Voltage programmed pixel circuit, display system and driving method thereof

Abstract
A voltage programmed pixel circuit, display system having the pixel circuit and driving method thereof is provided. The pixel circuit includes a light emitting device, a driving transistor connected to the light emitting device and a programming circuit. The programming circuit adjusts a pixel current during a programming cycle of the pixel circuit.
Description
FIELD OF INVENTION

The present invention relates to a light emitting device display, and more specifically to a driving technique for the light emitting device display.


BACKGROUND OF THE INVENTION

Recently active-matrix organic light-emitting diode (AMOLED) displays with amorphous silicon (a-Si), poly-silicon, organic, or other driving backplane have become more attractive due to advantages over active matrix liquid crystal displays. An AMOLED display using a-Si backplanes, for example, has the advantages that include low temperature fabrication that broadens the use of different substrates and makes flexible displays feasible, and its low cost fabrication that yields high resolution displays with a wide viewing angle.


The AMOLED display includes an array of rows and columns of pixels, each having an organic light-emitting diode (OLED) and backplane electronics arranged in the array of rows and columns. Since the OLED is a current driven device, the pixel circuit of the AMOLED should be capable of providing an accurate and constant drive current.



FIG. 1 shows a pixel circuit as disclosed in U.S. Pat. No. 5,748,160. The pixel circuit of FIG. 1 includes an OLED 10, a driving thin film transistor (TFT) 11, a switch TFT 13, and a storage capacitor 14. The drain terminal of the driving TFT 11 is connected to the OLED 10. The gate terminal of the driving TFT 11 is connected to a column line 12 through the switch TFT 13. The storage capacitor 14, which is connected between the gate terminal of the driving TFT 11 and the ground, is used to maintain the voltage at the gate terminal of the driving TFT 11 when the pixel circuit is disconnected from the column line 12. The current through the OLED 10 strongly depends on the characteristic parameters of the driving TFT 11. Since the characteristic parameters of the driving TFT 11, in particular the threshold voltage under bias stress, vary by time, and such changes may differ from pixel to pixel, the induced image distortion may be unacceptably high.


U.S. Pat. No. 6,229,508 discloses a voltage-programmed pixel circuit which provides, to an OLED, a current independent of the threshold voltage of a driving TFT. In this pixel, the gate-source voltage of the driving TFT is composed of a programming voltage and the threshold voltage of the driving TFT. A drawback of U.S. Pat. No. 6,229,508 is that the pixel circuit requires extra transistors, and is complex, which results in a reduced yield, reduced pixel aperture, and reduced lifetime for the display.


Another method to make a pixel circuit less sensitive to a shift in the threshold voltage of the driving transistor is to use current programmed pixel circuits, such as pixel circuits disclosed in U.S. Pat. No. 6,734,636. In the conventional current programmed pixel circuits, the gate-source voltage of the driving TFT is self-adjusted based on the current that flows through it in the next frame, so that the OLED current is less dependent on the current-voltage characteristics of the driving TFT. A drawback of the current-programmed pixel circuit is that an overhead associated with low programming current levels arises from the column line charging time due to the large line capacitance.


SUMMARY OF THE INVENTION

It is an object of the invention to provide a method and system that obviates or mitigates at least one of the disadvantages of existing systems.


In accordance with an aspect of the present invention, there is provided a pixel circuit including: a light emitting device having a first electrode and a second electrode; a driving transistor having a gate terminal, a first terminal and a second terminal, the first terminal of the driving transistor being connected to the first electrode of the light emitting device; a first capacitor having first and second terminals, the first terminal of the first capacitor being connected to the gate terminal of the driving transistor, the second terminal of the first capacitor being connected to the first terminal of the driving transistor and the first electrode of the light emitting device; a first switch transistor having a gate terminal, a first terminal and a second terminal, the first terminal of the first switch transistor being connected the gate terminal of the driving transistor and the first terminal of the first capacitor; and a programming circuit for locally adjusting a pixel current during the programming cycle of the pixel circuit, the programming circuit having a programming transistor, the programming transistor being connected to the first electrode of the light emitting device and being biased during the programming cycle of the pixel circuit.


In accordance with a further aspect of the present invention, there is provided a display system, including: a display array including a plurality of pixel circuits, a driver system for driving the display array to establish a programming cycle and a driving cycle; and a controller for controlling the driver system, each pixel circuit including a light emitting device having a first electrode and a second electrode; a driving transistor having a gate terminal, a first terminal and a second terminal, the first terminal of the driving transistor being connected to the first electrode of the light emitting device; a first capacitor having first and second terminals, the first terminal of the first capacitor being connected to the gate terminal of the driving transistor, the second terminal of the first capacitor being connected to the first terminal of the driving transistor and the first electrode of the light emitting device; a first switch transistor having a gate terminal, a first terminal and a second terminal, the first terminal of the first switch transistor being connected the gate terminal of the driving transistor and the first terminal of the first capacitor; and a programming circuit for locally adjusting a pixel current during the programming cycle, the programming circuit having a programming transistor, the programming transistor being connected to the first electrode of the light emitting device and being biased during the programming cycle.


In accordance with a further aspect of the present invention, there is provided a method of driving a pixel circuit, the pixel circuit comprising a light emitting device having a first electrode and a second electrode; a driving transistor having a gate terminal, a first terminal and a second terminal, the first terminal of the driving transistor being connected to the first electrode of the light emitting device; a first capacitor having first and second terminals, the first terminal of the first capacitor being connected to the gate terminal of the driving transistor, the second terminal of the first capacitor being connected to the first terminal of the driving transistor and the first electrode of the light emitting device; a first switch transistor having a gate terminal, a first terminal and a second terminal, the first terminal of the first switch transistor being connected the gate terminal of the driving transistor and the first terminal of the first capacitor; and a programming circuit having a programming transistor, the programming transistor being connected to the first electrode of the light emitting device; the method including the steps: at a programming cycle of the pixel circuit, biasing the programming transistor to locally adjust a pixel current; at a driving cycle of the pixel circuit, enabling the programming transistor to be off.


In accordance with a further aspect of the present invention, there is provided a pixel circuit incorporating a short term biasing condition in which a programming TFT is stable.


In accordance with a further aspect of the present invention, there is provided a pixel circuit structure including two distinct parts having one programming part and one driving part, in which the programming part is under stress for a small fraction of frame time and adjusting the pixel current, while the driving part drives an OLED.


This summary of the invention does not necessarily describe all features of the invention. Other aspects and features of the present invention will be readily apparent to those skilled in the art from a review of the following detailed description of preferred embodiments in conjunction with the accompanying drawings.





BRIEF DESCRIPTION OF THE DRAWINGS

These and other features of the invention will become more apparent from the following description in which reference is made to the appended drawings wherein:



FIG. 1 is a diagram showing a conventional 2-TFT voltage programmed pixel circuit;



FIG. 2 is a diagram showing a pixel circuit in accordance with an embodiment of the present invention;



FIG. 3 is a timing diagram showing an example of waveforms for driving the pixel circuit of FIG. 2;



FIG. 4 is a diagram showing a display system having the pixel circuit of FIG. 2;



FIG. 5 is a diagram showing a pixel circuit in accordance with a further embodiment of the present invention;



FIG. 6 is a timing diagram showing an example of waveforms for driving the pixel circuit of FIG. 5;



FIG. 7 is a diagram showing a display system having the pixel circuit of FIG. 5;



FIG. 8 is a diagram showing a pixel circuit in accordance with a further embodiment of the present invention;



FIG. 9 is a timing diagram showing an example of waveforms for driving the pixel circuit of FIG. 8;



FIG. 10 is a diagram showing a pixel circuit in accordance with a further embodiment of the present invention;



FIG. 11 is a timing diagram showing an example of waveforms for driving the pixel circuit of FIG. 10;



FIG. 12 is a timing diagram showing an example of programming and driving cycles applied to the array of FIGS. 4 and 7; and



FIG. 13 is a diagram showing simulation result for the driving technique applied to FIGS. 2 and 3.





DETAILED DESCRIPTION

Embodiments of the present invention are described using a pixel having an organic light emitting diode (OLED) and a driving thin film transistor (TFT). OLED may be a NIP inverted or PIN non-inverted OLED. However, the pixel may include any light emitting device other than OLED, and the pixel may include any driving transistor other than TFT. It is noted that in the description, “pixel circuit” and “pixel” may be used interchangeably.


The embodiments of the present invention provide locally referenced voltage programmed pixel circuits in which a stable biasing condition is used for a part of the pixel circuit (programming part), and a programming circuit is used to adjust the pixel current during the programming cycle of the pixel circuit locally.


The embodiments of the present invention provide a technique for driving a voltage programmed pixel to provide a stable current source to the OLED. The embodiments of the present invention provide a technique for driving a column/row of voltage programmed pixels to provide stable light emitting device display operation.



FIG. 2 illustrates a locally referenced voltage programmed pixel circuit 20 in accordance with an embodiment of the present invention. The pixel circuit 20 includes an OLED 22, a storage capacitor 24, a driving transistor 26, a switch transistor 28, and a programming circuit having a programming transistor 30. A select line SEL[n] is connected to the switch transistor 28. A signal line VDATA1 is connected to the programming transistor 30. A signal line VDATA2 is connected to the switch transistor 28. A negative voltage line SEL[n+1] is connected to the programming transistor 30. A positive voltage line VDD is connected to the driving transistor 26.


