ω-carboxyl aryl substituted diphenyl ureas as p38 kinase inhibitors

Information

  • Patent Grant
  • 7897623
  • Patent Number
    7,897,623
  • Date Filed
    Monday, August 27, 2007
    17 years ago
  • Date Issued
    Tuesday, March 1, 2011
    13 years ago
Abstract
This invention relates to the use of a group of aryl ureas in treating p38 mediated diseases, and pharmaceutical compositions for use in such therapy.
Description
FIELD OF THE INVENTION

This invention relates to the use of a group of aryl ureas in treating cytokine mediated diseases and proteolytic enzyme mediated diseases, and pharmaceutical compositions for use in such therapy.


BACKGROUND OF THE INVENTION

Two classes of effector molecules which are critical for the progression of rheumatoid arthritis are pro-inflammatory cytokines and tissue degrading proteases. Recently, a family of kinases was described which is instrumental in controlling the transcription and translation of the structural genes coding for these effector molecules.


The mitogen-activated protein (MAP) kinase family is made up of a series of structurally related proline-directed serine/threonine kinases which are activated either by growth factors (such as EGF) and phorbol esters (ERK), or by IL-1, TNFα or stress (p38, JNK). The MAP kinases are responsible for the activation of a wide variety of transcription factors and proteins involved in transcriptional control of cytokine production. A pair of novel protein kinases involved in the regulation of cytokine synthesis was recently described by a group from SmithKline Beecham (Lee et al. Nature 1994, 372, 739). These enzymes were isolated based on their affinity to bond to a class of compounds, named CSAIDSs (cytokine suppressive anti-inflammatory drugs) by SKB. The CSAIDs, bicyclic pyridinyl imidazoles, have been shown to have cytokine inhibitory activity both in vitro and in vivo. The isolated enzymes, CSBP-1 and -2 (CSAID binding protein 1 and 2) have been cloned and expressed. A murine homologue for CSBP-2, p38, has also been reported (Han et al. Science 1994, 265, 808).


Early studies suggested that CSAIDs function by interfering with m-RNA translational events during cytokine biosynthesis. Inhibition of p38 has been shown to inhibit both cytokine production (eg., TNFα, IL-1, IL-6, IL-8) and proteolytic enzyme production (eg., MMP-1, MMP-3) in vitro and/or in vivo.


Clinical studies have linked TNFα production and/or signaling to a number of diseases including rheumatoid arthritis (Maini. J. Royal Coll. Physicians London 1996, 30, 344). In addition, excessive levels of TNFα have been implicated in a wide variety of inflammatory and/or immunomodulatory diseases, including acute rheumatic fever (Yegin et al. Lancet 1997, 349, 170), bone resorption (Pacifici et al. J. Clin. Endocrinol. Metabol. 1997, 82, 29), postmenopausal osteoperosis (Pacifici et al. J. Bone Mineral Res. 1996, 11, 1043), sepsis (Blackwell et al. Br. J. Anaesth. 1996, 77, 110), gram negative sepsis (Debets et al. Prog. Clin. Diol. Res. 1989, 308, 463), septic shock (Tracey et al. Nature 1987, 330, 662; Girardin et al. New England J. Med. 1988, 319, 397), endotoxic shock Beutler et al. Science 1985, 229, 869; Aslkenasi et al. Proc. Nat'l. Acad. Sci. USA 1991, 88, 10535), toxic shock syndrome, (Saha et al. J. Immunol. 1996, 157, 3869; Lina et al. FEMS Immunol. Med. Microbiol. 1996, 13, 81), systemic inflammatory response syndrome (Anon. Crit. Care Med. 1992, 20, 864), inflammatory bowel diseases (Stokkers et al. J. Inflamm. 1995-6, 47, 97) including Crohn's disease (van Deventer et al. Aliment. Pharmacol. Therapeu. 1996, 10 (Suppl. 2), 107; van Dullemen et al. Gastroenterology 1995, 109, 129) and ulcerative colitis (Masuda et al. J. Clin. Lab. Immunol. 1995, 46, 111), Jarisch-Herxheimer reactions (Fekade et al. New England J. Med. 1996, 335, 311), asthma (Amrani et al. Rev. Malad. Respir. 1996, 13, 539), adult respiratory distress syndrome (Roten et al. Am. Rev. Respir. Dis. 1991, 143, 590; Suter et al. Am. Rev. Respir. Dis. 1992, 145, 1016), acute pulmonary fibrotic diseases (Pan et al. Pathol Int. 1996, 46, 91), pulmonary sarcoidosis (Ishioka et al. Sarcoidosis Vasculitis Diffuse Lung Dis. 1996, 13, 139), allergic respiratory diseases (Casale et al. Am. J. Respir. Cell Mol. Biol. 1996, 15, 35), silicosis (Gossart et al. J. Immunol 1996, 156, 1540; Vanhee et al. Eur. Respir. J. 1995, 8, 834), coal worker's pneumoconiosis (Borm et al. Am. Rev. Respir. Dis. 1988, 138, 1589), alveolar injury (Horinouchi et al. Ant. J. Respir. Cell Mol Biol. 1996, 14, 1044), hepatic failure (Gantner et al. Pharmacol. Exp. Therap. 1997, 280, 53), liver disease during acute inflammation (Kim et al. J. Biol. Chem. 1997, 272, 1402), severe alcoholic hepatitis (Bird et al. Ann. Intern. Med. 1990, 112, 917), malaria (Grau et al. Immniuno Rev. 1989, 112, 49; Taverne et al. Parasitol Today 1996, 12, 290) including Plasmodium falciparum malaria (Perlmann et al. Infect. Immunol. 1997, 65, 116) and cerebral malaria (Rudin et al. Am. J. Pathol. 1997, 150, 257), non-insulin-dependent diabetes mellitus (NIDDM; Stephens et al. J Biol. Chem. 1997, 272, 971; Ofei et al. Diabetes 1996, 45, 881), congestive heart failure (Doyama et al. Int. J. Cardiol 1996, 54, 217; McMurray et al. Br. Heart J. 1991, 66, 356), damage following heart disease (Malkiel et al. Mol. Med. Today 1996, 2, 336), atherosclerosis (Parums et al. J. Pathol. 1996, 179, A46), Alzheimer's disease (Fagarasan et al. Brain Res. 1996, 723, 231; Aisen et al. Gerontology 1997, 43, 143), acute encephalitis (Ichiyama et al. J. Neurol. 1996, 243, 457), brain injury (Cannon et al. Crit. Care Med. 1992, 20, 1414; Hansbrough et al. Surg. Clin. N. Am. 1987, 67, 69; Marano et al. Surg. Gynecol. Obstetr. 1990, 170, 32), multiple sclerosis (M. S.; Coyle. Adv. Neuroimmunol. 1996, 6, 143; Matusevicius et al. J. Neuroimmunol. 1996, 66, 115) including demyelation and oligiodendrocyte loss in multiple sclerosis (Brosnan et al. Brain Pathol. 1996, 6, 243), advanced cancer MucWierzgon et al. J. Biol. Regulators Homeostatic Agents 1996, 10, 25), lymphoid malignancies (Levy et al. Crit. Rev. Immunol. 1996, 16, 31), pancreatitis (Exley et al. Gut 1992, 33, 1126) including systemic complications in acute pancreatitis (McKay et al. Br. J. Surg. 1996, 83, 919), impaired wound healing in infection inflammation and cancer (Buck et al. Am. J. Pathol. 1996, 149, 195), myelodysplastic syndromes (Raza et al. Int. J. Hematol. 1996, 63, 265), systemic lupus erythematosus (Maury et al. Arthritis Rheum. 1989, 32, 146), biliary cirrhosis (Miller et al. Am. J. Gasteroenterolog. 1992, 87, 465), bowel necrosis (Sun et al. J. Clin. Invest, 1988, 81, 1328), psoriasis (Christophers. Austr. J. Dermatol. 1996, 37, S4), radiation injury (Redlich et al. J. Immunol. 1996, 157, 1705), and toxicity following administration of monoclonal antibodies such as OKT3 (Brod et al. Neurology 1996, 46, 1633). TNFα levels have also been related to host-versus-graft reactions (Piguet et al. Immunol. Ser. 1992, 56, 409) including ischemia reperfusion injury (Colletti et al. J. Clin. Invest. 1989, 85, 1333) and allograft rejections including those of the kidney (Naury et al. J. Exp. Med. 1987, 166, 1132), liver (Imagawa et al. Transplantation 1990, 50, 219), heart (Bolling et al. Transplantation 1992, 53, 283), and skin (Stevens et al. Transplant. Proc. 1990, 22, 1924), lung allograft rejection (Grossman et al. Immunol. Allergy Clin. N. Am. 1989, 9, 153) including chronic lung allograft rejection (obliterative bronchitis; LoCicero et al. J. Thorac. Cardiovasc. Surg. 1990, 99, 1059), as well as complications due to total hip replacement (Cirino et al. Life Sci. 1996, 59, 86). TNFα has also been linked to infectious diseases (review: Beutler et al. Crit. Care Med. 1993, 21, 5423; Degre. Biotherapy 1996, 8, 219) including tuberculosis (Rook et al. Med. Malad. Infect. 1996, 26, 904), Helicobacter pylori infection during peptic ulcer disease (Beales et al. Gastroenterology 1997, 112, 136), Chaga's disease resulting from Trypanosoma crazi infection (Chandrasekar et al. Biochem. Biophys. Res. Commun. 1996, 223, 365), effects of Shiga-like toxin resulting from E. coli infection (Harel et al. J. Clin. Invest. 1992, 56, 40), the effects of enterotoxin A resulting from Staphylococcus infection (Fischer et al. J. Immunol. 1990, 144, 4663), meningococcal infection (Waage et al. Lancet 1987, 355; Ossege et al. J. Neurolog. Sci. 1996, 144, 1), and infections from Borrelia burgdorferi (Brandt et al. Infect. Immunol. 1990, 58, 983), Treponema pallidum (Chamberlin et al. Infect. Immunol. 1989, 57 2872), cytomegalovirus (CMV; Geist et al. Am. J. Respir. Cell Mol. Biol. 1997, 16, 31), influenza virus (Beutler et al. Clin. Res. 1986, 34, 491a), Sendai virus (Goldfield et al. Proc. Nat'l. Acad. Sci. USA 1989, 87, 1490), Theiler's encephalomyelitis virus (Sierra et al. Immunology 1993, 78, 399), and the human immunodeficiency virus (HIV; Poli. Proc. Nat'l. Acad. Sci. USA 1990, 87, 782; Vyakaram et al. AIDS 1990, 4, 21; Badley et al. J. Exp. Med. 1997, 185, 55).


Because inhibition of p38 leads to inhibition of TNFα production, p38 inhibitors will be useful in treatment of the above listed diseases.


A number of diseases are thought to be mediated by excess or undesired matrix-destroying metalloprotease (MMP) activity or by an imbalance in the ratio of the MMPs to the tissue inhibitors of metalloproteinases (TIMPs). These include osteoarthritis (Woessner et al. J. Biol. Chem. 1984, 259, 3633), rheumatoid arthritis (Mullins et al. Biochim, Biophys. Acta 1983, 695, 117; Woolley et al. Arthritis Rheum. 1977, 20, 1231; Gravallese et al. Arthritis Rheum. 1991, 34, 1076), septic arthritis (Williams et al. Arthritis Rheum. 1990, 33, 533), tumor metastasis (Reich et al. Cancer Res. 1988, 48, 3307; Matrisian et al. Proc. Nat'l. Acad. Sci., USA 1986, 83, 9413), periodontal diseases (Overall et al. J. Periodontal Res. 1987, 22, 81), corneal ulceration (Burns et al. Invest. Opthalmol. Vis. Sci. 1989, 30, 1569), proteinuria (Baricos et al. Biochem. J. 1988, 254, 609), coronary thrombosis from atherosclerotic plaque rupture (Henney et al. Proc. Nat'l. Acad. Sci., USA 1991, 88, 8154), aneurysmal aortic disease (Vine et al. Clin. Sci. 1991, 81, 233), birth control (Woessner et al. Steroids 1989, 54, 491), dystrophobic epidermolysis bullosa (Kronberger et al. J. Invest, Dermatol. 1982, 79, 208), degenerative cartilage loss following traumatic joint injury, osteopenias mediated by MMP activity, tempero mandibular joint disease, and demyelating diseases of the nervous system (Chantry et al. J. Neurochem. 1988, 50, 688).


Because inhibition of p38 leads to inhibition of MMP production, p38 inhibitors will be useful in treatment of the above listed diseases.


Inhibitors of p38 are active in animal models of TNFα production, including a muime lipopolysaccharide (LPS) model of TNFα production. Inhibitors of p38 are active in a number of standard animal models of inflammatory diseases, including carrageenan-induced edema in the rat paw, arachadonic acid-induced edema in the rat paw, arachadonic acid-induced peritonitis in the mouse, fetal rat long bone resorption, murine type II collagen-induced arthritis, and Fruend's adjuvant-induced arthritis in the rat. Thus, inhibitors of p38 will be useful in treating diseases mediated by one or more of the above-mentioned cytokines and/or proteolytic enzymes.


The need for new therapies is especially important in the case of arthritic diseases. The primary disabling effect of osteoarthritis, rheumatoid arthritis and septic arthritis is the progressive loss of articular cartilage and thereby normal joint function. No marketed pharmaceutical agent is able to prevent or slow is cartilage loss, although nonsteroidal antiinflammatory drugs (NSAIDs) have been given to control pain and swelling. The end result of these diseases is total loss of joint function which is only treatable by joint replacement surgery. P38 inhibitors will halt or reverse the progression of cartilage loss and obviate or delay surgical intervention.


Several patents have appeared claiming polyarylimidazoles and/or compounds containing polyarylimidazoles as inhibitors of p38 (for example, Lee et al. WO 95/07922; Adams et al. WO 95/02591; Adams et al. WO 95/13067; Adams et al. WO 95/31451). It has been reported that arylimidazoles complex to the ferric form of cytochrome P450cam (Harris et al. Mol. Eng. 1995, 5, 143, and references therein), causing concern that these compounds may display structure-related toxicity (Howard-Martin et al. Toxicol. Pathol. 1987, 15, 369). Therefore, there remains a need for improved p38 inhibitors.


SUMMARY OF THE INVENTION

This invention provides compounds, generally described as aryl ureas, including both aryl and heteroaryl analogues, which inhibit p38 mediated events and thus inhibit the production of cytokines (such as TNFα, IL-1 and IL-8) and proteolytic enzymes (such as MMP-1 and MMP-3). The invention also provides a method of treating a cytokine mediated disease state in humans or mammals, wherein the cytokine is one whose production is affected by p38. Examples of such cytokines include, but are not limited to TNFα, IL-1 and IL-8. The invention also provides a method of treating a protease mediated disease state in humans or mammals, wherein the protease is one whose production is affected by p38. Examples of such proteases include, but are not limited to collagenase (1-1) and stromelysin (MN-3).


Accordingly, these compounds are useful therapeutic agents for such acute and chronic inflammatory and/or immunomodulatory diseases as rheumatoid arthritis, osteoarthritis, septic arthritis, rheumatic fever, bone resorption, postmenopausal osteoperosis, sepsis, gram negative sepsis, septic shock, endotoxic shock, toxic shock syndrome, systemic inflammatory response syndrome, inflammatory bowel diseases including Crohn's disease and ulcerative colitis, Jarisch-Herxheimer reactions, asthma, adult respiratory distress syndrome, acute pulmonary fibrotic diseases, pulmonary sarcoidosis, allergic respiratory diseases, silicosis, coal worker's pneumoconiosis, alveolar injury, hepatic failure, liver disease during acute inflammation, severe alcoholic hepatitis, malaria including Plasmodium falciparum malaria and cerebral malaria, non-insulin-dependent diabetes mellitus (NIDDM), congestive heart failure, damage following heart disease, atherosclerosis, Alzheimer's disease, acute encephalitis, brain injury, multiple sclerosis including demyelation and oligiodendrocyte loss in multiple sclerosis, advanced cancer, lymphoid malignancies, tumor metastasis, pancreatitis, including systemic complications in acute pancreatitis, impaired wound healing in infection, inflammation and cancer, periodontal diseases, corneal ulceration, proteinuria, myelodysplastic syndromes, systemic lupus erythematosus, biliary cirrhosis, bowel necrosis, psoriasis, radiation injury, toxicity following administration of monoclonal antibodies such as OKT3, host-versus-graft reactions including ischemia reperfusion injury and allograft rejections including kidney, liver, heart, and skin allograft rejections, lung allograft rejection including chronic lung allograft rejection (obliterative bronchitis) as well as complications due to total hip replacement, and infectious diseases including tuberculosis, Helicobacter pylori infection during peptic ulcer disease, Chaga's disease resulting from Trypanosoma cruzi infection, effects of Shiga-like toxin resulting from E. coli infection, effects of enterotoxin A resulting from Staphylococcus infection, meningococcal infection, and infections from Borrelia burgdorferi, Treponema pallidum, cytomegalovirus, influenza virus, Theiler's encephalomyelitis virus, and the human immunodeficiency virus (HIV).


The present invention, therefore, provides compounds generally described as aryl ureas, including both aryl and heteroaryl analogues, which inhibit the p38 pathway. The invention also provides a method for treatment of p38-mediated disease states in humans or mammals, e.g., disease states mediated by one or more cytokines or proteolytic enzymes produced and/or activated by a p38 mediated process. Thus, the invention is directed to compounds, compositions and methods for the treatment of diseases mediated by p38 kinase wherein a compound of Formula I is administered or a pharmaceutically acceptable salt thereof.

