE 5 mm™ manufactured and sold by VALLEYLAB, Inc—a division of TYCO HEALTH CARE GROUP, LP.


Having thus described two exemplary and non-limiting embodiments of surgical instruments 10, 70 that can be employed with the electrosurgical generator 7, a description will now be provided of various aspects of the presently disclosed electrosurgical generator 7.



FIG. 8 is a block diagram that illustrates the power control circuit 7B of FIG. 2 in greater detail. The power control circuit 7B includes a suitably programmed data processor 800 that is preferably implemented as one or more microcontroller devices. In one envisioned embodiment there are two principal microcontrollers, referred to as a main microcontroller 800A and a feedback microcontroller 800B. These two microcontrollers are capable of communicating using shared data that is stored and retrieved from a shared read/write memory 802, e.g., a RAM. A control program for the data processor 800 is stored in a program memory 804, and includes software routines and algorithms for controlling the overall operation of the electrosurgical generator 7. In general, the feedback microcontroller 800B has a digital output bus coupled to an input of a digital to analog converter (DAC) block 806 which outputs an analog signal. This is a system control voltage (SCV), which is applied to the variable DC power supply 7C to control the magnitude of the voltage and current of output RF pulses.


An analog to digital converter (ADC) block 808 receives analog inputs and sources a digital input bus of the feedback microcontroller 800B. Using the ADC block 808, the microcontroller 800B is apprised of the value of the actual output voltage and the actual output current, thereby closing the feedback loop with the SCV signal. The values of the output voltage and current can be used for determining tissue impedance and for the overall, general control of the applied RF energy waveform. It should be noted that at least the ADC block 808 can be an internal block of the feedback microcontroller 800B, and need not be a separate, external component. It should be further noted that the same analog signals can be digitized and read into the master microcontroller 800A, thereby providing redundancy. The master microcontroller 800A controls the state (on/off) of the high voltage (e.g., 190V max) power supply as a safety precaution, controls the front panel display(s), and also receives various input switch closures, such as a tissue type selected by an operator.


It is envisioned that a third (waveform) microcontroller 800C may be employed to generate a desired sinusoidal waveform at a specified Debye resonance frequency that forms the basis of the RF pulses applied to the tissue to be sealed, such as the vessel 400 (FIG. 6). The waveform microcontroller 800C is controlled by the feedback microcontroller 800B and is programmed thereby. Depending on the tissue type, e.g., either selected by the user or sensed via the end effector 100, the feedback controller 800B will access a Debye resonance frequency vs. temperature curve from look-up table (LUT) 810 and will load the appropriate curve from LUT 810. An output signal line from the feedback microcontroller 800B is coupled to an input of the waveform microcontroller 800C to essentially turn the waveform microcontroller 800C on and off to provide the pulsed RF signal in accordance with an aspect of this disclosure. This particular arrangement is, of course, not to be viewed in a limiting sense upon the practice of this system, as those skilled in the art may derive a number of methods and circuits for generating the desired RF pulses in accordance with the teachings found herein.


Furthermore, the ADC 808 will receive a signal indicative of a temperature of the tissue to be sealed and inputs the signal into the feedback microcontroller 800B. The feedback microcontroller 800B will then again access the LUT 810 to determine a shift in the Debye resonance frequency of the tissue selected.


Alternatively, the shift in the Debye resonance frequency of the tissue selected may be determined by a predictive algorithm stored in program memory 804. The predictive algorithm will determine the shift in the Debye resonance frequency from a table derived from experimental data for various tissue types.


Referring to FIG. 9, a method for electrosurgically sealing tissue using capacitive RF dielectric heating is illustrated. In step 902, a type of tissue to be sealed is determined and selected either manually or automatically by the electrosurgical generator 7. An electrosurgical instrument 10 having an end effector 100 including electrodes having a non-conductive dielectric material disposed thereon is electrically coupled to generator 7 and employed to grasp the tissue to be sealed at the operative site, step 904. The generator will load the appropriate Debye resonance frequency curve based on the type of tissue selected. The generator 7 via waveform generator 800C will apply RF energy at the appropriate Debye resonance frequency to the end effector 100, step 906.


Since the optimal Debye resonance frequency will shift with a change in temperature, temperature sensor 152 will continuously measure the temperature of the tissue to be sealed, in step 908. The temperature will be feedback to the generator 7 via feedback controller 800B and will determine a shifted Debye resonance frequency via the Debye resonance frequency curve for the tissue selected, in step 910. In step 910, the generator 7 will apply subsequent RF energy at the shifted Debye resonance frequency. Alternatively, the shifted Debye resonance frequency will be determined by the predictive algorithm described above.


In step 914, the generator 7 will determine the effectiveness of the seal by determining the impedance of the tissue. The impedance may be determined by sensing the current and voltage of the tissue and calculating the impedance via the appropriate algorithm as is known in the art. In step 916, if the generator 7 determines the seal is effective, the generator will terminate application of the RF energy (step 918) and, optionally, provide an indication to the user that the tissue is sealed. Otherwise, if the seal is not effective, the method will return to step 908 and repeat steps 908 through 916 until it is determines the seal is effective.


