The present invention relates to a light emitting device display, and more specifically to a driving technique for the light emitting device display.
Recently active-matrix organic light-emitting diode (AMOLED) displays with amorphous silicon (a-Si), poly-silicon, organic, or other driving backplane have become more attractive due to advantages over active matrix liquid crystal displays. An AMOLED display using a-Si backplanes, for example, has the advantages that include low temperature fabrication that broadens the use of different substrates and makes flexible displays feasible, and its low cost fabrication that yields high resolution displays with a wide viewing angle.
The AMOLED display includes an array of rows and columns of pixels, each having an organic light-emitting diode (OLED) and backplane electronics arranged in the array of rows and columns. Since the OLED is a current driven device, the pixel circuit of the AMOLED should be capable of providing an accurate and constant drive current.
U.S. Pat. No. 6,229,508 discloses a voltage-programmed pixel circuit which provides, to an OLED, a current independent of the threshold voltage of a driving TFT. In this pixel, the gate-source voltage of the driving TFT is composed of a programming voltage and the threshold voltage of the driving TFT. A drawback of U.S. Pat. No. 6,229,508 is that the pixel circuit requires extra transistors, and is complex, which results in a reduced yield, reduced pixel aperture, and reduced lifetime for the display.
Another method to make a pixel circuit less sensitive to a shift in the threshold voltage of the driving transistor is to use current programmed pixel circuits, such as pixel circuits disclosed in U.S. Pat. No. 6,734,636. In the conventional current programmed pixel circuits, the gate-source voltage of the driving TFT is self-adjusted based on the current that flows through it in the next frame, so that the OLED current is less dependent on the current-voltage characteristics of the driving TFT. A drawback of the current-programmed pixel circuit is that an overhead associated with low programming current levels arises from the column line charging time due to the large line capacitance.
It is an object of the invention to provide a method and system that obviates or mitigates at least one of the disadvantages of existing systems.
In accordance with an aspect of the present invention, there is provided a pixel circuit including: a light emitting device having a first electrode and a second electrode; a driving transistor having a gate terminal, a first terminal and a second terminal, the first terminal of the driving transistor being connected to the first electrode of the light emitting device; a first capacitor having first and second terminals, the first terminal of the first capacitor being connected to the gate terminal of the driving transistor, the second terminal of the first capacitor being connected to the first terminal of the driving transistor and the first electrode of the light emitting device; a first switch transistor having a gate terminal, a first terminal and a second terminal, the first terminal of the first switch transistor being connected the gate terminal of the driving transistor and the first terminal of the first capacitor; and a programming circuit for locally adjusting a pixel current during the programming cycle of the pixel circuit, the programming circuit having a programming transistor, the programming transistor being connected to the first electrode of the light emitting device and being biased during the programming cycle of the pixel circuit.
In accordance with a further aspect of the present invention, there is provided a display system, including: a display array including a plurality of pixel circuits, a driver system for driving the display array to establish a programming cycle and a driving cycle; and a controller for controlling the driver system, each pixel circuit including a light emitting device having a first electrode and a second electrode; a driving transistor having a gate terminal, a first terminal and a second terminal, the first terminal of the driving transistor being connected to the first electrode of the light emitting device; a first capacitor having first and second terminals, the first terminal of the first capacitor being connected to the gate terminal of the driving transistor, the second terminal of the first capacitor being connected to the first terminal of the driving transistor and the first electrode of the light emitting device; a first switch transistor having a gate terminal, a first terminal and a second terminal, the first terminal of the first switch transistor being connected the gate terminal of the driving transistor and the first terminal of the first capacitor; and a programming circuit for locally adjusting a pixel current during the programming cycle, the programming circuit having a programming transistor, the programming transistor being connected to the first electrode of the light emitting device and being biased during the programming cycle.
In accordance with a further aspect of the present invention, there is provided a method of driving a pixel circuit, the pixel circuit comprising a light emitting device having a first electrode and a second electrode; a driving transistor having a gate terminal, a first terminal and a second terminal, the first terminal of the driving transistor being connected to the first electrode of the light emitting device; a first capacitor having first and second terminals, the first terminal of the first capacitor being connected to the gate terminal of the driving transistor, the second terminal of the first capacitor being connected to the first terminal of the driving transistor and the first electrode of the light emitting device; a first switch transistor having a gate terminal, a first terminal and a second terminal, the first terminal of the first switch transistor being connected the gate terminal of the driving transistor and the first terminal of the first capacitor; and a programming circuit having a programming transistor, the programming transistor being connected to the first electrode of the light emitting device; the method including the steps: at a programming cycle of the pixel circuit, biasing the programming transistor to locally adjust a pixel current; at a driving cycle of the pixel circuit, enabling the programming transistor to be off.
In accordance with a further aspect of the present invention, there is provided a pixel circuit incorporating a short term biasing condition in which a programming TFT is stable.
In accordance with a further aspect of the present invention, there is provided a pixel circuit structure including two distinct parts having one programming part and one driving part, in which the programming part is under stress for a small fraction of frame time and adjusting the pixel current, while the driving part drives an OLED.
This summary of the invention does not necessarily describe all features of the invention. Other aspects and features of the present invention will be readily apparent to those skilled in the art from a review of the following detailed description of preferred embodiments in conjunction with the accompanying drawings.
These and other features of the invention will become more apparent from the following description in which reference is made to the appended drawings wherein:
Embodiments of the present invention are described using a pixel having an organic light emitting diode (OLED) and a driving thin film transistor (TFT). OLED may be a NIP inverted or PIN non-inverted OLED. However, the pixel may include any light emitting device other than OLED, and the pixel may include any driving transistor other than TFT. It is noted that in the description, “pixel circuit” and “pixel” may be used interchangeably.
The embodiments of the present invention provide locally referenced voltage programmed pixel circuits in which a stable biasing condition is used for a part of the pixel circuit (programming part), and a programming circuit is used to adjust the pixel current during the programming cycle of the pixel circuit locally.
The embodiments of the present invention provide a technique for driving a voltage programmed pixel to provide a stable current source to the OLED. The embodiments of the present invention provide a technique for driving a column/row of voltage programmed pixels to provide stable light emitting device display operation.
The transistors 26, 28 and 30 are n-type TFTs. However, the transistors 26, 28 and 30 may be p-type transistors. The driving technique applied to the pixel circuit 20 is also applicable to a complementary pixel circuit having p-type transistors. The transistors 26, 28 and 30 may be fabricated using amorphous silicon, nano/micro crystalline silicon, poly silicon, organic semiconductors technologies (e.g. organic TFT), NMOS/PMOS technology or CMOS technology (e.g. MOSFET). A plurality of pixel circuits 20 may form an AMOLED display.
The gate terminal of the driving transistor 26 is connected to VDATA2 through the switch transistor 28. The drain terminal of the driving transistor 26 is connected to VDD. The source terminal of the driving transistor 26 is connected to the anode electrode of the OLED 22 (at node B1). The cathode electrode of the OLED 22 is connected to a common ground.
The gate terminal of the switch transistor 28 is connected to SEL[n]. The drain terminal of the switch transistor 28 is connected to VDATA2. The source terminal of the switch transistor 28 is connected to the gate terminal of the driving transistor 26 (at node A1).
The gate terminal of the programming transistor 30 is connected to VDATA1. The drain terminal of the programming transistor 30 is connected to the anode terminal of the OLED 22 (at node B1). The source terminal of the programming transistor 30 is connected to SEL[n+1].
One terminal of the storage capacitor 24 is connected to the gate terminal of the driving transistor 26 and the source terminal of the switch transistor 28 at node A1. The other terminal of the storage capacitor 24 is connected to the source terminal of the driving transistor 26, the drain terminal of the programming transistor 30 and the anode electrode of the OLED 22 at node B1.
The programming transistor 30 is a stable local reference transistor due to its biasing condition, and is used to adjust the pixel current during the programming cycle of the pixel circuit as a local current source. Thus, the pixel current becomes stable despite the aging effects of the driving transistor 26 and the OLED 22. It is noted that in the description, the terms “programming transistor” and “local reference transistor” may be used interchangeably.
SEL[n+1] is shared between nth and (n+1)th rows, and plays two different roles during the programming cycle of nth and (n+1)th row. During the programming cycle of nth row, SEL[n+1] is used to provide a signal VSS. During the programming cycle of the (n+1)th row, SEL[n+1] is used to provide the address signal of (n+1)th row. Therefore, at the second programming cycle X12 of nth row which is the first programming cycle X11 of (n+1)th row as well, SEL[n+1] goes to a high voltage to address (n+1)th row.