A-D-B  (I)

In formula I, D is —NH—C(O)—NH—,


A is a substituted moiety of up to 40 carbon atoms of the formula: -L-(M-L1)q, where L is a 5 or 6 membered cyclic structure bound directly to D, L1 comprises a substituted cyclic moiety having at least 5 members, M is a bridging group having at least one atom, q is an integer of from 1-3; and each cyclic structure of L and L1 contains 0-4 members of the group consisting of nitrogen, oxygen and sulfur, and


B is a substituted or unsubstituted, up to tricyclic aryl or heteroaryl moiety of up to 30 carbon atoms with at least one 6-member cyclic structure bound directly to D containing 0-4 members of the group consisting of nitrogen, oxygen and sulfur,


wherein L1 is substituted by at least one substituent selected from the group consisting of —SO2Rx, —C(O)Rx and —C(NRy)Rz,


Ry is hydrogen or a carbon based moiety of up to 24 carbon atoms optionally containing heteroatoms selected from N, S and O and optionally halosubstituted, up to per halo,


Rz is hydrogen or a carbon based moiety of up to 30 carbon atoms optionally containing heteroatoms selected from N, S and O and optionally substituted by halogen, hydroxy and carbon based substituents of up to 24 carbon atoms, which optionally contain heteroatoms selected from N, S and O and are optionally substituted by halogen;


Rx is Rz or NRaRb where Ra and Rb are


a) independently hydrogen,

    • a carbon based moiety of up to 30 carbon atoms optionally containing heteroatoms selected from N, S and O and optionally substituted by halogen, hydroxy and carbon based substituents of up to 24 carbon atoms, which optionally contain heteroatoms selected from N, S and O and are optionally substituted by halogen, or
    • —OSi(Rf)3 where Rf is hydrogen or a carbon based moiety of up to 24 carbon atoms optionally containing heteroatoms selected from N, S and O and optionally substituted by halogen, hydroxy and carbon based substituents of up to 24 carbon atoms, which optionally contain heteroatoms selected from N, S and O and are optionally substituted by halogen; or


b) Ra and Rb together form a 5-7 member heterocyclic structure of 1-3 heteroatoms selected from N, S and O, or a substituted 5-7 member heterocyclic structure of 1-3 heteroatoms selected from N, S and O substituted by halogen, hydroxy or carbon based substituents of up to 24 carbon atoms, which optionally contain heteroatoms selected from N, S and O and are optionally substituted by halogen; or


c) one of Ra or Rb is —C(O)—, a C1-C5 divalent alkylene group or a substituted C1-C5 divalent alkylene group bound to the moiety L to form a cyclic structure with at least 5 members, wherein the substituents of the substituted C1-C5 divalent alkylene group are selected from the group consisting of halogen, hydroxy, and carbon based substituents of up to 24 carbon atoms, which optionally contain heteroatoms selected from N, S and O and are optionally substituted by halogen;


where B is substituted, L is substituted or L1 is additionally substituted, the substituents are selected from the group consisting of halogen, up to per-halo, and Wn, where n is 0-3;


wherein each W is independently selected from the group consisting of —CN, —CO2R7, —C(O)NR7R7, —C(O)—R7, —NO2, —OR7, —SR7, —NR7R7, —NR7C(O)OR7, —NR7C(O)R7, -Q-Ar, and carbon based moieties of up to 24 carbon atoms, optionally containing heteroatoms selected from N, S and O and optionally substituted by one or more substituents independently selected from the group consisting of —CN, —CO2R7, —C(O)R7, —C(O)NR7R7, —OR7, —SR7, —NR7R7, —NO2, —NR7C(O)R7, —NR7C(O)OR7 and halogen up to per-halo; with each R7 independently selected from H or a carbon based moiety of up to 24 carbon atoms, optionally containing heteroatoms selected from N, S and O and optionally substituted by halogen,


wherein Q is —O—, —S—, —N(R7)—, —(CH2)m—, —C(O)—, —CH(OH)—, —(CH2)mO—, —(CH2)mS—, —(CH2)mN(R7)—, —O(CH2)m—, CHXa—, —CXa2—, —S—(CH2)m— and —N(R7)(CH2)m, where m=1-3, and Xa is halogen; and


Ar is a 5- or 6-member aromatic structure containing 0-2 members selected from the group consisting of nitrogen, oxygen and sulfur, which is optionally substituted by halogen, up to per-halo, and optionally substituted by Zn1, wherein n1 is 0 to 3 and each Z is independently selected from the group consisting of —CN, —CO2R7, —C(O)R7, —C(O)NR7R7, —NO2, —OR7, —SR7—NR7R7, —NR7C(O)OR7, —NR7C(O)R7, and a carbon based moiety of up to 24 carbon atoms, optionally containing heteroatoms selected from N, S and O and optionally substituted by one or more substituents selected from the group consisting of —CN, —CO2R7, —COR7, —C(O)NR7R7, —OR7, —SR7, —NO2, —NR7R7, —NR7C(O)R7, and —NR7C(O)OR7, with R7 as defined above.


In formula I, suitable hetaryl groups include, but are not limited to, 5-12 carbon-atom aromatic rings or ring systems containing 1-3 rings, at least one of which is aromatic, in which one or more, e.g., 1-4 carbon atoms in one or more of the rings can be replaced by oxygen, nitrogen or sulfur atoms. Each ring typically has 3-7 atoms. For example, B can be 2- or 3-furyl, 2- or 3-thienyl, 2- or 4-triazinyl, 1-, 2- or 3-pyrrolyl, 1-, 2-, 4- or 5-imidazolyl, 1-, 3-, 4- or 5-pyrazolyl, 2-, 4- or 5-oxazolyl, 3-, 4- or 5-isoxazolyl, 2-, 4- or 5-thiazolyl, 3-, 4- or 5-isothiazolyl, 2-, 3- or 4-pyridyl, 2-, 4-, 5- or 6-pyrimidinyl, 1,2,3-triazol-1-, -4- or -5-yl, 1,2,4-triazol-1-, -3- or -5-yl, 1- or 5-tetrazolyl, 1,2,3-oxadiazol-4- or -5-yl, 1,2,4-oxadiazol-3- or -5-yl, 1,3,4-thiadiazol-2- or -5-yl, 1,2,4-oxadiazol-3- or -5-yl, 1,3,4-thiadiazol-2- or -5-yl, 1,3,4-thiadiazol-3- or -5-yl, 1,2,3-thiadiazol-4- or -5-yl, 2-, 3-, 4-, 5- or 6-2H-thiopyranyl, 2-, 3- or 4-4H-thiopyranyl, 3- or 4-pyridazinyl, pyrazinyl, 2-, 3-, 4-, 5-, 6- or 7-benzofuryl, 2-, 3-, 4-, 5-, 6- or 7-benzothienyl, 1-, 2-, 3-, 4-, 5-, 6- or 7-indolyl, 1-, 2-, 4- or 5-benzimidazolyl, 1-, 3-, 4-, 5-6- or 7-benzopyrazolyl, 2-, 4-, 5-, 6- or 7-benzoxazolyl, 3-, 4-, 5-, 6- or 7-benzisoxazolyl, 1-, 3-, 4-, 5-, 6- or 7-benzothiazolyl, 2-, 4-, 5-, 6- or 7-benzisothiazolyl, 2-, 4-, 5-, 6- or 7-benz-1,3-oxadiazolyl, 2-, 3-, 4-, 5-, 6-, 7- or 8-quinolinyl, 1-, 3-, 4-, 5-, 6-, 7-, 8-isoquinolinyl, 1-, 2-, 3-, 4- or 9-carbazolyl, 1-, 2-, 3-, 4-, 5-, 6-, 7-, 8- or 9-acridinyl, or 2-, 4-, 5-, 6-, 7- or 8-quinazolinyl, or additionally optionally substituted phenyl, 2- or 3-thienyl, 1,3,4-thiadiazolyl, 3-pyrryl, 3-pyrazolyl, 2-thiazolyl or 5-thiazolyl, etc. For example, B can be 4-methyl-phenyl, 5-methyl-2-thienyl, 4-methyl-2-thienyl, 1-methyl-3-pyrryl, 1-methyl-3-pyrazolyl, 5-methyl-2-thiazolyl or 5-methyl-1,2,4-thiadiazol-2-yl.


Suitable alkyl groups and alkyl portions of groups, e.g., alkoxy, etc. throughout include methyl, ethyl, propyl, butyl, etc., including all straight-chain and branched isomers such as isopropyl, isobutyl, sec-butyl, tert-butyl, etc.


Suitable aryl groups which do not contain heteroatoms include, for example, phenyl and 1- and 2-naphthyl.


The term “cycloalkyl”, as used herein, refers to cyclic structures with or without alkyl substituents such that, for example, “C4 cycloakyl” includes methyl substituted cyclopropyl groups as well as cyclobutyl groups. The term “cycloalkyl”, as used herein also includes saturated heterocyclic groups.


Suitable halogen groups include F, Cl, Br, and/or I, from one to per-substitution (i.e. all H atoms on a group replaced by a halogen atom) being possible where an alkyl group is substituted by halogen, mixed substitution of halogen atom types also being possible on a given moiety.


The invention also relates to compounds per se, of formula I.


The present invention is also directed to pharmaceutically acceptable salts of formula I. Suitable pharmaceutically acceptable salts are well known to those skilled in the art and include basic salts of inorganic and organic acids, such as hydrochloric acid, hydrobromic acid, sulphuric acid, phosphoric acid, methanesulphonic acid, trifluoromethanesulfonic acid, benzenesulphonic acid, p-toluenesulfonic acid, 1-naphthalenesulfonic acid, 2-naphthalenesulfonic acid, acetic acid, trifluoroacetic acid, malic acid, tartaric acid, citric acid, lactic acid, oxalic acid, succinic acid, fumaric acid, maleic acid, benzoic acid, salicylic acid, phenylacetic acid, and mandelic acid. In addition, pharmaceutically acceptable salts include acid salts of inorganic bases, such as salts containing alkaline cations (e.g., Li+ Na+ or K+), alkaline earth cations (e.g., Mg+2, Ca+2 or Ba+2), the ammonium cation, as well as acid salts of organic bases, including aliphatic and aromatic substituted ammonium, and quaternary ammonium cations, such as those arising from protonation or peralkylation of triethylamine, N,N-diethylamine, N,N-dicyclohexylamine, lysine, pyridine, N,N-dimethylaminopyridine DMAP), 1,4-diazabiclo[2.2.2]octane (DABCO), 1,5-diazabicyclo[4.3.0]non-5-ene (DBN) and 1,8-diazabicyclo[5.4.0]undec-7-ene (DBU).


A number of the compounds of Formula I possess asymmetric carbons and can therefore exist in racemic and optically active forms. Methods of separation of enantiomeric and diastereomeric mixtures are well known to one skilled in the art. The present invention encompasses any isolated racemic or optically active form of compounds described in Formula I which possess p38 kinase inhibitory activity.


General Preparative Methods


The compounds of Formula I may be prepared by use of known chemical reactions and procedures, some from starting materials which are commercially available. Nevertheless, the following general preparative methods are presented to aid one of skill in the art in synthesizing these compounds, with more detailed particular examples being presented in the experimental section describing the working examples.


Substituted anilines may be generated using standard methods (March. Advanced Organic Chemistry, 3rd Ed.; John Wiley; New York (1985). Larock. Comprehensive Organic Transformations; VCH Publishers: New York (1989)). As shown in Scheme I, aryl amines are commonly synthesized by reduction of nitroaryls using a metal catalyst, such as Ni, Pd, or Pt, and H2 or a hydride transfer agent, such as formate, cyclohexadiene, or a borohydride (Rylander. Hydrogenation Methods; Academic Press: London, UK (1985)). Nitroaryls may also be directly reduced using a strong hydride source, such as LiAlH4 (Seyden-Penne. Reductions by the Alumino-and Borohydrides in Organic Synthesis; VCH Publishers: New York (1991)), or using a zero valent metal, such as Fe, Sn or Ca, often in acidic media. Many methods exist for the synthesis of nitroaryls (March. Advanced Organic Chemistry, 3rd Ed.; John Wiley: New York (1985). Larock. Comprehensive Organic Transformations; VCH Publishers: New York (1989)).


Substituted anilines may be generated using standard methods (March. Advanced Organic Chemistry, 3rd Ed.; John Wiley: New York (1985). Larock. Comprehensive Organic Transformations; VCH Publishers: New York (1989)). As shown in Scheme I, aryl amines are commonly synthesized by reduction of nitroaryls using a metal catalyst, such as Ni, Pd, or Pt, and H2 or a hydride transfer agent, such as formate, cyclohexadiene, or a borohydride (Rylander. Hydrogenation Methods; Academic Press: London, UK (1985)). Nitroaryls may also be directly reduced using a strong hydride source, such as LiAlH4 (Seyden-Penne. Reductions by the Alumino-and Borohydrides in Organic Synthesis; VCH Publishers: New York (1991)), or using a zero valent metal, such as Fe, Sn or Ca, often in acidic media. Many methods exist for the synthesis of nitroaryls (March. Advanced Organic Chemistry, 3rd Ed.; John Wiley: New York (1985). Larock. Comprehensive Organic Transformations; VCH Publishers: New York (1989)).




embedded image



Nitroaryls are commonly formed by electrophilic aromatic nitration using HNO3, or an alternative NO2+ source. Nitroaryls may be further elaborated prior to reduction. Thus, nitroaryls substituted with




embedded image



potential leaving groups (eg. F, Cl, Br, etc.) may undergo substitution reactions on treatment with nucleophiles, such as thiolate (exemplified in Scheme II) or phenoxide. Nitroaryls may also undergo Ullman-type coupling reactions (Scheme II).




embedded image


Nitroaryls may also undergo transition metal mediated cross coupling reactions. For example, nitroaryl electrophiles, such as nitroaryl bromides, iodides or triflates, undergo palladium mediated cross coupling reactions with aryl nucleophiles, such as arylboronic acids (Suzuki reactions, exemplified below), aryltins (Stille reactions) or arylzincs (Negishi reaction) to afford the biaryl (5).




embedded image


Either nitroaryls or anilines may be converted into the corresponding arenesulfonyl chloride (7) on treatment with chlorosulfonic acid. Reaction of the sulfonyl chloride with a fluoride source, such as KF then affords sulfonyl fluoride (8). Reaction of sulfonyl fluoride 8 with trimethylsilyl trifluoromethane in the presence of a fluoride source, such as tris(dimethylamino)sulfonium difluorotrimethylsiliconate (TASF) leads to the corresponding trifluoromethylsulfone (9). Alternatively, sulfonyl chloride 7 may be reduced to the arenethiol (10), for example with zinc amalgum. Reaction of thiol 10 with CHClF2 in the presence of base gives the difluoromethyl mercaptam (11), which may be oxidized to the sulfone (12) with any of a variety of is oxidants, including CrO3-acetic anhydride (Sedova et al. Zh. Org. Khim. 1970, 6, 568).




embedded image


As shown in Scheme TV, non-symmetrical urea formation may involve reaction of an aryl isocyanate (14) with an aryl amine (13). The heteroaryl isocyanate may be synthesized from a heteroaryl amine by treatment with phosgene or a phosgene equivalent, such as trichloromethyl chloroformate (diphosgene), bis(trichloromethyl) carbonate (triphosgene), or N,N′-carbonyldiimidazole (CDI). The isocyanate may also be derived from a heterocyclic carboxylic acid derivative, such as an ester, an acid halide or an anhydride by a Curtius-type rearrangement. Thus, reaction of acid derivative 16 with an azide source, followed by rearrangement affords the isocyanate. The corresponding carboxylic acid (17) may also be subjected to Curtius-type rearrangements using diphenylphosphoryl azide (DPPA) or a similar reagent.




embedded image


Finally, ureas may be further manipulated using methods familiar to those skilled in the art.


The invention also includes pharmaceutical compositions including a compound of Formula I, and a physiologically acceptable carrier.


The compounds may be administered orally, topically, parenterally, by inhalation or spray, vaginally, rectally or sublingually in dosage unit formulations. The term ‘administration by injection’ includes intravenous, intramuscular, subcutaneous and parenteral injections, as well as use of infusion techniques. Dermal administration may include topical application or transdermal administration. One or more compounds may be present in association with one or more non-toxic pharmaceutically acceptable carriers and if desired other active ingredients.


Compositions intended for oral use may be prepared according to any suitable method known to the art for the manufacture of pharmaceutical compositions. Such compositions may contain one or more agents selected from the group consisting of diluents, sweetening agents, flavoring agents, coloring agents and preserving agents in order to provide palatable preparations. Tablets contain the active ingredient in admixture with non-toxic pharmaceutically acceptable excipients which are suitable for the manufacture of tablets. These excipients may be, for example, inert diluents, such as calcium carbonate, sodium carbonate, lactose, calcium phosphate or sodium phosphate; granulating and disintegrating agents, for example, corn starch, or alginic acid; and binding agents, for example magnesium stearate, stearic acid or talc. The tablets may be uncoated or they may be coated by known techniques to delay disintegration and adsorption in the gastrointestinal tract and thereby provide a sustained action over a longer period. For example, a time delay material such as glyceryl monostearate or glyceryl distearate may be employed. These compounds may also be prepared in solid, rapidly released form.


Formulations for oral use may also be presented as hard gelatin capsules wherein the active ingredient is mixed with an inert solid diluent, for example, calcium carbonate, calcium phosphate or kaolin, or as soft gelatin capsules wherein the active ingredient is mixed with water or an oil medium, for example peanut oil, liquid paraffin or olive oil.


Aqueous suspensions containing the active materials in admixture with excipients suitable for the manufacture of aqueous suspensions may also be used. Such excipients are suspending agents, for example sodium carboxymethylcellulose, methylcellulose, hydroxypropyl-methylcellulose, sodium alginate, polyvinylpyrrolidone, gum tragacanth and gum acacia; dispersing or wetting agents may be a naturally-occurring phosphatide, for example, lecithin, or condensation products of an alkylene oxide with fatty acids, for example polyoxyethylene stearate, or condensation products of ethylene oxide with long chain aliphatic alcohols, for example heptadecaethyleneoxycetanol, or condensation products of ethylene oxide with partial esters derived from fatty acids and hexitol such as polyoxyethylene sorbitol monooleate, or condensation products of ethylene oxide with partial esters derived from fatty acids and hexitol anhydrides, for example polyethylene sorbitan monooleate. The aqueous suspensions may also contain one or more preservatives, for example ethyl, or n-propyl, p-hydroxybenzoate, one or more coloring agents, one or more flavoring agents, and one or more sweetening agents, such as sucrose or saccharin.


Dispersible powders and granules suitable for preparation of an aqueous suspension by the addition of water provide the active ingredient in admixture with a dispersing or wetting agent, suspending agent and one or more preservatives. Suitable dispersing or wetting agents and suspending agents are exemplified by those already mentioned above. Additional excipients, for example, sweetening, flavoring and coloring agents, may also be present.


The compounds may also be in the form of non-aqueous liquid formulations, e.g., oily suspensions which may be formulated by suspending the active ingredients in a vegetable oil, for example arachis oil, olive oil, sesame oil or peanut oil, or in a mineral oil such as liquid paraffin. The oily suspensions may contain a thickening agent, for example beeswax, hard paraffin or cetyl alcohol. Sweetening agents such as those set forth above, and flavoring agents may be added to provide palatable oral preparations. These compositions may be preserved by the addition of an anti-oxidant such as ascorbic acid.


Compounds of the invention may also be administrated transdermally using methods known to those skilled in the art (see, for example: Chien; “Transdermal Controlled Systemic Medications”; Marcel Dekker, Inc.; 1987. Lipp et al. WO94/04157 3 Mar. 1994). For example, a solution or suspension of a compound of Formula I in a suitable volatile solvent optionally containing penetration enhancing agents can be combined with additional additives known to those skilled in the art, such as matrix materials and bacteriocides. After sterilization, the resulting mixture can be formulated following known procedures into dosage forms. In addition, on treatment with emulsifying agents and water, a solution or suspension of a compound of Formula I may be formulated into a lotion or salve.


Suitable solvents for processing transdermal delivery systems are known to those skilled in the art, and include lower alcohols such as ethanol or isopropyl alcohol, lower ketones such as acetone, lower carboxylic acid esters such as ethyl acetate, polar ethers such as tetrahydrofuran, lower hydrocarbons such as hexane, cyclohexane or benzene, or halogenated hydrocarbons such as dichloromethane, chloroform, trichlorotrifluoroethane, or trichlorofluoroethane. Suitable solvents may also include mixtures of one or more materials selected from lower alcohols, lower ketones, lower carboxylic acid esters, polar ethers, lower hydrocarbons, halogenated hydrocarbons.


Suitable penetration enhancing materials for transdermal delivery system are known to those skilled in the art, and include, for example, monohydroxy or polyhydroxy alcohols such as ethanol, propylene glycol or benzyl alcohol, saturated or unsaturated C8-C18 fatty alcohols such as lauryl alcohol or cetyl alcohol, saturated or unsaturated C8-C18 fatty acids such as stearic acid, saturated or unsaturated fatty esters with up to 24 carbons such as methyl, ethyl, propyl, isopropyl, n-butyl, sec-butyl isobutyl tertbutyl or monoglycerin esters of acetic acid, capronic acid, lauric acid, myristinic acid, stearic acid, or palmitic acid, or diesters of saturated or unsaturated dicarboxylic acids with a total of up to 24 carbons such as diisopropyl adipate, diisobutyl adipate, diisopropyl sebacate, diisopropyl maleate, or diisopropyl fumarate. Additional penetration enhancing materials include phosphatidyl derivatives such as lecithin or cephalin, terpenes, amides, ketones, ureas and their derivatives, and ethers such as dimethyl isosorbid and diethyleneglycol monoethyl ether. Suitable penetration enhancing formulations may also include mixtures of one or more materials selected from monohydroxy or polyhydroxy alcohols, saturated or unsaturated C8-C18 fatty alcohols, saturated or unsaturated C8-C18 fatty acids, saturated or unsaturated fatty esters with up to 24 carbons, diesters of saturated or unsaturated discarboxylic acids with a total of up to 24 carbons, phosphatidyl derivatives, terpenes, amides, ketones, ureas and their derivatives, and ethers.