It is envisioned that by utilizing a capacitive system for heating, and thus sealing tissue, more uniform heating will be achieved due to the uniform electric field generated between the electrodes of the end effector. Additionally, since the electrodes of the end effector will act as a pure capacitor, there will be no resistive component through the tissue and, therefore, no current which will eliminate the possibility of arcing. Furthermore, since the dielectric material of the end effector will be selected to have superior non-stick properties, the amount of tissue sticking to the end effector will be eliminated or reduced, thus, improving the overall efficacy of the system.


While several embodiments of the disclosure have been shown in the drawings, it is not intended that the disclosure be limited thereto, as it is intended that the disclosures be as broad in scope as the art will allow and that the specification be read likewise. Therefore, the above description should not be construed as limiting, but merely as exemplifications of preferred embodiments.

Claims
  • 1. An electrosurgical instrument for sealing tissue comprising: an end effector having opposing jaw members, the jaw members being movable relative to one another from a first position wherein the jaw members are disposed in spaced relation relative to one another to a second position wherein the jaw members cooperate to grasp tissue therebetween, each jaw member including an electrode having a dielectric coating;each jaw member adapted to connect to a source of electrosurgical energy to supply electrical energy thereto, the jaw members configured to generate an AC electric field that causes energy to flow through tissue held therebetween at a Debye resonance frequency of the tissue being sealed;a control system configured to control the electrical energy supplied to the jaw members based on a sensed strength of the AC electric field; anda predictive algorithm executable by the control system and configured to determine a shift in the Debye resonance frequency of the tissue being sealed, the control system adapted to regulate the source of electrical energy to cause energy to flow through the tissue being sealed at the shifted Debye resonance frequency based on the determined shift.
  • 2. The electrosurgical instrument of claim 1, wherein the end effector further comprises at least one temperature sensor for sensing a temperature of the tissue.
  • 3. The electrosurgical instrument of claim 1, wherein the end effector further comprises at least one non-conductive stop member disposed on an inner facing surface of at least one of the jaw members which controls the distance between the jaw members when tissue is held therebetween.
  • 4. The electrosurgical instrument of claim 1, wherein the dielectric coating of the electrodes has a Debye resonance frequency different than the Debye resonance frequency of the tissue.
  • 5. The electrosurgical instrument of claim 1, wherein the dielectric coating is selected from the group consisting of a polyimide film and tetrafluoroethylene.
  • 6. An electrosurgical system comprising: an electrosurgical instrument for sealing tissue including an end effector having opposing jaw members, the jaw members being movable relative to one another from a first position wherein the jaw members are disposed in spaced relation relative to one another to a second position wherein the jaw members cooperate to grasp tissue therebetween, each jaw member including an electrode having a dielectric coating;an electrosurgical generator coupled to each jaw member and adapted to supply electrosurgical energy thereto, the jaw members configured to generate an AC electric field that causes energy to flow at a predetermined frequency through tissue held therebetween to effect a seal;a control system operatively associated with the generator and configured to control the electrosurgical energy supplied to the jaw members based on a sensed strength of the AC electric field; anda predictive algorithm executable by the control system and configured to determine a shift in the predetermined frequency of the tissue being sealed, wherein the control system controls the source of electrical energy to cause energy to flow through the tissue being sealed at the shifted predetermined frequency based on the determined shift.
  • 7. The electrosurgical system of claim 6, wherein the end effector further comprises at least one temperature sensor for sensing a temperature of the tissue.
  • 8. The electrosurgical system of claim 6, wherein the end effector further comprises at least one non-conductive stop member disposed on an inner facing surface of at least one of the jaw members which controls the distance between the jaw members when tissue is held therebetween.
  • 9. The electrosurgical system of claim 6, wherein the predetermined frequency is a Debye resonance frequency of the tissue being sealed.
  • 10. The electrosurgical system of claim 9, wherein the dielectric coating of the electrodes has a Debye resonance frequency different than the Debye resonance frequency of the tissue.
  • 11. The electrosurgical system of claim 9, wherein the electrosurgical generator further comprises a look-up table including a plurality of Debye resonance frequencies, each Debye resonance frequency being correlated to a tissue type.
  • 12. The electrosurgical system of claim 9, wherein the electrosurgical generator further comprises a look-up table including a plurality of Debye resonance frequencies versus temperature curves, and the end effector further comprising a temperature sensor for inputting a signal indicative of tissue temperature to the electrosurgical generator, wherein the generator selects an appropriate Debye resonance frequency based on the temperature sensed.
  • 13. The electrosurgical system of claim 6, wherein the dielectric coating is selected from the group consisting of a polyimide film and tetrafluoroethylene.
PRIORITY

This application claims priority to an application entitled “VESSEL SEALING SYSTEM USING CAPACITIVE RF DIELECTRIC HEATING” filed in the United States Patent and Trademark Office on Mar. 2, 2004 and assigned Ser. No. 60/549,232, the contents of which are hereby incorporated by reference.