The first operating cycle X11: SEL[n] is high and SEL[n+1] has a negative voltage VSS. VDATA2 goes to a bias voltage VB, and VDATA1 has the programming voltage Vp+V SS.
In X11, voltage at node A1 is VB. Thus, voltage at node B1 can be written as
where VB1 represents the voltage of node B1, VT1 represent the threshold voltage of the driving transistor 26, VT3 represent the threshold voltage of the programming transistor 30, (W/L)T1 is the aspect ratio of the driving transistor 26, and (W/L)T3 is the aspect ration of the programming transistor 30.
The second operating cycle X12: SEL[n] is low, and SEL[n+1] is high because of the next row programming cycle. During the driving cycle X12, the voltage of SEL[n+1] is changed. That is due to the programming cycle of a next row as described below, and it does not affect the programming of current row.
In X12, voltage at node B1 goes to VOLED, and voltage at node A1 goes to
wherein VOLED represents voltage at the OLED 22.
The gate-source voltage VGS of the driving transistor 26 is given by:
VGS=((W/L)T3/(W/L)T1)1/2VP+ΔVT (5)
In this embodiment, the programming transistor 30 is positively biased only during the first operating cycle X11, and is not positively biased during the rest of the frame time. Since the programming transistor 30 is on for just small fraction of time, the shift of the threshold voltage VT3 is negligible. Therefore, the current of the driving transistor 26 during the operating cycle X21 is independent of the shifts in its threshold voltage and OLED characteristics.
In
The display array 40 of
A driver 42 is provided for driving VDATA1[j], VDATA1[j+1] while a driver 44 is provided for driving VDATA2[j], VDATA2[ ]+1]. One of the drivers 42 and 44 contains the display data and the other does not. Depending on the line interface requirement, the drivers 42 and 44 may be located on the two sides of the display.
A driver 46 is provided for driving VDD[j/1], VDD[j/2+1] and SEL[j], SEL[j+1], SEL[j+2], SEL[j+3]. However, a driver for VDD[j/1], VDD[j/2+1] may be provided separately from a driver for SEL[j], SEL[j+1], SEL[j+2], SEL[j+3]. A controller 48 controls the drivers 42, 44 and 46 to drive the pixel circuits as described above.
The transistors 66, 68 and 70 are n-type TFTs. However, the transistors 66, 68 and 70 may be p-type transistors. The driving technique applied to the pixel circuit 60 is also applicable to a complementary pixel circuit having p-type transistors. The transistors 66, 68 and 70 may be fabricated using amorphous silicon, nano/micro crystalline silicon, poly silicon, organic semiconductors technologies (e.g. organic TFT), NMOS/PMOS technology or CMOS technology (e.g. MOSFET). A plurality of pixel circuits 60 may form an AMOLED display.
The gate terminal of the driving transistor 66 is connected to VDD through the switch transistor 68. The drain terminal of the driving transistor 66 is connected to VDD. The source terminal of the driving transistor 66 is connected to the anode electrode of the OLED 62 (at node B2). The cathode electrode of the OLED 62 is connected to a common ground.
The gate terminal of the switch transistor 68 is connected to SEL[n]. The drain terminal of the switch transistor 68 is connected to VDD. The source terminal of the switch transistor 68 is connected to the gate terminal of the driving transistor 66 (at node A2).
The gate terminal of the programming transistor 70 is connected to VDATA. The drain terminal of the programming transistor 70 is connected to the anode terminal of the OLED 62 (at node B2). The source terminal of the programming transistor 70 is connected to SEL[n+1].
One terminal of the storage capacitor 64 is connected to the gate terminal of the driving transistor 66 and the source terminal of the switch transistor 68 at node A2. The other terminal of the storage capacitor 63 is connected to the source terminal of the driving transistor 66, the drain terminal of the programming transistor 70 and the anode electrode of the OLED 62 at node B2.
The programming transistor 70 is a stable local reference transistor due to its biasing condition and is used to adjust the pixel current during the programming cycle. Thus, the pixel current becomes stable despite the aging effects of the driving transistor 66 and the OLED 62.
As descried above, SEL[n+1] is shared between nth and (n+1)th rows, and plays two different roles during the programming cycle of nth and (n+1)th row. During the programming cycle of nth row, SEL[n+1] is used to provide the VSS signal. During the programming cycle of the (n+1)th row, SEL[n+1] is used to provide the address signal of (n+1)th row. Therefore, at the second programming cycle X22 of nth row which is the first programming cycle X21 of (n+1)th row as well, SEL[n+1] goes to a high voltage to address (n+1)th row.
The first operating cycle X21: SEL[n] is high and SEL[n+1] has a negative voltage VSS. VDATA goes to a programming voltage Vp+VSS, and VDD has a bias voltage VB.
In X21, voltage at node A2 is VB. Thus, voltage at node B2 can be written as
where VB2 represents the voltage of node B2, VT1 represents the threshold voltage of the driving transistor 66, VT3 represent the threshold voltage of the programming transistor 70, (W/L)T1 is the aspect ratio of the driving transistor 66, and (W/L)T3 is the aspect ration of the programming transistor 70.
The second operating cycle X21: SEL[n] is low, and SEL[n+1] is high because of the next row programming cycle. During the driving cycle X22, the voltage of SEL[n+1] is changed. That is due to the programming cycle of a next row as described below, and it does not affect the programming of current row.
In X22, voltage at node B2 goes to VoLED, and the voltage at node A2 goes to:
The gate-source voltage VGS of the driving transistor 66 is given by:
VGS=((W/L)T3/(W/L)T1)1/2VP+VT1−VT3 (10)
In this embodiment, the programming transistor 70 is positively biased only during the first operating cycle X21, and is not positively biased during the rest of the frame time. Since the programming transistor 70 is on for just small fraction of time, the shift of the threshold voltage VT3 is negligible. Therefore, the current of the driving transistor 66 during the operating cycle is independent of the shifts in its threshold voltage and OLED characteristics.
In
The display array 80 of
A driver 82 is provided for driving VDATA [j], VDATA [j+1]. A driver 84 is provided for driving VDD[j/1], VDD[j/2+1] and SEL[j], SEL[j+1], SEL[j+2], SEL[j+3]. However, a driver for VDD[j/1], VDD[j/2+1] may be provided separately from a driver for SEL[j], SEL[j+1], SEL[j+2], SEL[j+3]. A controller 86 controls the drivers 82 and 84 to drive the pixel circuits as described above.
A select line SEL[n] is connected to the switch transistor 98. A signal line VDATA1 is connected to the switch transistor 102. A signal line VDATA2 is connected to the switch transistor 98. A negative voltage line SEL[n+1] is connected to the programming transistor 100. A positive voltage line VDD is connected to the driving transistor 96. The array structure of
The transistors 96, 98, 100 and 102 are n-type TFTs. However, the transistors 96, 98, 100 and 102 may be p-type transistors. The driving technique applied to the pixel circuit 90 is also applicable to a complementary pixel circuit having p-type transistors. The transistors 96, 98, 100 and 102 may be fabricated using amorphous silicon, nano/micro crystalline silicon, poly silicon, organic semiconductors technologies (e.g. organic TFT), NMOS/PMOS technology or CMOS technology (e.g. MOSFET). A plurality of pixel circuits 90 may form an AMOLED display.
The gate terminal of the driving transistor 96 is connected to VDATA2 through the switch transistor 98. The drain terminal of the driving transistor 96 is connected to VDD. The source terminal of the driving transistor 96 is connected to the anode electrode of the OLED 92 (at node B3). The cathode electrode of the OLED 92 is connected to a common ground.
The gate terminal of the switch transistor 98 is connected to SEL[n]. The drain terminal of the switch transistor 98 is connected to VDATA2. The source terminal of the switch transistor 98 is connected to the gate terminal of the driving transistor 96 (at node A1).
The gate terminal of the programming transistor 100 is connected to VDATA1 through the switch transistor 102. The drain terminal of the programming transistor 100 is connected to the anode terminal of the OLED 92 (at node B3). The source terminal of the programming transistor 100 is connected to SEL[n+1].
The gate terminal of the switch transistor 102 is connected to SEL[n]. The source terminal of the switch transistor 102 is connected to VDATA1. The drain terminal of the switch transistor 102 is connected to the gate terminal of the programming transistor 100 (at node C3).