The transistors 26, 28 and 30 are n-type TFTs. However, the transistors 26, 28 and 30 may be p-type transistors. The driving technique applied to the pixel circuit 20 is also applicable to a complementary pixel circuit having p-type transistors. The transistors 26, 28 and 30 may be fabricated using amorphous silicon, nano/micro crystalline silicon, poly silicon, organic semiconductors technologies (e.g. organic TFT), NMOS/PMOS technology or CMOS technology (e.g. MOSFET). A plurality of pixel circuits 20 may form an AMOLED display.


The gate terminal of the driving transistor 26 is connected to VDATA2 through the switch transistor 28. The drain terminal of the driving transistor 26 is connected to VDD. The source terminal of the driving transistor 26 is connected to the anode electrode of the OLED 22 (at node B1). The cathode electrode of the OLED 22 is connected to a common ground.


The gate terminal of the switch transistor 28 is connected to SEL[n]. The drain terminal of the switch transistor 28 is connected to VDATA2. The source terminal of the switch transistor 28 is connected to the gate terminal of the driving transistor 26 (at node A1).


The gate terminal of the programming transistor 30 is connected to VDATA1. The drain terminal of the programming transistor 30 is connected to the anode terminal of the OLED 22 (at node B1). The source terminal of the programming transistor 30 is connected to SEL[n+1].


One terminal of the storage capacitor 24 is connected to the gate terminal of the driving transistor 26 and the source terminal of the switch transistor 28 at node A1. The other terminal of the storage capacitor 24 is connected to the source terminal of the driving transistor 26, the drain terminal of the programming transistor 30 and the anode electrode of the OLED 22 at node B1.


The programming transistor 30 is a stable local reference transistor due to its biasing condition, and is used to adjust the pixel current during the programming cycle of the pixel circuit as a local current source. Thus, the pixel current becomes stable despite the aging effects of the driving transistor 26 and the OLED 22. It is noted that in the description, the terms “programming transistor” and “local reference transistor” may be used interchangeably.



FIG. 3 illustrates a timing diagram showing an example of waveforms applied to the pixel circuit 20 of FIG. 2. Referring to FIGS. 2 and 3, the operation of the pixel circuit 20 includes a programming cycle X11 and a driving cycle X12.


SEL[n+1] is shared between nth and (n+1)th rows, and plays two different roles during the programming cycle of nth and (n+1)th row. During the programming cycle of nth row, SEL[n+1] is used to provide a signal VSS. During the programming cycle of the (n+1)th row, SEL[n+1] is used to provide the address signal of (n+1)th row. Therefore, at the second programming cycle X12 of nth row which is the first programming cycle X11 of (n+1)th row as well, SEL[n+1] goes to a high voltage to address (n+1)th row.


The first operating cycle X11: SEL[n] is high and SEL[n+1] has a negative voltage VSS. VDATA2 goes to a bias voltage VB, and VDATA1 has the programming voltage Vp+V SS.


In X11, voltage at node A1 is VB. Thus, voltage at node B1 can be written as










VB





1

=


V
B

-



(



(

W
/
L

)


T





3




(

W
/
L

)


T





1



)


1
/
2




V
P


-

Δ






V
T







(
1
)







Δ






V
T


=




(



(

W
/
L

)


T





3


/


(

W
/
L

)


T





1



)


1
/
2




V

T





3



-

V

T





1







(
2
)







V
P

=


VDATA





1

-

VSEL


[

n
+
1

]







(
3
)








where VB1 represents the voltage of node B1, VT1 represent the threshold voltage of the driving transistor 26, VT3 represent the threshold voltage of the programming transistor 30, (W/L)T1 is the aspect ratio of the driving transistor 26, and (W/L)T3 is the aspect ration of the programming transistor 30.


The second operating cycle X12: SEL[n] is low, and SEL[n+1] is high because of the next row programming cycle. During the driving cycle X12, the voltage of SEL[n+1] is changed. That is due to the programming cycle of a next row as described below, and it does not affect the programming of current row.


In X12, voltage at node B1 goes to VOLED, and voltage at node A1 goes to










VA





1

=




(



(

W
/
L

)


T





3




(

W
/
L

)


T





1



)


1
/
2




V
P


+

Δ






V
T


+

V
OLED






(
4
)








wherein VOLED represents voltage at the OLED 22.


The gate-source voltage VGS of the driving transistor 26 is given by:

VGS=((W/L)T3/(W/L)T1)1/2VP+ΔVT  (5)


In this embodiment, the programming transistor 30 is positively biased only during the first operating cycle X11, and is not positively biased during the rest of the frame time. Since the programming transistor 30 is on for just small fraction of time, the shift of the threshold voltage VT3 is negligible. Therefore, the current of the driving transistor 26 during the operating cycle X21 is independent of the shifts in its threshold voltage and OLED characteristics.



FIG. 4 illustrates a display system having the pixel circuit 20 of FIG. 2. VDD[j/2] and VDD[j/2+1] of FIG. 4 correspond to VDD of FIG. 2. VDATA1[j] and VDATA1[j+1] of FIG. 4 correspond to VDATA1 of FIG. 2. VDATA2[j] and VDATA2[ ]+1] of FIG. 4 correspond to VDATA2 of FIG. 2. SEL[j], SEL[j+1], SEL[j+2], SEL[j+3] of FIG. 4 corresponds to SEL[n] or SEL[n+1] of FIG. 2.


In FIG. 4, six pixel circuits are shown as examples. The display system of FIG. 4 may include more than six pixel circuits In FIG. 4, two VDATA1 lines, two VDATA2 lines, two VDD lines and four SEL lines are shown as examples. The display system of FIG. 4 may include more than two VDATA1 lines, more than two VDATA2 lines, more than two VDD lines and more than four SEL lines.


The display array 40 of FIG. 4 is an AMOLED display having a plurality of the pixel circuits 20 of FIG. 2. In the array 40, the pixel circuits 20 are arranged in rows and columns VDATA1[i] and VDATA1[i+1] are shared between the common column pixels in the display array 40. VDATA2[i] and VDATA2[i+1] are shared between the common column pixels in the display array 40. SEL[j], SEL[j+1], SEL[j+2] and SEL[j+3] are shared between common row pixels in the display array 40. VDD[j/2] and VDD[j/2+1] are shared between common row pixels in the display array 40. In order to save the area and increase the aperture ratio, VDD [j/2] (VDD[j/2+1]) is shared between two consecutive rows.


A driver 42 is provided for driving VDATA1[j], VDATA1[j+1] while a driver 44 is provided for driving VDATA2[j], VDATA2[ ]+1]. One of the drivers 42 and 44 contains the display data and the other does not. Depending on the line interface requirement, the drivers 42 and 44 may be located on the two sides of the display.


A driver 46 is provided for driving VDD[j/1], VDD[j/2+1] and SEL[j], SEL[j+1], SEL[j+2], SEL[j+3]. However, a driver for VDD[j/1], VDD[j/2+1] may be provided separately from a driver for SEL[j], SEL[j+1], SEL[j+2], SEL[j+3]. A controller 48 controls the drivers 42, 44 and 46 to drive the pixel circuits as described above.



FIG. 5 illustrates a locally referenced voltage programmed pixel circuit 60 in accordance with a further embodiment of the present invention. The pixel circuit 60 includes an OLED 62, a storage capacitor 64, a driving transistor 66, a switch transistor 68 and a programming circuit having a programming transistor 70. A select line SEL[n] is connected to the switch transistor 68. A signal line VDATA is connected to the programming transistor 70. A negative voltage line SEL[n+1] is connected to the programming transistor 70. A positive voltage line VDD is connected to the driving transistor 66 and the switch transistor 68. The voltage in VDD is controllable.


The transistors 66, 68 and 70 are n-type TFTs. However, the transistors 66, 68 and 70 may be p-type transistors. The driving technique applied to the pixel circuit 60 is also applicable to a complementary pixel circuit having p-type transistors. The transistors 66, 68 and 70 may be fabricated using amorphous silicon, nano/micro crystalline silicon, poly silicon, organic semiconductors technologies (e.g. organic TFT), NMOS/PMOS technology or CMOS technology (e.g. MOSFET). A plurality of pixel circuits 60 may form an AMOLED display.


The gate terminal of the driving transistor 66 is connected to VDD through the switch transistor 68. The drain terminal of the driving transistor 66 is connected to VDD. The source terminal of the driving transistor 66 is connected to the anode electrode of the OLED 62 (at node B2). The cathode electrode of the OLED 62 is connected to a common ground.


The gate terminal of the switch transistor 68 is connected to SEL[n]. The drain terminal of the switch transistor 68 is connected to VDD. The source terminal of the switch transistor 68 is connected to the gate terminal of the driving transistor 66 (at node A2).


The gate terminal of the programming transistor 70 is connected to VDATA. The drain terminal of the programming transistor 70 is connected to the anode terminal of the OLED 62 (at node B2). The source terminal of the programming transistor 70 is connected to SEL[n+1].


One terminal of the storage capacitor 64 is connected to the gate terminal of the driving transistor 66 and the source terminal of the switch transistor 68 at node A2. The other terminal of the storage capacitor 63 is connected to the source terminal of the driving transistor 66, the drain terminal of the programming transistor 70 and the anode electrode of the OLED 62 at node B2.


The programming transistor 70 is a stable local reference transistor due to its biasing condition and is used to adjust the pixel current during the programming cycle. Thus, the pixel current becomes stable despite the aging effects of the driving transistor 66 and the OLED 62.



FIG. 6 illustrates a timing diagram showing an example of waveforms applied to the pixel circuit 60 of FIG. 5. Referring to FIGS. 5 and 6, the operation of the pixel circuit 60 includes a programming cycle X21 and a driving cycle X22.