US Referenced Citations (571)
Number Name Date Kind
1787709 Wappler Jan 1931 A
1813902 Bovie Jul 1931 A
1841968 Lowry Jan 1932 A
1863118 Liebel Jun 1932 A
1945867 Rawls Feb 1934 A
2827056 Degelman Mar 1958 A
2849611 Adams Aug 1958 A
2982881 Reich May 1961 A
3058470 Seeliger et al. Oct 1962 A
3089496 Degelman May 1963 A
3163165 Islikawa Dec 1964 A
3252052 Nash May 1966 A
3391351 Trent Jul 1968 A
3402326 Guasco et al. Sep 1968 A
3413480 Biard et al. Nov 1968 A
3436563 Regitz Apr 1969 A
3439253 Piteo Apr 1969 A
3439680 Thomas, Jr. Apr 1969 A
3461874 Martinez Aug 1969 A
3471770 Haire Oct 1969 A
3478744 Leiter Nov 1969 A
3486115 Anderson Dec 1969 A
3495584 Schwalm Feb 1970 A
3513353 Lansch May 1970 A
3514689 Giannamore May 1970 A
3515943 Warrington Jun 1970 A
3551786 Van Gulik Dec 1970 A
3562623 Farnsworth Feb 1971 A
3571644 Jakoubovitch Mar 1971 A
3589363 Banko Jun 1971 A
3595221 Blackett Jul 1971 A
3601126 Estes Aug 1971 A
3611053 Rowell Oct 1971 A
3641422 Farnsworth et al. Feb 1972 A
3662151 Haffey May 1972 A
3675655 Sittner Jul 1972 A
3683923 Anderson Aug 1972 A
3693613 Kelman Sep 1972 A
3697808 Lee Oct 1972 A
3699967 Anderson Oct 1972 A
3720896 Bierlein Mar 1973 A
3743918 Maitre Jul 1973 A
3766434 Sherman Oct 1973 A
3768482 Shaw Oct 1973 A
3783340 Becker Jan 1974 A
3784842 Kremer Jan 1974 A
3801766 Morrison, Jr. Apr 1974 A
3801800 Newton Apr 1974 A
3812858 Oringer May 1974 A
3815015 Swin et al. Jun 1974 A
3826263 Cage et al. Jul 1974 A
3828768 Douglas Aug 1974 A
3848600 Patrick, Jr. et al. Nov 1974 A
3870047 Gonser Mar 1975 A
3875945 Friedman Apr 1975 A
3885569 Judson May 1975 A
3897787 Ikuno et al. Aug 1975 A
3897788 Newton Aug 1975 A
3901216 Felger Aug 1975 A
3905373 Gonser Sep 1975 A
3913583 Bross Oct 1975 A
3923063 Andrews et al. Dec 1975 A
3933157 Bjurwill et al. Jan 1976 A
3946738 Newton et al. Mar 1976 A
3952748 Kaliher et al. Apr 1976 A
3963030 Newton Jun 1976 A
3964487 Judson Jun 1976 A
3971365 Smith Jul 1976 A
3980085 Ikuno Sep 1976 A
4005714 Hilebrandt Feb 1977 A
4024467 Andrews et al. May 1977 A
4041952 Morrison, Jr. et al. Aug 1977 A
4051855 Schneiderman Oct 1977 A
4063557 Wuchinich et al. Dec 1977 A
4074719 Semm Feb 1978 A
4092986 Schneiderman Jun 1978 A
4094320 Newton et al. Jun 1978 A
4102341 Ikuno et al. Jul 1978 A
4114623 Meinke et al. Sep 1978 A
4121590 Gonser Oct 1978 A
4123673 Gonser Oct 1978 A
4126137 Archibald Nov 1978 A
4145636 Doi Mar 1979 A
4171700 Farin Oct 1979 A
4188927 Harris Feb 1980 A
4191188 Belt et al. Mar 1980 A
4196734 Harris Apr 1980 A
4200104 Harris Apr 1980 A
4200105 Gosner Apr 1980 A
4209018 Meinke et al. Jun 1980 A
4231372 Newton Nov 1980 A
4232676 Herczog Nov 1980 A
4237887 Gosner Dec 1980 A
4237891 DuBose et al. Dec 1980 A
4281373 Mabille Jul 1981 A
4287557 Brehse Sep 1981 A
4303073 Archibald Dec 1981 A
4311154 Sterzer et al. Jan 1982 A
4314559 Allen Feb 1982 A
4321926 Roge Mar 1982 A
4334539 Childs et al. Jun 1982 A
4343308 Gross Aug 1982 A
4364390 Shaw Dec 1982 A
4372315 Shapiro et al. Feb 1983 A
4376263 Pittroff et al. Mar 1983 A
4378801 Oosten Apr 1983 A
4384582 Watt May 1983 A
4397314 Vaguine Aug 1983 A
4407272 Yamaguchi Oct 1983 A
4411266 Cosman Oct 1983 A
4416276 Newton et al. Nov 1983 A
4416277 Newton et al. Nov 1983 A
4429694 McGreevy Feb 1984 A