Suitable binding materials for transdermal delivery systems are known to those skilled in the art and include polyacrylates, silicones, polyurethanes, block polymers, styrenebutadiene copolymers, and natural and synthetic rubbers. Cellulose ethers, derivatized polyethylenes, and silicates may also be used as matrix components. Additional additives, such as viscous resins or oils may be added to increase the viscosity of the matrix.


Pharmaceutical compositions of the invention may also be in the form of oil-in-water emulsions. The oil phase may be a vegetable oil, for example olive oil or arachis oil, or a mineral oil, for example liquid paraffin or mixtures of these. Suitable emulsifying agents may be naturally-occurring gums, for example gum acacia or gum tragacanth, naturally-occurring phosphatides, for example soy bean, lecithin, and esters or partial esters derived from fatty acids and hexitol anhydrides, for example sorbitan monooleate, and condensation products of the said partial esters with ethylene oxide, for example polyoxyethylene sorbitan monooleate. The emulsions may also contain sweetening and flavoring agents.


Syrups and elixirs may be formulated with sweetening agents, for example glycerol, propylene glycol, sorbitol or sucrose. Such formulations may also contain a demulcent, a preservative and flavoring and coloring agents.


The compounds may also be administered in the form of suppositories for rectal administration of the drug. These compositions can be prepared by mixing the drug with a suitable non-irritating excipient which is solid at ordinary temperatures but liquid at the rectal or vaginal temperature and will therefore melt in the rectum or vagina to release the drug. Such materials include cocoa butter and polyethylene glycols.


For all regimens of use disclosed herein for compounds of Formula I, the daily oral dosage regimen will preferably be from 0.01 to 200 mg/Kg of total body weight. The daily dosage for administration by injection, including intravenous, intramuscular, subcutaneous and parenteral injections, and use of infusion techniques will preferably be from 0.01 to 200 mg/Kg of total body weight. The daily vaginal dosage regimen will preferably be from 0.01 to 200 mg/Kg of total body weight. The daily rectal dosage regimen will preferably be from 0.01 to 200 mg/Kg of total body weight. The transdermal concentration will preferably be that required to maintain a daily dose of from 0.01 to 200 mg/Kg. The daily topical dosage regimen will preferably be from 0.1 to 200 mg administered between one to four times daily. The daily inhalation dosage regimen will preferably be from 0.01 to 10 mg/Kg of total body weight.


It will be appreciated by those skilled in the art that the particular method of administration will depend on a variety of factors, all of which are considered routinely when administering therapeutics. It will also be understood, however, that the specific dose level for a given patient depends on a variety of factors, including specific activity of the compound administered, the age of the patient, the body weight of the patient, the general health of the patient, the gender of the patient, the diet of the patient, time of administration, route of administration, rate of excretion, drug combination, and the severity of the condition undergoing therapy, etc. It will be further appreciated by one skilled in the art that the optimal course of treatment, i.e., the mode of treatment and the daily number of doses of a compound of Formula I or a pharmaceutically acceptable salt thereof given for a defined number of days, can be ascertained by those skilled in the art using conventional course of treatment tests.


The compounds of FIG. I are producible from known compounds (or from starting materials which, in turn, are producible from known compounds), e.g., through the general preparative methods shown above. The activity of a given compound to inhibit raf kinase can be routinely assayed, e.g., according to procedures disclosed below. The following examples are for illustrative purposes only and are not intended, nor should they be construed to limit the invention in any way.


The entire disclosure of all applications, patents and publications cited above and below are hereby incorporated by reference, including non-provisional application Ser. No. 09/257,265 filed Feb. 25, 1999 and provisional application Ser. No. 60/115,878, filed on Jan. 13, 1999.


The following examples are for illustrative purposes only and are not intended, nor should they be construed to limit the invention in any way.







EXAMPLES

All reactions were performed in flame-dried or oven-dried glassware under a positive pressure of dry argon or dry nitrogen, and were stirred magnetically unless otherwise indicated. Sensitive liquids and solutions were transferred via syringe or cannula, and introduced into reaction vessels through rubber septa. Unless otherwise stated, the term ‘concentration under reduced pressure’ refers to use of a Buchi rotary evaporator at approximately 15 mmHg. Unless otherwise stated, the term ‘under high vacuum’ refers to a vacuum of 0.4-1.0 mmHg.


All temperatures are reported uncorrected in degrees Celsius (° C.). Unless otherwise indicated, all parts and percentages are by weight,


Commercial grade reagents and solvents were used without further purification. N-cyclohexyl-N′-(methylpolystyrene)carbodiimide was purchased from Calbiochem-Novabiochem Corp. 3-tert-Butylaniline, 5-tert-butyl-2-methoxyaniline, 4-bromo-3-(trifluoromethyl)aniline, 4-chloro-3-(trifluoromethyl)aniline 2-methoxy-5-(trifluoromethyl)aniline, 4-tert-butyl-2-nitroaniline, 3-amino-2-naphthol, ethyl 4-isocyanatobenzoate, N-acetyl-4-chloro-2-methoxy-5-(trifluoromethylaniline and 4-s chloro-3-(trifluoromethyl)phenyl isocyanate were purchased and used without further purification. Syntheses of 3-amino-2-methoxyquinoline (E. Cho et al. WO 98/00402; A. Cordi et al. EP 542,609; IBID Bioorg. Med. Chem. 3, 1995, 129), 4-(3-carbamoylphenoxy)-1-nitrobenzene (K. Ikawa Yakugaku Zasshi 79, 1959, 760; Chem. Abstr. 53, 1959, 12761b), 3-tert-butylphenyl isocyanate (O. Rohr et al. DE 2,436,108) and 2-methoxy-5-(trifluoromethyl)phenyl isocyanate (K. Inukai et al. JP 42,025,067; IBID Kogyo Kagaku Zasshi 70, 1967, 491) have previously been described.


Thin-layer chromatography (TLC) was performed using Whatman® pre-coated glass-backed silica gel 60A F-254 250 μm plates. Visualization of plates was effected by one or more of the following techniques: (a) ultraviolet illumination, (b) exposure to iodine vapor, (c) immersion of the plate in a 10% solution of phosphomolybdic acid in ethanol followed by heating, (d) immersion of the plate in a cerium sulfate solution followed by heating, and/or (e) immersion of the plate in an acidic ethanol solution of 2,4-dinitrophenylhydrazine followed by heating. Column chromatography (flash chromatography) was performed using 230-400 mesh EM Science® silica gel.


Melting points (mp) were determined using a Thomas-Hoover melting point apparatus or a Mettler FP66 automated melting point apparatus and are uncorrected. Fourier transform infrared spectra were obtained using a Mattson 4020 Galaxy Series spectrophotometer. Proton (1H) nuclear magnetic resonance (NMR) spectra were measured with a General Electric GN-Omega 300 (300 z) spectrometer with either Me4Si (δ 0.00) or residual protonated solvent (CHCl3 δ 7.26; MeOH δ 3.30; DMSO δ 2.49) as standard. Carbon (13C)N spectra were measured with a General Electric GN-Omega 300 (75 MHz) spectrometer with solvent (CDCl3 δ 77.0; MeOD-d3; δ 49.0; DMSO-d6 δ 39.5) as standard. Low resolution mass spectra (MS) and high resolution mass spectra (HRMS) were either obtained as electron impact (EI) mass spectra or as fast atom bombardment (FAB) mass spectra. Electron impact mass spectra (EI-MS) were obtained with a Hewlett Packard 5989A mass spectrometer equipped with a Vacumetrics Desorption Chemical Ionization Probe for sample introduction. The ion source was maintained at 250° C. Electron impact ionization was performed with electron energy of 70 eV and a trap current of 300 μA. Liquid-cesium secondary ion mass spectra (FAB-MS), an updated version of fast atom bombardment were obtained using a Kratos Concept 1-H spectrometer. Chemical ionization mass spectra (CA-MS) were obtained using a Hewlett Packard MS-Engine (5989A) with methane or ammonia as the reagent gas (1×10−4 torr to 2.5×10−4 torr). The direct insertion desorption chemical ionization (DCI) probe (Vacuumetrics, Inc.) was ramped from 0-1.5 amps in 10 sec and held at 10 amps until all traces of the sample disappeared (˜1-2 min). Spectra were scanned from 50-800 amu at 2 sec per scan. HPLC-electrospray mass spectra (HPLC ES-MS) were obtained using a Hewlett-Packard 1100 HPLC equipped with a quaternary pump, a variable wavelength detector, a C-18 column, and a Finnigan LCQ ion trap mass spectrometer with electrospray ionization. Spectra were scanned from 120-800 amu using a variable ion time according to the number of ions in the source. Gas chromatography-ion selective mass spectra (GC-MS) were obtained with a Hewlett Packard 5890 gas chromatograph equipped with an HP-1 methyl silicone column (0.33 mM coating; 25 m×0.2 mm) and a Hewlett Packard 5971 Mass Selective Detector (ionization energy 70 eV). Elemental analyses are conducted by Robertson Microlit Labs, Madison N.J.


All compounds displayed NMR spectra, LRMS and either elemental analysis or MS consistent with assigned structures.












List of Abbreviations and Acronyms:


















AcOH
acetic acid



anh
anhydrous



atm
atmosphere(s)



BOC
tert-butoxycarbonyl



CDI
1,1′-carbonyl diimidazole



conc
concentrated



d
day(s)



dec
decomposition



DMAC
N,N-dimethylacetamide



DMPU
1,3-dimethyl-3,4,5,6-tetrahydro-2(1H)-pyrimidinone



DMF
N,N-dimethylformamide



DMSO
dimethylsulfoxide



DPPA
diphenylphosphoryl azide



EDCI
1-(3-dimethylaminopropyl)-3-ethylcarbodiimide



EtOAc
ethyl acetate



EtOH
ethanol (100%)



Et2O
diethyl ether



Et3N
triethylamine



h
hour(s)



HOBT
1-hydroxybenzotriazole



m-CPBA
3-chloroperoxybenzoic acid



MeOH
methanol



pet. ether
petroleum ether (boiling range 30-60° C.)



temp.
temperature



THF
tetrahydrofuran



TFA
trifluoroAcOH



Tf
trifluoromethanesulfonyl










A. General Methods for Synthesis of Substituted Anilines
A1. General Method for Aryl Amine Formation via Ether Formation Followed by Ester Saponification, Curtius Rearrangement, and Carbamate Deprotection. Synthesis of 2-Amino-3-methoxynaphthalene.



embedded image


Step 1. Methyl 3-methoxy-2-naphthoate

A slurry of methyl 3-hydroxy-2-naphthoate (10.1 g, 50.1 mmol) and K2CO3 (7.96 g, 57.6 mmol) in DMF (200 mL) was stirred at room temp. for 15 min., then treated with iodomethane (3.43 mL, 55.1 mmol). The mixture was allowed to stir at room temp. overnight, then was treated with water (200 mL). The resulting mixture was extracted with EtOAc (2×200 mL). The combined organic layers were washed with a saturated NaCl solution (100 mL), dried (MgSO4), concentrated under reduced pressure (approximately 0.4 mmHg overnight) to give methyl 3-methoxy-2-naphthoate as an amber oil (10.30 g): 1H-NMR DMSO-d6) δ 2.70 (s, 3H), 2.85 (s, 3H), 7.38 (app t, J=8.09 Hz, 1H), 7.44 (s, 1H), 7.53 (app t, J=8.09 Hz, 1H), 7.84 (d, J=8.09 Hz, 1H), 7.90 (s, 1H), 8.21 (s, 1H).




embedded image


Step 2. 3-Methoxy-2-naphthoic acid

A solution of methyl 3-methoxy-2-naphthoate (6.28 g, 29.10 mmol) and water (10 mL) in MeOH (100 mL) at room temp. was treated with a 1 N NaOH solution (33.4 mL, 33.4 mmol). The mixture was heated at the reflux temp. for 3 h, cooled to room temp., and made acidic with a 10% citric acid solution. The resulting solution was extracted with EtOAc (2×100 mL). The combined organic layers were washed with a saturated NaCl solution, dried (MgSO4) and concentrated under reduced pressure. The residue was triturated with hexane then washed several times with hexane to give 3-methoxy-2-naphthoic acid as a white solid (5.40 g, 92%): 1H-NMR (DMSO-d6) δ 3.88 (s, 3H), 7.34-7.41 (m, 2H), 7.49-7.54 (m, 1H), 7.83 (d, J=8.09 Hz, 1H), 7.91 (d, J=8.09 Hz, 1H), 8.19 (s, 1H), 12.83 (br s, 1H).




embedded image


Step 3. 2-(N-(Carbobenzyloxy)amino-3-methoxynaphthalene

A solution of 3-methoxy-2-naphthoic acid (3.36 g, 16.6 mmol) and Et3N (2.59 mL, 18.6 mmol) in anh toluene (70 mL) was stirred at room temp. for 15 min., then treated with a solution of DPPA (5.12 g, 18.6 mmol) in toluene (10 mL) via pipette. The resulting mixture was heated at 80° C. for 2 h. After cooling the mixture to room temp., benzyl alcohol (2.06 mL, 20 mmol) was added via syringe. The mixture was then warmed to 80° C. overnight. The resulting mixture was cooled to room temp., quenched with a 10% citric acid solution, and extracted with EtOAc (2×100 mL). The combined organic layers were washed with a saturated NaCl solution, dried (MgSO4) and concentrated under reduced pressure. The residue was purified by column chromatography (14% EtOAc/86% hexane) to give 2-(N-(carbobenzyloxy)amino-3-methoxynaphthalene as a pale yellow oil (5.1 g, 100%): 1H-NMR (DMSO-d6) δ 3.89 (s, 3H), 5.17 (s, 2H), 7.27-7.44 (m, 8H), 7.72-7.75 (m, 2H), 8.20 (s, 1H), 8.76 (s, 1H).




embedded image


Step 4. 2-Amino-3-methoxynaphthalene

A slurry of 2-(N-(carbobenzyloxy)amino-3-methoxynaphthalene (5.0 g, 16.3 mmol) and 10% Pd/C (0.5 g) in EtOAc (70 mL) was maintained under a H2 atm balloon) at room temp. overnight. The resulting mixture was filtered through Celite® and concentrated under reduced pressure to give 2-amino-3-methoxynaphthalene as a pale pink powder (2.40 g, 85%); 1H-NMR (DMSO-d6) δ 3.86 (s, 3H), 6.86 (s, 2H), 7.04-7.16 (m, 2H), 7.43 (d, J=8.0 Hz, 1H), 7.56 (d, J=8.0 Hz, 1H); EI-MS m/z 173 (M+).


A2. Synthesis of ω-Carbamyl Anilines via Formation of a Carbamylpyridine Followed by Nucleophilic Coupling with an Aryl Amine. Synthesis of 4-(2-N-Methylcarbamyl-4-pyridyloxy)aniline



embedded image


Step 1a. Synthesis of 4-chloro-N-methyl-2-pyridinecarboxamide via the Menisci Reaction

Caution: this is a highly hazardous, potentially explosive reaction. To a stirring solution of 4-chloropyridine (10.0 g) in N-methylformamide (250 mL) at room temp. was added conc. H2SO4 (3.55 mL) to generate an exotherm. To this mixture was added H2O2 (30% Wt in H2O, 17 mL) followed by FeSO4.7H2O (0.56 g) to generate another exotherm. The resulting mixture was stirred in the dark at room temp. for 1 h, then warmed slowly over 4 h to 45° C. When bubbling had subsided, the reaction was heated at 60° C. for 16 h. The resulting opaque brown solution was diluted with H2O (700 mL) followed by a 10% NaOH solution (250 mL). The resulting mixture was extracted with EtOAc (3×500 mL). The organic phases were washed separately with a saturated NaCl solution (3×150 mL), then they were combined, dried (MgSO4) and filtered through a pad of silica gel with the aid of EtOAc. The resulting brown oil was purified by column chromatography (gradient from 50% EtOAc/50% hexane to 80% EtOAc/20% hexane). The resulting yellow oil crystallized at 0° C. over 72 h to give 4-chloro-N-methyl-2-pyridinecarboxamide (0.61 g, 5.3%): TLC (50% EtOAc/50% hexane) Rf 0.50; 1H NMR (CDCl3) δ 3.04 (d, J=5.1 Hz, 3H), 7.43 (dd, J=5.4, 2.4 Hz, 1H), 7.96 (br s, 1H), 8.21 (s, 1H), 8.44 (d, J=5.1 Hz, 1H); CI-MS m/z 171 ((M+H)+).




embedded image


Step 1b. Synthesis of 4-chloropyridine-2-carbonyl chloride HCl salt via picolinic acid

Anhydrous DMF (6.0 mL) was slowly added to SOCl2 (180 mL) between 40° and 50° C. The solution was stirred in that temperature range for 10 min. then picolinic acid (60.0 g, 487 mmol) was added in portions over 30 min. The resulting solution was heated at 72° C. (vigorous SO2 evolution) for 16 h to generate a yellow solid precipitate. The resulting mixture was cooled to room temp., diluted with toluene (500 mL) and concentrated to 200 mL. The toluene addition/concentration process was repeated twice. The resulting nearly dry residue was filtered and the solids were washed with toluene (2×200 ml) and dried under high vacuum for 4 h to afford 4-chloropyridine-2-carbonyl chloride HCl salt as a yellow-orange solid (92.0 g, 89%).




embedded image


Step 2. Synthesis of methyl 4-chloropyridine-2-carboxylate HCl salt

Anh DMF (100 mL) was slowly added to SOCl2 (300 mL) at 40-48° C. The solution was stirred at that temp. range for 10 min., then picolinic acid (100 g, 812 mmol) was added over 30 min. The resulting solution was heated at 72° C. (vigorous SO2 evolution) for 16 h to generate a yellow solid. The resulting mixture was cooled to room temp., diluted with toluene (500 mL) and concentrated to 200 mL. The toluene addition/concentration process was repeated twice. The resulting nearly dry residue was filtered, and the solids were washed with toluene (50 mL) and dried under high vacuum for 4 hours to afford 4-chloropyridine-2-carbonyl chloride HCl salt as an off-white solid (27.2 g, 16%). This material was set aside.