As descried above, SEL[n+1] is shared between nth and (n+1)th rows, and plays two different roles during the programming cycle of nth and (n+1)th row. During the programming cycle of nth row, SEL[n+1] is used to provide the VSS signal. During the programming cycle of the (n+1)th row, SEL[n+1] is used to provide the address signal of (n+1)th row. Therefore, at the second programming cycle X22 of nth row which is the first programming cycle X21 of (n+1)th row as well, SEL[n+1] goes to a high voltage to address (n+1)th row.


The first operating cycle X21: SEL[n] is high and SEL[n+1] has a negative voltage VSS. VDATA goes to a programming voltage Vp+VSS, and VDD has a bias voltage VB.


In X21, voltage at node A2 is VB. Thus, voltage at node B2 can be written as










VB





2

=


V
B

-



(



(

W
/
L

)


T





3




(

W
/
L

)


T





1



)


1
/
2




V
P


-

Δ






V
T







(
6
)







Δ






V
T


=




(



(

W
/
L

)


T





3


/


(

W
/
L

)


T





1



)


1
/
2




V

T





3



-

V

T





1







(
7
)







V
P

=


VDATA





1

-

VSEL


[

n
+
1

]







(
8
)








where VB2 represents the voltage of node B2, VT1 represents the threshold voltage of the driving transistor 66, VT3 represent the threshold voltage of the programming transistor 70, (W/L)T1 is the aspect ratio of the driving transistor 66, and (W/L)T3 is the aspect ration of the programming transistor 70.


The second operating cycle X21: SEL[n] is low, and SEL[n+1] is high because of the next row programming cycle. During the driving cycle X22, the voltage of SEL[n+1] is changed. That is due to the programming cycle of a next row as described below, and it does not affect the programming of current row.


In X22, voltage at node B2 goes to VoLED, and the voltage at node A2 goes to:










VA





2

=




(



(

W
/
L

)


T





3




(

W
/
L

)


T





1



)


1
/
2




V
P


+

Δ






V
T


+

V
OLED






(
9
)







The gate-source voltage VGS of the driving transistor 66 is given by:

VGS=((W/L)T3/(W/L)T1)1/2VP+VT1−VT3  (10)


In this embodiment, the programming transistor 70 is positively biased only during the first operating cycle X21, and is not positively biased during the rest of the frame time. Since the programming transistor 70 is on for just small fraction of time, the shift of the threshold voltage VT3 is negligible. Therefore, the current of the driving transistor 66 during the operating cycle is independent of the shifts in its threshold voltage and OLED characteristics.



FIG. 7 illustrates a display system having the pixel circuit 60 of FIG. 5. VDD[j/2] and VDD[j/2+1] of FIG. 7 correspond to VDD of FIG. 5. VDATA1[i] and VDATA1[i+1] of FIG. 7 correspond to VDATA of FIG. 5. SEL[j], SEL[j+1], SEL[j+2], SEL[j+3] of FIG. 7 corresponds to SEL[n] or SEL[n+1] of FIG. 5.


In FIG. 7, six pixel circuits are shown as examples. The display system of FIG. 4 may include more than six pixel circuits In FIG. 7, two VDATA lines, two VDD lines and four SEL lines are shown as examples. The display system of FIG. 7 may include more than two VDATA lines, more than two VDD lines and more than four SEL lines.


The display array 80 of FIG. 7 is an AMOLED display having a plurality of the pixel circuits 60 of FIG. 5. The pixel circuits are arranged in rows and columns VDATA [i] and VDATA [i+1] are shared between the common column pixels in the display array 80. SEL[j], SEL[j+1], SEL[j+2] and SEL[j+3] are shared between common row pixels in the display array 80. VDD[j/2] and VDD [j/2+1] are shared between common row pixels in the display array 80. In order to save the area and increase the aperture ratio, VDD [j/2] (VDD[j/2+1]) is shared between two consecutive rows.


A driver 82 is provided for driving VDATA [j], VDATA [j+1]. A driver 84 is provided for driving VDD[j/1], VDD[j/2+1] and SEL[j], SEL[j+1], SEL[j+2], SEL[j+3]. However, a driver for VDD[j/1], VDD[j/2+1] may be provided separately from a driver for SEL[j], SEL[j+1], SEL[j+2], SEL[j+3]. A controller 86 controls the drivers 82 and 84 to drive the pixel circuits as described above.



FIG. 8 illustrates a locally referenced voltage programmed pixel circuit 90 in accordance with a further embodiment of the present invention. The pixel circuit 90 includes an OLED 92, a storage capacitor 94, a driving transistor 96, a switch transistor 98, and a programming circuit 106. The programming circuit 106 includes a programming transistor 100, a switch transistor 102 and a storage capacitor 104.


A select line SEL[n] is connected to the switch transistor 98. A signal line VDATA1 is connected to the switch transistor 102. A signal line VDATA2 is connected to the switch transistor 98. A negative voltage line SEL[n+1] is connected to the programming transistor 100. A positive voltage line VDD is connected to the driving transistor 96. The array structure of FIG. 4 can be used for the pixel circuit 90 of FIG. 8.


The transistors 96, 98, 100 and 102 are n-type TFTs. However, the transistors 96, 98, 100 and 102 may be p-type transistors. The driving technique applied to the pixel circuit 90 is also applicable to a complementary pixel circuit having p-type transistors. The transistors 96, 98, 100 and 102 may be fabricated using amorphous silicon, nano/micro crystalline silicon, poly silicon, organic semiconductors technologies (e.g. organic TFT), NMOS/PMOS technology or CMOS technology (e.g. MOSFET). A plurality of pixel circuits 90 may form an AMOLED display.


The gate terminal of the driving transistor 96 is connected to VDATA2 through the switch transistor 98. The drain terminal of the driving transistor 96 is connected to VDD. The source terminal of the driving transistor 96 is connected to the anode electrode of the OLED 92 (at node B3). The cathode electrode of the OLED 92 is connected to a common ground.


The gate terminal of the switch transistor 98 is connected to SEL[n]. The drain terminal of the switch transistor 98 is connected to VDATA2. The source terminal of the switch transistor 98 is connected to the gate terminal of the driving transistor 96 (at node A1).


The gate terminal of the programming transistor 100 is connected to VDATA1 through the switch transistor 102. The drain terminal of the programming transistor 100 is connected to the anode terminal of the OLED 92 (at node B3). The source terminal of the programming transistor 100 is connected to SEL[n+1].


The gate terminal of the switch transistor 102 is connected to SEL[n]. The source terminal of the switch transistor 102 is connected to VDATA1. The drain terminal of the switch transistor 102 is connected to the gate terminal of the programming transistor 100 (at node C3).


One terminal of the storage capacitor 94 is connected to the gate terminal of the driving transistor 96 and the source terminal of the switch transistor 98 at node A3. The other terminal of the storage capacitor 94 is connected to the source terminal of the driving transistor 96, the drain terminal of the switch transistor 90 and the anode electrode of the OLED 92 at node B3.


One terminal of the storage capacitor 104 is connected to the gate terminal of the programming transistor 100 and the drain terminal of the switch transistor 102 at node C3. The other terminal of the storage capacitor 104 is connected to SEL[n+1].


The programming circuit 106 is now described in detail. The operation of the pixel circuit 90 includes a programming cycle and a driving cycle. The programming transistor 100 is a stable local reference transistor due to its biasing condition, and is used to adjust the pixel current during the programming cycle. During the programming cycle, a programming voltage is written into the capacitor 104 through the switch transistor 102, and the programming transistor 100 adjusts the pixel current. During the driving cycle, a reset voltage is written into the capacitor 104 and so turns off the programming transistor 100. Therefore, the pixel current flows through the OLED 92. Since the programming transistor 100 is on only during the programming cycle, it does not experience any threshold shift. Thus, the pixel current which is defined by the programming transistor 100 becomes stable.



FIG. 9 illustrates a timing diagram showing an example of waveforms applied to the pixel circuit 90 of FIG. 8. Referring to FIGS. 8 and 9, the operation of the pixel circuit 90 includes a programming cycle having operation cycles X31 and X32 and a driving cycle having an operation cycle X33.


As described above, SEL[n+1] is shared between nth and (n+1)th rows, and plays two different roles during the programming cycle of nth and (n+1)th row. During the programming cycle of nth row, SEL[n+1] is used to provide a signal VSS. During the programming cycle of the (n+1)th row, SEL[n+1] is used to provide the address signal of (n+1)th row. Therefore, at the second programming cycle X32 of nth row which is the first programming cycle X31 of (n+1)th row as well, SEL[n+1] goes to a high voltage to address (n+1)th row.


The first operating cycle X31: SEL[n] is high and SEL[n+1] has a negative voltage VSS. VDATA1 goes to a programming voltage Vp+VSS, and VDATA2 has a bias voltage VB.


Node C3 is charged to Vp+VSS. Node A3 is charged to the bias voltage VB As a result, voltage at node B3 goes to:










VB





3

=


V
B

-



(



(

W
/
L

)


T





3




(

W
/
L

)


T





1



)


1
/
2




V
P


-

Δ






V
T







(
11
)







Δ






V
T


=




(



(

W
/
L

)


T





3


/


(

W
/
L

)


T





1



)


1
/
2




V

T





3



-


V

T





1


.






(
12
)








where VB3 represents the voltage of node B3, VT1 represent the threshold voltage of the driving transistor 96, and VT3 represent the threshold voltage of the programming transistor 100, (W/L)T1 is the aspect ratio of driving transistor 96, and (W/L)T3 is the aspect ration of the programming transistor 100.