4436091 Banko Mar 1984 A
4437464 Crow Mar 1984 A
4438766 Bowers Mar 1984 A
4452546 Hiltebrandt et al. Jun 1984 A
4463759 Garito et al. Aug 1984 A
4470414 Imagawa et al. Sep 1984 A
4472661 Culver Sep 1984 A
4474179 Koch Oct 1984 A
4492231 Auth Jan 1985 A
4492832 Taylor Jan 1985 A
4494541 Archibald Jan 1985 A
4514619 Kugelman Apr 1985 A
4520818 Mickiewicz Jun 1985 A
4559943 Bowers Dec 1985 A
4565200 Cosman Jan 1986 A
4566454 Mehl et al. Jan 1986 A
4569345 Manes Feb 1986 A
4576177 Webster, Jr. Mar 1986 A
4582057 Auth et al. Apr 1986 A
4590934 Malis et al. May 1986 A
4608977 Brown Sep 1986 A
4630218 Hurley Dec 1986 A
4632109 Patterson Dec 1986 A
4644955 Mioduski Feb 1987 A
4646222 Okado et al. Feb 1987 A
4651264 Hu Mar 1987 A
4651280 Chang et al. Mar 1987 A
4657015 Irnich Apr 1987 A
4658815 Farin et al. Apr 1987 A
4658819 Harris et al. Apr 1987 A
4658820 Klicek Apr 1987 A
4662383 Sogawa et al. May 1987 A
4691703 Auth et al. Sep 1987 A
4712559 Turner Dec 1987 A
4727874 Bowers et al. Mar 1988 A
4735204 Sussman et al. Apr 1988 A
4739759 Rexroth et al. Apr 1988 A
4741334 Irnich May 1988 A
4754757 Feucht Jul 1988 A
4788634 Schlecht et al. Nov 1988 A
4805621 Heinze et al. Feb 1989 A
4818954 Flachenecker et al. Apr 1989 A
4827911 Broadwin et al. May 1989 A
4827927 Newton May 1989 A
4832024 Boussignac et al. May 1989 A
4848335 Manes Jul 1989 A
4848355 Nakamura et al. Jul 1989 A
4860745 Farin et al. Aug 1989 A
4862889 Feucht Sep 1989 A
4880719 Murofushi et al. Nov 1989 A
4890610 Kirwan et al. Jan 1990 A
4903696 Stasz et al. Feb 1990 A
4907589 Cosman Mar 1990 A
4922210 Flachenecker et al. May 1990 A
4931047 Broadwin et al. Jun 1990 A
4931717 Gray et al. Jun 1990 A
4938761 Ensslin Jul 1990 A
4942313 Kinzel Jul 1990 A
4961047 Carder Oct 1990 A
4961435 Kitagawa et al. Oct 1990 A
4966597 Cosman Oct 1990 A
RE33420 Sussman Nov 1990 E
4969885 Farin Nov 1990 A
4993430 Shimoyama et al. Feb 1991 A
4995877 Ams et al. Feb 1991 A
5015227 Broadwin et al. May 1991 A
5019176 Brandhorst, Jr. May 1991 A
5024668 Peters et al. Jun 1991 A
5029588 Yock et al. Jul 1991 A
5087257 Farin Feb 1992 A
5103804 Abele et al. Apr 1992 A
5108389 Cosmescu Apr 1992 A
5108391 Flachenecker Apr 1992 A
5122137 Lennox Jun 1992 A
5133711 Hagen Jul 1992 A
5151102 Kamiyama et al. Sep 1992 A
5152762 McElhenney Oct 1992 A
5157603 Scheller et al. Oct 1992 A
5160334 Billings et al. Nov 1992 A
5162217 Hartman Nov 1992 A
5167658 Ensslin Dec 1992 A
5190517 Zieve et al. Mar 1993 A
5196008 Kuenecke Mar 1993 A
5196009 Kirwan, Jr. Mar 1993 A
5201900 Nardella Apr 1993 A
5207691 Nardella May 1993 A
5230623 Guthrie et al. Jul 1993 A
5233515 Cosman Aug 1993 A
5249121 Baum et al. Sep 1993 A
5254117 Rigby et al. Oct 1993 A
RE34432 Bertrand Nov 1993 E
5267994 Gentelia et al. Dec 1993 A
5267997 Farin Dec 1993 A
5281213 Milder et al. Jan 1994 A
5300068 Rosar et al. Apr 1994 A
5300070 Gentelia Apr 1994 A
5318563 Malis et al. Jun 1994 A
5323778 Kandarpa et al. Jun 1994 A
5324283 Heckele Jun 1994 A
5330518 Neilson et al. Jul 1994 A
5334193 Nardella Aug 1994 A
5341807 Nardella Aug 1994 A
5342356 Ellman Aug 1994 A
5342357 Nardella Aug 1994 A
5342409 Mullett Aug 1994 A
5348554 Imran et al. Sep 1994 A
5370645 Klicek et al. Dec 1994 A
5370672 Fowler et al. Dec 1994 A
5370675 Edwards et al. Dec 1994 A