One terminal of the storage capacitor 94 is connected to the gate terminal of the driving transistor 96 and the source terminal of the switch transistor 98 at node A3. The other terminal of the storage capacitor 94 is connected to the source terminal of the driving transistor 96, the drain terminal of the switch transistor 90 and the anode electrode of the OLED 92 at node B3.
One terminal of the storage capacitor 104 is connected to the gate terminal of the programming transistor 100 and the drain terminal of the switch transistor 102 at node C3. The other terminal of the storage capacitor 104 is connected to SEL[n+1].
The programming circuit 106 is now described in detail. The operation of the pixel circuit 90 includes a programming cycle and a driving cycle. The programming transistor 100 is a stable local reference transistor due to its biasing condition, and is used to adjust the pixel current during the programming cycle. During the programming cycle, a programming voltage is written into the capacitor 104 through the switch transistor 102, and the programming transistor 100 adjusts the pixel current. During the driving cycle, a reset voltage is written into the capacitor 104 and so turns off the programming transistor 100. Therefore, the pixel current flows through the OLED 92. Since the programming transistor 100 is on only during the programming cycle, it does not experience any threshold shift. Thus, the pixel current which is defined by the programming transistor 100 becomes stable.
As described above, SEL[n+1] is shared between nth and (n+1)th rows, and plays two different roles during the programming cycle of nth and (n+1)th row. During the programming cycle of nth row, SEL[n+1] is used to provide a signal VSS. During the programming cycle of the (n+1)th row, SEL[n+1] is used to provide the address signal of (n+1)th row. Therefore, at the second programming cycle X32 of nth row which is the first programming cycle X31 of (n+1)th row as well, SEL[n+1] goes to a high voltage to address (n+1)th row.
The first operating cycle X31: SEL[n] is high and SEL[n+1] has a negative voltage VSS. VDATA1 goes to a programming voltage Vp+VSS, and VDATA2 has a bias voltage VB.
Node C3 is charged to Vp+VSS. Node A3 is charged to the bias voltage VB As a result, voltage at node B3 goes to:
where VB3 represents the voltage of node B3, VT1 represent the threshold voltage of the driving transistor 96, and VT3 represent the threshold voltage of the programming transistor 100, (W/L)T1 is the aspect ratio of driving transistor 96, and (W/L)T3 is the aspect ration of the programming transistor 100.
The gate-source voltage of the driving transistor 96 is given by:
VGS=((W/L)T3/(W/L)T1)1/2VP+VT1−VT3 (13)
VGS remains at the same value during X32 and X33.
The second operating cycle X32: SEL[n] goes to an intermediate voltage in which the switch transistor 98 is off and the switch transistor 102 is on. VDATA1 goes to zero. Thus the programming transistor 100 turns off.
The third operating cycle X33: SEL[n] is low, and SEL[n+1] is high because of the next row programming cycle as described above.
In X33, node C3 is charged to a reset voltage. Voltage at node B3 goes to WILED which is the corresponding OLED voltage for the give pixel current. Thus, voltage at node A3 goes to
In this embodiment, the programming transistor 100 is positively biased only during the first operating cycle X31, and is not positively biased during the rest of the frame time. Since the programming transistor 100 is on for just a small fraction of time, its threshold shift is negligible. Therefore, the current of the driving transistor 96 during the operating cycle is independent of the shifts in its threshold voltage and OLED characteristics.
A select line SEL[n] is connected to the switch transistors 118 and 122. A signal line VDATA is connected to the switch transistor 122. A negative voltage line SEL[n+1] is connected to the programming transistor 120. A positive voltage line VDD is connected to the transistors 116 and 118. The voltage of VDD is changeable. The array structure of
The transistors 116, 118, 120 and 122 are n-type TFTs. However, the transistors 116, 118, 120 and 122 may be p-type transistors. The programming and driving technique applied to the pixel circuit 110 is also applicable to a complementary pixel circuit having p-type transistors. The transistors 116, 118, 120 and 122 may be fabricated using amorphous silicon, nano/micro crystalline silicon, poly silicon, organic semiconductors technologies (e.g. organic TFT), NMOS/PMOS technology or CMOS technology (e.g. MOSFET). A plurality of pixel circuits 110 may form an AMOLED display.
The gate terminal of the driving transistor 116 is connected to VDD through the switch transistor 118. The drain terminal of the driving transistor 116 is connected to VDD. The source terminal of the driving transistor 116 is connected to the anode electrode of the OLED 112 (at node B4). The cathode electrode of the OLED 112 is connected to a common ground.
The gate terminal of the switch transistor 118 is connected to SEL[n]. The drain terminal of the switch transistor 118 is connected to VDD. The source terminal of the switch transistor 118 is connected to the gate terminal of the driving transistor 116 (at node A4).
The gate terminal of the programming transistor 120 is connected to VDATA through the switch transistor 122. The drain terminal of the programming transistor 120 is connected to the anode terminal of the OLED 112 (at node B4). The source terminal of the programming transistor 120 is connected to SEL[n+1].
The gate terminal of the switch transistor 122 is connected to SEL[n]. The source terminal of the switch transistor 122 is connected to VDATA. The drain terminal of the switch transistor 122 is connected to the gate terminal of the programming transistor 120 (at node C4).
One terminal of the storage capacitor 114 is connected to the gate terminal of the driving transistor 116 and the source terminal of the switch transistor 118 at node A4. The other terminal of the storage capacitor 114 is connected to the source terminal of the driving transistor 116, the drain terminal of the programming transistor 120 and the anode electrode of the OLED 112 at node B4.
One terminal of the storage capacitor 124 is connected to the gate terminal of the programming transistor 120 and the drain terminal of the switch transistor 122 at node C4. The other terminal of the storage capacitor 124 is connected to SEL[n+1].
The programming circuit 126 is described in detail. The operation of the pixel circuit 110 includes a programming cycle and a driving cycle. The programming transistor 120 is a stable local reference transistor due to its biasing condition, and is used to adjust the pixel current during the programming cycle. During the programming cycle, a programming voltage is written into the capacitor 124 through the switch transistor 122, and the programming transistor 120 adjusts the pixel current. During the driving cycle, a reset voltage is written into the capacitor 124 and so turns off the programming transistor 120. Therefore, the pixel current flows through the OLED 112. Since the programming transistor 120 is on only during the programming cycle, it does not experience any threshold shift. Thus, the pixel current which is defined by the programming transistor 120 becomes stable.
As described above, SEL[n+1] is shared between nth and (n+1)th rows, and plays two different roles during the programming cycle of nth and (n+1)th row. During the programming cycle of nth row, SEL[n+1] is used to provide a signal VSS. During the programming cycle of the (n+1)th row, SEL[n+1] is used to provide the address signal of (n+1)th row. Therefore, at the second programming cycle X42 of nth row which is the first programming cycle X41 of (n+1)th row as well, SEL[n+1] goes to a high voltage to address (n+1)th row.
The first operating cycle X41: SEL[n] is high and SEL[n+1] has a negative voltage VSS. VDATA goes to a programming voltage Vp+VSS, and VDD has a bias voltage VB.
Node C4 is charged to Vp+VSS. Node A4 is charged to the bias voltage VB. As a result, voltage at node B4 goes to:
where VB4 represents the voltage of node B4, VT1 represent the threshold voltage of the driving transistor 116, and VT3 represent the threshold voltage of the programming transistor 120, (W/W-ri is the aspect ratio of the driving transistor 116, and (W/L)T3 is the aspect ration of the programming transistor 120.
The gate-source voltage VGS of the driving transistor 116 is given by:
VGS=((W/L)T3/(W/L)T1)1/2VP+VT1−VT3 (17)
VGS remains at the same value during X42 and X43.
The second operating cycle X42: SEL[n] goes to an intermediate voltage in which the switch transistor 118 is off, and the switch transistor 122 is on. VDATA goes to zero. Thus, the programming transistor 120 turns off.
The third operating cycle X43: SEL[n] is low, and SEL[n+1] is high because of the next row programming cycle as described above.
In X43, node C4 is charged to a reset voltage. Voltage at node B4 goes to VOLED which is the corresponding OLED voltage for voltage for the give pixel current. As a result, voltage at node A4 goes to:
In this embodiment, the programming transistor 120 is positively biased only during the first operating cycle X41. During the rest of the frame time, the programming transistor 120 is not positively biased. Since the programming transistor 120 is on for just a small fraction of time, its threshold shift is negligible. Therefore, the current of the driving transistor 116 during the operating cycle is independent of the shifts in its threshold voltage and OLED characteristics.