The red filtrate was added to MeOH (200 mL) at a rate which kept the internal temperature below 55° C. The contents were stirred at room temp. for 45 min., cooled to 5° C. and treated with Et2O (200 mL) dropwise. The resulting solids were filtered, washed with Et2O (200 mL) and dried under reduced pressure at 35° C. to provide methyl 4-chloropyridine-2-carboxylate HCl salt as a white solid (110 g, 65%): mp 108-112° C.; 1H-NMR (DMSO-d6) δ 3.88 (s, 3H); 7.82 (dd, J=5.5, 2.2 Hz, 1H); 8.08 (d, J=2.2 Hz, 1H); 8.68 (d, J=5.5 Hz, 1H); 10.68 (br s, 1H); HPLC ES-MS m/z 172 ((M+H)+).




embedded image


Step 3a. Synthesis of 4-chloro-N-methyl-2-pyridinecarboxamide from methyl 4-chloropyridine-2-carboxylate

A suspension of methyl 4-chloropyridine-2-carboxylate HCl salt (89.0 g, 428 mmol) in MeOH (75 mL) at 0° C. was treated with a 2.0 M methylamine solution in THF (1 L) at a rate which kept the internal temp. below 5° C. The resulting mixture was stored at 3° C. for 5 h, then concentrated under reduced pressure. The resulting solids were suspended in EtOAc (1 L) and filtered. The filtrate was washed with a saturated NaCl solution (500 mL), dried (Na2SO4) and concentrated under reduced pressure to afford 4-chloro-N-methyl-2-pyridinecarboxamide as pale-yellow crystals (71.2 g, 97%): mp 41-43° C.; 1H-NMR DMSO-d6) δ 2.81 (s, 3H), 7.74 (dd, J=5.1, 2.2 Hz, 1H), 8.00 (d, J=2.2, 1H), 8.61 (d, J=5.1 Hz, 1H), 8.85 (br d, 1H); CI-MS m/z 171 ((M+H)+).




embedded image


Step 3b. Synthesis of 4-chloro-N-methyl-2-pyridinecarboxamide from 4-chloropyridine-2-carbonyl chloride

4-Chloropyridine-2-carbonyl chloride HCl salt (7.0 g, 32.95 mmol) was added in portions to a mixture of a 2.0 M methylamine solution in THF (100 ml) and MeOH (20 n-L) at 0° C. The resulting mixture was stored at 3° C. for 4 h, then concentrated under reduced pressure. The resulting nearly dry solids were suspended in EtOAc (100 mL) and filtered. The filtrate was washed with a saturated NaCl solution (2×100 mL), dried (Na2SO4) and concentrated under reduced pressure to provide 4-chloro-N-methyl-2-pyridinecarboxamide as a yellow, crystalline solid (4.95 g, 88%): mp 37-40° C.




embedded image


Step 4. Synthesis of 4-(2-(N-methylcarbamoyl)-4-pyridyloxy)aniline

A solution of 4-aminophenol (9.60 g, 88.0 mmol) in anh. DMF (150 mL) was treated with potassium tert-butoxide (10.29 g, 91.7 mmol), and the reddish-brown mixture was stirred at room temp. for 2 h. The contents were treated with 4-chloro-N-methyl-2-pyridinecarboxamide (15.0 g, 87.9 mmol) and K2CO3 (6.50 g, 47.0 mmol) and then heated at 80° C. for 8 h. The mixture was cooled to room temp. and separated between EtOAc (500 mL) and a saturated NaCl solution (500 mL). The aqueous phase was back-extracted with EtOAc (300 mL). The combined organic layers were washed with a saturated NaCl solution (4×1000 mL), dried Na2SO4) and concentrated under reduced pressure. The resulting solids were dried under reduced pressure at 35° C. for 3 h to afford 4-(2-(N-methylcarbamoyl)-4-pyridyloxy)aniline as a light-brown solid 17.9 g, 84%): 1H-NMR (DMSO-d6) δ 2.77 (d, J=4.8 Hz, 3H), 5.17 (br s, 2H), 6.64, 6.86 (AA′BB′ quartet, J=8.4 Hz, 4H), 7.06 (dd, J=5.5, 2.5 Hz, 1H), 7.33 (d, J=2.5 Hz, 1H), 8.44 (d, J=5.5 Hz, 1H), 8.73 (br d, 1H); HPLC ES-MS m/z 244 ((M+H)+).


A3. General Method for the Synthesis of Anilines by Nucleophilic Aromatic Addition Followed by Nitroarene Reduction. Synthesis of 5-(4-Aminophenoxy)isoindoline-1,3-dione



embedded image


Step 1. Synthesis of 5-hydroxyisoindoline-1,3-dione

To a mixture of ammonium carbonate (5.28 g, 54.9 mmol) in cone. AcOH (25 mL) was slowly added 4-hydroxyphthalic acid (5.0 g, 27.45 mmol). The resulting mixture was heated at 120° C. for 45 min., then the clear, bright yellow mixture was heated at 160° C. for 2 h. The resulting mixture was maintained at 160° C. and was concentrated tot approximately 15 mL, then was cooled to room temp. and adjusted pH 10 with a 1N NaOH solution. This mixture was cooled to 0° C. and slowly acidified to pH 5 using a 1N HCl solution. The resultant precipitate was collected by filtration and dried under reduced pressure to yield 5-hydroxyisoindoline-1,3-dione as a pale yellow powder as product (3.24 g, 72%): 1H NMR (DMSO-d6) δ 7.00-7.03 (m, 2H), 7.56 (d, J=9.3 Hz, 1H).




embedded image


Step 2. Synthesis of 5-(4-nitrophenoxy)isoindoline-1,3-dione

To a stirring slurry of NaH (1.1 g, 44.9 mmol) in DMF (40 mL) at 0° C. was added a solution of 5-hydroxyisoindoline-1,3-dione (3.2 g, 19.6 mmol) in DMF (40 mL) dropwise. The bright yellow-green mixture was allowed to return to room temp. and was stirred for 1 h, then 1-fluoro-4-nitrobenzene (2.67 g, 18.7 mmol) was added via syringe in 3-4 portions. The resulting mixture was heated at 70° C. overnight, then cooled to room temp. and diluted slowly with water (150 mL), and extracted with EtOAc (2×100 mL). The combined organic layers were dried (MgSO4) and concentrated under reduced pressure to give 5-(4-nitrophenoxy)isoindoline-1,3-dione as a yellow solid (3.3 g, 62%): TLC (30% EtOAc/70% hexane) Rf 0.28; 1H NMR (DMSO-d6) δ 7.32 (d, J=12 Hz, 2H), 7.52-7.57 (m, 2H), 7.89 (d, J=7.8 Hz, 1H), 8.29 (d, J=9 Hz, 2H), 11.43 (br s, 1H); CI-MS m/z 285 ((M+H)+, 100%).




embedded image


Step 3. Synthesis of 5-(4-aminophenoxy)isoindoline-1,3-dione

A solution of 5-(4-nitrophenoxy)isoindoline-1,3-dione (0.6 g, 2.11 mmol) in conc. AcOH (12 mL) and water (0.1 mL) was stirred under stream of argon while iron powder (0.59 g, 55.9 mmol) was added slowly. This mixture stirred at room temp. for 72 h, then was diluted with water (25 ml) and extracted with EtOAc (3×50 mL). The combined organic layers were dried (MgSO4) and concentrated under reduced pressure to give 5-(4-aminophenoxy)isoindoline-1,3-dione as a brownish solid (0.4 g, 75%): TLC (50% EtOAc/50% hexane) Rf 0.27; 1H NMR (DMSO-d6) δ 5.14 (br s, 2H), 6.62 (d, J=8.7 Hz, 2H), 6.84 (d, J=8.7 Hz, 2H), 7.03 (d, J=2.1 Hz, 1H), 7.23 (dd, 1H), 7.75 (d, J=8.4 Hz, 1H), 11.02 (s, 1H); HPLC ES-MS m/z 255 ((M+H)+, 100%).


A4. General Method for the Synthesis of Pyrrolylanilines. Synthesis of 5-tert-Butyl-2-(2,5-dimethylpyrrolyl)aniline



embedded image


Step 1. Synthesis of 1-(4-tert-butyl-2-nitrophenyl)-2,5-dimethylpyrrole

To a stirring solution of 2-nitro-4-tert-butylaniline (0.5 g, 2.57 mmol) in cyclohexane (10 mL) was added AcOH (0.1 mL) and acetonylacetone (0.299 g, 2.63 mmol) via syringe. The reaction mixture was heated at 120° C. for 72 h with azeotropic removal of volatiles. The reaction mixture was cooled to room temp., diluted with CH2Cl2 (10 mL) and sequentially washed with a 1N HCl solution (15 mL), a 1N NaOH solution (15 mL) and a saturated NaCl solution (15 mL), dried (MgSO4) and concentrated under reduced pressure. The resulting orange-brown solids were purified via column chromatography (60 g SiO2; gradient from 6% EtOAc/94% hexane to 25% EtOAc/75% hexane) to give 1-(4-tert-butyl-2-nitrophenyl)-2,5-dimethylpyrrole as an orange-yellow solid (0.34 g, 49%)-TLC (15% EtOAc/85% hexane) Rf 0.67; 1H NMR (CDCl3) δ 1.34 (s, 9H), 1.89 (s, 6H), 5.84 (s, 2H), 7.19-7.24 (m, 1H), 7.62 (dd, 1H), 7.8 (d, J=2.4 Hz, 1H); CI-MS m/z 273 ((M+H)+, 50%).




embedded image


Step 2. Synthesis of 5-tert-Butyl-2-(2,5-dimethylpyrrolyl)aniline

A slurry of 1-(4-tert-butyl-2-nitrophenyl)-2,5-dimethylpyrrole (0.341 g, 1.25 mmol), 10% Pd/C (0.056 g) and EtOAc (50 mL) under an H2 atmosphere (balloon) was stirred for 72 h, then filtered through a pad of Celite®. The filtrate was concentrated under reduced pressure to give 5-tert-butyl-2-(2,5-dimethylpyrrolyl)aniline as yellowish solids (0.30 g, 99%): TLC (10% EtOAc/90% hexane) Rf 0.43; 1H NMR (CDCl3) δ 1.28 (s, 9H), 1.87-1.91 (m, 8H), 5.85 (br s, 2H), 6.73-6.96 (m, 3H), 7.28 (br s, 1H).


A5. General Method for the Synthesis of Anilines from Anilines by Nucleophilic Aromatic Substitution. Synthesis of 4-(2-(N-Methylcarbamoyl)-4-pyridyloxy)-2-methylaniline HCl Salt



embedded image


A solution of 4-amino-3-methylphenol (5.45 g, 44.25 mmol) in dry dimethylacetamide (75 mL) was treated with potassium tert-butoxide (10.86 g, 96.77 mmol) and the black mixture was stirred at room temp. until the flask had reached room temp. The contents were then treated with 4-chloro-N-methyl-2-pyridinecarboxamide (method A2, Step 3b; 7.52 g, 44.2 mmol) and heated at 110° C. for 8 h. The mixture was cooled to room temp. and diluted with water (75 mL). The organic layer was extracted with EtOAc (5×100 mL). The combined organic layers were washed with a saturated NaCl solution (200 mL), dried (MgSO4) and concentrated under reduced pressure. The residual black oil was treated with Et2O (50 mL) and sonicated. The solution was then treated with HCl (1 M in Et2O; 100 mL) and stirred at room temp. for 5 min. The resulting dark pink solid (7.04 g, 24.1 mmol) was removed by filtration from solution and stored under anaerobic conditions at 0° C. prior to use: 1H NMR (DMSO-d6) δ 2.41 (s, 3H), 2.78 (d, J=4.4 Hz, 3H), 4.93 (br s, 2H), 7.19 (dd, J=8.5, 2.6 Hz, 1H), 7.23 (dd, J=5.5, 2.6 Hz, 1H), 7.26 (d, J=2.6 Hz, 1H), 7.55 (d, 1-2.6 Hz, 1H), 7.64 (d, J=8.8 Hz, 1H), 8.55 (d, J=5.9 Hz, 1H), 8.99 (q, J=4.8 Hz, 1H).


A6. General Method for the Synthesis of Anilines from Hydroxyanilines by N-Protection, Nucleophilic Aromatric Substitution and Deprotection. Synthesis of 4-(2-(N-Methylcarbamoyl)-4-pyridyloxy)-2-chloroaniline



embedded image


Step 1: Synthesis of 3-Chloro-4-(2,2,2-trifluoroacetylamino)phenol

Iron (3.24 g, 58.00 mmol) was added to stirring TFA (200 mL). To this slurry was added 2-chloro-4-nitrophenol (10.0 g, 58.0 mmol) and trifluoroacetic anhydride (20 mL). This gray slurry was stirred at room temp. for 6 d. The iron was filtered from solution and the remaining material was concentrated under reduced pressure. The resulting gray solid was dissolved in water (20 mL). To the resulting yellow solution was added a saturated NaHCO3 solution (50 mL). The solid which precipitated from solution was removed. The filtrate was slowly quenched with the sodium bicarbonate solution until the product visibly separated from solution (determined was using a mini work-up vial). The slightly cloudy yellow solution was extracted with EtOAc (3×125 mL). The combined organic layers were washed with a saturated NaCl solution (125 mL), dried (MgSO4) and concentrated under reduced pressure. The 1H NMR (DMSO-d6) indicated a 1:1 ratio of the nitrophenol starting material and the intended product 3-chloro-4-(2,2,2-trifluoroacetylamino)phenol. The crude material was taken on to the next step without further purification.




embedded image


Step 2: Synthesis of 4-(2-(N-Methylcarbamoyl)-4-pyridyloxy)-2-chlorophenyl (222-trifluoro)acetamide

A solution of crude 3-chloro-4-(2,2,2-trifluoroacetylamino)phenol (5.62 g, 23.46 mmol) in dry dimethylacetamide (50 mL) was treated with potassium tert-butoxide (5.16 g, 45.98 mmol) and the brownish black mixture was stirred at room temp. until the flask had cooled to room temp. The resulting mixture was treated with 4-chloro-N-methyl-2-pyridinecarboxamide (Method A2, Step 3b; 1.99 g, 11.7 mmol) and heated at 100° C. under argon for 4 d. The black reaction mixture was cooled to room temp. and then poured into cold water (100 mL). The mixture was extracted with EtOAc (3×75 mL) and the combined organic layers were concentrated under reduced pressure. The residual brown oil was purified by column chromatography (gradient from 20% EtOAc/pet. ether to 40% EtOAc/pet. ether) to yield 4-(2-(N-Methylcarbamoyl)-4-pyridyloxy)-2-chlorophenyl (222-trifluoro)acetamide as a yellow solid (8.59 g, 23.0 mmol).




embedded image


Step 3. Synthesis of 4-(2-(N-Methylcarbamoyl)-4-pyridyloxy)-2-chloroaniline

A solution of crude 4-(2-(N-Methylcarbamoyl)-4-pyridyloxy)-2-chlorophenyl (222-trifluoro)acetamide (8.59 g, 23.0 mmol) in dry 4-dioxane (20 mL) was treated with a 1N NaOH solution (20 mL). This brown solution was allowed to stir for 8 h. To this solution was added EtOAc (40 mL). The green organic layer was extracted with EtOAc (3×40 mL) and the solvent was concentrated to yield 4-(2-(N-Methylcarbamoyl)-4-pyridyloxy)-2-chloroaniline as a green oil that solidified upon standing (2.86 g, 10.30 mmol): 1H NMR (DMSO-d6) δ 2.77 (d, J=4.8 Hz, 3H), 5.51 (s, 2H), 6.60 (dd, J=8.5, 2.6 Hz, 1H), 6.76 (d, J=2.6 Hz, 1H), 7.03 (d, J=8.5 Hz, 1H), 7.07 (dd, J=5.5, 2.6, Hz, 1H), 7.27 (d, J=2.6 Hz, 1H), 8.46 (d, J=5.5 Hz, 1H), 8.75 (q, J=4.8, 1H).


A7. General Method for the Deprotection of an Acylated Aniline Synthesis of 4-Chloro-2-methoxy-5-(trifluoromethyl)aniline



embedded image


A suspension of 3-chloro-6-(N-acetyl)-4-(trifluoromethyl)anisole (4.00 g, 14.95 mmol) in a 6M HCl solution (24 mL) was heated at the reflux temp. for 1 h. The resulting solution was allowed to cool to room temp. during which time it solidified slightly. The resulting mixture was diluted with water (20 mL) then treated with a combination of solid NaOH and a saturated NaHCO3 solution until the solution was basic. The organic layer was extracted with CH2Cl2 (3×50 nm). The combined organics were dried (MgSO4) and concentrated under reduced pressure to yield 4-chloro-2-methoxy-5-(trifluoromethyl)aniline as a brown oil (3.20 g, 14.2 mmol): 1H NMR (DMSO-d6) δ 3.84 (s, 3H), 5.30 (s, 2H), 7.01 (s, 2H).


A8. General Method for Synthesis of ω-Alkoxy-ω-carboxyphenyl Anilines. Synthesis of 4-(3-(N-Methylcarbamoly)-4-methoxyphenoxy)aniline



embedded image


Step 1. 4-(3-Methoxycarbonyl-4-methoxyphenoxy)-1-nitrobenzene

To a solution of 4-(3-carboxy-4-hydroxyphenoxy)-1-nitrobenzene prepared from 2,5-dihydroxybenzoic acid in a manner analogous to that described in Method A13, Step 1, 12 mmol) in acetone (50 mL) was added K2CO3 (5 g) and dimethyl sulfate (3.5 mL). The resulting mixture was heated at the reflux temp. overnight, then cooled to room temp. and filtered through a pad of Celite®. The resulting solution was concentrated under reduced pressure, absorbed onto SiO2, and purified by column chromatography (50% EtOAc/50% hexane) to give 4-(3-methoxycarbonyl-4-methoxyphenoxy)-1-nitrobenzene as a yellow powder (3 g): mp 115-118° C.




embedded image


Step 2. 4-(3-Carboxy-4-methoxyphenoxy)-1-nitrobenzene

A mixture of 4-(3-methoxycarbonyl-4-methoxyphenoxy)-1-nitrobenzene (1.2 g), KOH (0.33 g) and water (5 mL) in MeOH (45 mL) was stirred at room temp. overnight and then heated at the reflux temp. for 4 h. The resulting mixture was cooled to room temp. and concentrated under reduced pressure. The residue was dissolved in water (50 mL), and the aqueous mixture was made acidic with a 1N HCl solution. The resulting mixture was extracted with EtOAc (50 mL). The organic layer was dried (MgSO4) and concentrated under reduced pressure to give 4-(3-carboxy-4-methoxyphenoxy)-1-nitrobenzene (1.04 g).




embedded image


Step 3. 4-(3-(N-Methylcarbamoly)-4-methoxyphenoxy)-1-nitrobenzene

To a solution of 4-(3-carboxy-4-methoxyphenoxy)-1-nitrobenzene (0.50 g, 1.75 mmol) in CH2Cl2 (12 nm) was added SOCl2 (0.64 mL, 8.77 mmol) in portions. The resulting solution was heated at the reflux temp. for 18 h, cooled to room temp., and concentrated under reduced pressure. The resulting yellow solids were dissolved in CH2Cl2 (3 mL) then the resulting solution was treated with a methylamine solution (2.0 M in THF, 3.5 mL, 7.02 mmol) in portions (CAUTION: gas evolution), and stirred at room temp. for 4 h. The resulting mixture was treated with a 1N NaOH solution, then extracted with CH2Cl2 (25 mL). The organic layer was dried (Na2SO4) and concentrated under reduced pressure to give 4-(3-(N-methylcarbamoly)-4-methoxyphenoxy)-1-nitrobenzene as a yellow solid (0.50 g, 95%).




embedded image


Step 4. 4-(3-(N-Methylcarbamoly)-4-methoxyphenoxy)aniline

A slurry of 4-(3-(N-methylcarbamoly)-4-methoxyphenoxy)-1-nitrobenzene (0.78 g, 2.60 mmol) and 10% Pd/C (0.20 g) in EtOH (55 mL) was stirred under 1 atm of H2 (balloon) for 2.5 d, then was filtered through a pad of Celite®. The resulting solution was concentrated under reduced pressure to afford 4-(3-(N-methylcarbamoly)-4-methoxyphenoxy)aniline as an off-white solid (0.68 g, 96%): TLC (0.1% Et3N/99.9% EtOAc) Rf 0.36.