5372596 Klicek et al. Dec 1994 A
5383874 Jackson Jan 1995 A
5383876 Nardella Jan 1995 A
5383917 Desai et al. Jan 1995 A
5385148 Lesh et al. Jan 1995 A
5396062 Eisentraut et al. Mar 1995 A
5400267 Denen et al. Mar 1995 A
5403311 Abele et al. Apr 1995 A
5403312 Yates et al. Apr 1995 A
5409000 Imran Apr 1995 A
5409006 Buchholtz et al. Apr 1995 A
5409485 Suda Apr 1995 A
5413573 Koivukangas May 1995 A
5414238 Steigerwald et al. May 1995 A
5417719 Hull et al. May 1995 A
5422567 Matsunaga Jun 1995 A
5423808 Edwards et al. Jun 1995 A
5423809 Klicek Jun 1995 A
5423810 Goble et al. Jun 1995 A
5425704 Sakurai et al. Jun 1995 A
5430434 Lederer et al. Jul 1995 A
5432459 Thompson Jul 1995 A
5433739 Sluijter et al. Jul 1995 A
5434398 Goldberg Jul 1995 A
5436566 Thompson Jul 1995 A
5438302 Goble Aug 1995 A
5443463 Stern et al. Aug 1995 A
5445635 Denen Aug 1995 A
5451224 Goble et al. Sep 1995 A
5458597 Edwards et al. Oct 1995 A
5462521 Brucker et al. Oct 1995 A
5472441 Edwards et al. Dec 1995 A
5472443 Cordis et al. Dec 1995 A
5478303 Folry-Nolan et al. Dec 1995 A
5480399 Hebborn Jan 1996 A
5483952 Aranyi Jan 1996 A
5490850 Ellman et al. Feb 1996 A
5496312 Klicek Mar 1996 A
5496313 Gentelia et al. Mar 1996 A
5500012 Brucker et al. Mar 1996 A
5500616 Ochi Mar 1996 A
5514129 Smith May 1996 A
5520684 Imran May 1996 A
5531774 Schulman et al. Jul 1996 A
5534018 Wahlstrand et al. Jul 1996 A
5536267 Edwards et al. Jul 1996 A
5540681 Strul et al. Jul 1996 A
5540683 Ichikawa Jul 1996 A
5540684 Hassler, Jr. Jul 1996 A
5540724 Cox Jul 1996 A
5556396 Cohen et al. Sep 1996 A
5558671 Yates Sep 1996 A
5569242 Lax et al. Oct 1996 A
5571147 Sluijter et al. Nov 1996 A
5573533 Strul Nov 1996 A
5584830 Ladd et al. Dec 1996 A
5588432 Crowley Dec 1996 A
5594636 Schauder Jan 1997 A
5596466 Ochi Jan 1997 A
5599344 Paterson Feb 1997 A
5599345 Edwards et al. Feb 1997 A
5599348 Gentelia et al. Feb 1997 A
5605150 Radons et al. Feb 1997 A
5613966 Makower et al. Mar 1997 A
5613996 Lindsay Mar 1997 A
5625370 D'Hont Apr 1997 A
5626575 Crenner May 1997 A
5628745 Bek May 1997 A
5643330 Holsheimer et al. Jul 1997 A
5647869 Goble et al. Jul 1997 A
5647871 Levine et al. Jul 1997 A
5651780 Jackson et al. Jul 1997 A
5658322 Fleming Aug 1997 A
5660567 Nierlich et al. Aug 1997 A
5674217 Wahlstrom et al. Oct 1997 A
5685840 Schechter et al. Nov 1997 A
5688267 Panescu et al. Nov 1997 A
5690692 Fleming Nov 1997 A
5693042 Bioarski et al. Dec 1997 A
5694304 Telefus et al. Dec 1997 A
5695494 Becker Dec 1997 A
5696351 Benn et al. Dec 1997 A
5702386 Stern et al. Dec 1997 A
5702429 King Dec 1997 A
5707369 Vaitekunas et al. Jan 1998 A
5712772 Telefus et al. Jan 1998 A
5713896 Nardella Feb 1998 A
5720744 Eggleston et al. Feb 1998 A
5722975 Edwards et al. Mar 1998 A
5733281 Nardella Mar 1998 A
5749869 Lindenmeier et al. May 1998 A
5749871 Hood et al. May 1998 A
5755715 Stern May 1998 A
5766165 Gentelia et al. Jun 1998 A
5769847 Panescu Jun 1998 A
5772659 Becker et al. Jun 1998 A
5792138 Shipp Aug 1998 A
5797802 Nowak Aug 1998 A
5797902 Netherly Aug 1998 A
5814092 King Sep 1998 A
5817093 Williamson, IV et al. Oct 1998 A
5820568 Willis Oct 1998 A
5827271 Bussey et al. Oct 1998 A
5830212 Cartmell Nov 1998 A
5836909 Cosmescu Nov 1998 A
5836943 Miller, III Nov 1998 A
5836990 Li Nov 1998 A