According to the embodiments of the present invention, the shift(s) of the characteristic(s) of a pixel element(s) (e.g. the threshold voltage shift of a driving transistor and the degradation of a light emitting device under prolonged display operation) is compensated for by voltage stored in a storage capacitor and applying it to the gate of the driving transistor. Thus, the pixel circuit provides a stable current independent of the threshold voltage shift of the driving transistor and OLED degradation under prolonged display operation, which efficiently improves the display operating lifetime. According to the embodiments of the present invention, the brightness stability of the OLED is enhanced by using circuit compensation.
Because of the circuit simplicity, it ensures higher product yield, lower fabrication cost and higher resolution than conventional pixel circuits. Further the driving technique can be employed in large area display due to its fast settling time.
Further, the programming circuit (transitory) is isolated from the line parasitic capacitance unlike the conventional current programming circuit, it ensures fast programming
All citations are hereby incorporated by reference.
The present invention has been described with regard to one or more embodiments. However, it will be apparent to persons skilled in the art that a number of variations and modifications can be made without departing from the scope of the invention as defined in the claims. Therefore, the invention as defined in the claims, must be accorded the broadest possible interpretation so as to encompass all such modifications and equivalent structures and functions.
Number | Date | Country | Kind |
---|---|---|---|
2495726 | Jan 2005 | CA | national |
This application is a continuation of U.S. patent application Ser. No. 14/157,699, filed Jan. 17, 2014, now allowed, which is a continuation of U.S. patent application Ser. No. 13/934,652, filed Jul. 3, 2013, now U.S. Pat. No. 8,659,518, which is a continuation of U.S. patent application Ser. No. 13/211,732, filed Aug. 17, 2011, now U.S. Pat. No. 8,497,825, which is a continuation of U.S. patent application Ser. No. 11/341,332, filed, Jan. 27, 2006, now U.S. Pat. No. 8,044,893, which claims priority to Canadian Patent Application No. 2,495,726, filed Jan. 28, 2005; the entire contents of which are incorporated herein by reference.
Number | Name | Date | Kind |
---|---|---|---|
4354162 | Wright | Oct 1982 | A |
4758831 | Kasahara et al. | Jul 1988 | A |
4963860 | Stewart | Oct 1990 | A |
4975691 | Lee | Dec 1990 | A |
4996523 | Bell et al. | Feb 1991 | A |
5051739 | Hayashida et al. | Sep 1991 | A |
5222082 | Plus | Jun 1993 | A |
5266515 | Robb et al. | Nov 1993 | A |
5498880 | Lee et al. | Mar 1996 | A |
5589847 | Lewis | Dec 1996 | A |
5619033 | Weisfield | Apr 1997 | A |
5648276 | Hara et al. | Jul 1997 | A |
5670973 | Bassetti et al. | Sep 1997 | A |
5684365 | Tang et al. | Nov 1997 | A |
5686935 | Weisbrod | Nov 1997 | A |
5712653 | Katoh et al. | Jan 1998 | A |
5714968 | Ikeda | Feb 1998 | A |
5747928 | Shanks et al. | May 1998 | A |
5748160 | Shieh et al. | May 1998 | A |
5784042 | Ono et al. | Jul 1998 | A |
5790234 | Matsuyama | Aug 1998 | A |
5815303 | Berlin | Sep 1998 | A |
5870071 | Kawahata | Feb 1999 | A |
5874803 | Garbuzov et al. | Feb 1999 | A |
5880582 | Sawada | Mar 1999 | A |
5903248 | Irwin | May 1999 | A |
5917280 | Burrows et al. | Jun 1999 | A |
5923794 | McGrath et al. | Jul 1999 | A |
5952789 | Stewart et al. | Sep 1999 | A |
5990629 | Yamada et al. | Nov 1999 | A |
6023259 | Howard et al. | Feb 2000 | A |
6069365 | Chow et al. | May 2000 | A |
6081131 | Ishii | Jun 2000 | A |
6091203 | Kawashima et al. | Jul 2000 | A |
6097360 | Holloman | Aug 2000 | A |
6144222 | Ho | Nov 2000 | A |
6157583 | Starnes et al. | Dec 2000 | A |
6166489 | Thompson et al. | Dec 2000 | A |
6177915 | Beeteson et al. | Jan 2001 | B1 |
6225846 | Wada et al. | May 2001 | B1 |
6229508 | Kane | May 2001 | B1 |
6232939 | Saito et al. | May 2001 | B1 |
6246180 | Nishigaki | Jun 2001 | B1 |
6252248 | Sano et al. | Jun 2001 | B1 |
6259424 | Kurogane | Jul 2001 | B1 |
6274887 | Yamazaki et al. | Aug 2001 | B1 |
6288696 | Holloman | Sep 2001 | B1 |
6300928 | Kim | Oct 2001 | B1 |
6303963 | Ohtani et al. | Oct 2001 | B1 |
6306694 | Yamazaki et al. | Oct 2001 | B1 |
6307322 | Dawson et al. | Oct 2001 | B1 |
6316786 | Mueller et al. | Nov 2001 | B1 |
6320325 | Cok et al. | Nov 2001 | B1 |
6323631 | Juang | Nov 2001 | B1 |
6323832 | Nishizawa et al. | Nov 2001 | B1 |
6345085 | Yeo et al. | Feb 2002 | B1 |
6348835 | Sato et al. | Feb 2002 | B1 |
6365917 | Yamazaki | Apr 2002 | B1 |
6373453 | Yudasaka | Apr 2002 | B1 |
6384427 | Yamazaki et al. | May 2002 | B1 |
6392617 | Gleason | May 2002 | B1 |
6399988 | Yamazaki | Jun 2002 | B1 |
6414661 | Shen et al. | Jul 2002 | B1 |
6420758 | Nakajima | Jul 2002 | B1 |
6420834 | Yamazaki et al. | Jul 2002 | B2 |
6420988 | Azami et al. | Jul 2002 | B1 |
6433488 | Bu | Aug 2002 | B1 |
6445376 | Parrish | Sep 2002 | B2 |
6468638 | Jacobsen et al. | Oct 2002 | B2 |
6489952 | Tanaka et al. | Dec 2002 | B1 |
6501098 | Yamazaki | Dec 2002 | B2 |
6501466 | Yamagishi et al. | Dec 2002 | B1 |
6512271 | Yamazaki et al. | Jan 2003 | B1 |
6518594 | Nakajima et al. | Feb 2003 | B1 |
6524895 | Yamazaki et al. | Feb 2003 | B2 |
6531713 | Yamazaki | Mar 2003 | B1 |
6559594 | Fukunaga et al. | May 2003 | B2 |
6573195 | Yamazaki et al. | Jun 2003 | B1 |
6573584 | Nagakari et al. | Jun 2003 | B1 |
6576926 | Yamazaki et al. | Jun 2003 | B1 |
6577302 | Hunter | Jun 2003 | B2 |
6580408 | Bae et al. | Jun 2003 | B1 |
6580657 | Sanford et al. | Jun 2003 | B2 |
6583775 | Sekiya et al. | Jun 2003 | B1 |
6583776 | Yamazaki et al. | Jun 2003 | B2 |
6587086 | Koyama | Jul 2003 | B1 |
6593691 | Nishi et al. | Jul 2003 | B2 |
6594606 | Everitt | Jul 2003 | B2 |
6597203 | Forbes | Jul 2003 | B2 |
6611108 | Kimura | Aug 2003 | B2 |
6617644 | Yamazaki et al. | Sep 2003 | B1 |
6618030 | Kane et al. | Sep 2003 | B2 |
6641933 | Yamazaki et al. | Nov 2003 | B1 |
6661180 | Koyama | Dec 2003 | B2 |
6661397 | Mikami et al. | Dec 2003 | B2 |
6670637 | Yamazaki et al. | Dec 2003 | B2 |
6677713 | Sung | Jan 2004 | B1 |