A9. General Method for Preparation of ω-Alkylphthalimide-containing Anilines. Synthesis of 5-(4-Aminophenoxy)-2-methylisoindoline-1,3-dione



embedded image


Step 1. Synthesis of 5-(4-Nitrophenoxy)-2-methylisoindoline-1,3-dione

A slurry of 5-(4-nitrophenoxy)isoindoline-1,3-dione (A3 Step 2; 1.0 g, 3.52 mmol) and NaH (0.13 g, 5.27 mmol) in DMF (15 mL) was stirred at room temp. for 1 h, then treated with methyl iodide (0.3 mL, 4.57 mmol). The resulting mixture was stirred at room temp. overnight, then was cooled to ° C. and treated with water (10 mL). The resulting solids were collected and dried under reduced pressure to give 5-(4-nitrophenoxy)-2-methylisoindoline-1,3-dione as a bright yellow solid (0.87 g, 83%): TLC (35% EtOAc/65% hexane) Rf 0.61.




embedded image


Step 2. Synthesis of 5-(4-Aminophenoxy)-2-methylisoindoline-1,3-dione

A slurry of nitrophenoxy)-2-methylisoindoline-1,3-dione (0.87 g, 2.78 mmol) and 10% Pd/C (0.10 g) in MeOH was stirred under 1 atm of H2 (balloon) overnight. The resulting mixture was filtered through a pad of Celite® and concentrated under reduced pressure. The resulting yellow solids were dissolved in EtOAc (3 mL) and filtered through a plug of SiO2 (60% EtOAc/40% hexane) to afford 5-(4-aminophenoxy)-2-methylisoindoline-1,3-dione as a yellow solid (0.67 g, 86%): TLC (40% EtOAc/60% hexane) Rf 0.27.


A10. General Method for Synthesis of ω-Carbamoylaryl Anilines Through Reaction of ω-Alkoxycarbonylaryl Precursors with Amines. Synthesis of 4-(2-(N-(2-morpholin-4-ylethyl)carbamoyl)pyridyloxy)aniline



embedded image


Step 1. Synthesis of 4-Chloro-2-(N-(2-morpholin-4-ylethyl)carbamoyl)pyridine

To a solution of methyl 4-chloropyridine-2-carboxylate HCl salt Method A2, Step 2; 1.01 g, 4.86 mmol) in THF (20 mL) was added 4-(2-aminoethyl)morpholine (2.55 mL, 19.4 mmol) dropwise and the resulting solution was heated at the reflux temp. for 20 h, cooled to room temp., and treated with water (50 mL). The resulting mixture was extracted with EtOAc (50 mL). The organic layer was dried (MgSO4) and concentrated under reduced pressure to afford 4-chloro-2-(N-(2-morpholin-4-ylethyl) carbamoyl)pyridine as a yellow oil (1.25 g, 95%): TLC (10% MeOH/90% EtOAc) Rf 0.50.




embedded image


Step 2. Synthesis of 4-(2-(N-(2-Morpholin-4-ylethyl)carbamoyl)pyridyloxy)aniline

A solution of 4-aminophenol (0.49 g, 4.52 mmol) and potassium tert-butoxide (0.53 g, 4.75 mol) in DMF (8 mL) was stirred at room temp. for 2 h, then was sequentially treated with 4-chloro-2-(N-(2-morpholin-4-ylethyl)carbamoyl)pyridine (1.22 g, 4.52 mmol) and K2CO3 (0.31 g, 2.26 mmol). The resulting mixture was heated at 75° C. overnight, cooled to room temp., and separated between EtOAc (25 mL) and a saturated NaCl solution (25 mL). The aqueous layer was back extracted with EtOAc (25 mL). The combined organic layers were washed with a saturated NaCl solution (3×25 mL) and concentrated under reduced pressure. The resulting brown solids were purified by column chromatography (58 g; gradient from 100% EtOAc to 25% MeOH/75% EtOAc) to afford 4-(2-(N-(2-morpholin-4-ylethyl)carbamoyl)pyridyloxy)aniline (1.0 g, 65%): TLC (10% MeOH/90% EtOAc) Rf 0.32.


A11. General Method for the Reduction of Nitroarenes to Arylamines. Synthesis of 4-(3-Carboxyphenoxy)aniline



embedded image


A slurry of 4-(3-carboxyphenoxy)-1-nitrobenzene (5.38 g, 20.7 mmol) and 10% Pd/C (0.50 g) in MeOH (120 mL) was stirred under an H2 atmosphere (balloon) for 2 d. The resulting mixture was filtered through a pad of Celite®, then concentrated under reduced pressure to afford 4-(3-carboxyphenoxy)aniline as a brown solid (2.26 g, 48%): TLC (10% MeOH/90% CH2Cl2) Rf 0.44 (streaking).


A12. General Method for the Synthesis of Isoindolinone-Containing Anilines. Synthesis of 4-(1-Oxoisoindolin-5-yloxy)aniline



embedded image


Step 1. Synthesis of 5-hydroxyisoindolin-1-one

To a solution of 5-hydroxyphthalimide (19.8 g, 121 mmol) in AcOH (500 mL) was slowly added zinc dust (47.6 g, 729 mmol) in portions, then the mixture was heated at the reflux temp. for 40 min., filtered hot, and concentrated under reduced pressure. The reaction was repeated on the same scale and the combined oily residue was purified by column chromatography (1.1 Kg SiO2; gradient from 60% EtOAc/40% hexane to 25% MeOH/75% EtOAc) to give 5-hydroxyisoindolin-1-one (3.77 g): TLC (100% EtOAc) Rf 0.17; HPLC ES-MS m/z 150 ((M+H)+).




embedded image


Step 2. Synthesis of 4-(1-isoindolinon-5-yloxy)-1-nitrobenzene

To a slurry of Nail (0.39 g, 16.1 mmol) in DMF at 0° C. was added 5-hydroxyisoindolin-1-one (2.0 g, 13.4 mmol) in portions. The resulting slurry was allowed to warm to room temp. and was stirred for 45 min., then 4-fluoro-1-nitrobenzene was added and then mixture was heated at 70° C. for 3 h. The mixture was cooled to 0° C. and treated with water dropwise until a precipitate formed. The resulting solids were collected to give 4-(1-isoindolinon-5-yloxy)-1-nitrobenzene as a dark yellow solid (3.23 g, 89%): TLC (100% EtOAc) Rf 0.35.




embedded image


Step 3. Synthesis of 4-(1-oxoisoindolin-5-yloxy)aniline

A slurry of 4-(1-isoindolinon-5-yloxy)-1-nitrobenzene (2.12 g, 7.8 retool) and 10% Pd/C (0.20 g) in EtOH (50 mL) was stirred under an H2 atmosphere balloon) for 4 h, then filtered through a pad of Celite®. The filtrate was concentrated under reduced pressure to afford 4-(1-oxoisoindolin-5-yloxy)aniline as a dark yellow solid: TLC (100% EtOAc) Rf 0.15.


A13. General Method for the Synthesis of co-Carbamoyl Anilines via EDCI-Mediated Amide Formation Followed by Nitroarene Reduction. Synthesis of 4-(3-N-Methylcarbamoylphenoxy)aniline



embedded image


Step 1. Synthesis of 4-(3-ethoxycarbonylphenoxy)-1-nitrobenzene

A mixture of 4-fluoro-1-nitrobenzene (16 mL, 150 mmol), ethyl 3-hydroxybenzoate 25 g, 150 mmol) and K2CO3 (41 g, 300 mmol) in DMF (125 mL) was heated at the reflux temp. overnight, cooled to room temp. and treated with water (250 mL). The resulting mixture was extracted with EtOAc (3×150 mL). The combined organic phases were sequentially washed with water (3×100 mL) and a saturated NaCl solution (2×100 mL), dried (Na2SO4) and concentrated under reduced pressure. The residue was purified by column chromatography (10% EtOAc/90% hexane) to afford 4-(3-ethoxycarbonylphenoxy)-1-nitrobenzene as an oil (38 g),




embedded image


Step 2. Synthesis of 4-(3-carboxyphenoxy)-1-nitrobenzene

To a vigorously stirred mixture of 4-(3-ethoxycarbonylphenoxy)-1-nitrobenzene (5.14 g, 17.9 mmol) in a 3:1 THF/water solution (75 mL) was added a solution LiOH.H2O (1.50 g, 35.8 mmol) in water (36 mL). The resulting mixture was heated at 50° C. overnight, then cooled to room temp., concentrated under reduced pressure, and adjusted to pH 2 with a 1M HCl solution. The resulting bright yellow solids were removed by filtration and washed with hexane to give 4-(3-carboxyphenoxy)-1-nitrobenzene (4.40 g, 95%).




embedded image


Step 3. Synthesis of 4-(3-(N-methylcarbamoyl)phenoxy)-1-nitrobenzene

A mixture of 4-(3-carboxyphenoxy)-1-nitrobenzene (3.72 g, 14.4 mmol), EDCI.HCl (3.63 g, 18.6 mmol), Ni-methylmorpholine (1.6 mL, 14.5 mmol) and methylamine (2.0 M in THF 8 mL, 16 mmol) in CH2Cl2 (45 mL) was stirred at room temp. for 3 d, then concentrated under reduced pressure. The residue was dissolved in EtOAc (50 mL) and the resulting mixture was extracted with a 1M HCl solution (50 mL). The aqueous layer was back-extracted with EtOAc (2×50 mL). The combined organic phases were washed with a saturated NaCl solution (50 mL), dried (Na2SO4), and concentrated under reduced pressure to give 4-(3-(N-methylcarbamoyl)phenoxy)-1-nitrobenzene as an oil (1.89 g).




embedded image


Step 4. Synthesis of 4-(3-(N-methylcarbamoyl)phenoxy)aniline

A slurry of 4-(3-(N-methylcarbamoyl)phenoxy)-1-nitrobenzene (1.89 g, 6.95 mmol) and 5% Pd/C (0.24 g) in EtOAc (20 mL) was stirred under an H2 atm (balloon) overnight. The resulting mixture was filtered through a pad of Celite® and concentrated under reduced pressure. The residue was purified by column chromatography (5% MeOH/95% CH2Cl2). The resulting oil solidified under vacuum overnight to give 4-(3-(N-methylcarbamoyl)phenoxy)aniline as a yellow solid (0.95 g, 56%).


A14. General Method for the Synthesis of ω-Carbamoyl Anilines via EDCI-Mediated Amide Formation Followed by Nitroarene Reduction. Synthesis of 4-3-(5-Methylcarbamoyl)pyridyloxy)aniline



embedded image


Step 1. Synthesis of 4-(3-(5-methoxycarbonyl)pyridyloxy)-1-nitrobenzene

To a slurry of NaH (0.63 g, 26.1 mmol) in DMF (20 mL) was added a solution of methyl 5-hydroxynicotinate (2.0 g, 13.1 mmol) in DMF (10 mL). The resulting mixture was added to a solution of 4-fluoronitrobenzene (1.4 mL, 13.1 mmol) in DMF (10 mL) and the resulting mixture was heated at 70° C. overnight, cooled to room temp., and treated with MeOH (5 mL) followed by water (50 mL). The resulting mixture was extracted with EtOAc (100 mL). The organic phase was concentrated under reduced pressure. The residue was purified by column chromatography (30% EtOAc/70% hexane) to afford 4-(3-(5-methoxycarbonyl)pyridyloxy)-1-nitrobenzene (0.60 g).




embedded image


Step 2. Synthesis of 4-(3-(5-methoxycarbonyl)pyridyloxy)aniline

A slurry of 4-(3-(5-methoxycarbonyl)pyridyloxy)-1-nitrobenzene (0.60 g, 2.20 mmol) and 10% Pd/C in MeOH/EtOAc was stirred under an H2 atmosphere (balloon) for 72 h. The resulting mixture was filtered and the filtrate was concentrated under reduced pressure. The residue was purified by column chromatography (gradient from 10% EtOAc/90% hexane to 30% EtOAc/70% hexane to 50% EtOAc/50% hexane) to afford 4-(3-(5-methoxycarbonyl)pyridyloxy)aniline (0.28 g, 60%); 1H NMR (CDCl3) δ 3.92 (s, 3H), 6.71 (d, 2H), 6.89 (d, 2H), 7.73 (, 1H), 8.51 (d, 1H), 8.87 (d, 1H).


A15. Synthesis of an Aniline via Electrophilic Nitration Followed by Reduction. Synthesis of 4-(3-Methylsulfamoylphenoxy)aniline



embedded image


Step 1. Synthesis of N-methyl-3-bromobenzenesulfonamide

To a solution of 3-bromobenzenesulfonyl chloride (2.5 g, 11.2 mmol) in THF (15 mL) at 0° C. was added methylamine (2.0 M in THF; 28 mL, 56 mmol). The resulting solution was allowed to warm to room temp. and was stirred at room temp. overnight. The resulting mixture was separated between EtOAc (25 mL) and a 1 M HCl solution (25 mL). The aqueous phase was back-extracted with EtOAc (2×25 mL). The combined organic phases were sequentially washed with water (2×25 mL) and a saturated NaCl solution (25 mL), dried (MgSO4) and concentrated under reduced pressure to give N-methyl-3-bromobenzenesulfonamide as a white solid (2.8 g, 99%).




embedded image


Step 2. Synthesis of 4-(3-(N-methylsulfamoyl)phenyloxy)benzene

To a slurry of phenol (1.9 g, 20 mmol), K2CO3 (6.0 g, 40 mmol), and CuI (4 g, 20 mmol) in DMF (25 mL) was added N-methyl-3-bromobenzenesulfonamide (2.5 g, 10 mmol), and the resulting mixture was stirred at the reflux temp. overnight, cooled to room temp., and separated between EtOAc (50 mL) and a 1 N HCl solution (50 mL). The aqueous layer was back-extracted with EtOAc (2×50 mL). The combined organic phases were sequentially washed with water (2×50 mL) and a saturated NaCl solution (50 mL), dried (MgSO4), and concentrated under reduced pressure. The residual oil was purified by column chromatography (30% EtOAc/70% hexane) to give 4-(3-(N-methylsulfamoyl)phenyloxy)benzene (0.30 g).




embedded image


Step 3. Synthesis of 4-(3-(N-methylsulfamoyl)phenyloxy)-1-nitrobenzene

To a solution of 4-(3-(N-methylsulfamoyl)phenyloxy)benzene (0.30 g, 1.14 mmol) in TFA (6 mL) at −10° C. was added NaNO2 (0.097 g, 1.14 mmol) in portions over 5 min. The resulting solution was stirred at −10° C. for 1 h, then was allowed to warm to room temp., and was concentrated under reduced pressure. The residue was separated between EtOAc (10 mL) and water (10 mL). The organic phase was sequentially washed with water (10 mL) and a saturated NaCl solution (10 mL), dried (MgSO4) and concentrated under reduced pressure to give 4-(3-(N-methylsulfamoyl)phenyloxy)-1-nitrobenzene (0.20 g). This material carried on to the next step without further purification.




embedded image


Step 4. Synthesis of 4-(3-(N-methylsulfamoyl)phenyloxy)aniline

A slurry of 4-(3-(N-methylsulfamoyl)phenyloxy)-1-nitrobenzene (0.30 g) and 10% Pd/C (0.030 g) in EtOAc (20 mL) was stirred under an H2 atmosphere (balloon) overnight. The resulting mixture was filtered through a pad of Celite®. The filtrate was concentrated under reduced pressure. The residue was purified by column chromatography (30% EtOAc/70% hexane) to give 4-(3-(N-methylsulfamoyl)phenyloxy)aniline (0.070 g).


A16. Modification of ω-ketones. Synthesis of 4-(4-(1-(N-methoxy)iminoethyl)phenoxyaniline HCl salt



embedded image


To a slurry of 4-(4-acetylphenoxy)aniline HCl salt (prepared in a manner analogous to Method A13, step 4; 1.0 g, 3.89 mmol) in a mixture of EtOH (10 mL) and pyridine (1.0 mL) was added O-methylhydroxylamine HCl salt (0.65 g, 7.78 mmol, 2.0 equiv.). The resulting solution was heated at the reflux temperature for 30 min, cooled to room temperature and concentrated under reduced pressure. The resulting solids were triturated with water (10 ml) and washed with water to give 4-(4-(1-(N-methoxy)iminoethyl)phenoxyaniline HCl salt as a yellow solid (0.85 g): TLC (50% EtOAc/50% pet. ether) Rf 0.78; 1H NMR DMSO-d6) δ 3.90 (s, 3H), 5.70 (s, 3H); HPLC-MS m/z 257 ((M+H)+).


A17. Synthesis of N-(ω-Silyloxyalkyl)amides. Synthesis of 4-(4-(2-(N-(2-Triisopropylsilyloxy)ethylcarbamoyl)pyridyloxyaniline



embedded image


Step 1. 4-Chloro-N-(2-triisopropylsilyloxy)ethylpyridine-2-carboxamide

To a solution of 4-chloro-N-(2-hydroxyethyl)pyridine-2-carboxamide (prepared in a manner analogous to Method A2, Step 3b; 1.5 g, 7.4 mmol) in anh DMF (7 mL) was added triisopropylsilyl chloride (1.59 g, 8.2 mmol, 1.1 equiv.) and imidazole (1.12 g, 16.4 mmol, 2.2 equiv.). The resulting yellow solution was stirred for 3 h at room temp, then was concentrated under reduced pressure. The residue was separated between water (10 mL) and EtOAc (10 mL). The aqueous layer was extracted with EtOAc (3×10 mL). The combined organic phases were dried (MgSO4), and concentrated under reduced pressure to afford 4-chloro-2-(N-(2-triisopropylsilyloxy)ethyl)pyridinecarboxamide as an orange oil (2.32 g, 88%). This material was used in the next step without further purification.




embedded image


Step 2. 4-(4-(2-(N-(2-Triisopropylsilyloxy)ethylcarbamoyl)pyridyloxyaniline

To a solution of 4-hydroxyaniline (0.70 g, 6.0 mmol) in anh DMF (8 mL) was added potassium tert-butoxide (0.67 g, 6-0 mmol, 1.0 equiv.) in one portion causing an exotherm. When this mixture had cooled to room temperature, a solution of 4-chloro-2-(N-(2-triisopropylsilyloxy)ethyl)pyridinecarboxamide (2.32 g, 6 mmol, 1 equiv.) in DMF (4 mL) was added followed by K2CO3 (0.42 g, 3.0 mmol, 0.50 equiv.). The resulting mixture was heated at 80° C. overnight. An additional portion of potassium tert-butoxide (0.34 g, 3 mmol, 0.5 equiv.) was then added and the mixture was stirred at 80° C. an additional 4 h. The mixture was cooled to 0° C. with an ice/water bath, then water (approx. 1 mL) was slowly added dropwise. The organic layer was extracted with EtOAc (3×10 mL). The combined organic layers were washed with a saturated NaCl solution (20 mL), dried (MgSO4) and concentrated under reduced pressure. The brown oily residue was purified by column chromatography (SiO2; 30% EtOAc/70% pet ether) to afford 4-(4-(2-(N-(2-triisopropylsilyloxy)ethylcarbamoyl)pyridyloxyaniline as a clear light brown oil (0.99 g, 38%).