The gate-source voltage of the driving transistor 96 is given by:

VGS=((W/L)T3/(W/L)T1)1/2VP+VT1−VT3   (13)

VGS remains at the same value during X32 and X33.


The second operating cycle X32: SEL[n] goes to an intermediate voltage in which the switch transistor 98 is off and the switch transistor 102 is on. VDATA1 goes to zero. Thus the programming transistor 100 turns off.


The third operating cycle X33: SEL[n] is low, and SEL[n+1] is high because of the next row programming cycle as described above.


In X33, node C3 is charged to a reset voltage. Voltage at node B3 goes to WILED which is the corresponding OLED voltage for the give pixel current. Thus, voltage at node A3 goes to










VA





3

=




(



(

W
/
L

)


T





3




(

W
/
L

)


T





1



)


1
/
2




V
P


+

Δ






V
T


+

V
OLED






(
14
)







In this embodiment, the programming transistor 100 is positively biased only during the first operating cycle X31, and is not positively biased during the rest of the frame time. Since the programming transistor 100 is on for just a small fraction of time, its threshold shift is negligible. Therefore, the current of the driving transistor 96 during the operating cycle is independent of the shifts in its threshold voltage and OLED characteristics.



FIG. 10 illustrates a locally referenced voltage programmed pixel circuit 110 in accordance with a further embodiment of the present invention. The pixel circuit 110 includes an OLED 112, a storage capacitor 114, a driving transistor 116, a switch transistor 118, and a programming circuit 126. The programming circuit 126 includes a switch transistor 120, a programming transistor 122 and a storage capacitor 124.


A select line SEL[n] is connected to the switch transistors 118 and 122. A signal line VDATA is connected to the switch transistor 122. A negative voltage line SEL[n+1] is connected to the programming transistor 120. A positive voltage line VDD is connected to the transistors 116 and 118. The voltage of VDD is changeable. The array structure of FIG. 7 can be used for the pixel circuit 110 of FIG. 10.


The transistors 116, 118, 120 and 122 are n-type TFTs. However, the transistors 116, 118, 120 and 122 may be p-type transistors. The programming and driving technique applied to the pixel circuit 110 is also applicable to a complementary pixel circuit having p-type transistors. The transistors 116, 118, 120 and 122 may be fabricated using amorphous silicon, nano/micro crystalline silicon, poly silicon, organic semiconductors technologies (e.g. organic TFT), NMOS/PMOS technology or CMOS technology (e.g. MOSFET). A plurality of pixel circuits 110 may form an AMOLED display.


The gate terminal of the driving transistor 116 is connected to VDD through the switch transistor 118. The drain terminal of the driving transistor 116 is connected to VDD. The source terminal of the driving transistor 116 is connected to the anode electrode of the OLED 112 (at node B4). The cathode electrode of the OLED 112 is connected to a common ground.


The gate terminal of the switch transistor 118 is connected to SEL[n]. The drain terminal of the switch transistor 118 is connected to VDD. The source terminal of the switch transistor 118 is connected to the gate terminal of the driving transistor 116 (at node A4).


The gate terminal of the programming transistor 120 is connected to VDATA through the switch transistor 122. The drain terminal of the programming transistor 120 is connected to the anode terminal of the OLED 112 (at node B4). The source terminal of the programming transistor 120 is connected to SEL[n+1].


The gate terminal of the switch transistor 122 is connected to SEL[n]. The source terminal of the switch transistor 122 is connected to VDATA. The drain terminal of the switch transistor 122 is connected to the gate terminal of the programming transistor 120 (at node C4).


One terminal of the storage capacitor 114 is connected to the gate terminal of the driving transistor 116 and the source terminal of the switch transistor 118 at node A4. The other terminal of the storage capacitor 114 is connected to the source terminal of the driving transistor 116, the drain terminal of the programming transistor 120 and the anode electrode of the OLED 112 at node B4.


One terminal of the storage capacitor 124 is connected to the gate terminal of the programming transistor 120 and the drain terminal of the switch transistor 122 at node C4. The other terminal of the storage capacitor 124 is connected to SEL[n+1].


The programming circuit 126 is described in detail. The operation of the pixel circuit 110 includes a programming cycle and a driving cycle. The programming transistor 120 is a stable local reference transistor due to its biasing condition, and is used to adjust the pixel current during the programming cycle. During the programming cycle, a programming voltage is written into the capacitor 124 through the switch transistor 122, and the programming transistor 120 adjusts the pixel current. During the driving cycle, a reset voltage is written into the capacitor 124 and so turns off the programming transistor 120. Therefore, the pixel current flows through the OLED 112. Since the programming transistor 120 is on only during the programming cycle, it does not experience any threshold shift. Thus, the pixel current which is defined by the programming transistor 120 becomes stable.



FIG. 11 illustrates a timing diagram showing an example of waveforms applied to the pixel circuit 110 of FIG. 10. Referring to FIGS. 10 and 11, the operation of the pixel circuit 110 includes a programming cycle having operation cycles X41 and X42 and a driving cycle having an operation cycle X43.


As described above, SEL[n+1] is shared between nth and (n+1)th rows, and plays two different roles during the programming cycle of nth and (n+1)th row. During the programming cycle of nth row, SEL[n+1] is used to provide a signal VSS. During the programming cycle of the (n+1)th row, SEL[n+1] is used to provide the address signal of (n+1)th row. Therefore, at the second programming cycle X42 of nth row which is the first programming cycle X41 of (n+1)th row as well, SEL[n+1] goes to a high voltage to address (n+1)th row.


The first operating cycle X41: SEL[n] is high and SEL[n+1] has a negative voltage VSS. VDATA goes to a programming voltage Vp+VSS, and VDD has a bias voltage VB.


Node C4 is charged to Vp+VSS. Node A4 is charged to the bias voltage VB. As a result, voltage at node B4 goes to:










VB





4

=


V
B

-



(



(

W
/
L

)


T





3




(

W
/
L

)


T





1



)


1
/
2




V
P


-

Δ






V
T







(
15
)







Δ






V
T


=




(



(

W
/
L

)


T





3


/


(

W
/
L

)


T





1



)


1
/
2




V

T





3



-

V

T





1







(
16
)








where VB4 represents the voltage of node B4, VT1 represent the threshold voltage of the driving transistor 116, and VT3 represent the threshold voltage of the programming transistor 120, (W/W-ri is the aspect ratio of the driving transistor 116, and (W/L)T3 is the aspect ration of the programming transistor 120.


The gate-source voltage VGS of the driving transistor 116 is given by:

VGS=((W/L)T3/(W/L)T1)1/2VP+VT1−VT3   (17)

VGS remains at the same value during X42 and X43.


The second operating cycle X42: SEL[n] goes to an intermediate voltage in which the switch transistor 118 is off, and the switch transistor 122 is on. VDATA goes to zero. Thus, the programming transistor 120 turns off.


The third operating cycle X43: SEL[n] is low, and SEL[n+1] is high because of the next row programming cycle as described above.


In X43, node C4 is charged to a reset voltage. Voltage at node B4 goes to VOLED which is the corresponding OLED voltage for voltage for the give pixel current. As a result, voltage at node A4 goes to:










VA





4

=




(



(

W
/
L

)


T





3




(

W
/
L

)


T





1



)


1
/
2




V
P


+

Δ






V
T


+

V
OLED






(
18
)







In this embodiment, the programming transistor 120 is positively biased only during the first operating cycle X41. During the rest of the frame time, the programming transistor 120 is not positively biased. Since the programming transistor 120 is on for just a small fraction of time, its threshold shift is negligible. Therefore, the current of the driving transistor 116 during the operating cycle is independent of the shifts in its threshold voltage and OLED characteristics.



FIG. 12 is a diagram showing programming and driving cycles for driving the display arrays of FIGS. 4 and 7. In FIG. 13, each of ROW(j), ROW(j+1), and ROW(j+2) represents a row of the display array. The programming and driving cycles for the frame at a ROW overlap with the programming and driving cycles for the same frame at a next ROW. Each programming and driving cycles are those of FIG. 3, 6, 8 or 10.



FIG. 13 illustrates he simulation result for the circuit and waveform shown in the FIGS. 2 and 3. The result shows that the change in the OLED current due 2-volt threshold-shift in the driving transistor 26 is less than 4%.


According to the embodiments of the present invention, the shift(s) of the characteristic(s) of a pixel element(s) (e.g. the threshold voltage shift of a driving transistor and the degradation of a light emitting device under prolonged display operation) is compensated for by voltage stored in a storage capacitor and applying it to the gate of the driving transistor. Thus, the pixel circuit provides a stable current independent of the threshold voltage shift of the driving transistor and OLED degradation under prolonged display operation, which efficiently improves the display operating lifetime. According to the embodiments of the present invention, the brightness stability of the OLED is enhanced by using circuit compensation.


Because of the circuit simplicity, it ensures higher product yield, lower fabrication cost and higher resolution than conventional pixel circuits. Further the driving technique can be employed in large area display due to its fast settling time.


Further, the programming circuit (transitory) is isolated from the line parasitic capacitance unlike the conventional current programming circuit, it ensures fast programming


All citations are hereby incorporated by reference.


The present invention has been described with regard to one or more embodiments. However, it will be apparent to persons skilled in the art that a number of variations and modifications can be made without departing from the scope of the invention as defined in the claims. Therefore, the invention as defined in the claims, must be accorded the broadest possible interpretation so as to encompass all such modifications and equivalent structures and functions.