6680577 | Inukai et al. | Jan 2004 | B1 |
6687266 | Ma et al. | Feb 2004 | B1 |
6690344 | Takeuchi et al. | Feb 2004 | B1 |
6693388 | Oomura | Feb 2004 | B2 |
6693610 | Shannon et al. | Feb 2004 | B2 |
6697057 | Koyama et al. | Feb 2004 | B2 |
6720942 | Lee et al. | Apr 2004 | B2 |
6734636 | Sanford et al. | May 2004 | B2 |
6738034 | Kaneko et al. | May 2004 | B2 |
6738035 | Fan | May 2004 | B1 |
6771028 | Winters | Aug 2004 | B1 |
6777712 | Sanford et al. | Aug 2004 | B2 |
6780687 | Nakajima et al. | Aug 2004 | B2 |
6806638 | Lih et al. | Oct 2004 | B2 |
6806857 | Sempel et al. | Oct 2004 | B2 |
6809706 | Shimoda | Oct 2004 | B2 |
6859193 | Yumoto | Feb 2005 | B1 |
6861670 | Ohtani et al. | Mar 2005 | B1 |
6873117 | Ishizuka | Mar 2005 | B2 |
6873320 | Nakamura | Mar 2005 | B2 |
6878968 | Ohnuma | Apr 2005 | B1 |
6909114 | Yamazaki | Jun 2005 | B1 |
6909419 | Zavracky et al. | Jun 2005 | B2 |
6919871 | Kwon | Jul 2005 | B2 |
6937215 | Lo | Aug 2005 | B2 |
6940214 | Komiya et al. | Sep 2005 | B1 |
6943500 | LeChevalier | Sep 2005 | B2 |
6954194 | Matsumoto et al. | Oct 2005 | B2 |
6956547 | Bae et al. | Oct 2005 | B2 |
6995510 | Murakami et al. | Feb 2006 | B2 |
6995519 | Arnold et al. | Feb 2006 | B2 |
7022556 | Adachi | Apr 2006 | B1 |
7023408 | Chen et al. | Apr 2006 | B2 |
7027015 | Booth, Jr. et al. | Apr 2006 | B2 |
7034793 | Sekiya et al. | Apr 2006 | B2 |
7088051 | Cok | Aug 2006 | B1 |
7106285 | Naugler | Sep 2006 | B2 |
7116058 | Lo et al. | Oct 2006 | B2 |
7129914 | Knapp et al. | Oct 2006 | B2 |
7129917 | Yamazaki et al. | Oct 2006 | B2 |
7141821 | Yamazaki et al. | Nov 2006 | B1 |
7161566 | Cok et al. | Jan 2007 | B2 |
7193589 | Yoshida et al. | Mar 2007 | B2 |
7199516 | Seo et al. | Apr 2007 | B2 |
7220997 | Nakata | May 2007 | B2 |
7235810 | Yamazaki et al. | Jun 2007 | B1 |
7245277 | Ishizuka | Jul 2007 | B2 |
7248236 | Nathan et al. | Jul 2007 | B2 |
7264979 | Yamagata et al. | Sep 2007 | B2 |
7274345 | Imamura et al. | Sep 2007 | B2 |
7274363 | Ishizuka et al. | Sep 2007 | B2 |
7279711 | Yamazaki et al. | Oct 2007 | B1 |
7304621 | Oomori et al. | Dec 2007 | B2 |
7310092 | Imamura | Dec 2007 | B2 |
7315295 | Kimura | Jan 2008 | B2 |
7317429 | Shirasaki et al. | Jan 2008 | B2 |
7319465 | Mikami et al. | Jan 2008 | B2 |
7321348 | Cok et al. | Jan 2008 | B2 |
7339636 | Voloschenko et al. | Mar 2008 | B2 |
7355574 | Leon et al. | Apr 2008 | B1 |
7358941 | Ono et al. | Apr 2008 | B2 |
7402467 | Kadono et al. | Jul 2008 | B1 |
7414600 | Nathan et al. | Aug 2008 | B2 |
7432885 | Asano et al. | Oct 2008 | B2 |
7474285 | Kimura | Jan 2009 | B2 |
7485478 | Yamagata et al. | Feb 2009 | B2 |
7502000 | Yuki et al. | Mar 2009 | B2 |
7535449 | Miyazawa | May 2009 | B2 |
7554512 | Steer | Jun 2009 | B2 |
7569849 | Nathan et al. | Aug 2009 | B2 |
7619594 | Hu | Nov 2009 | B2 |
7619597 | Nathan et al. | Nov 2009 | B2 |
7697052 | Yamazaki et al. | Apr 2010 | B1 |
7825419 | Yamagata et al. | Nov 2010 | B2 |
7859492 | Kohno | Dec 2010 | B2 |
7868859 | Tomida et al. | Jan 2011 | B2 |
7876294 | Sasaki et al. | Jan 2011 | B2 |
7948170 | Striakhilev et al. | May 2011 | B2 |
7969390 | Yoshida | Jun 2011 | B2 |
7995010 | Yamazaki et al. | Aug 2011 | B2 |
8044893 | Nathan et al. | Oct 2011 | B2 |
8115707 | Nathan et al. | Feb 2012 | B2 |
8378362 | Heo et al. | Feb 2013 | B2 |
8493295 | Yamazaki et al. | Jul 2013 | B2 |
8497525 | Yamagata et al. | Jul 2013 | B2 |
20010002703 | Koyama | Jun 2001 | A1 |
20010004190 | Nishi et al. | Jun 2001 | A1 |
20010013806 | Notani | Aug 2001 | A1 |
20010015653 | De Jong et al. | Aug 2001 | A1 |
20010020926 | Kujik | Sep 2001 | A1 |
20010024186 | Kane | Sep 2001 | A1 |
20010026127 | Yoneda et al. | Oct 2001 | A1 |
20010026179 | Saeki | Oct 2001 | A1 |
20010026257 | Kimura | Oct 2001 | A1 |
20010030323 | Ikeda | Oct 2001 | A1 |
20010033199 | Aoki | Oct 2001 | A1 |
20010038098 | Yamazaki et al. | Nov 2001 | A1 |
20010043173 | Troutman | Nov 2001 | A1 |
20010045929 | Prache et al. | Nov 2001 | A1 |
20010052606 | Sempel et al. | Dec 2001 | A1 |
20010052898 | Osame et al. | Dec 2001 | A1 |
20020000576 | Inukai | Jan 2002 | A1 |
20020011796 | Koyama | Jan 2002 | A1 |
20020011799 | Kimura | Jan 2002 | A1 |
20020011981 | Kujik | Jan 2002 | A1 |
20020015031 | Fujita et al. | Feb 2002 | A1 |
20020015032 | Koyama et al. | Feb 2002 | A1 |
20020030528 | Matsumoto et al. | Mar 2002 | A1 |
20020030647 | Hack et al. | Mar 2002 | A1 |
20020036463 | Yoneda et al. | Mar 2002 | A1 |
20020047852 | Inukai et al. | Apr 2002 | A1 |
20020048829 | Yamazaki et al. | Apr 2002 | A1 |
20020050795 | Imura | May 2002 | A1 |
20020053401 | Ishikawa et al. | May 2002 | A1 |
20020070909 | Asano et al. | Jun 2002 | A1 |
20020080108 | Wang | Jun 2002 | A1 |
20020084463 | Sanford et al. | Jul 2002 | A1 |
20020101172 | Bu | Aug 2002 | A1 |
20020101433 | McKnight | Aug 2002 | A1 |
20020113248 | Yamagata et al. | Aug 2002 | A1 |
20020122308 | Ikeda | Sep 2002 | A1 |
20020130686 | Forbes | Sep 2002 | A1 |
20020154084 | Tanaka et al. | Oct 2002 | A1 |
20020158823 | Zavracky et al. | Oct 2002 | A1 |
20020163314 | Yamazaki et al. | Nov 2002 | A1 |
20020167471 | Everitt | Nov 2002 | A1 |
20020180369 | Koyama | Dec 2002 | A1 |
20020180721 | Kimura et al. | Dec 2002 | A1 |
20020186214 | Siwinski | Dec 2002 | A1 |
20020190332 | Lee et al. | Dec 2002 | A1 |
20020190924 | Asano et al. | Dec 2002 | A1 |
20020190971 | Nakamura et al. | Dec 2002 | A1 |
20020195967 | Kim et al. | Dec 2002 | A1 |
20020195968 | Sanford et al. | Dec 2002 | A1 |
20030020413 | Oomura | Jan 2003 | A1 |
20030030603 | Shimoda | Feb 2003 | A1 |
20030062524 | Kimura | Apr 2003 | A1 |
20030063081 | Kimura et al. | Apr 2003 | A1 |
20030071804 | Yamazaki et al. | Apr 2003 | A1 |
20030071821 | Sundahl | Apr 2003 | A1 |
20030076048 | Rutherford | Apr 2003 | A1 |
20030090445 | Chen et al. | May 2003 | A1 |
20030090447 | Kimura | May 2003 | A1 |
20030090481 | Kimura | May 2003 | A1 |
20030095087 | Libsch | May 2003 | A1 |
20030107560 | Yumoto et al. | Jun 2003 | A1 |
20030111966 | Mikami et al. | Jun 2003 | A1 |
20030122745 | Miyazawa | Jul 2003 | A1 |
20030140958 | Yang et al. | Jul 2003 | A1 |
20030151569 | Lee et al. | Aug 2003 | A1 |
20030169219 | LeChevalier | Sep 2003 | A1 |