5846236 Lindenmeier et al. Dec 1998 A
5868737 Taylor et al. Feb 1999 A
5868739 Lindenmeier et al. Feb 1999 A
5868740 LeVeen et al. Feb 1999 A
5871481 Kannenberg et al. Feb 1999 A
5891142 Eggers et al. Apr 1999 A
5897552 Edwards et al. Apr 1999 A
5908444 Azure Jun 1999 A
5913882 King Jun 1999 A
5921982 Lesh et al. Jul 1999 A
5925070 King et al. Jul 1999 A
5931836 Hatta et al. Aug 1999 A
5938690 Law et al. Aug 1999 A
5948007 Starkebaum et al. Sep 1999 A
5951545 Schilling Sep 1999 A
5951546 Lorentzen Sep 1999 A
5954686 Garito et al. Sep 1999 A
5954717 Behl et al. Sep 1999 A
5954719 Chen et al. Sep 1999 A
5961344 Rosales et al. Oct 1999 A
5971980 Sherman Oct 1999 A
5976128 Schilling et al. Nov 1999 A
5983141 Sluijter et al. Nov 1999 A
6010499 Cobb Jan 2000 A
6014581 Whayne et al. Jan 2000 A
6033399 Gines Mar 2000 A
6044283 Fein et al. Mar 2000 A
6053910 Fleenor Apr 2000 A
6053912 Panescu et al. Apr 2000 A
6055458 Cochran et al. Apr 2000 A
6056745 Panescu et al. May 2000 A
6056746 Goble et al. May 2000 A
6063075 Mihori May 2000 A
6063078 Wittkampf May 2000 A
6066137 Greep May 2000 A
6068627 Orszulak et al. May 2000 A
6074386 Goble et al. Jun 2000 A
6074388 Tockweiler et al. Jun 2000 A
6080149 Huang et al. Jun 2000 A
6093186 Goble Jul 2000 A
6102497 Ehr et al. Aug 2000 A
RE36871 Epstein Sep 2000 E
6113591 Whayne et al. Sep 2000 A
6113596 Hooven Sep 2000 A
6123702 Swanson et al. Sep 2000 A
6132429 Baker Oct 2000 A
6142992 Cheng et al. Nov 2000 A
6155975 Urich et al. Dec 2000 A
6162217 Kannenberg et al. Dec 2000 A
6171304 Netherly et al. Jan 2001 B1
6203541 Keppel Mar 2001 B1
6210403 Klicek Apr 2001 B1
6228080 Gines May 2001 B1
6228081 Goble May 2001 B1
6231569 Bek May 2001 B1
6235020 Cheng et al. May 2001 B1
6238387 Miller, III May 2001 B1
6238388 Ellman May 2001 B1
6241725 Cosman Jun 2001 B1
6245065 Panescu Jun 2001 B1
6246912 Sluijter et al. Jun 2001 B1
6251106 Becker et al. Jun 2001 B1
6258085 Eggleston Jul 2001 B1
6261285 Novak Jul 2001 B1
6261286 Goble et al. Jul 2001 B1
6273886 Edwards Aug 2001 B1
6275786 Daners Aug 2001 B1
6293941 Strul Sep 2001 B1
6293942 Goble et al. Sep 2001 B1
6296636 Cheng et al. Oct 2001 B1
6303166 Kolbe et al. Oct 2001 B1
6306131 Hareyama et al. Oct 2001 B1
6306134 Goble et al. Oct 2001 B1
6309386 Bek Oct 2001 B1
6325799 Goble Dec 2001 B1
6337998 Behl et al. Jan 2002 B1
6338657 Harper et al. Jan 2002 B1
6350262 Ashley Feb 2002 B1
6358245 Edwards Mar 2002 B1
6364877 Goble et al. Apr 2002 B1
6383183 Sekino et al. May 2002 B1
6391024 Sun et al. May 2002 B1
6398779 Buysse et al. Jun 2002 B1
6398781 Goble et al. Jun 2002 B1
6402741 Keppel et al. Jun 2002 B1
6402743 Orszulak et al. Jun 2002 B1
6416509 Goble et al. Jul 2002 B1
6436096 Hareyama Aug 2002 B1
6451015 Rittman, III et al. Sep 2002 B1
6458121 Rosenstock Oct 2002 B1
6464689 Qin Oct 2002 B1
6464696 Oyama Oct 2002 B1
6506189 Rittman, III et al. Jan 2003 B1
6508815 Strul Jan 2003 B1
6511476 Hareyama Jan 2003 B2
6511478 Burnside et al. Jan 2003 B1
6517538 Jacob et al. Feb 2003 B1
6524308 Muller et al. Feb 2003 B1
6547786 Goble Apr 2003 B1
6558376 Bishop May 2003 B2
6562037 Paton May 2003 B2
6565559 Eggleston May 2003 B2
6573248 Ramasamy et al. Jun 2003 B2
6575969 Rittman, III et al. Jun 2003 B1
6582427 Goble et al. Jun 2003 B1