Claims
  • 1. A method of programming a pixel circuit including a driving section having a drive transistor and an emissive device and a programming section having a programming transistor, the method comprising: applying from a data line a programming voltage to the programming transistor during a programming cycle;the programming transistor converting the programming voltage to a corresponding programming current;the programming current adjusting a gate-source voltage of the drive transistor; andthe driving section driving the emissive device with a drive current related to the programming current while the programming transistor is off, such that the drive current is independent of aging effects of the drive transistor and of the emissive device.
  • 2. The method of claim 1, wherein during the programming cycle, the programming transistor acts as a stable local reference transistor to adjust the programming current as a local current source.
  • 3. The method of claim 1, wherein during the programming cycle, a bias voltage is provided to a node in the programming section to cause a voltage at a node in the driving section to be related to the bias voltage, the programming information, a threshold voltage of the programming transistor, and a threshold voltage of the drive transistor.
  • 4. The method of claim 3, wherein during a driving cycle in which the driving section drives the emissive device immediately following the programming cycle, a voltage at the node in the driving section goes to a voltage of the emissive device while the gate-source voltage of the drive transistor is adjusted by the programming current.
  • 5. The method of claim 1, wherein the programming transistor is on for a small fraction of time during a frame and is off during the rest of the frame.
  • 6. A method of programming a pixel circuit including a driving section having a drive transistor and an emissive device and a programming section having a programming transistor, a first terminal of the programming transistor coupled to a first terminal of the drive transistor, the method comprising, during a frame: during a programming cycle:applying a gate voltage to a gate of the drive transistor and a second terminal voltage to a second terminal of the drive transistor turning the drive transistor off; anddriving the programming transistor on with a first voltage difference across a gate of the programming transistor and a second terminal of the programming transistor having a magnitude equal to a predetermined programming voltage to charge a storage element coupled to the first terminal of the programming transistor with a driving voltage, andduring an operation cycle following the programming cycle:applying the driving voltage across the gate of the drive transistor and the first terminal of the drive transistor to turn it on; anddriving the programming transistor off with a second voltage difference across the gate of the programming transistor and the second terminal of the programming transistor.
  • 7. The method according to claim 6 wherein the emissive device has a first terminal coupled to the first terminal of the drive transistor and wherein, during the programming cycle the emissive device remains off and during the operation cycle a current flows through the drive transistor according to the driving voltage turning on the emissive device.
  • 8. The method of claim 7 wherein the storage element comprises a capacitor coupled between the first terminal of the drive transistor and the gate of the drive transistor.
  • 9. The method of claim 8 wherein the driving voltage is substantially equal to the predefined programming voltage adjusted by a threshold voltage of the drive transistor.
  • 10. The method of claim 9 wherein the emissive device is an organic light emitting diode (OLED) and wherein the driving voltage is independent of the operating voltage of the OLED VOLED.
  • 11. The method of claim 10, wherein the time duration of the programming cycle is a small fraction of the time duration of the operating cycle.
Priority Claims (1)
Number Date Country Kind
2495726 Jan 2005 CA national
CROSS-REFERENCE TO RELATED APPLICATIONS

This application is a continuation of U.S. patent application Ser. No. 14/157,699, filed Jan. 17, 2014, now allowed, which is a continuation of U.S. patent application Ser. No. 13/934,652, filed Jul. 3, 2013, now U.S. Pat. No. 8,659,518, which is a continuation of U.S. patent application Ser. No. 13/211,732, filed Aug. 17, 2011, now U.S. Pat. No. 8,497,825, which is a continuation of U.S. patent application Ser. No. 11/341,332, filed, Jan. 27, 2006, now U.S. Pat. No. 8,044,893, which claims priority to Canadian Patent Application No. 2,495,726, filed Jan. 28, 2005; the entire contents of which are incorporated herein by reference.