A18. Synthesis of 2-Pyridinecarboxylate Esters via Oxidation of 2-Methylpyridines. Synthesis of 4-(5-(2-methoxycarbonyl)pyridyloxy)aniline



embedded image


Step 1. 4-(5-(2-Methyl)pyridyloxy)-1-nitrobenzene

A mixture of 5-hydroxy-2-methylpyridine (10.0 g, 91.6 mmol), 1-fluoro-4-nitrobenzene (9.8 mL, 91.6 mmol, 1.0 equiv.), K2CO3 (25 g, 183 mmol, 2.0 equiv.) in DM (100 mL) was heated at the reflux temperature overnight. The resulting mixture was cooled to room temperature, treated with water (200 mL), and extracted with EtOAc (3×100 mL). The combined organic layers were sequentially washed with water (2×100 mL) and a saturated NaCl solution ((100 mL), dried (MgSO4) and concentrated under reduced pressure to give 4-(5-(2-methyl)pyridyloxy)-1-nitrobenzene as a brown solid (12.3 g).




embedded image


Step 2. Synthesis of 4-(5-(2-Methoxycarbonyl)pyridyloxy)-1-nitrobenzene

A mixture of 4-(5-(2-methyl)pyridyloxy)-1-nitrobenzene (1.70 g, 7.39 mmol) and selenium dioxide (2.50 g, 22.2 mmol, 3.0 equiv.) in pyridine (20 mL) was heated at the reflux temperature for 5 h, then cooled to room temperature. The resulting slurry was filtered, then concentrated under reduced pressure. The residue was dissolved in MeOH (100 nit). The solution was treated with a conc HCl solution (7 mL), then heated at the reflux temperature for 3 h, cooled to room temperature and concentrated under reduced pressure. The residue was separated between EtOAc (50 mL) and a 1N NaOH solution (50 mL). The aqueous layer was extracted with EtOAc (2×50 mL). The combined organic layers were sequentially washed with water (2×50 mL) and a saturated NaCl solution (50 mL), dried (MgSO4) and concentrated under reduced pressure. The residue was purified by column chromatography (SiO2; 50% EtOAc/50% hexane) to afford 4-(5-(2-methoxycarbonyl)pyridyloxy)-1-nitrobenzene (0.70 g).




embedded image


Step 3. Synthesis of 4-(5-(2-Methoxycarbonyl)pyridyloxy)aniline

A slurry of 4-(5-(2-methoxycarbonyl)pyridyloxy)-1-nitrobenzene (0.50 g) and 10% Pd/C (0.050 g) in a mixture of EtOAc (20 mL) and MeOH (5 mL) was placed under a H2 atmosphere (balloon) overnight. The resulting mixture was filtered through a pad of Celite®, and the filtrate was concentrated under reduced pressure. The residue was purified by column chromatography (SiO2; 70% EtOAc/30% hexane) to give 4-(5-(2-methoxycarbonyl)pyridyloxy)aniline (0.40 g).


A19. Synthesis of co-Sulfonylphenyl Anilines. Synthesis of 4-(4-Methylsulfonylphenyoxy)aniline



embedded image


Step 1. 4-(4-Methylsulfonylphenoxy)-1-nitrobenzene: To a solution of 4-(4-methylthiophenoxy)-1-nitrobenzene (2.0 g, 7.7 mmol) in CH2Cl2 (75 mL) at 0° C. was slowly added m-CPBA (57-86%, 4.0 g), and the reaction mixture was stirred at room temperature for 5 h. The reaction mixture was treated with a 1N NaOH solution (25 mL). The organic layer was sequentially washed with a 1N NaOH solution (25 mL), water (25 mL) and a saturated NaCl solution (25 mL), dried (MgSO4), and concentrated under reduced pressure to give 4-(4-methylsulfonylphenoxy)-1-nitrobenzene as a solid (2.1 g).


Step 2. 4-(4-Methylsulfonylphenoxy)-1-aniline: 4-(4-Methylsulfonylphenoxy)-1-nitrobenzene was reduced to the aniline in a manner analogous to that described in Method A18, step 3.


B. Synthesis of Urea Precursors
B1. General Method for the Synthesis of Isocyanates from Anilines Using CDI. Synthesis of 4-Bromo-3-(trifluoromethyl)phenyl Isocyanate



embedded image


Step 1. Synthesis of 4-bromo-3-(trifluoromethyl)aniline HCl salt

To a solution of 4-bromo-3-(trifluoromethyl)aniline (64 g, 267 mmol) in Et2O (500 mL) was added an HCl solution (1 M in Et2O; 300 mL) dropwise and the resulting mixture was stirred at room temp. for 16 h. The resulting pink-white precipitate was removed by filtration and washed with Et2O (50 mL) and to afford 4-bromo-3-(trifluoromethyl)aniline HCl salt (73 gi, 98%).




embedded image


Step 2. Synthesis of 4-bromo-3-(trifluoromethyl)phenyl isocyanate

A suspension of 4-bromo-3-(trifluoromethyl)aniline HCl salt (36.8 g, 133 mmol) in toluene (278 mL) was treated with trichloromethyl chloroformate dropwise and the resulting mixture was heated at the reflux temp. for 18 h. The resulting mixture was concentrated under reduced pressure. The residue was treated with toluene (500 mL), then concentrated under reduced pressure. The residue was treated with CH2Cl2 (500 mL), then concentrated under reduced pressure. The CH2Cl2 treatment/concentration protocol was repeated and resulting amber oil was stored at −20° C. for 16 h, to afford 4-bromo-3-(trifluoromethyl)phenyl isocyanate as a tan solid (35.1 g, 86%): GC-MS m/z 265 (M+).


C. Methods of Urea Formation
C1a. General Method for the Synthesis of Ureas by Reaction of an Isocyanate with an Aniline. Synthesis of N-(4-Chloro-3-(trifluoromethyl)phenyl)-N′-(4-(2-(N-methylcarbamoyl)-4-pyridyloxy)phenyl) Urea



embedded image


A solution of 4-chloro-3-(trifluoromethyl)phenyl isocyanate (14.60 g, 65.90 mmol) in CH2Cl2 (35 mL) was added dropwise to a suspension of 4-(2-(N-methylcarbamoyl)-4-pyridyloxy)aniline (Method A2, Step 4; 16.0 g, 65.77 mmol) in CH2Cl2 (35 mL) at 0° C. The resulting mixture was stirred at room temp. for 22 h. The resulting yellow solids were removed by filtration, then washed with CH2Cl2 (2×30 mL) and dried under reduced pressure (approximately 1 mmHg) to afford N-(4-chloro-3-(trifluoromethyl)phenyl)-N′-(4-(2-(N-methylcarbamoyl)-4-pyridyloxy)phenyl) urea as an off-white solid (28.5 g, 93%): mp 207-209° C.; 1H-NMR (DMSO-d6) δ 2.77 (d, J=4.8 Hz, 3H), 7.16 (m, 3H), 7.37 (d, J=2.5 Hz, 1H), 7.62 (m, 4H), 8.11 (d, J=2.5 Hz, 1H), 8.49 (d, J=5.5 Hz, 1H), 8.77 (br d, 1H), 8.99 (s, 1H), 9.21 (s, 1H); HPLC ES-MS m/z 465 ((M+H)+).


C1b. General Method for the Synthesis of Ureas by Reaction of an Isocyanate with an Aniline. Synthesis of N-(4-Bromo-3-(trifluoromethyl)phenyl)-N′-(4-(2-(N-methylcarbamoyl)-4-pyridyloxy)phenyl) Urea



embedded image


A solution of 4-bromo-3-(trifluoromethyl)phenyl isocyanate (Method B1, Step 2; 8.0 g, 30.1 mmol) in CH2Cl2 (80 mL) was added dropwise to a solution of 4-(2-(N-methylcarbamoyl)-4-pyridyloxy)aniline (Method A2, Step 4; 7.0 g, 28.8 mmol) in CH2Cl2 (40 mL) at 0° C. The resulting mixture was stirred at room temp. for 16 h. The resulting yellow solids were removed by filtration, then washed with CH2Cl2 (2×50 mL) and dried under reduced pressure (approximately 1 mmHg) at 40° C. to afford N-(4-bromo-3-(trifluoromethyl)phenyl)-N′-(4-(2-(N-methylcarbamoyl)-4-pyridyloxy)phenyl) urea as a pale-yellow solid (13.2 g, 90%): mp 203-205° C.; 1H-NMR (DMSO-d6) δ 2.77 (d, J=4.8 Hz, 3H), 7.16 (m, 3H), 7.37 (d, J=2.5 Hz, 1H), 7.58 (m, 3H), 7.77 (d, J=8.8 Hz, 1H), 8.11 (d, J=2.5 Hz, 1H), 8.49 (d, J=5.5 Hz, 1H), 8.77 (br d, 1H), 8.99 (s, 1H), 9.21 (s, 1H); HPLC ES-MS m/z 509 ((M+H)+).


C1c. General Method for the Synthesis of Ureas by Reaction of an Isocyanate with an Aniline. Synthesis of N-(4-Chloro-3-(trifluoromethyl)phenyl)-N′-(2-methyl-4-(2-(N-methylcarbamoyl)(4-pyridyloxy))phenyl) Urea



embedded image


A solution of 2-methyl-4-(2-(N-methylcarbamoyl)(4-pyridyloxy))aniline (Method A5; 0.11 g, 0.45 mmol) in CH2Cl2 (1 mL) was treated with Et3N (0.16 mL) and 4-chloro-3-(trifluoromethyl)phenyl isocyanate (0.10 g, 0.45 mmol). The resulting brown solution was stirred at room temp. for 6 d, then was treated with water (5 mL). The aqueous layer was back-extracted with EtOAc (3×5 mL). The combined organic layers were dried (MgSO4) and concentrated under reduced pressure to yield N-(4-chloro-3-(trifluoromethyl)phenyl)-N′-(2-methyl-4-(2-(N-methylcarbamoyl)(4-pyridyloxy))phenyl) urea as a brown oil (0.11 g, 0.22 mmol): 1H NMR (DMSO-d) δ 2.27 (s, 3H), 2.77 (d, J=4.8 Hz, 3H), 7.03 (dd, J=8.5, 2.6 Hz, 1H), 7.11 (d, J=2.9 Hz, 1H), 7.15 (dd, J=5.5, 2.6, Hz, 1H), 7.38 (d, J=2.6 Hz, 1H), 7.62 (app d, J=2.6 Hz, 2H), 7.84 (d, J=8.8 Hz, 1H), 8.12 (s, 1H), 8.17 (s, 1H); 8.50 (d, J=5.5 Hz, 1H), 8.78 (q, J=5.2, 1H), 9.52 (s, 1H); HPLC ES-MS m/z 479 ((M+H)+).


C1d. General Method for the Synthesis of Ureas by Reaction of an Isocyanate with an Aniline. Synthesis of N-(4-Chloro-3-(trifluoromethyl)phenyl)-N′-(4-aminophenyl) Urea



embedded image


To a solution of 4-chloro-3-(trifluoromethyl)phenyl isocyanate (2.27 g, 10.3 mmol) in CH2Cl2 (308 mL) was added p-phenylenediamine (3.32 g, 30.7 mmol) in one part. The resulting mixture was stirred at room temp. for 1 h, treated with CH2Cl2 (100 mL), and concentrated under reduced pressure. The resulting pink solids were dissolved in a mixture of EtOAc (110 mid) and MeOH (15 mL), and the clear solution was washed with a 0.05 N HCl solution. The organic layer was concentrated under reduced pressure to afford impure N-(4-chloro-3-(trifluoromethyl)phenyl)-N-(4-aminophenyl) urea (3.3 g): TLC (100% EtOAc) Rf 0.72.


C1e. General Method for the Synthesis of Ureas by Reaction of an Isocyanate with an Aniline. Synthesis of N-(4-Chloro-3-(trifluoromethyl)phenyl)-N′-(4-ethoxycarbonylphenyl) Urea



embedded image


To a solution of ethyl 4-isocyanatobenzoate (3.14 g, 16.4 mmol) in CH2Cl2 (30 mL) was added 4-chloro-3-(trifluoromethyl)aniline (3.21 g, 16.4 mmol), and the solution was stirred at room temp. overnight. The resulting slurry was diluted with CH2Cl2 (50 mL) and filtered to afford N-(4-chloro-3-(trifluoromethyl)phenyl)-N-(4-ethoxycarbonylphenyl) urea as a white solid (5.93 g, 97%): TLC (40% EtOAc/60% hexane) Rf 0.44.


C1f. General Method for the Synthesis of Ureas by Reaction of an Isocyanate with an Aniline. Synthesis of N-(4-Chloro-3-(trifluoromethyl)phenyl)-N′-(3-carboxyphenyl) Urea



embedded image


To a solution of 4-chloro-3-(trifluoromethyl)phenyl isocyanate (1.21 g, 5.46 mmol) in CH2Cl2 (8 mL) was added 4-(3-carboxyphenoxy)aniline (Method A11; 0.81 g, 5.76 mmol) and the resulting mixture was stirred at room temp. overnight, then treated with MeOH (8 mL), and stirred an additional 2 h. The resulting mixture was concentrated under reduced pressure. The resulting brown solids were triturated with a 1:1 EtOAc/hexane solution to give N-(4-chloro-3-(trifluoromethyl)phenyl)-N′-(3-carboxyphenyl) urea as an off-white solid (1.21 g, 76%).


C2a. General Method for Urea Synthesis by Reaction of an Aniline with N,N-Carbonyl Diimidazole Followed by Addition of a Second Aniline. Synthesis of N-(2-Methoxy-5-(trifluoromethyl)phenyl)-N′-(4-(2-(N-methylcarbamoyl)-4-pyridyloxy)phenyl) Urea



embedded image


To a solution of 2-methoxy-5-(trifluoromethyl)aniline (0.15 g) in anh CH2Cl2 (15 mL) at 0° C. was added CDI (0.13 g). The resulting solution was allowed to warm to room temp. over 1 h, was stirred at room temp. for 16 h, then was treated with 4-(2-(N-methylcarbamoyl)-4-pyridyloxy)aniline (0.18 g). The resulting yellow solution was stirred at room temp. for 72 h, then was treated with H2O (125 mL). The resulting aqueous mixture was extracted with EtOAc (2×150 mL). The combined organics were washed with a saturated NaCl solution (100 ml), dried (MgSO4) and concentrated under reduced pressure. The residue was triturated (90% EtOAc/10% hexane). The resulting white solids were collected by filtration and washed with EtOAc. The filtrate was concentrated under reduced pressure and the residual oil purified by column chromatography (gradient from 33% EtOAc/67% hexane to 50% EtOAc/50% hexane to 100% EtOAc) to give N-(2-methoxy-5-(trifluoromethyl)phenyl)-N′-(4-(2-(N-methylcarbamoyl)-4-pyridyloxy)phenyl) urea as a light tan solid (0.098 g, 30%): TLC (100% EtOAc) Rf 0.62; 1H NMR (DMSO-d6) δ 2.76 (d, J=4.8 Hz, 3H), 3.96 (s, 3H), 7.1-7.6 and 8.4-8.6 (A, 11H), 8.75 (d, J=4.8 Hz, 1H), 9.55 (s, 1H); FAB-MS m/z 461 ((M+H)+).


C2b. General Method for Urea Synthesis by Reaction of an Aniline with N,N′-Carbonyl Diimidazole Followed by Addition of a Second Aniline. Symmetrical Urea's as Side Products of a N,N′-Carbonyl Diimidazole Reaction Procedure. Synthesis of Bis(4-(2-(N-methylcarbamoyl)-4-pyridyloxy)phenyl) Urea



embedded image


To a stirring solution of 3-amino-2-methoxyquinoline (0.14 g) in anhydrous CH2Cl2 (15 mL) at 0 C was added CDI (0.13 g). The resulting solution was allowed to warn to room temp. over 1 h then was stirred at room temp. for 16 h. The resulting mixture was treated with 4-(2-(N-methylcarbamoyl)-4-pyridyloxy)aniline (0.18 g). The resulting yellow solution stirred at room temp. for 72 h, then was treated with water (125 nm). The resulting aqueous mixture was extracted with EtOAc (2×150 mL). The combined organic phases were washed with a saturated NaCl solution (100 mL), dried (MgSO4) and concentrated under reduced pressure. The residue was triturated (90% EtOAc/10% hexane). The resulting white solids were collected by filtration and washed with EtOAc to give bis(4-(2-(N-methylcarbamoyl)-4-pyridyloxy)phenyl) urea (0.081 g, 44%): TLC (100% EtOAc) Rf 0.50; 1H NMR (DMSO-d6) δ 2.76 (d, J=5.1 Hz, 6H), 7.1-7.6 (m, 12H), 8.48 (d, J=5.4 Hz, 1H), 8.75 (d, J=4.8 Hz, 2H), 8.86 (s 2H); HPLC ES-MS m/z 513 ((M+H)+).


C2c. General Method for the Synthesis of Ureas by Reaction of an Isocyanate with an Aniline. Synthesis of N-(2-Methoxy-5-(trifluoromethyl)phenyl-N′-(4-(1,3-dioxoisoindolin-5-yloxy)phenyl) Urea



embedded image


To a stirring solution of 2-methoxy-5-(trifluoromethyl)phenyl isocyanate (0.10 g, 0.47 mmol) in CH2Cl2 (1.5 mL) was added 5-(4-aminophenoxy)isoindoline-1,3-dione (Method A3, Step 3; 0.12 g, 0.47 mmol) in one portion. The resulting mixture was stirred for 12 h, then was treated with CH2Cl2 (10 mL) and MeOH (5 mL). The resulting mixture was sequentially washed with a 1N HCl solution (15 mL) and a saturated NaCl solution (15 mL), dried (MgSO4) and concentrated under reduced pressure to afford N-(2-methoxy-5-(trifluoromethyl)phenyl-N′-(4-(1,3-dioxoisoindolin-5-yloxy)phenyl) urea as a white solid (0.2 g, 96%): TLC (70% EtOAc/30% hexane) Rf 0.50; 1H NMR (DMSO-d6) δ 3.95 (s, 3H), 7.31-7.10 (m, 6H), 7.57 (d, J=9.3 Hz, 2H), 7.80 (d, J=8.7 Hz, 1H), 8.53 (br s, 2H), 9.57 (s, 1H), 11.27 (br s, 1H); HPLC ES-MS 472.0 (M+H)+, 100%).


C2d. General Method for Urea Synthesis by Reaction of an Aniline with N,N′-Carbonyl Diimidazole Followed by Addition of a Second Aniline. Synthesis of N-(5-(tert-Butyl)-2-(2,5-dimethylpyrrolyl)phenyl)-N′-(4-(2-(N-methylcarbamoyl)-4-pyridyloxy)phenyl) Urea



embedded image


To a stirring solution of CDI (0.21 g, 1.30 mmol) in CH2Cl2 (2 mL) was added 5-(tert-butyl)-2-(2,5-dimethylpyrrolyl)aniline (Method A4, Step 2; 0.30 g, 1.24 mmol) in one portion. The resulting mixture was stirred at room temp. for 4 h, then 4-(2-(N-methylcarbamoyl)-4-pyridyloxy)aniline (0.065 g, 0.267 mmol) was then added in one portion. The resulting mixture was heated at 36° C. overnight, then cooled to room temp. and diluted with EtOAc (5 mL). The resulting mixture was sequentially washed with water (15 mL) and a 1N HCl solution (15 mL), dried (MgSO4), and filtered through a pad of silica gel (50 g) to afford N-(5-(tert-butyl)-2-(2,5-dimethylpyrrolyl)phenyl)-N′-(4-(2-(N-methylcarbamoyl)-4-pyridyloxy)phenyl) urea as a yellowish solid (0.033 g, 24%): TLC (40% EtOAc/60% hexane) Rf 0.24; 1H NMR (acetone-d6) δ 1.37 (s, 9H), 1.89 (s, 6H), 2.89 (d, J=4.8 Hz, 3H), 5.83 (s, 2H), 6.87-7.20 (m, 6H), 7.17 (dd, 1H), 7.51-7.58 (m, 3H), 8.43 (d, J=5.4 Hz, 1H), 8.57 (d, J=2.1 Hz, 1H), 8.80 (br s, 1H); HPLC ES-MS 512 ((M+H)+, 100%).