6602252 Mollenauer Aug 2003 B2
6620157 Dabney et al. Sep 2003 B1
6623423 Sakurai et al. Sep 2003 B2
6626901 Treat et al. Sep 2003 B1
6635057 Harano Oct 2003 B2
6648883 Francischelli Nov 2003 B2
6652514 Ellman Nov 2003 B2
6656177 Truckai et al. Dec 2003 B2
6663623 Oyama et al. Dec 2003 B1
6663624 Edwards Dec 2003 B2
6666860 Takahashi Dec 2003 B1
6679875 Honda Jan 2004 B2
6682527 Strul Jan 2004 B2
6685700 Behl Feb 2004 B2
6685701 Orszulak et al. Feb 2004 B2
6692489 Heim Feb 2004 B1
6712813 Ellman Mar 2004 B2
6730080 Harano May 2004 B2
6733495 Bek May 2004 B1
6733498 Paton May 2004 B2
6740079 Eggers May 2004 B1
6740085 Hareyama May 2004 B2
6758846 Goble et al. Jul 2004 B2
6783523 Qin Aug 2004 B2
6784405 Flugstad et al. Aug 2004 B2
6786905 Swanson et al. Sep 2004 B2
6790206 Panescu Sep 2004 B2
6796981 Wham Sep 2004 B2
6824539 Novak Nov 2004 B2
6830569 Thompson Dec 2004 B2
6843789 Goble Jan 2005 B2
6849073 Hoey Feb 2005 B2
6855141 Lovewell Feb 2005 B2
6855142 Harano Feb 2005 B2
6860881 Sturm Mar 2005 B2
6864686 Novak Mar 2005 B2
6875210 Refior Apr 2005 B2
6893435 Goble May 2005 B2
7044948 Keppel May 2006 B2
7044949 Orszulak et al. May 2006 B2
7060063 Marion et al. Jun 2006 B2
7063692 Sakurai et al. Jun 2006 B2
7066933 Hagg Jun 2006 B2
7131860 Sartor et al. Nov 2006 B2
7137980 Buysse et al. Nov 2006 B2
7172591 Harano et al. Feb 2007 B2
7247155 Hoey et al. Jul 2007 B2
7255694 Keppel Aug 2007 B2
7300435 Wham et al. Nov 2007 B2
7303557 Wham et al. Dec 2007 B2
20010014804 Goble et al. Aug 2001 A1
20010029315 Sakurai et al. Oct 2001 A1
20010031962 Eggleston Oct 2001 A1
20020035363 Edwards et al. Mar 2002 A1
20020035364 Schoenman et al. Mar 2002 A1
20020052599 Goble May 2002 A1
20020068932 Edwards Jun 2002 A1
20020107517 Witt et al. Aug 2002 A1
20020111624 Witt et al. Aug 2002 A1
20020151889 Swanson et al. Oct 2002 A1
20020193787 Qin Dec 2002 A1
20030004510 Wham et al. Jan 2003 A1
20030060818 Kannenberg Mar 2003 A1
20030069571 Treat et al. Apr 2003 A1
20030078572 Pearson et al. Apr 2003 A1
20030139741 Goble et al. Jul 2003 A1
20030153908 Goble Aug 2003 A1
20030163123 Goble Aug 2003 A1
20030163124 Goble Aug 2003 A1
20030171745 Francischelli Sep 2003 A1
20030199863 Swanson Oct 2003 A1
20030225401 Eggers et al. Dec 2003 A1
20040002745 Flemming Jan 2004 A1
20040015163 Buysse et al. Jan 2004 A1
20040015216 DeSisto Jan 2004 A1
20040019347 Sakurai Jan 2004 A1
20040024395 Ellman Feb 2004 A1
20040030328 Eggers Feb 2004 A1
20040030330 Brassell et al. Feb 2004 A1
20040044339 Beller Mar 2004 A1
20040049179 Francischelli Mar 2004 A1
20040054365 Goble Mar 2004 A1
20040059323 Sturm et al. Mar 2004 A1
20040068304 Paton Apr 2004 A1
20040082946 Malis Apr 2004 A1
20040095100 Thompson May 2004 A1
20040097912 Gonnering May 2004 A1
20040097914 Pantera May 2004 A1
20040097915 Refior May 2004 A1
20040116919 Heim Jun 2004 A1
20040133189 Sakurai Jul 2004 A1
20040138653 Dabney et al. Jul 2004 A1
20040138654 Goble Jul 2004 A1
20040147918 Keppel Jul 2004 A1
20040167508 Wham et al. Aug 2004 A1
20040172016 Bek Sep 2004 A1
20040193148 Wham et al. Sep 2004 A1
20040230189 Keppel Nov 2004 A1
20040243120 Orszulak et al. Dec 2004 A1
20040260279 Goble Dec 2004 A1
20050004564 Wham Jan 2005 A1
20050004569 Witt et al. Jan 2005 A1
20050021020 Blaha et al. Jan 2005 A1