US Referenced Citations (362)
Number Name Date Kind
4354162 Wright Oct 1982 A
4758831 Kasahara et al. Jul 1988 A
4963860 Stewart Oct 1990 A
4975691 Lee Dec 1990 A
4996523 Bell et al. Feb 1991 A
5051739 Hayashida et al. Sep 1991 A
5222082 Plus Jun 1993 A
5266515 Robb et al. Nov 1993 A
5498880 Lee et al. Mar 1996 A
5589847 Lewis Dec 1996 A
5619033 Weisfield Apr 1997 A
5648276 Hara et al. Jul 1997 A
5670973 Bassetti et al. Sep 1997 A
5684365 Tang et al. Nov 1997 A
5686935 Weisbrod Nov 1997 A
5712653 Katoh et al. Jan 1998 A
5714968 Ikeda Feb 1998 A
5747928 Shanks et al. May 1998 A
5748160 Shieh et al. May 1998 A
5784042 Ono et al. Jul 1998 A
5790234 Matsuyama Aug 1998 A
5815303 Berlin Sep 1998 A
5870071 Kawahata Feb 1999 A
5874803 Garbuzov et al. Feb 1999 A
5880582 Sawada Mar 1999 A
5903248 Irwin May 1999 A
5917280 Burrows et al. Jun 1999 A
5923794 McGrath et al. Jul 1999 A
5952789 Stewart et al. Sep 1999 A
5990629 Yamada et al. Nov 1999 A
6023259 Howard et al. Feb 2000 A
6069365 Chow et al. May 2000 A
6081131 Ishii Jun 2000 A
6091203 Kawashima et al. Jul 2000 A
6097360 Holloman Aug 2000 A
6144222 Ho Nov 2000 A
6157583 Starnes et al. Dec 2000 A
6166489 Thompson et al. Dec 2000 A
6177915 Beeteson et al. Jan 2001 B1
6225846 Wada et al. May 2001 B1
6229508 Kane May 2001 B1
6232939 Saito et al. May 2001 B1
6246180 Nishigaki Jun 2001 B1
6252248 Sano et al. Jun 2001 B1
6259424 Kurogane Jul 2001 B1
6274887 Yamazaki et al. Aug 2001 B1
6288696 Holloman Sep 2001 B1
6300928 Kim Oct 2001 B1
6303963 Ohtani et al. Oct 2001 B1
6306694 Yamazaki et al. Oct 2001 B1
6307322 Dawson et al. Oct 2001 B1
6316786 Mueller et al. Nov 2001 B1
6320325 Cok et al. Nov 2001 B1
6323631 Juang Nov 2001 B1
6323832 Nishizawa et al. Nov 2001 B1
6345085 Yeo et al. Feb 2002 B1
6348835 Sato et al. Feb 2002 B1
6365917 Yamazaki Apr 2002 B1
6373453 Yudasaka Apr 2002 B1
6384427 Yamazaki et al. May 2002 B1
6392617 Gleason May 2002 B1
6399988 Yamazaki Jun 2002 B1
6414661 Shen et al. Jul 2002 B1
6420758 Nakajima Jul 2002 B1
6420834 Yamazaki et al. Jul 2002 B2
6420988 Azami et al. Jul 2002 B1
6433488 Bu Aug 2002 B1
6445376 Parrish Sep 2002 B2
6468638 Jacobsen et al. Oct 2002 B2
6489952 Tanaka et al. Dec 2002 B1
6501098 Yamazaki Dec 2002 B2
6501466 Yamagishi et al. Dec 2002 B1
6512271 Yamazaki et al. Jan 2003 B1
6518594 Nakajima et al. Feb 2003 B1
6524895 Yamazaki et al. Feb 2003 B2
6531713 Yamazaki Mar 2003 B1
6559594 Fukunaga et al. May 2003 B2
6573195 Yamazaki et al. Jun 2003 B1
6573584 Nagakari et al. Jun 2003 B1
6576926 Yamazaki et al. Jun 2003 B1
6577302 Hunter Jun 2003 B2
6580408 Bae et al. Jun 2003 B1
6580657 Sanford et al. Jun 2003 B2
6583775 Sekiya et al. Jun 2003 B1
6583776 Yamazaki et al. Jun 2003 B2
6587086 Koyama Jul 2003 B1
6593691 Nishi et al. Jul 2003 B2
6594606 Everitt Jul 2003 B2
6597203 Forbes Jul 2003 B2
6611108 Kimura Aug 2003 B2
6617644 Yamazaki et al. Sep 2003 B1
6618030 Kane et al. Sep 2003 B2
6641933 Yamazaki et al. Nov 2003 B1
6661180 Koyama Dec 2003 B2
6661397 Mikami et al. Dec 2003 B2
6670637 Yamazaki et al. Dec 2003 B2
6677713 Sung Jan 2004 B1
6680577 Inukai et al. Jan 2004 B1
6687266 Ma et al. Feb 2004 B1
6690344 Takeuchi et al. Feb 2004 B1
6693388 Oomura Feb 2004 B2
6693610 Shannon et al. Feb 2004 B2
6697057 Koyama et al. Feb 2004 B2
6720942 Lee et al. Apr 2004 B2
6734636 Sanford et al. May 2004 B2
6738034 Kaneko et al. May 2004 B2
6738035 Fan May 2004 B1
6771028 Winters Aug 2004 B1
6777712 Sanford et al. Aug 2004 B2
6780687 Nakajima et al. Aug 2004 B2
6806638 Lih et al. Oct 2004 B2
6806857 Sempel et al. Oct 2004 B2
6809706 Shimoda Oct 2004 B2
6859193 Yumoto Feb 2005 B1
6861670 Ohtani et al. Mar 2005 B1
6873117 Ishizuka Mar 2005 B2
6873320 Nakamura Mar 2005 B2
6878968 Ohnuma Apr 2005 B1
6909114 Yamazaki Jun 2005 B1
6909419 Zavracky et al. Jun 2005 B2
6919871 Kwon Jul 2005 B2
6937215 Lo Aug 2005 B2
6940214 Komiya et al. Sep 2005 B1
6943500 LeChevalier Sep 2005 B2
6954194 Matsumoto et al. Oct 2005 B2
6956547 Bae et al. Oct 2005 B2
6995510 Murakami et al. Feb 2006 B2
6995519 Arnold et al. Feb 2006 B2
7022556 Adachi Apr 2006 B1
7023408 Chen et al. Apr 2006 B2
7027015 Booth, Jr. et al. Apr 2006 B2
7034793 Sekiya et al. Apr 2006 B2
7088051 Cok Aug 2006 B1
7106285 Naugler Sep 2006 B2
7116058 Lo et al. Oct 2006 B2
7129914 Knapp et al. Oct 2006 B2
7129917 Yamazaki et al. Oct 2006 B2
7141821 Yamazaki et al. Nov 2006 B1
7161566 Cok et al. Jan 2007 B2
7193589 Yoshida et al. Mar 2007 B2
7199516 Seo et al. Apr 2007 B2
7220997 Nakata May 2007 B2
7235810 Yamazaki et al. Jun 2007 B1
7245277 Ishizuka Jul 2007 B2
7248236 Nathan et al. Jul 2007 B2
7264979 Yamagata et al. Sep 2007 B2
7274345 Imamura et al. Sep 2007 B2
7274363 Ishizuka et al. Sep 2007 B2
7279711 Yamazaki et al. Oct 2007 B1
7304621 Oomori et al. Dec 2007 B2
7310092 Imamura Dec 2007 B2
7315295 Kimura Jan 2008 B2
7317429 Shirasaki et al. Jan 2008 B2
7319465 Mikami et al. Jan 2008 B2
7321348 Cok et al. Jan 2008 B2
7339636 Voloschenko et al. Mar 2008 B2
7355574 Leon et al. Apr 2008 B1
7358941 Ono et al. Apr 2008 B2
7402467 Kadono et al. Jul 2008 B1
7414600 Nathan et al. Aug 2008 B2
7432885 Asano et al. Oct 2008 B2
7474285 Kimura Jan 2009 B2
7485478 Yamagata et al. Feb 2009 B2
7502000 Yuki et al. Mar 2009 B2
7535449 Miyazawa May 2009 B2
7554512 Steer Jun 2009 B2
7569849 Nathan et al. Aug 2009 B2
7619594 Hu Nov 2009 B2
7619597 Nathan et al. Nov 2009 B2
7697052 Yamazaki et al. Apr 2010 B1
7825419 Yamagata et al. Nov 2010 B2
7859492 Kohno Dec 2010 B2
7868859 Tomida et al. Jan 2011 B2
7876294 Sasaki et al. Jan 2011 B2
7948170 Striakhilev et al. May 2011 B2
7969390 Yoshida Jun 2011 B2
7995010 Yamazaki et al. Aug 2011 B2
8044893 Nathan et al. Oct 2011 B2
8115707 Nathan et al. Feb 2012 B2
8378362 Heo et al. Feb 2013 B2
8493295 Yamazaki et al. Jul 2013 B2
8497525 Yamagata et al. Jul 2013 B2
20010002703 Koyama Jun 2001 A1
20010004190 Nishi et al. Jun 2001 A1
20010013806 Notani Aug 2001 A1
20010015653 De Jong et al. Aug 2001 A1
20010020926 Kujik Sep 2001 A1
20010024186 Kane Sep 2001 A1
20010026127 Yoneda et al. Oct 2001 A1
20010026179 Saeki Oct 2001 A1
20010026257 Kimura Oct 2001 A1
20010030323 Ikeda Oct 2001 A1
20010033199 Aoki Oct 2001 A1
20010038098 Yamazaki et al. Nov 2001 A1
20010043173 Troutman Nov 2001 A1
20010045929 Prache et al. Nov 2001 A1
20010052606 Sempel et al. Dec 2001 A1
20010052898 Osame et al. Dec 2001 A1
20020000576 Inukai Jan 2002 A1
20020011796 Koyama Jan 2002 A1
20020011799 Kimura Jan 2002 A1
20020011981 Kujik Jan 2002 A1
20020015031 Fujita et al. Feb 2002 A1
20020015032 Koyama et al. Feb 2002 A1
20020030528 Matsumoto et al. Mar 2002 A1
20020030647 Hack et al. Mar 2002 A1
20020036463 Yoneda et al. Mar 2002 A1
20020047852 Inukai et al. Apr 2002 A1
20020048829 Yamazaki et al. Apr 2002 A1
20020050795 Imura May 2002 A1
20020053401 Ishikawa et al. May 2002 A1
20020070909 Asano et al. Jun 2002 A1
20020080108 Wang Jun 2002 A1
20020084463 Sanford et al. Jul 2002 A1
20020101172 Bu Aug 2002 A1
20020101433 McKnight Aug 2002 A1
20020113248 Yamagata et al. Aug 2002 A1
20020122308 Ikeda Sep 2002 A1
20020130686 Forbes Sep 2002 A1
20020154084 Tanaka et al. Oct 2002 A1
20020158823 Zavracky et al. Oct 2002 A1
20020163314 Yamazaki et al. Nov 2002 A1
20020167471 Everitt Nov 2002 A1
20020180369 Koyama Dec 2002 A1
20020180721 Kimura et al. Dec 2002 A1
20020186214 Siwinski Dec 2002 A1
20020190332 Lee et al. Dec 2002 A1
20020190924 Asano et al. Dec 2002 A1
20020190971 Nakamura et al. Dec 2002 A1
20020195967 Kim et al. Dec 2002 A1
20020195968 Sanford et al. Dec 2002 A1
20030020413 Oomura Jan 2003 A1
20030030603 Shimoda Feb 2003 A1
20030062524 Kimura Apr 2003 A1
20030063081 Kimura et al. Apr 2003 A1
20030071804 Yamazaki et al. Apr 2003 A1
20030071821 Sundahl Apr 2003 A1
20030076048 Rutherford Apr 2003 A1
20030090445 Chen et al. May 2003 A1
20030090447 Kimura May 2003 A1
20030090481 Kimura May 2003 A1
20030095087 Libsch May 2003 A1
20030107560 Yumoto et al. Jun 2003 A1
20030111966 Mikami et al. Jun 2003 A1
20030122745 Miyazawa Jul 2003 A1
20030140958 Yang et al. Jul 2003 A1
20030151569 Lee et al. Aug 2003 A1
20030169219 LeChevalier Sep 2003 A1
20030174152 Noguchi Sep 2003 A1
20030178617 Appenzeller et al. Sep 2003 A1
20030179626 Sanford et al. Sep 2003 A1
20030197663 Lee et al. Oct 2003 A1
20030206060 Suzuki Nov 2003 A1
20030230980 Forrest et al. Dec 2003 A1
20040027063 Nishikawa Feb 2004 A1
20040056604 Shih et al. Mar 2004 A1