C3. Combinatorial Method for the Synthesis of Diphenyl Ureas Using Triphosgene

One of the anilines to be coupled was dissolved in dichloroethane (0.10 M). This solution was added to a 8 mL vial (0.5 mL) containing dichloroethane (1 mL). To this was added a bis(trichloromethyl) carbonate solution (0.12 M in dichloroethane, 0.2 mL, 0.4 equiv.), followed by diisopropylethylamine (0.35 M in dichloroethane, 0.2 ml, 1.2 equiv.). The vial was capped and heat at 80° C. for 5 h, then allowed to cool to room temp for approximately 10 h. The second aniline was added (0.10 M in dichloroethane, 0.5 mL, 1.0 equiv.), followed by diisopropylethylamine (0.35 M in dichloroethane, 0.2 mL, 1.2 equiv.). The resulting mixture was heated at 80° C. for 4 h, cooled to room temperature and treated with MeOH (0.5 mL). The resulting mixture was concentrated under reduced pressure and the products were purified by reverse phase HPLC.


C4. General Method for Urea Synthesis by Reaction of an Aniline with Phosgene Followed by Addition of a Second Aniline. Synthesis of N-(2-Methoxy-5-(trifluoromethyl)phenyl)-N′-(4-(2-(N-methylcarbamoyl)-4-pyridyloxy)phenyl) Urea



embedded image


To a stirring solution of phosgene (1.9 M in toluene; 2.07 mL 0.21 g, 1.30 mmol) in CH2Cl2 (20 mL) at 0° C. was added anh pyridine (0.32 mL) followed by 2-methoxy-5-(trifluoromethyl)aniline (0.75 g). The yellow solution was allowed to warm to room temp during which a precipitate formed. The yellow mixture was stirred for 1 h, then concentrated under reduced pressure. The resulting solids were treated with anh toluene (20 mL) followed by 4-(2-(N-methylcarbamoyl)-4-pyridyloxy)aniline (prepared as described in Method A2; 0.30 g) and the resulting suspension was heated at 80° C. for 20 h, then allowed to cool to room temp. The resulting mixture was diluted with water (100 mL), then was made basic with a saturated NaHCO3 solution (2-3 mL). The basic solution was extracted with EtOAc (2×250 mL). The organic layers were separately washed with a saturated NaCl solution, combined, dried (MgSO4), and concentrated under reduced pressure. The resulting pink-brown residue was dissolved in MeOH and absorbed onto SiO2 (100 g). Column chromatography (300 g SiO2; gradient from 1% Et3N/33% EtOAc/66%. hexane to 1% Et3N/99% EtOAc to 1% Et3N/20% MeOH/79% EtOAc) followed by concentration under reduced pressure at 45° C. gave a warm concentrated EtOAc solution, which was treated with hexane (10 mL) to slowly form crystals of N-(2-methoxy-5-(trifluoromethyl)phenyl)-N′-(4-(2-(N-methylcarbamoyl)-4-pyridyloxy)phenyl) urea (0.4 g): TLC (1% Et3N/99% EtOAc) Rf 0.40.


D. Interconversion of Ureas
D1a. Conversion of ω-Aminophenyl Ureas into ω-(Aroylamino)phenyl Ureas. Synthesis of N-(4-Chloro-3-((trifluoromethyl)phenyl)-N′-(4-(3-methoxycarbonylphenyl)carboxyaminophenyl) Urea



embedded image


To a solution of N-(4-chloro-3-((trifluoromethyl)phenyl)-N′-(4-aminophenyl) urea (Method C1d; 0.050 g, 1.52 mmol), mono-methyl isophthalate (0.25 g, 1.38 mmol), HOBT.H2O (0.41 g, 3.03 mmol) and N-methylmorpholine (0.33 mL, 3.03 mmol) in DMF (8 mL) was added EDCI.HCl (0.29 g, 1.52 mmol). The resulting mixture was stirred at room temp. overnight, diluted with EtOAc (25 mL) and sequentially washed with water (25 mL) and a saturated NaHCO3 solution (25 ml). The organic layer was dried (Na2SO4) and concentrated under reduced pressure. The resulting solids were triturated with an EtOAc solution (80% EtOAc/20% hexane) to give N-(4-chloro-3-((trifluoromethyl)phenyl)-N-(4-(3-methoxycarbonylphenyl)carboxyaminophenyl) urea (0.27 g, 43%): mp 121-122; TLC (80% EtOAc/20% hexane) Rf 0.75.


D1b. Conversion of ω-Carboxyphenyl Ureas into ω-(Arylcarbamoyl)phenyl Ureas. Synthesis of N-(4-Chloro-3-((trifluoromethyl)phenyl)-N′-(4-(3-methylcarbamoylphenyl)carbamoylphenyl) Urea



embedded image


To a solution of N-(4-chloro-3-((trifluoromethyl)phenyl)-N-(4-(3-methylcarbamoylphenyl)carboxyaminophenyl) urea (0.14 g, 0.48 mmol), 3-methylcarbamoylaniline (0.080 g, 0.53 mmol), HOBT-H2O (0.14 g, 1.07 mmol), and N-methylmorpholine (0.5 mL, 1.07 mmol) in DMF (3 mL) at 0° C. was added EDCI.HCl (0.10 g, 0.53 mmol). The resulting mixture was allowed to warm to room temp. and was stirred overnight. The resulting mixture was treated with water (10 mL), and extracted with EtOAc (25 mL). The organic phase was concentrated under reduced pressure. The resulting yellow solids were dissolved in EtOAc (3 mL) then filtered through a pad of silica gel (17 g, gradient from 70% EtOAc/30% hexane to 10% MeOH/90% EtOAc) to give N-(4-chloro-3-((trifluoromethyl)phenyl)-N-(4-(3-methylcarbamoylphenyl) carbamoylphenyl) urea as a white solid (0.097 g, 41%): mp 225-229; TLC (100% EtOAc) Rf 0.23.


D1c. Combinatorial Approach to the Conversion of ω-Carboxyphenyl Ureas into ω-(Arylcarbamoyl)phenyl Ureas. Synthesis of N-(4-Chloro-3-(trifluoromethyl)phenyl)-N′-(4-N-(3-(N-(3-pyridyl)carbamoyl)phenyl)carbamoyl)phenyl) Urea



embedded image


A mixture of N-(4-chloro-3-((trifluoromethyl)phenyl)-N′-(3-carboxyphenyl) urea (Method C1f; 0.030 g, 0.067 mmol) and N-cyclohexyl-N′-(methylpolystyrene)carbodiimide (55 mg) in 1,2-dichloroethane (1 mL) was treated with a solution of 3-aminopyridine in CH2Cl2 (1 M; 0.074 mL, 0.074 mmol). (In cases of insolubility or turbidity, a small amount of DMSO was also added.) The resulting mixture was heated at 36° C. overnight. Turbid reactions were then treated with THF (1 mL) and heating was continued for 18 h. The resulting mixtures were treated with poly(4-(isocyanatomethyl)styrene) (0.040 g) and the resulting mixture was stirred at 36° C. for 72 h, then cooled to room temp. and filtered. The resulting solution was filtered through a plug of silica gel (1 g). Concentration under reduced pressure afforded N-(4-chloro-3-((trifluoromethyl)phenyl)-N′-(4-(N-4-(3-(N-(3-pyridyl)carbamoyl)phenyl)carbamoyl)phenyl) urea (0.024 g, 59%): TLC (70% EtOAc/30% hexane) Rf 0.12.


D2. Conversion of ω-Carboalkoxyaryl Ureas into ω-Carbamoylaryl Ureas. Synthesis of N-(4-Chloro-3-((trifluoromethyl)phenyl)-N′-(4-(3-methylcarbamoylphenyl)carboxyaminophenyl) Urea



embedded image


To a sample of N-(4-chloro-3-((trifluoromethyl)phenyl)-N′-(4-(3-carbomethoxyphenyl) carboxyaminophenyl) urea (0.17 g, 0.34 mmol) was added methylamine (2 M in THF; 1 mL, 1.7 mmol) and the resulting mixture was stirred at room temp. overnight, then concentrated under reduced pressure to give N-(4-chloro-3-((trifluoromethyl)phenyl)-N′-(4-(3-methylcarbamoylphenyl)carboxyaminophenyl) urea as a white solid: mp 247; TLC (100% EtOAc) Rf 0.35.


D3. Conversion of ω-Carboalkoxyaryl Ureas into ω-Carboxyaryl Ureas. Synthesis of N-(4-Chloro-3-((trifluoromethyl)phenyl)-N′-(4-carboxyphenyl) Urea



embedded image


To a slurry of N-(4-chloro-3-((trifluoromethyl)phenyl)-N′-(4-ethoxycarbonylphenyl) urea (Method C1e; 5.93 g, 15.3 mmol) in MeOH (75 mL) was added an aqueous KOH solution (2.5 N, 10 mL, 23 mmol). The resulting mixture was heated at the reflux temp. for 12 h, cooled to room temp., and concentrated under reduced pressure. The residue was diluted with water (50 mL), then treated with a 1 N HCl solution to adjust the pH to 2 to 3. The resulting solids were collected and dried under reduced pressure to give N-(4-chloro-3-((trifluoromethyl)phenyl)-N′-(4-carboxyphenyl) urea as a white solid (5.05 g, 92%).


D4. General Method for the Conversion of ω-Alkoxy Esters into ω-Alkyl Amides. Synthesis of N-(4-Chloro-3-((trifluoromethyl)phenyl)-N′-((4-(3-(5-(2-dimethylaminoethyl)carbamoyl)pyridyl)oxyphenyl) Urea



embedded image


Step 1. Synthesis of N-(4-Chloro-3-(trifluoromethyl)phenyl)-N′-((4-(3-(5-carboxypyridyl)oxyphenyl) Urea

N-(4-Chloro-3-(trifluoromethylphenyl)-N′-((4-(3-(5′-methoxycarbonylpyridyl)oxyphenyl) urea was synthesized from 4-chloro-3-(trifluoromethyl)phenyl isocyanate and 4-(3-(5-methoxycarbonylpyridyl)oxyaniline (Method A14, Step 2) in a manner analogous to Method C1a. A suspension of N-(4-chloro-3-(trifluoromethyl)phenyl)-N′-((4-(3-(5-methoxycarbonylpyridyl)oxyphenyl) urea (0.26 g, 0.56 mmol) in MeOH (10 mL) was treated with a solution of KOH (0.14 g, 2.5 mmol) in water (1 mL) and was stirred at room temp. for 1 h. The resulting mixture was adjusted to pH 5 with a 1 N HCl solution. The resulting precipitate was removed by filtration and washed with water. The resulting solids were dissolved in EtOH (10 mL) and the resulting solution was concentrated under reduced pressure. The EtOH/concentration procedure was repeated twice to give N-(4-chloro-3-(trifluoromethyl)phenyl)-N′-((4-(3-(5-carboxypyridyl)oxyphenyl) urea (0.18 g, 71%).




embedded image


Step 2. Synthesis of N-(4-chloro-3-(trifluoromethyl)phenyl)-N-((4-(3-(5-(2-dimethylaminoethyl)carbamoyl)pyridyl)oxyphenyl) urea

A mixture of N-(4-chloro-3-(trifluoromethyl)phenyl)-N′-((4-(3-(5-carboxypyridyl)oxyphenyl) urea (0.050 g, 0.011 mmol), N,N-dimethylethylenediamine (0.22 mg, 0.17 mmol), HOBT (0.028 g, 0.17 mmol), N-methylmorpholine (0.035 g, 0.28 mmol), and EDCI.HCl (0.032 g, 0.17 mmol) in DMF (2.5 ml) was stirred at room temp. overnight. The resulting solution was separated between EtOAc (50 mL) and water (50 mL). The organic phase was washed with water (35 mL), dried (MgSO4) and concentrated under reduced pressure. The residue was dissolved in a minimal amount of CH2Cl2 (approximately 2 mL). The resulting solution was treated with Et2O dropwise to give N-(4-chloro-3-(trifluoromethyl)phenyl)-N′-((4-(3-(5-(2-dimethylaminoethyl)carbamoyl)pyridyl)oxyphenyl) urea as a white precipitate (0.48 g, 84%: 1H NMR (DMSO-d6) δ 2.10 s, 6H), 3.26 (s, H), 7.03 (d, 2H), 7.52 (d, 2H), 7.60 (m, 3H), 8.05 (s, 1H), 8.43 (s, 1H), 8.58 (t, 1H), 8.69 (s, 1H), 8.90 (s, 1H), 9.14 (s, 1H); HPLC ES-MS m/z 522 ((M+H)4).


D5. General Method for the Deprotection of N-(ω-Silyloxyalkyl)amides. Synthesis of N-(4-Chloro-3-((trifluoromethyl)phenyl)-N′-(4-(4-(2-(N-(2-hydroxy)ethylcarbamoyl)pyridyloxyphenyl) Urea



embedded image


To a solution of N-(4-chloro-3-((trifluoromethyl)phenyl)-N′-(4-(4-(2-(N-(2-triisopropylsilyloxy)ethylcarbamoyl)pyridyloxyphenyl) urea (prepared in a manner analogous to Method C1a; 0.25 g, 0.37 mmol) in anh THF (2 mL) was tetrabutylammonium fluoride (1.0 M in THF; 2 mL). The mixture was stirred at room temperature for 5 min, then was treated with water (10 mL). The aqueous mixture was extracted with EtOAc (3×10 mL). The combined organic layers were dried (MgSO4) and concentrated under reduced pressure. The residue was purified by column chromatography (SiO2; gradient from 100% hexane to 40% EtOAc/60% hexane) to give N-(4-chloro-3-((trifluoromethyl)phenyl)-N′-(4-(4-(2-(N-(2-hydroxy)ethylcarbamoyl)pyridyloxyphenyl) urea as a white solid (0.019 g, 10%).


Listed below are compounds listed in the Tables below which have been synthesized according to the Detailed Experimental Procedures given above:


Syntheses of Exemplified Compounds
See Tables for Compound Characterization

Entry 1: 4-(3-N-Methylcarbamoylphenoxy)aniline was prepared according to Method A13. According to Method C3, 3-tert-butylaniline was reacted with bis(trichloromethyl)carbonate followed by 4-(3-N-Methylcarbamoylphenoxy)aniline to afford the urea.


Entry 2: 4-Fluoro-1-nitrobenzene and p-hydroxyacetophenone were reacted according to Method A13, Step 1 to afford the 4-(4-acetylphenoxy)-1-nitrobenzene. 4-(4-Acetylphenoxy)-1-nitrobenzene was reduced according to Method A13, Step 4 to afford 4-(4-acetylphenoxy)aniline. According to Method C3,3-tert-butylaniline was reacted with bis(trichloromethyl) carbonate followed by 4-(4-acetylphenoxy)aniline to afford the urea.


Entry 3: According to Method C2d, 3-tert-butylaniline was treated with CDI, followed by 4-(3-N-methylcarbamoyl)-4-methoxyphenoxy)aniline, which had been prepared according to Method A8, to afford the urea.


Entry 4: 5-tert-Butyl-2-methoxyaniline was converted to 5-tert-butyl-2-methoxyphenyl isocyanate according to Method B1. 4-(3-N-Methylcarbamoylphenoxy)aniline, prepared according to Method A13, was reacted with the isocyanate according to Method C1a to afford the urea.


Entry 5: According to Method C2d, 5-tert-butyl-2-methoxyaniline was reacted with CDI followed by 4-(3-N-methylcarbamoyl)-4-methoxyphenoxy)aniline, which had been prepared according to Method A8, to afford the urea.


Entry 6: 5-(4-Aminophenoxy)isoidoline-1,3-dione was prepared according to Method A3. According to Method 2d, 5-tert-butyl-2-methoxyaniline was reacted with CDI followed by 5-(4-aminophenoxy)isoindoline-1,3-dione to afford the urea.


Entry 7: 4-(1-Oxoisoindolin-5-yloxy)aniline was synthesized according to Method A12. According to Method 2d, S-tert-butyl-2-methoxyaniline was reacted with CDI followed by 4-(1-oxoisoindolin-5-yloxy)aniline to afford the urea.


Entry 8: 4-(3-N-Methylcarbamoylphenoxy)aniline was synthesized according to Method A13. According to Method C2a, 2-methoxy-5-(trifluoromethyl)aniline was reacted with CDI followed by 4-(3-N-methylcarbamoylphenoxy)aniline to afford the urea.


Entry 9: 4-Hydroxyacetophenone was reacted with 2-chloro-5-nitropyridine to give 4-(4-acetylphenoxy)-5-nitropyridine according to Method A3, Step 2. According to Method A8, Step 4,4-(4-acetylphenoxy)-5-nitropyridine was reduced to 4-(4-acetylphenoxy)-5-aminopyridine. 2-Methoxy-5-(trifluoromethyl)aniline was converted to 2-methoxy-5-(trifluoromethyl)phenyl isocyanate according to Method B1. The isocyanate was reacted with 4-(4-acetylphenoxy)-5-aminopyridine according to Method C1a to afford the urea.


Entry 10: 4-Fluoro-1-nitrobenzene and p-hydroxyacetophenone were reacted according to Method A13, Step 1 to afford the 4-(4-acetylphenoxy)-1-nitrobenzene. 4-(4-Acetylphenoxy)-1-nitrobenzene was reduced according to Method A13, Step 4 to afford 4-(4-acetylphenoxy)aniline. According to Method C3, 5-(trifluoromethyl)-2-methoxybutylaniline was reacted with bis(trichloromethyl) carbonate followed by 4-(4-acetylphenoxy)aniline to afford the urea.


Entry 11: 4-Chloro-N-methyl-2-pyridinecarboxamide, which was synthesized according to Method A2, Step 3a, was reacted with 3-aminophenol according to Method A2, Step 4 using DMAC in place of DMF to give 3-(-2-(N-methylcarbamoyl)-4-pyridyloxy)aniline. According to Method C4, 2-methoxy-5-(trifluoromethyl)aniline was reacted with phosgene followed by 3-(-2-(N-methylcarbamoyl)-4-pyridyloxy)aniline to afford the urea.


Entry 12: 4-Chloropyridine-2-carbonyl chloride HCl salt was reacted with ammonia according to Method A2, Step 3b to form 4-chloro-2-pyridinecarboxamide. 4-Chloro-2-pyridinecarboxamide was reacted with 3-aminophenol according to Method A2, Step 4 using DISC in place of DMF to give 3-(2-carbamoyl-4-pyridyloxy)aniline. According to Method C2a, 2-methoxy-5-(trifluoromethyl)aniline was reacted with phosgene followed by 3-(2-carbamoyl-4-pyridyloxy)aniline to afford the urea.


Entry 13: 4-Chloro-N-methyl-2-pyridinecarboxamide was synthesized according to Method A2, Step 3b. 4-Chloro-N-methyl-2-pyridinecarboxamide was reacted with 4-aminophenol according to Method A2, Step 4 using DMAC in place of DMF to give 4-(2-(N-methylcarbamoyl)-4-pyridyloxy)aniline. According to Method C2a, 2-methoxy-5-(trifluoromethyl)aniline was reacted with CDI followed by 4-(2-(N-methylcarbamoyl)-4-pyridyloxy)aniline to afford the urea.


Entry 14: 4-Chloropyridine-2-carbonyl chloride HCl salt was reacted with ammonia according to Method A2, Step 3b to form 4-chloro-2-pyridinecarboxamide. 4-Chloro-2-pyridinecarboxamide was reacted with 4-aminophenol according to Method A2, Step 4 using DMAC in place of DMF to give 4-(2-carbamoyl-4-pyridyloxy)aniline. According to Method C4,2-methoxy-5-(trifluoromethyl)aniline was reacted with phosgene followed by 4-(2-carbamoyl-4-pyridyloxy)aniline to afford the urea.