20030174152 | Noguchi | Sep 2003 | A1 |
20030178617 | Appenzeller et al. | Sep 2003 | A1 |
20030179626 | Sanford et al. | Sep 2003 | A1 |
20030197663 | Lee et al. | Oct 2003 | A1 |
20030206060 | Suzuki | Nov 2003 | A1 |
20030230980 | Forrest et al. | Dec 2003 | A1 |
20040027063 | Nishikawa | Feb 2004 | A1 |
20040056604 | Shih et al. | Mar 2004 | A1 |
20040066357 | Kawasaki | Apr 2004 | A1 |
20040070557 | Asano et al. | Apr 2004 | A1 |
20040080262 | Park et al. | Apr 2004 | A1 |
20040080470 | Yamazaki et al. | Apr 2004 | A1 |
20040090400 | Yoo | May 2004 | A1 |
20040108518 | Jo | Jun 2004 | A1 |
20040113903 | Mikami et al. | Jun 2004 | A1 |
20040129933 | Nathan et al. | Jul 2004 | A1 |
20040130516 | Nathan et al. | Jul 2004 | A1 |
20040135749 | Kondakov et al. | Jul 2004 | A1 |
20040145547 | Oh | Jul 2004 | A1 |
20040150592 | Mizukoshi et al. | Aug 2004 | A1 |
20040150594 | Koyama et al. | Aug 2004 | A1 |
20040150595 | Kasai | Aug 2004 | A1 |
20040155841 | Kasai | Aug 2004 | A1 |
20040174347 | Sun et al. | Sep 2004 | A1 |
20040174349 | Libsch | Sep 2004 | A1 |
20040183759 | Stevenson et al. | Sep 2004 | A1 |
20040189627 | Shirasaki et al. | Sep 2004 | A1 |
20040196275 | Hattori | Oct 2004 | A1 |
20040201554 | Satoh | Oct 2004 | A1 |
20040207615 | Yumoto | Oct 2004 | A1 |
20040233125 | Tanghe et al. | Nov 2004 | A1 |
20040239596 | Ono et al. | Dec 2004 | A1 |
20040252089 | Ono et al. | Dec 2004 | A1 |
20040257355 | Naugler | Dec 2004 | A1 |
20040263437 | Hattori | Dec 2004 | A1 |
20050007357 | Yamashita et al. | Jan 2005 | A1 |
20050030267 | Tanghe et al. | Feb 2005 | A1 |
20050035709 | Furuie et al. | Feb 2005 | A1 |
20050067970 | Libsch et al. | Mar 2005 | A1 |
20050067971 | Kane | Mar 2005 | A1 |
20050068270 | Awakura | Mar 2005 | A1 |
20050088085 | Nishikawa et al. | Apr 2005 | A1 |
20050088103 | Kageyama et al. | Apr 2005 | A1 |
20050110420 | Arnold et al. | May 2005 | A1 |
20050117096 | Voloschenko et al. | Jun 2005 | A1 |
20050140598 | Kim et al. | Jun 2005 | A1 |
20050140610 | Smith et al. | Jun 2005 | A1 |
20050145891 | Abe | Jul 2005 | A1 |
20050156831 | Yamazaki et al. | Jul 2005 | A1 |
20050168416 | Hashimoto et al. | Aug 2005 | A1 |
20050206590 | Sasaki et al. | Sep 2005 | A1 |
20050225686 | Brummack et al. | Oct 2005 | A1 |
20050260777 | Brabec et al. | Nov 2005 | A1 |
20050269959 | Uchino et al. | Dec 2005 | A1 |
20050269960 | Ono et al. | Dec 2005 | A1 |
20050285822 | Reddy et al. | Dec 2005 | A1 |
20050285825 | Eom et al. | Dec 2005 | A1 |
20060007072 | Choi et al. | Jan 2006 | A1 |
20060012310 | Chen et al. | Jan 2006 | A1 |
20060027807 | Nathan et al. | Feb 2006 | A1 |
20060030084 | Young | Feb 2006 | A1 |
20060038758 | Routley et al. | Feb 2006 | A1 |
20060044227 | Hadcock | Mar 2006 | A1 |
20060066527 | Chou | Mar 2006 | A1 |
20060092185 | Jo et al. | May 2006 | A1 |
20060232522 | Roy et al. | Oct 2006 | A1 |
20060261841 | Fish | Nov 2006 | A1 |
20060264143 | Lee et al. | Nov 2006 | A1 |
20060273997 | Nathan et al. | Dec 2006 | A1 |
20060284801 | Yoon et al. | Dec 2006 | A1 |
20070001937 | Park et al. | Jan 2007 | A1 |
20070001939 | Hashimoto et al. | Jan 2007 | A1 |
20070008268 | Park et al. | Jan 2007 | A1 |
20070008297 | Bassetti | Jan 2007 | A1 |
20070046195 | Chin et al. | Mar 2007 | A1 |
20070069998 | Naugler et al. | Mar 2007 | A1 |
20070080905 | Takahara | Apr 2007 | A1 |
20070080906 | Tanabe | Apr 2007 | A1 |
20070080908 | Nathan et al. | Apr 2007 | A1 |
20070080918 | Kawachi et al. | Apr 2007 | A1 |
20070103419 | Uchino et al. | May 2007 | A1 |
20070182671 | Nathan et al. | Aug 2007 | A1 |
20070273294 | Nagayama | Nov 2007 | A1 |
20070285359 | Ono | Dec 2007 | A1 |
20070296672 | Kim et al. | Dec 2007 | A1 |
20080042948 | Yamashita et al. | Feb 2008 | A1 |
20080055209 | Cok | Mar 2008 | A1 |
20080074413 | Ogura | Mar 2008 | A1 |
20080088549 | Nathan et al. | Apr 2008 | A1 |
20080122803 | Izadi et al. | May 2008 | A1 |
20080230118 | Nakatani et al. | Sep 2008 | A1 |
20090032807 | Shinohara et al. | Feb 2009 | A1 |
20090051283 | Cok et al. | Feb 2009 | A1 |
20090160743 | Tomida et al. | Jun 2009 | A1 |
20090162961 | Deane | Jun 2009 | A1 |
20090174628 | Wang et al. | Jul 2009 | A1 |
20090213046 | Nam | Aug 2009 | A1 |
20100052524 | Kinoshita | Mar 2010 | A1 |
20100078230 | Rosenblatt et al. | Apr 2010 | A1 |
20100079711 | Tanaka | Apr 2010 | A1 |
20100097335 | Jung et al. | Apr 2010 | A1 |
20100133994 | Song et al. | Jun 2010 | A1 |
20100134456 | Oyamada | Jun 2010 | A1 |
20100140600 | Clough et al. | Jun 2010 | A1 |
20100156279 | Tamura et al. | Jun 2010 | A1 |
20100237374 | Chu et al. | Sep 2010 | A1 |
20100328294 | Sasaki et al. | Dec 2010 | A1 |
20110090210 | Sasaki et al. | Apr 2011 | A1 |
20110133636 | Matsuo et al. | Jun 2011 | A1 |
20110180825 | Lee et al. | Jul 2011 | A1 |
20120212468 | Govil | Aug 2012 | A1 |
20130009930 | Cho et al. | Jan 2013 | A1 |
20130032831 | Chaji et al. | Feb 2013 | A1 |
20130113785 | Sumi | May 2013 | A1 |
Number | Date | Country |
---|---|---|
1294034 | Jan 1992 | CA |
2109951 | Nov 1992 | CA |
2 249 592 | Jul 1998 | CA |
2 368 386 | Sep 1999 | CA |
2 242 720 | Jan 2000 | CA |
2 354 018 | Jun 2000 | CA |
2 436 451 | Aug 2002 | CA |
2 438 577 | Aug 2002 | CA |
2 483 645 | Dec 2003 | CA |
2 463 653 | Jan 2004 | CA |
2498136 | Mar 2004 | CA |
2522396 | Nov 2004 | CA |
2443206 | Mar 2005 | CA |
2472671 | Dec 2005 | CA |
2567076 | Jan 2006 | CA |
2526782 | Apr 2006 | CA |
1381032 | Nov 2002 | CN |
1448908 | Oct 2003 | CN |
1776922 | May 2006 | CN |
20 2006 005427 | Jun 2006 | DE |
0 940 796 | Sep 1999 | EP |
1 028 471 | Aug 2000 | EP |
1 103 947 | May 2001 | EP |
1 130 565 | Sep 2001 | EP |
1 184 833 | Mar 2002 | EP |
1 194 013 | Apr 2002 | EP |
1 310 939 | May 2003 | EP |
1 335 430 | Aug 2003 | EP |
1 372 136 | Dec 2003 | EP |
1 381 019 | Jan 2004 | EP |
1 418 566 | May 2004 | EP |
1 429 312 | Jun 2004 | EP |
1 439 520 | Jul 2004 | EP |
1 465 143 | Oct 2004 | EP |
1 467 408 | Oct 2004 | EP |
1 517 290 | Mar 2005 | EP |
1 521 203 | Apr 2005 | EP |
2317499 | May 2011 | EP |
2 205 431 | Dec 1988 | GB |
09 090405 | Apr 1997 | JP |
10-153759 | Jun 1998 | JP |
10-254410 | Sep 1998 | JP |
11 231805 | Aug 1999 | JP |
11-282419 | Oct 1999 | JP |