20040066357 Kawasaki Apr 2004 A1
20040070557 Asano et al. Apr 2004 A1
20040080262 Park et al. Apr 2004 A1
20040080470 Yamazaki et al. Apr 2004 A1
20040090400 Yoo May 2004 A1
20040108518 Jo Jun 2004 A1
20040113903 Mikami et al. Jun 2004 A1
20040129933 Nathan et al. Jul 2004 A1
20040130516 Nathan et al. Jul 2004 A1
20040135749 Kondakov et al. Jul 2004 A1
20040145547 Oh Jul 2004 A1
20040150592 Mizukoshi et al. Aug 2004 A1
20040150594 Koyama et al. Aug 2004 A1
20040150595 Kasai Aug 2004 A1
20040155841 Kasai Aug 2004 A1
20040174347 Sun et al. Sep 2004 A1
20040174349 Libsch Sep 2004 A1
20040183759 Stevenson et al. Sep 2004 A1
20040189627 Shirasaki et al. Sep 2004 A1
20040196275 Hattori Oct 2004 A1
20040201554 Satoh Oct 2004 A1
20040207615 Yumoto Oct 2004 A1
20040233125 Tanghe et al. Nov 2004 A1
20040239596 Ono et al. Dec 2004 A1
20040252089 Ono et al. Dec 2004 A1
20040257355 Naugler Dec 2004 A1
20040263437 Hattori Dec 2004 A1
20050007357 Yamashita et al. Jan 2005 A1
20050030267 Tanghe et al. Feb 2005 A1
20050035709 Furuie et al. Feb 2005 A1
20050067970 Libsch et al. Mar 2005 A1
20050067971 Kane Mar 2005 A1
20050068270 Awakura Mar 2005 A1
20050088085 Nishikawa et al. Apr 2005 A1
20050088103 Kageyama et al. Apr 2005 A1
20050110420 Arnold et al. May 2005 A1
20050117096 Voloschenko et al. Jun 2005 A1
20050140598 Kim et al. Jun 2005 A1
20050140610 Smith et al. Jun 2005 A1
20050145891 Abe Jul 2005 A1
20050156831 Yamazaki et al. Jul 2005 A1
20050168416 Hashimoto et al. Aug 2005 A1
20050206590 Sasaki et al. Sep 2005 A1
20050225686 Brummack et al. Oct 2005 A1
20050260777 Brabec et al. Nov 2005 A1
20050269959 Uchino et al. Dec 2005 A1
20050269960 Ono et al. Dec 2005 A1
20050285822 Reddy et al. Dec 2005 A1
20050285825 Eom et al. Dec 2005 A1
20060007072 Choi et al. Jan 2006 A1
20060012310 Chen et al. Jan 2006 A1
20060027807 Nathan et al. Feb 2006 A1
20060030084 Young Feb 2006 A1
20060038758 Routley et al. Feb 2006 A1
20060044227 Hadcock Mar 2006 A1
20060066527 Chou Mar 2006 A1
20060092185 Jo et al. May 2006 A1
20060232522 Roy et al. Oct 2006 A1
20060261841 Fish Nov 2006 A1
20060264143 Lee et al. Nov 2006 A1
20060273997 Nathan et al. Dec 2006 A1
20060284801 Yoon et al. Dec 2006 A1
20070001937 Park et al. Jan 2007 A1
20070001939 Hashimoto et al. Jan 2007 A1
20070008268 Park et al. Jan 2007 A1
20070008297 Bassetti Jan 2007 A1
20070046195 Chin et al. Mar 2007 A1
20070069998 Naugler et al. Mar 2007 A1
20070080905 Takahara Apr 2007 A1
20070080906 Tanabe Apr 2007 A1
20070080908 Nathan et al. Apr 2007 A1
20070080918 Kawachi et al. Apr 2007 A1
20070103419 Uchino et al. May 2007 A1
20070182671 Nathan et al. Aug 2007 A1
20070273294 Nagayama Nov 2007 A1
20070285359 Ono Dec 2007 A1
20070296672 Kim et al. Dec 2007 A1
20080042948 Yamashita et al. Feb 2008 A1
20080055209 Cok Mar 2008 A1
20080074413 Ogura Mar 2008 A1
20080088549 Nathan et al. Apr 2008 A1
20080122803 Izadi et al. May 2008 A1
20080230118 Nakatani et al. Sep 2008 A1
20090032807 Shinohara et al. Feb 2009 A1
20090051283 Cok et al. Feb 2009 A1
20090160743 Tomida et al. Jun 2009 A1
20090162961 Deane Jun 2009 A1
20090174628 Wang et al. Jul 2009 A1
20090213046 Nam Aug 2009 A1
20100052524 Kinoshita Mar 2010 A1
20100078230 Rosenblatt et al. Apr 2010 A1
20100079711 Tanaka Apr 2010 A1
20100097335 Jung et al. Apr 2010 A1
20100133994 Song et al. Jun 2010 A1
20100134456 Oyamada Jun 2010 A1
20100140600 Clough et al. Jun 2010 A1
20100156279 Tamura et al. Jun 2010 A1
20100237374 Chu et al. Sep 2010 A1
20100328294 Sasaki et al. Dec 2010 A1
20110090210 Sasaki et al. Apr 2011 A1
20110133636 Matsuo et al. Jun 2011 A1
20110180825 Lee et al. Jul 2011 A1
20120212468 Govil Aug 2012 A1
20130009930 Cho et al. Jan 2013 A1
20130032831 Chaji et al. Feb 2013 A1
20130113785 Sumi May 2013 A1
Foreign Referenced Citations (84)
Number Date Country
1294034 Jan 1992 CA
2109951 Nov 1992 CA
2 249 592 Jul 1998 CA
2 368 386 Sep 1999 CA
2 242 720 Jan 2000 CA
2 354 018 Jun 2000 CA
2 436 451 Aug 2002 CA
2 438 577 Aug 2002 CA
2 483 645 Dec 2003 CA
2 463 653 Jan 2004 CA
2498136 Mar 2004 CA
2522396 Nov 2004 CA
2443206 Mar 2005 CA
2472671 Dec 2005 CA
2567076 Jan 2006 CA
2526782 Apr 2006 CA
1381032 Nov 2002 CN
1448908 Oct 2003 CN
1776922 May 2006 CN
20 2006 005427 Jun 2006 DE
0 940 796 Sep 1999 EP
1 028 471 Aug 2000 EP
1 103 947 May 2001 EP
1 130 565 Sep 2001 EP
1 184 833 Mar 2002 EP
1 194 013 Apr 2002 EP
1 310 939 May 2003 EP
1 335 430 Aug 2003 EP
1 372 136 Dec 2003 EP
1 381 019 Jan 2004 EP
1 418 566 May 2004 EP
1 429 312 Jun 2004 EP
1 439 520 Jul 2004 EP
1 465 143 Oct 2004 EP
1 467 408 Oct 2004 EP
1 517 290 Mar 2005 EP
1 521 203 Apr 2005 EP
2317499 May 2011 EP
2 205 431 Dec 1988 GB
09 090405 Apr 1997 JP
10-153759 Jun 1998 JP
10-254410 Sep 1998 JP
11 231805 Aug 1999 JP
11-282419 Oct 1999 JP
2000056847 Feb 2000 JP
2000-077192 Mar 2000 JP
2000-089198 Mar 2000 JP
2000-352941 Dec 2000 JP
2002-91376 Mar 2002 JP
2002-268576 Sep 2002 JP
2002-278513 Sep 2002 JP
2002-333862 Nov 2002 JP
2003-022035 Jan 2003 JP
2003-076331 Mar 2003 JP
2003-150082 May 2003 JP
2003-177709 Jun 2003 JP
2003-271095 Sep 2003 JP
2003-308046 Oct 2003 JP
2005-057217 Mar 2005 JP
2006065148 Mar 2006 JP
2009282158 Dec 2009 JP
485337 May 2002 TW
502233 Sep 2002 TW
538650 Jun 2003 TW
569173 Jan 2004 TW
WO 9425954 Nov 1994 WO
WO 9948079 Sep 1999 WO
WO 0127910 Apr 2001 WO
WO 02067327 Aug 2002 WO
WO 03034389 Apr 2003 WO
WO 03063124 Jul 2003 WO
WO 03077231 Sep 2003 WO
WO 03105117 Dec 2003 WO
WO 2004003877 Jan 2004 WO
WO 2004034364 Apr 2004 WO
WO 2005022498 Mar 2005 WO
WO 2005029455 Mar 2005 WO
WO 2005055185 Jun 2005 WO
WO 2006053424 May 2006 WO
WO 2006063448 Jun 2006 WO
WO 2006137337 Dec 2006 WO
WO 2007003877 Jan 2007 WO
WO 2007079572 Jul 2007 WO
WO 2010023270 Mar 2010 WO
Non-Patent Literature Citations (81)
Entry
Ahnood et al.: “Effect of threshold voltage instability on field effect mobility in thin film transistors deduced from constant current measurements”; dated Aug. 2009 (3 pages).
Alexander et al.: “Pixel circuits and drive schemes for glass and elastic AMOLED displays”; dated Jul. 2005 (9 pages).
Alexander et al.: “Unique Electrical Measurement Technology for Compensation, Inspection, and Process Diagnostics of AMOLED HDTV”; dated May 2010 (4 pages).
Ashtiani et al.: “AMOLED Pixel Circuit With Electronic Compensation of Luminance Degradation”; dated Mar. 2007 (4 pages).
Chaji et al.: “A Current-Mode Comparator for Digital Calibration of Amorphous Silicon AMOLED Displays”; dated Jul. 2008 (5 pages).
Chaji et al.: “A fast settling current driver based on the CCII for AMOLED displays”; dated Dec. 2009 (6 pages).
Chaji et al.: “A Low-Cost Stable Amorphous Silicon AMOLED Display with Full V˜T- and V˜O˜L˜E˜D Shift Compensation”; dated May 2007 (4 pages).
Chaji et al.: “A low-power driving scheme for a-Si:H active-matrix organic light-emitting diode displays”; dated Jun. 2005 (4 pages).
Chaji et al.: “A low-power high-performance digital circuit for deep submicron technologies”; dated Jun. 2005 (4 pages).
Chaji et al.: “A novel a-Si:H AMOLED pixel circuit based on short-term stress stability of a-Si:H TFTs”; dated Oct. 2005 (3 pages).
Chaji et al.: “A Novel Driving Scheme and Pixel Circuit for AMOLED Displays”; dated Jun. 2006 (4 pages).
Chaji et al.: “A novel driving scheme for high-resolution large-area a-Si:H AMOLED displays”; dated Aug. 2005 (4 pages).
Chaji et al.: “A Stable Voltage-Programmed Pixel Circuit for a-Si:H AMOLED Displays”; dated Dec. 2006 (12 pages).
Chaji et al.: “A Sub-μA fast-settling current-programmed pixel circuit for AMOLED displays”; dated Sep. 2007.
Chaji et al.: “An Enhanced and Simplified Optical Feedback Pixel Circuit for AMOLED Displays”; dated Oct. 2006.
Chaji et al.: “Compensation technique for DC and transient instability of thin film transistor circuits for large-area devices”; dated Aug. 2008.
Chaji et al.: “Driving scheme for stable operation of 2-TFT a-Si AMOLED pixel”; dated Apr. 2005 (2 pages).
Chaji et al.: “Dynamic-effect compensating technique for stable a-Si:H AMOLED displays”; dated Aug. 2005 (4 pages).
Chaji et al.: “Electrical Compensation of OLED Luminance Degradation”; dated Dec. 2007 (3 pages).
Chaji et al.: “eUTDSP: a design study of a new VLIW-based DSP architecture”; dated May 2003 (4 pages).
Chaji et al.: “Fast and Offset-Leakage Insensitive Current-Mode Line Driver for Active Matrix Displays and Sensors”; dated Feb. 2009 (8 pages).