20050021022 Sturm et al. Jan 2005 A1
20050033278 McClurken et al. Feb 2005 A1
20050101949 Harano et al. May 2005 A1
20050101951 Wham May 2005 A1
20050113818 Sartor May 2005 A1
20050113819 Wham May 2005 A1
20050149151 Orszulak Jul 2005 A1
20050182398 Paterson Aug 2005 A1
20050197659 Bahney Sep 2005 A1
20050203504 Wham et al. Sep 2005 A1
20060025760 Podhajsky Feb 2006 A1
20060079871 Plaven et al. Apr 2006 A1
20060111711 Goble May 2006 A1
20060161148 Behnke Jul 2006 A1
20060178664 Keppel Aug 2006 A1
20060224152 Behnke et al. Oct 2006 A1
20060281360 Sartor et al. Dec 2006 A1
20070038209 Buysse et al. Feb 2007 A1
20070093800 Wham et al. Apr 2007 A1
20070093801 Behnke Apr 2007 A1
20070135812 Sartor Jun 2007 A1
20070173802 Keppel Jul 2007 A1
20070173803 Wham et al. Jul 2007 A1
20070173804 Wham et al. Jul 2007 A1
20070173805 Weinberg et al. Jul 2007 A1
20070173806 Orszulak et al. Jul 2007 A1
20070173810 Orszulak Jul 2007 A1
20070173813 Odom Jul 2007 A1
20070208339 Arts et al. Sep 2007 A1
20070225698 Orszulak et al. Sep 2007 A1
20070250052 Wham Oct 2007 A1
20070265612 Behnke et al. Nov 2007 A1
20070282320 Buysse et al. Dec 2007 A1
20080015563 Hoey et al. Jan 2008 A1
Foreign Referenced Citations (91)
Number Date Country
179607 Mar 1905 DE
1099658 Feb 1961 DE
1139927 Nov 1962 DE
1149832 Jun 1963 DE
1439302 Jan 1969 DE
2439587 Feb 1975 DE
2455174 May 1975 DE
2407559 Aug 1975 DE
2602517 Jul 1976 DE
2504280 Aug 1976 DE
2540968 Mar 1977 DE
2820908 Nov 1978 DE
2803275 Aug 1979 DE
2823291 Nov 1979 DE
2946728 May 1981 DE
3143421 May 1982 DE
3045996 Jul 1982 DE
3120102 Dec 1982 DE
3510586 Oct 1986 DE
3604823 Aug 1987 DE
390937 Apr 1989 DE
3904558 Aug 1990 DE
3942998 Jul 1991 DE
4339049 May 1995 DE
19717411 Nov 1998 DE
19848540 May 2000 DE
246350 Nov 1987 EP
310431 Apr 1989 EP
325456 Jul 1989 EP
390937 Oct 1990 EP
556705 Aug 1993 EP
0569130 Nov 1993 EP
608609 Aug 1994 EP
0694291 Jan 1996 EP
836868 Apr 1998 EP
336742 Oct 1998 EP
878169 Nov 1998 EP
1051948 Nov 2000 EP
1151725 Nov 2001 EP
1293171 Mar 2003 EP
1495712 Jan 2005 EP
1500378 Jan 2005 EP
1535581 Jun 2005 EP
0880220 Jun 2006 EP
1707143 Oct 2006 EP
1810630 Jul 2007 EP
1275415 Oct 1961 FR
1347865 Nov 1963 FR
2313708 Dec 1976 FR
2502935 Oct 1982 FR
2517953 Jun 1983 FR
2573301 May 1986 FR
607850 Sep 1948 GB
855459 Nov 1960 GB
902775 Aug 1962 GB
2164473 Mar 1986 GB
2214430 Sep 1989 GB
2358934 Aug 2001 GB
166452 Jan 1965 SU
727201 Apr 1980 SU
727202 Apr 1980 SU
WO9206642 Apr 1992 WO
WO9324066 Dec 1993 WO
WO9424949 Nov 1994 WO
WO9428809 Dec 1994 WO
WO9509577 Apr 1995 WO
WO9519148 Jul 1995 WO
WO9602180 Feb 1996 WO
WO9604860 Feb 1996 WO
WO9608794 Mar 1996 WO
WO9618349 Jun 1996 WO
WO9629946 Oct 1996 WO
WO9639914 Dec 1996 WO
WO9706739 Feb 1997 WO
WO9706740 Feb 1997 WO
WO9706855 Feb 1997 WO
WO9717029 May 1997 WO
WO0100114 Jan 2001 WO
WO0207627 Jan 2002 WO
WO0211634 Feb 2002 WO
WO0245589 Jun 2002 WO
WO0247565 Jun 2002 WO
WO02088128 Jul 2002 WO
WO03090635 Nov 2003 WO
WO03092520 Nov 2003 WO
WO2004028385 Apr 2004 WO
WO2005046496 May 2005 WO
WO2005048809 Jun 2005 WO
WO2005050151 Jun 2005 WO
WO2005048809 Jun 2005 WO
WO2005060849 Jul 2005 WO
Related Publications (1)
Number Date Country
20050197659 A1 Sep 2005 US
Provisional Applications (1)
Number Date Country
60549232 Mar 2004 US