In close quarter combat, typically in the range of 2-800 meters, soldiers are required to rapidly acquire, identify, and accurately fire on enemy targets. Soldiers may use weapon-mounted sights with visible and infrared light sources to assist in the aiming process during daytime and nighttime missions. These sights may be mounted on vehicle-mounted weapons and handheld weapons such as the M4A1 carbine and other small arms and are used to provide better target observation, illumination, and marking.
Aiming devices are often mounted on handheld weapons where weight and size are important design criteria. Limiting the number of optical benches and associated adjusters saves space, weight, and makes bore sighting simpler. Having a beam adjuster that can be manipulated by users wearing gloves is also desirable.
For a better understanding of the present invention, together with other objects, features and advantages, reference should be made to the following detailed description which should be read in conjunction with the following figures wherein like numerals represent like parts:
The sight 200 may be secured to a weapon using a mechanism 290. The sight 200 may be mounted to a weapon using a variety of mounting mechanism, including those disclosed in more detail in U.S. Pat. No. 5,430,967, titled, Aiming Assistance Device for a Weapon, issued on Jul. 11, 1995; U.S. Pat. No. 6,574,901, titled, Auxiliary Device for a Weapon and Attachment Thereof, issued Jun. 10, 2003; and U.S. Pat. No. 6,705,038, titled, Mounting Assembly for a Weapon, issued on Mar. 16, 2004, all of which are incorporated herein by reference in their entirety. Additionally, the sight may utilize a mounting mechanism compatible with a mounting rail disclosed in military specifications (e.g., MIL-STD-1913), a “rail grabber” mounting mechanism, levers, screws, bolts, and/or the like.
The visible laser pointer assembly 210 may have a diode 218 spaced a fixed distance d2 from a lens 220 and the infrared laser pointer assembly 222 may have a diode 212 spaced a fixed distance d3 from a lens 224 so the exiting light is collimated. The visible laser pointer assembly 210 and the infrared laser pointer assembly 222 may be coupled to the optical bench 226 having a flexure 272. The flexure 272 may allow the laser pointer assemblies 210, 222 to be steered relative to the housing 202. The pivot adjuster 270 may be coupled to a rear surface of the optical bench 226 to allow for alignment of the laser pointer assemblies 210, 222 with a point of impact of a projectile of the weapon. Up-down adjuster 230 applies a force F230 and left-right adjuster 228 applies a force F228 to the pivot adjuster 270 to steer the laser pointer assemblies 210, 222. Springs or other biasing mechanisms may be used to provide a counter force to the adjustors 228, 230.
The Infrared illuminator assembly 208 may have a diode 214 coupled to the illuminator housing 260 and spaced an adjustable distance d1 from the lens 216. Diode 214 may be fixed inside a distal end of the illuminator housing 260 and the lens housing 262 may be slidably coupled inside a proximal end of the illuminator housing 260. The lens housing 262 may have one or more radially extending threaded sections 238. The illuminator housing 260 may be coupled to a rear surface of the front mount 204. Threaded sections 238 may extend through one or more longitudinal extending openings 246 in hollow cylinder 248 on the front mount 204 to prevent rotation of the lens 216 as the lens 216 is translated relative to the laser 214. Illuminator drive ring 240 may be sized to fit over cylinder 248 and have inwardly directed threads that cooperate with threaded sections 238 on the lens housing 262. When the beam adjuster 232 is rotated the illuminator drive ring 240 rotates causing lens housing 262 to slide longitudinally, which moves the lens 216 towards or away from the diode 214, thereby changing the resulting divergence of the infrared beam between a narrow pointer and a wide beam. Numerous screws and O-rings may be used to keep the assembly together and provide a sealed assembly. Although the assembly is described as a tri-laser assembly, a multi-laser assembly having two, or more than three lasers, should not be considered outside the scope of the invention.
The infrared illuminator assembly 208″, the visible laser pointer assembly 210″ and the infrared laser pointer assembly 222″ may be coupled to the optical bench 226″. The pivot adjuster 270 may be coupled to the rear surface of the optical bench 226″ to allow for alignment of the laser pointer assemblies 210, 222 and the infrared illuminator assembly 208 with a point of impact of a projectile of the weapon. Up-down adjuster 230 applies a force F230 and left-right adjuster 228 applies a force F228 to the pivot adjuster 270.
A drive mechanism like the one shown in
According to one aspect, the present disclosure may provide a weapon mountable sight including a housing configured to be coupled to a weapon and an optical bench within the housing that supports a visible laser pointer assembly, an infrared laser pointer assembly, and an infrared laser illuminator assembly.
According to another aspect, the present disclosure may provide a weapon mountable sight including a housing configured to be coupled to a weapon. Enclosed within the housing is a multi-laser assembly having a rotatable actuator configured to control the beam divergence of at least one of the lasers. The rotatable actuator having an opening extending therethrough to allow light from the lasers to extend therethrough.
According to another aspect, the present disclosure may provide a tri-laser assembly having a visible laser pointer assembly, an infrared laser pointer assembly, and an infrared laser illuminator assembly encircled by a rotatable actuator configured to control the beam width of at least one of the lasers.
Although several preferred embodiments of the present invention have been described in detail herein, the invention is not limited hereto. It will be appreciated by those having ordinary skill in the art that various modifications can be made without materially departing from the novel and advantageous teachings of the invention. Accordingly, the embodiments disclosed herein are by way of example. It is to be understood that the scope of the invention is not to be limited thereby.
This application is a continuation of and claims the benefit of copending U.S. patent application Ser. No. 11/670,006, filed Feb. 1, 2007, the entire disclosure of which is incorporated herein by reference, and which claims benefit of U.S. Provisional Application Ser. No. 60/764,716, filed Feb. 2, 2006.
Number | Date | Country | |
---|---|---|---|
60764716 | Feb 2006 | US |
Number | Date | Country | |
---|---|---|---|
Parent | 11670006 | Feb 2007 | US |
Child | 12834163 | US |