Chaji et al.: “High Speed Low Power Adder Design With a New Logic Style: Pseudo Dynamic Logic (SDL)”; dated Oct. 2001 (4 pages).
Chaji et al.: “High-precision, fast current source for large-area current-programmed a-Si flat panels”; dated Sep. 2006 (4 pages).
Chaji et al.: “Low-Cost AMOLED Television with IGNIS Compensating Technology”; dated May 2008 (4 pages).
Chaji et al.: “Low-Cost Stable a-Si:H AMOLED Display for Portable Applications”; dated Jun. 2006 (4 pages).
Chaji et al.: “Low-Power Low-Cost Voltage-Programmed a-Si:H AMOLED Display”; dated Jun. 2008 (5 pages).
Chaji et al.: “Merged phototransistor pixel with enhanced near infrared response and flicker noise reduction for biomolecular imaging”; dated Nov. 2008 (3 pages).
Chaji et al.: “Parallel Addressing Scheme for Voltage-Programmed Active-Matrix OLED Displays”; dated May 2007 (6 pages).
Chaji et al.: “Pseudo dynamic logic (SDL): a high-speed and low-power dynamic logic family”; dated 2002 (4 pages).
Chaji et al.: “Stable a-Si:H circuits based on short-term stress stability of amorphous silicon thin film transistors”; dated May 2006 (4 pages).
Chaji et al.: “Stable Pixel Circuit for Small-Area High-Resolution a-Si:H AMOLED Displays”; dated Oct. 2008 (6 pages).
Chaji et al.: “Stable RGBW AMOLED display with OLED degradation compensation using electrical feedback”; dated Feb. 2010 (2 pages).
Chaji et al.: “Thin-Film Transistor Integration for Biomedical Imaging and AMOLED Displays”; dated 2008 (177 pages).
European Search Report and Written Opinion for Application No. 08 86 5338 mailed Nov. 2, 2011 (7 pages).
European Search Report for European Application No. EP 04 78 6661 dated Mar. 9, 2009.
European Search Report for European Application No. EP 05 75 9141 dated Oct. 30, 2009.
European Search Report for European Application No. EP 05 82 1114 dated Mar. 27, 2009 (2 pages).
European Search Report for European Application No. EP 07 71 9579 dated May 20, 2009.
European Search Report mailed Mar. 26, 2012 in corresponding European Patent Application No. 10000421.7 (6 pages).
Extended European Search Report mailed Apr. 27, 2011 issued during prosecution of European patent application No. 09733076.5 (13 pages).
Goh et al., “A New a-Si:H Thin Film Transistor Pixel Circul for Active-Matrix Organic Light-Emitting Diodes”, IEEE Electron Device Letters, vol. 24, No. 9, Sep. 2003, 4 pages.
International Search Report for International Application No. PCT/CA02/00180 dated Jul. 31, 2002 (3 pages).
International Search Report for International Application No. PCT/CA2004/001741 dated Feb. 21, 2005.
International Search Report for International Application No. PCT/CA2005/001844 dated Mar. 28, 2006 (2 pages).
International Search Report for International Application No. PCT/CA2005/001007 dated Oct. 18, 2005.
International Search Report for International Application No. PCT/CA2007/000652 dated Jul. 25, 2007.
International Search Report for International Application No. PCT/CA2008/002307, mailed Apr. 28. 2009 (3 pages).
International Search Report for International Application No. PCT/IB2011/055135, Canadian Patent Office, dated Apr. 16, 2012 (5 pages).
International Search Report mailed Jul. 30, 2009 for International Application No. PCT/CA2009/000501 (4 pages).
Jafarabadiashtiani et al.: “A New Driving Method for a-Si AMOLED Displays Based on Voltage Feedback”; dated 2005 (4 pages).
Lee et al.: “Ambipolar Thin-Film Transistors Fabricated by PECVD Nanocrystalline Silicon”; dated 2006 (6 pages).
Ma e y et al: “Organic Light-Emitting Diode/Thin Film Transistor Integration for foldable Displays” Conference record of the 1997 International display research conference and international workshops on LCD technology and emissive technology. Toronto, Sep. 15-19, 1997 (6 pages).
Matsueda y et al.: “35.1: 2.5-in. AMOLED with Integrated 6-bit Gamma Compensated Digital Data Driver”; dated May 2004.
Nathan et al.: “Backplane Requirements for Active Matrix Organic Light Emitting Diode Displays”; dated 2006 (16 pages).
Nathan et al.: “Call for papers second international workshop on compact thin-film transistor (TFT) modeling for circuit simulation”; dated Sep. 2009 (1 page).
Nathan et al.: “Driving schemes for a-Si and LTPS AMOLED displays”; dated Dec. 2005 (11 pages).
Nathan et al.: “Invited Paper: a-Si for AMOLED—Meeting the Performance and Cost Demands of Display Applications (Cell Phone to HDTV)”; dated 2006 (4 pages).
Nathan et al.: “Thin film imaging technology on glass and plastic” ICM 2000, Proceedings of the 12th International Conference on Microelectronics, (IEEE Cat. No. 00EX453), Tehran Iran; dated Oct. 31-Nov. 2, 2000, pp. 11-14, ISBN: 964-360-057-2, p. 13, col. 1, line 11-48; (4 pages).
Nathan et al., “Amorphous Silicon Thin Film Transistor Circuit Integration for Organic LED Displays on Glass and Plastic”, IEEE Journal of Solid-State Circuits, vol. 39, No. 9, Sep. 2004, pp. 1477-1486.
Office Action issued in Chinese Patent Application 200910246264.4 Dated Jul. 5, 2013; 8 pages.
Patent Abstracts of Japan, vol. 2000, No. 09, Oct. 13, 2000—JP 2000 172199 A, Jun. 3, 2000, abstract.
Patent Abstracts of Japan, vol. 2002, No. 03, Apr. 3, 2002 (Apr. 4, 2004 & JP 2001 318627 A (Semiconductor EnergyLab DO LTD), Nov. 16, 2001, abstract, paragraphs '01331-01801, paragraph '01691, paragraph '01701, paragraph '01721 and figure 10.
Philipp: “Charge transfer sensing” Sensor Review, vol. 19, No. 2, Dec. 31, 1999 (Dec. 31, 1999), 10 pages.
Rafati et al.: “Comparison of a 17 b multiplier in Dual-rail domino and in Dual-rail D L (D L) logic styles”; dated 2002 (4 pages).
Safavaian et al.: “Three-TFT image sensor for real-time digital X-ray imaging”; dated Feb. 2, 2006 (2 pages).
Safavian et al.: “3-TFT active pixel sensor with correlated double sampling readout circuit for real-time medical x-ray imaging”; dated Jun. 2006 (4 pages).
Safavian et al.: “A novel current scaling active pixel sensor with correlated double sampling readout circuit for real time medical x-ray imaging”; dated May 2007 (7 pages).
Safavian et al.: “A novel hybrid active-passive pixel with correlated double sampling CMOS readout circuit for medical x-ray imaging”; dated May 2008 (4 pages).
Safavian et al.: “Self-compensated a-Si:H detector with current-mode readout circuit for digital X-ray fluoroscopy”; dated Aug. 2005 (4 pages).
Safavian et al.: “TFT active image sensor with current-mode readout circuit for digital x-ray fluoroscopy [5969D-82]”; dated Sep. 2005 (9 pages).
Sanford, James L., et al., “4.2 TFT AMOLED Pixel Circuits and Driving Methods”, SID 03 Digest, ISSN/0003, 2003, pp. 10-13.
Stewart M. et al., “Polysilicon TFT technology for active matrix OLED displays” IEEE transactions on electron devices, vol. 48, No. 5; Dated May 2001 (7 pages).
Tatsuya Sasaoka et al., 24.4L; Late-News Paper: A 13.0-inch AM-OLED Display with Top Emitting Structure and Adaptive Current Mode Programmed Pixel Circuit (TAC), SID 01 Digest, (2001), pp. 384-387.
Vygranenko et al.: “Stability of indium-oxide thin-film transistors by reactive ion beam assisted deposition”; dated 2009.
Wang et al.: “Indium oxides by reactive ion beam assisted evaporation: From material study to device application”; dated Mar. 2009 (6 pages).
Written Opinion mailed Jul. 30, 2009 for International Application No. PCT/CA2009/000501 (6 pages).
Yi He et al., “Current-Source a-Si:H Thin Film Transistor Circuit for Active-Matrix Organic Light-Emitting Displays”, IEEE Electron Device Letters, vol. 21, No. 12, Dec. 2000, pp. 590-592.
Zhiguo Meng et al; “24.3: Active-Matrix Organic Light-Emitting Diode Display implemented Using Metal-Induced Unilaterally Crystallized Polycrystalline Silicon Thin-Film Transistors”, SID 01Digest, (2001), pp. 380-383.
International Search Report for Application No. PCT/IB2014/059409, Canadian Intellectual Property Office, dated Jun. 12, 2014 (4 pages).
Written Opinion for Application No. PCT/IB2014/059409, Canadian Intellectual Property Office, dated Jun. 12, 2014 (5 pages).
Extended European Search Report for Application No. EP 14181848.4, mailed Mar. 5, 2015, (9 pages).
Related Publications (1)
Number Date Country
20160267846 A1 Sep 2016 US
Continuations (4)
Number Date Country
Parent 14157699 Jan 2014 US
Child 15161525 US
Parent 13934652 Jul 2013 US
Child 14157699 US
Parent 13211732 Aug 2011 US
Child 13934652 US
Parent 11341332 Jan 2006 US
Child 13211732 US