2000056847 | Feb 2000 | JP |
2000-077192 | Mar 2000 | JP |
2000-089198 | Mar 2000 | JP |
2000-352941 | Dec 2000 | JP |
2002-91376 | Mar 2002 | JP |
2002-268576 | Sep 2002 | JP |
2002-278513 | Sep 2002 | JP |
2002-333862 | Nov 2002 | JP |
2003-022035 | Jan 2003 | JP |
2003-076331 | Mar 2003 | JP |
2003-150082 | May 2003 | JP |
2003-177709 | Jun 2003 | JP |
2003-271095 | Sep 2003 | JP |
2003-308046 | Oct 2003 | JP |
2005-057217 | Mar 2005 | JP |
2006065148 | Mar 2006 | JP |
2009282158 | Dec 2009 | JP |
485337 | May 2002 | TW |
502233 | Sep 2002 | TW |
538650 | Jun 2003 | TW |
569173 | Jan 2004 | TW |
WO 9425954 | Nov 1994 | WO |
WO 9948079 | Sep 1999 | WO |
WO 0127910 | Apr 2001 | WO |
WO 02067327 | Aug 2002 | WO |
WO 03034389 | Apr 2003 | WO |
WO 03063124 | Jul 2003 | WO |
WO 03077231 | Sep 2003 | WO |
WO 03105117 | Dec 2003 | WO |
WO 2004003877 | Jan 2004 | WO |
WO 2004034364 | Apr 2004 | WO |
WO 2005022498 | Mar 2005 | WO |
WO 2005029455 | Mar 2005 | WO |
WO 2005055185 | Jun 2005 | WO |
WO 2006053424 | May 2006 | WO |
WO 2006063448 | Jun 2006 | WO |
WO 2006137337 | Dec 2006 | WO |
WO 2007003877 | Jan 2007 | WO |
WO 2007079572 | Jul 2007 | WO |
WO 2010023270 | Mar 2010 | WO |
Entry |
---|
Ahnood et al.: “Effect of threshold voltage instability on field effect mobility in thin film transistors deduced from constant current measurements”; dated Aug. 2009 (3 pages). |
Alexander et al.: “Pixel circuits and drive schemes for glass and elastic AMOLED displays”; dated Jul. 2005 (9 pages). |
Alexander et al.: “Unique Electrical Measurement Technology for Compensation, Inspection, and Process Diagnostics of AMOLED HDTV”; dated May 2010 (4 pages). |
Ashtiani et al.: “AMOLED Pixel Circuit With Electronic Compensation of Luminance Degradation”; dated Mar. 2007 (4 pages). |
Chaji et al.: “A Current-Mode Comparator for Digital Calibration of Amorphous Silicon AMOLED Displays”; dated Jul. 2008 (5 pages). |
Chaji et al.: “A fast settling current driver based on the CCII for AMOLED displays”; dated Dec. 2009 (6 pages). |
Chaji et al.: “A Low-Cost Stable Amorphous Silicon AMOLED Display with Full V˜T- and V˜O˜L˜E˜D Shift Compensation”; dated May 2007 (4 pages). |
Chaji et al.: “A low-power driving scheme for a-Si:H active-matrix organic light-emitting diode displays”; dated Jun. 2005 (4 pages). |
Chaji et al.: “A low-power high-performance digital circuit for deep submicron technologies”; dated Jun. 2005 (4 pages). |
Chaji et al.: “A novel a-Si:H AMOLED pixel circuit based on short-term stress stability of a-Si:H TFTs”; dated Oct. 2005 (3 pages). |
Chaji et al.: “A Novel Driving Scheme and Pixel Circuit for AMOLED Displays”; dated Jun. 2006 (4 pages). |
Chaji et al.: “A novel driving scheme for high-resolution large-area a-Si:H AMOLED displays”; dated Aug. 2005 (4 pages). |
Chaji et al.: “A Stable Voltage-Programmed Pixel Circuit for a-Si:H AMOLED Displays”; dated Dec. 2006 (12 pages). |
Chaji et al.: “A Sub-μA fast-settling current-programmed pixel circuit for AMOLED displays”; dated Sep. 2007. |
Chaji et al.: “An Enhanced and Simplified Optical Feedback Pixel Circuit for AMOLED Displays”; dated Oct. 2006. |
Chaji et al.: “Compensation technique for DC and transient instability of thin film transistor circuits for large-area devices”; dated Aug. 2008. |
Chaji et al.: “Driving scheme for stable operation of 2-TFT a-Si AMOLED pixel”; dated Apr. 2005 (2 pages). |
Chaji et al.: “Dynamic-effect compensating technique for stable a-Si:H AMOLED displays”; dated Aug. 2005 (4 pages). |
Chaji et al.: “Electrical Compensation of OLED Luminance Degradation”; dated Dec. 2007 (3 pages). |
Chaji et al.: “eUTDSP: a design study of a new VLIW-based DSP architecture”; dated May 2003 (4 pages). |
Chaji et al.: “Fast and Offset-Leakage Insensitive Current-Mode Line Driver for Active Matrix Displays and Sensors”; dated Feb. 2009 (8 pages). |
Chaji et al.: “High Speed Low Power Adder Design With a New Logic Style: Pseudo Dynamic Logic (SDL)”; dated Oct. 2001 (4 pages). |
Chaji et al.: “High-precision, fast current source for large-area current-programmed a-Si flat panels”; dated Sep. 2006 (4 pages). |
Chaji et al.: “Low-Cost AMOLED Television with IGNIS Compensating Technology”; dated May 2008 (4 pages). |
Chaji et al.: “Low-Cost Stable a-Si:H AMOLED Display for Portable Applications”; dated Jun. 2006 (4 pages). |
Chaji et al.: “Low-Power Low-Cost Voltage-Programmed a-Si:H AMOLED Display”; dated Jun. 2008 (5 pages). |
Chaji et al.: “Merged phototransistor pixel with enhanced near infrared response and flicker noise reduction for biomolecular imaging”; dated Nov. 2008 (3 pages). |
Chaji et al.: “Parallel Addressing Scheme for Voltage-Programmed Active-Matrix OLED Displays”; dated May 2007 (6 pages). |
Chaji et al.: “Pseudo dynamic logic (SDL): a high-speed and low-power dynamic logic family”; dated 2002 (4 pages). |
Chaji et al.: “Stable a-Si:H circuits based on short-term stress stability of amorphous silicon thin film transistors”; dated May 2006 (4 pages). |
Chaji et al.: “Stable Pixel Circuit for Small-Area High-Resolution a-Si:H AMOLED Displays”; dated Oct. 2008 (6 pages). |
Chaji et al.: “Stable RGBW AMOLED display with OLED degradation compensation using electrical feedback”; dated Feb. 2010 (2 pages). |
Chaji et al.: “Thin-Film Transistor Integration for Biomedical Imaging and AMOLED Displays”; dated 2008 (177 pages). |
European Search Report and Written Opinion for Application No. 08 86 5338 mailed Nov. 2, 2011 (7 pages). |
European Search Report for European Application No. EP 04 78 6661 dated Mar. 9, 2009. |
European Search Report for European Application No. EP 05 75 9141 dated Oct. 30, 2009. |
European Search Report for European Application No. EP 05 82 1114 dated Mar. 27, 2009 (2 pages). |
European Search Report for European Application No. EP 07 71 9579 dated May 20, 2009. |
European Search Report mailed Mar. 26, 2012 in corresponding European Patent Application No. 10000421.7 (6 pages). |
Extended European Search Report mailed Apr. 27, 2011 issued during prosecution of European patent application No. 09733076.5 (13 pages). |
Goh et al., “A New a-Si:H Thin Film Transistor Pixel Circul for Active-Matrix Organic Light-Emitting Diodes”, IEEE Electron Device Letters, vol. 24, No. 9, Sep. 2003, 4 pages. |
International Search Report for International Application No. PCT/CA02/00180 dated Jul. 31, 2002 (3 pages). |
International Search Report for International Application No. PCT/CA2004/001741 dated Feb. 21, 2005. |
International Search Report for International Application No. PCT/CA2005/001844 dated Mar. 28, 2006 (2 pages). |
International Search Report for International Application No. PCT/CA2005/001007 dated Oct. 18, 2005. |
International Search Report for International Application No. PCT/CA2007/000652 dated Jul. 25, 2007. |
International Search Report for International Application No. PCT/CA2008/002307, mailed Apr. 28. 2009 (3 pages). |
International Search Report for International Application No. PCT/IB2011/055135, Canadian Patent Office, dated Apr. 16, 2012 (5 pages). |
International Search Report mailed Jul. 30, 2009 for International Application No. PCT/CA2009/000501 (4 pages). |
Jafarabadiashtiani et al.: “A New Driving Method for a-Si AMOLED Displays Based on Voltage Feedback”; dated 2005 (4 pages). |
Lee et al.: “Ambipolar Thin-Film Transistors Fabricated by PECVD Nanocrystalline Silicon”; dated 2006 (6 pages). |
Ma e y et al: “Organic Light-Emitting Diode/Thin Film Transistor Integration for foldable Displays” Conference record of the 1997 International display research conference and international workshops on LCD technology and emissive technology. Toronto, Sep. 15-19, 1997 (6 pages). |
Matsueda y et al.: “35.1: 2.5-in. AMOLED with Integrated 6-bit Gamma Compensated Digital Data Driver”; dated May 2004. |
Nathan et al.: “Backplane Requirements for Active Matrix Organic Light Emitting Diode Displays”; dated 2006 (16 pages). |
Nathan et al.: “Call for papers second international workshop on compact thin-film transistor (TFT) modeling for circuit simulation”; dated Sep. 2009 (1 page). |
Nathan et al.: “Driving schemes for a-Si and LTPS AMOLED displays”; dated Dec. 2005 (11 pages). |
Nathan et al.: “Invited Paper: a-Si for AMOLED—Meeting the Performance and Cost Demands of Display Applications (Cell Phone to HDTV)”; dated 2006 (4 pages). |
Nathan et al.: “Thin film imaging technology on glass and plastic” ICM 2000, Proceedings of the 12th International Conference on Microelectronics, (IEEE Cat. No. 00EX453), Tehran Iran; dated Oct. 31-Nov. 2, 2000, pp. 11-14, ISBN: 964-360-057-2, p. 13, col. 1, line 11-48; (4 pages). |
Nathan et al., “Amorphous Silicon Thin Film Transistor Circuit Integration for Organic LED Displays on Glass and Plastic”, IEEE Journal of Solid-State Circuits, vol. 39, No. 9, Sep. 2004, pp. 1477-1486. |
Office Action issued in Chinese Patent Application 200910246264.4 Dated Jul. 5, 2013; 8 pages. |
Patent Abstracts of Japan, vol. 2000, No. 09, Oct. 13, 2000—JP 2000 172199 A, Jun. 3, 2000, abstract. |
Patent Abstracts of Japan, vol. 2002, No. 03, Apr. 3, 2002 (Apr. 4, 2004 & JP 2001 318627 A (Semiconductor EnergyLab DO LTD), Nov. 16, 2001, abstract, paragraphs '01331-01801, paragraph '01691, paragraph '01701, paragraph '01721 and figure 10. |
Philipp: “Charge transfer sensing” Sensor Review, vol. 19, No. 2, Dec. 31, 1999 (Dec. 31, 1999), 10 pages. |
Rafati et al.: “Comparison of a 17 b multiplier in Dual-rail domino and in Dual-rail D L (D L) logic styles”; dated 2002 (4 pages). |
Safavaian et al.: “Three-TFT image sensor for real-time digital X-ray imaging”; dated Feb. 2, 2006 (2 pages). |
Safavian et al.: “3-TFT active pixel sensor with correlated double sampling readout circuit for real-time medical x-ray imaging”; dated Jun. 2006 (4 pages). |
Safavian et al.: “A novel current scaling active pixel sensor with correlated double sampling readout circuit for real time medical x-ray imaging”; dated May 2007 (7 pages). |
Safavian et al.: “A novel hybrid active-passive pixel with correlated double sampling CMOS readout circuit for medical x-ray imaging”; dated May 2008 (4 pages). |
Safavian et al.: “Self-compensated a-Si:H detector with current-mode readout circuit for digital X-ray fluoroscopy”; dated Aug. 2005 (4 pages). |
Safavian et al.: “TFT active image sensor with current-mode readout circuit for digital x-ray fluoroscopy [5969D-82]”; dated Sep. 2005 (9 pages). |
Sanford, James L., et al., “4.2 TFT AMOLED Pixel Circuits and Driving Methods”, SID 03 Digest, ISSN/0003, 2003, pp. 10-13. |
Stewart M. et al., “Polysilicon TFT technology for active matrix OLED displays” IEEE transactions on electron devices, vol. 48, No. 5; Dated May 2001 (7 pages). |
Tatsuya Sasaoka et al., 24.4L; Late-News Paper: A 13.0-inch AM-OLED Display with Top Emitting Structure and Adaptive Current Mode Programmed Pixel Circuit (TAC), SID 01 Digest, (2001), pp. 384-387. |
Vygranenko et al.: “Stability of indium-oxide thin-film transistors by reactive ion beam assisted deposition”; dated 2009. |
Wang et al.: “Indium oxides by reactive ion beam assisted evaporation: From material study to device application”; dated Mar. 2009 (6 pages). |
Written Opinion mailed Jul. 30, 2009 for International Application No. PCT/CA2009/000501 (6 pages). |
Yi He et al., “Current-Source a-Si:H Thin Film Transistor Circuit for Active-Matrix Organic Light-Emitting Displays”, IEEE Electron Device Letters, vol. 21, No. 12, Dec. 2000, pp. 590-592. |
Zhiguo Meng et al; “24.3: Active-Matrix Organic Light-Emitting Diode Display implemented Using Metal-Induced Unilaterally Crystallized Polycrystalline Silicon Thin-Film Transistors”, SID 01Digest, (2001), pp. 380-383. |
International Search Report for Application No. PCT/IB2014/059409, Canadian Intellectual Property Office, dated Jun. 12, 2014 (4 pages). |
Written Opinion for Application No. PCT/IB2014/059409, Canadian Intellectual Property Office, dated Jun. 12, 2014 (5 pages). |
Extended European Search Report for Application No. EP 14181848.4, mailed Mar. 5, 2015, (9 pages). |
Number | Date | Country | |
---|---|---|---|
20160267846 A1 | Sep 2016 | US |
Number | Date | Country | |
---|---|---|---|
Parent | 14157699 | Jan 2014 | US |
Child | 15161525 | US | |
Parent | 13934652 | Jul 2013 | US |
Child | 14157699 | US | |
Parent | 13211732 | Aug 2011 | US |
Child | 13934652 | US | |
Parent | 11341332 | Jan 2006 | US |
Child | 13211732 | US |