Entry 15: According to Method C2d, 5-(trifluoromethyl)-2-methoxyaniline was reacted with CDI followed by 4-(3-N-methylcarbamoyl)-4-methoxyphenoxy)aniline, which had been prepared according to Method A8, to afford the urea.


Entry 16: 4-(2-(N-Methylcarbamoyl)-4-pyridyloxy)-2-methylaniline was synthesized according to Method A5. 5-(Trifluoromethyl)-2-methoxyaniline was converted into 5-(trifluoromethyl)-2-methoxyphenyl isocyanate according to Method B1. The isocyanate was reacted with 4-(2-(N-methylcarbamoyl)-4-pyridyloxy)-2-methylaniline according to Method C1c to afford the urea.


Entry 17: 4-(2-(N-Methylcarbamoyl)-4-pyridyloxy)-2-chloroaniline was synthesized according to Method A6. 5-(Trifluoromethyl)-2-methoxyaniline was converted into 5-(trifluoromethyl)-2-methoxyphenyl isocyanate according to Method B1. 5-(Trifluoromethyl)-2-methoxyphenyl isocyanate was reacted with 4-(2-(N-methylcarbamoyl)-4-pyridyloxy)-2-chloroaniline according to Method C1a to afford the urea.


Entry 18: According to Method A2, Step 4,5-amino-2-methylphenol was reacted with 4-chloro-N-methyl-2-pyridinecarboxamide, which had been synthesized according to Method A2, Step 3b, to give 3-(2-(N-methylcarbamoyl)-4-pyridyloxy)-4-methylaniline. 5-(Trifluoromethyl)-2-methoxyaniline was converted into 5-(trifluoromethyl)-2-methoxyphenyl isocyanate according to Method B1. 5-(Trifluoromethyl)-2-methoxyphenyl isocyanate was reacted with 3-(2-(N-methylcarbamoyl)-4-pyridyloxy)-4-methylaniline according to Method C1a to afford the urea.


Entry 19: 4-Chloropyridine-2-carbonyl chloride was reacted with ethylamine according to Method A2, Step 3b. The resulting 4-chloro-N-ethyl-2-pyridinecarboxamide was reacted with 4-aminophenol according to Method A2, Step 4 to give 4-(2-(N-ethylcarbamoyl)-4-pyridyloxy)aniline. 5-(Trifluoromethyl)-2-methoxyaniline was converted into 5-(trifluoromethyl)-2-methoxyphenyl isocyanate according to Method B1. 5-(Trifluoromethyl)-2-methoxyphenyl isocyanate was reacted with 4-(2-(N-ethylcarbamoyl)-4-pyridyloxy)aniline according to Method C1a to afford the urea.


Entry 20: According to Method A2, Step 4,4-amino-2-chlorophenol was reacted with 4-chloro-N-methyl-2-pyridinecarboxamide, which had been synthesized according to Method A2, Step 3b, to give 4-(2-(N-methylcarbamoyl)-4-pyridyloxy)-3-chloroaniline. 5-(Trifluoromethyl)-2-methoxyaniline was converted into 5-(trifluoromethyl)-2-methoxyphenyl isocyanate according to Method B1. 5-(Trifluoromethyl)-2-methoxyphenyl isocyanate was reacted with 4-(2-(N-methylcarbamoyl)-4-pyridyloxy)-3-chloro aniline according to Method C1a to afford the urea.


Entry 21: 4-(4-Methylthiophenoxy)-1-nitrobenzene was oxidized according to Method A19, Step 1 to give 4-(4-methylsulfonylphenoxy)-1-nitrobenzene. The nitrobenzene was reduced according to Method A19, Step 2 to give 4-(4-methylsulfonylphenoxy)-1-aniline. According to Method C1a, 5-(trifluoromethyl)-2-methoxyphenyl isocyanate was reacted with 4-(4-methylsulfonylphenoxy)-1-aniline to afford the urea.


Entry 22: 4-(3-carbamoylphenoxy)-1-nitrobenzene was reduced to 4-(3-carbamoylphenoxy)aniline according to Method A15, Step 4. According to Method C1a, 5-(trifluoromethyl)-2-methoxyphenyl isocyanate was reacted with 4-(3-carbamoylphenoxy)aniline to afford the urea.


Entry 23: 5-(4-Aminophenoxy)isoindoline-1,3-dione was synthesized according to Method A3. 5-(Trifluoromethyl)-2-methoxyaniline was converted into 5-(trifluoromethyl)-2-methoxyphenyl isocyanate according to Method B1. 5-(Trifluoromethyl)-2-methoxyphenyl isocyanate was reacted with 5-(4-aminophenoxy)isoindoline-1,3-dione according to Method C1a to afford the urea.


Entry 24; 4-Chloropyridine-2-carbonyl chloride was reacted with dimethylamine according to Method A2, Step 3b. The resulting 4-chloro-N,N-dimethyl-2-pyridinecarboxamide was reacted with 4-aminophenol according to Method A2, Step 4 to give 4-(2-(N,N-dimethylcarbamoyl)-4-pyridyloxy)aniline. 5-(Trifluoromethyl)-2-methoxyaniline was converted into 5-(trifluoromethyl)-2-methoxyphenyl isocyanate according to Method B1. 5-(Trifluoromethyl)-2-methoxyphenyl isocyanate was reacted with 4-(2-(N,N-dimethylcarbamoyl)-4-pyridyloxy) an line according to Method C1a to afford the urea.


Entry 25: 4-(1-Oxoisoindolin-5-yloxy)aniline was synthesized according to Method A12. 5-(Trifluoromethyl)-2-methoxyaniline was treated with CDI, followed by 4-(1-oxoisoindolin-5-yloxy)aniline according to Method C2d to afford the urea.


Entry 26: 4-Hydroxyacetophenone was reacted with 4-fluoronitrobenzene according to Method A13, Step 1 to give 4-(4-acetylphenoxy)nitrobenzene. The nitrobenzene was reduced according to Method A13, Step 4 to afford 4-(4-acetylphenoxy)aniline, which was converted to the 4-(4-(1-(N-methoxy)iminoethyl)phenoxyaniline HCl salt according to Method A16. 5-(Trifluoromethyl)-2-methoxyaniline was converted into 5-(trifluoromethyl)-2-methoxyphenyl isocyanate according to Method B1. 5-(Trifluoromethyl)-2-methoxyphenyl isocyanate was reacted with 4-(4-(1-(N-methoxy)iminoethyl)phenoxyaniline HCl salt to Method C1a to afford the urea.


Entry 27: 4-Chloro-N-methylpyridinecarboxamide was synthesized as described in Method A2, Step 3b. The chloropyridine was reacted with 4-aminothiophenol according to Method A1, Step 4 to give 4-(4-(2-(N-methylcarbamoyl)phenylthio)aniline. 5-(Trifluoromethyl)-2-methoxyaniline was converted into 5-(trifluoromethyl)-2-methoxyphenyl isocyanate according to Method B1. 5-(Trifluoromethyl)-2-methoxyphenyl isocyanate was reacted with 4-(4-(2-(N-methylcarbamoyl)phenylthio)aniline according to Method C1a to afford the urea.


Entry 28: 5-(4-Aminophenoxy)-2-methylisoindoline-1,3-dione was synthesized according to Method A9. 5-(Trifluoromethyl)-2-methoxyaniline was converted into 5-(trifluoromethyl)-2-methoxyphenyl isocyanate according to Method B1. 5-(Trifluoromethyl)-2-methoxyphenyl isocyanate was reacted with 5-(4-aminophenoxy)-2-methylisoindoline-1,3-dione according to Method C1a to afford the urea.


Entry 29: 4-Chloro-N-methylpyridinecarboxamide was synthesized as: described in Method A2, Step 3b. The chloropyridine was reacted with 3-aminothiophenol according to Method A1, Step 4 to give 3-(4-(2-(N-methylcarbamoyl)phenylthio)aniline. 5-(Trifluoromethyl)-2-methoxyaniline was converted into 5-(trifluoromethyl)-2-methoxyphenyl isocyanate according to Method B1. 5-(Trifluoromethyl)-2-methoxyphenyl isocyanate was reacted with 3-(4-(2-(N-methylcarbamoyl)phenylthio)aniline according to Method C1a to afford the urea.


Entry 30: 4-Chloropyridine-2-carbonyl chloride was reacted with isopropylamine according to Method A2, Step 3b. The resulting 4-chloro-N-isopropyl-2-pyridinecarboxamide was reacted with 4-aminophenol according to Method A2, Step 4 to give 4-(2-(N-isopropylcarbamoyl)-4-pyridyloxy)aniline. 5-(Trifluoromethyl)-2-methoxyaniline was converted into S-(trifluoromethyl)-2-methoxyphenyl isocyanate according to Method B1. 5-(Trifluoromethyl)-2-methoxyphenyl isocyanate was reacted with 4-(2-(N-isopropylcarbamoyl)-4-pyridyloxy)aniline according to Method C1a to afford the urea.


Entry 31: 4-(3-(5-Methoxycarbonyl)pyridyloxy)aniline was synthesized according to Method A14. 5-(Trifluoromethyl)-2-methoxyaniline was converted into 5-(trifluoromethyl)-2-methoxyphenyl isocyanate according to Method B1. 5-(Trifluoromethyl)-2-methoxyphenyl isocyanate was reacted with 4-(3-(5-methoxycarbonyl)pyridyloxy)aniline according to Method C1a to afford the urea. N-(5-(Trifluoromethyl)-2-methoxyphenyl)-N-(4-(3-(5-methoxycarbonylpyridyl)oxy)phenyl) urea was saponified according to Method D4, Step 1, and the corresponding acid was coupled with 4-(2-aminoethyl)morpholine to afford the amide according to Method D4, Step 2.


Entry 32: 4-(3-(5-Methoxycarbonyl)pyridyloxy)aniline was synthesized according to Method A14. 5-(Trifluoromethyl)-2-methoxyaniline was converted into 5-(trifluoromethyl)-2-methoxyphenyl isocyanate according to Method B1. 5-(Trifluoromethyl)-2-methoxyphenyl isocyanate was reacted with 4-(3-(5-methoxycarbonyl)pyridyloxy)aniline according to Method C1a to afford the urea. N-(5-(Trifluoromethyl)-2-methoxyphenyl)-N-(4-(3-(5-methoxycarbonylpyridyl)oxy)phenyl) urea was saponified according to Method D4, Step 1, and the corresponding acid was coupled with methylamine according to Method D4, Step 2 to afford the amide,


Entry 33: 4-(3-(5-Methoxycarbonyl)pyridyloxy)aniline was synthesized according to Method A14. 5-(Trifluoromethyl)-2-methoxyaniline was converted into 5-(trifluoromethyl)-2-methoxyphenyl isocyanate according to Method B1. 5-(Trifluoromethyl)-2-methoxyphenyl isocyanate was reacted with 4-(3-(5-methoxycarbonyl)pyridyloxy)aniline according to Method C1a to afford the urea. N-(5-(Trifluoromethyl)-2-methoxyphenyl)-N′-(4-(3-(5-methoxycarbonylpyridyl)oxy)phenyl) urea was saponified according to Method D4, Step 1, and the corresponding acid was coupled with N,N-dimethylethylenediamine according to Method D4, Step 2 to afford the amide


Entry 34: 4-(3-Carboxyphenoxy)aniline was synthesized according to Method A11. 5-(Trifluoromethyl)-2-methoxyaniline was converted into 5-(trifluoromethyl)-2-methoxyphenyl isocyanate according to Method B1. 4-(3-Carboxyphenoxy)aniline was reacted with 5-(trifluoromethyl)-2-methoxyphenyl isocyanate according to Method C1f to afford N-(5-(trifluoromethyl)-2-methoxyphenyl)-N′-(3-carboxyphenyl) urea, which was coupled with 3-aminopyridine according to Method D1c.


Entry 35: 4-(3-Carboxyphenoxy)aniline was synthesized according to Method A11. 5-(Trifluoromethyl)-2-methoxyaniline was converted into 5-(trifluoromethyl)-2-methoxyphenyl isocyanate according to Method B1. 4-(3-Carboxyphenoxy)aniline was reacted with 5-(trifluoromethyl)-2-methoxyphenyl isocyanate according to Method C1f to afford N-(5-(trifluoromethyl)-2-methoxyphenyl)-N-(3-carboxyphenyl) urea, which was coupled with N-(4-fluorophenyl)piperazine according to Method D1c.


Entry 36: 4-(3-Carboxyphenoxy)aniline was synthesized according to Method A11. 5-(Trifluoromethyl)-2-methoxyaniline was converted into 5-(trifluoromethyl)-2-methoxyphenyl isocyanate according to Method B1. 4-(3-Carboxyphenoxy)aniline was reacted with 5-(trifluoromethyl)-2-methoxyphenyl isocyanate according to Method C1f to afford N-(5-(trifluoromethyl)-2-methoxyphenyl)-N-(3-carboxyphenyl) urea, which was coupled with 4-fluoroaniline according to Method D1c.


Entry 37: 4-(3-Carboxyphenoxy)aniline was synthesized according to Method A11. 5-(Trifluoromethyl)-2-methoxyaniline was converted into 5-(trifluoromethyl)-2-methoxyphenyl isocyanate according to Method B1. 4-(3-Carboxyphenoxy)aniline was reacted with 5-(trifluoromethyl)-2-methoxyphenyl isocyanate according to Method C1f to afford N-(5-(trifluoromethyl)-2-methoxyphenyl)-N-(3-carboxyphenyl) urea, which was coupled with 4-(dimethylamino)aniline according to Method D1c.


Entry 38: 4-(3-Carboxyphenoxy)aniline was synthesized according to Method A11. 5-(Trifluoromethyl)-2-methoxyaniline was converted into 5-(trifluoromethyl)-2-methoxyphenyl isocyanate according to Method B1. 4-(3-Carboxyphenoxy)aniline was reacted with 5-(trifluoromethyl)-2-methoxyphenyl isocyanate according to Method C1f to afford N-(5-(trifluoromethyl)-2-methoxyphenyl)-N′-(3-carboxyphenyl) urea, which was coupled with 5-amino-2-methoxypyridine according to Method D1c.


Entry 39: 4-(3-Carboxyphenoxy)aniline was synthesized according to Method A11. 5-(Trifluoromethyl)-2-methoxyaniline was converted into 5-(trifluoromethyl)-2-methoxyphenyl isocyanate according to Method B1. 4-(3-Carboxyphenoxy)aniline was reacted with 5-(trifluoromethyl)-2-methoxyphenyl isocyanate according to Method C1f to afford N-(5-(trifluoromethyl)-2-methoxyphenyl)-N′-(3-carboxyphenyl) urea, which was coupled with 4-morpholinoaniline according to Method D1c.


Entry 40: 4-(3-Carboxyphenoxy)aniline was synthesized according to Method A11. 5-(Trifluoromethyl)-2-methoxyaniline was converted into 5-(trifluoromethyl)-2-methoxyphenyl isocyanate according to Method B1. 4-(3-Carboxyphenoxy)aniline was reacted with 5-(trifluoromethyl)-2-methoxyphenyl isocyanate according to Method C1f to afford N-(5-(trifluoromethyl)-2-methoxyphenyl)-N′-(3-carboxyphenyl) urea, which was coupled with N-(2-pyridyl)piperazine according to Method D1c.


Entry 41: 4-(3-(N-Methylcarbamoyl)phenoxy)aniline was synthesized according to Method A13. According to Method C3,4-chloro-3-(trifluoromethyl)aniline was converted to the isocyanate, then reacted with 4-(3-(N-Methylcarbamoyl)phenoxy)aniline to afford the urea.


Entry 42: 4-(2-N-Methylcarbamyl-4-pyridyloxy)aniline was synthesized according to Method A2. 4-Chloro-3-(trifluoromethyl)phenyl isocyanate was reacted with 4-(2-N-methylcarbamyl-4-pyridyloxy)aniline according to Method C1a to afford the urea.


Entry 43: 4-Chloropyridine-2-carbonyl chloride HCl salt was reacted with ammonia according to Method A1, Step 3b to form 4-chloro-2-pyridinecarboxamide. 4-Chloro-2-pyridinecarboxamide was reacted with 4-aminophenol according to Method A2, Step 4 to form 4-(2-carbamoyl-4-pyridyloxy)aniline. According to Method C1a, 4-chloro-3-(trifluoromethyl)phenyl isocyanate was reacted with 4-(2-carbamoyl-4-pyridyloxy)aniline to afford the urea.


Entry 44: 4-Chloropyridine-2-carbonyl chloride HCl salt was reacted with ammonia according to Method A2, Step 3b to form 4-chloro-2-pyridinecarboxamide. 4-Chloro-2-pyridinecarboxamide was reacted with 3-aminophenol according to Method A1, Step 4 to form 3-(2-carbamoyl-4-pyridyloxy)aniline. According to Method C1a, 4-chloro-3-(trifluoromethylphenyl isocyanate was reacted with 3-(2-carbamoyl-4-pyridyloxy)aniline to afford the urea.


Entry 45: 4-Chloro-N-methyl-2-pyridinecarboxamide, which was synthesized according to Method A1, Step 3a, was reacted with 3-aminophenol according to Method A2, Step 4 to form 3-(-2-(N-methylcarbamoyl)-4-pyridyloxy)aniline. According to Method C1a, 4-chloro-3-(trifluoromethylphenyl isocyanate was reacted with 3-(2-(N-methylcarbamoyl)-4-pyridyloxy)aniline to afford the urea.


Entry 46: 5-(4-Aminophenoxy)isoindoline-1,3-dione was synthesized according to Method A3. According to Method C1a, 4-chloro-3-(trifluoromethylphenyl isocyanate was reacted with 5-(4-aminophenoxy)isoindoline-1,3-dione to afford the urea.


Entry 47: 4-(2-(N-Methylcarbamoyl)-4-pyridyloxy)-2-methylaniline was synthesized according to Method A5. According to Method C1c, 4-chloro-3-(trifluoromethyl)phenyl isocyanate was reacted with 5-(4-aminophenoxy)isoindoline-1,3-dione to afford the urea.


Entry 48: 4-(3-N-Methylsulfamoyl)phenyloxy)aniline was synthesized according to Method A15. According to Method C1a, 4-chloro-3-(trifluoromethyl)phenyl isocyanate was reacted with 4-(3-N-methylsulfamoyl)phenyloxy)aniline to afford the urea.


Entry 49: 4-(2-(N-Methylcarbamoyl)-4-pyridyloxy)-2-chloroaniline was synthesized according to Method A6. According to Method C1a, 4-chloro-3-(trifluoromethyl)phenyl isocyanate was reacted with 4-(2-(N-methylcarbamoyl)-4-pyridyloxy)-2-chloroaniline to afford the urea.


Entry 50: According to Method A2, Step 4,5-amino-2-methylphenol was reacted with 4-chloro-N-methyl-2-pyridinecarboxamide, which had been synthesized according to Method A2, Step 3b, to give 3-(2-(N-methylcarbamoyl)-4-pyridyloxy)-4-methylaniline. According to Method C1a, 4-chloro-3-(trifluoromethyl)phenyl isocyanate was reacted with 3-(2-(N-methylcarbamoyl)-4-pyridyloxy)-4-methylaniline to afford the urea.


Entry 51: 4-Chloropyridine-2-carbonyl chloride was reacted with ethylamine according to Method A2, Step 3b. The resulting 4-chloro-N-ethyl-2-pyridinecarboxamide was reacted with 4-aminophenol according to Method A2, Step 4 to give 4-(2-(N-ethylcarbamoyl)-4-pyridyloxy)aniline. According to Method C1a, 4-chloro-3-(trifluoromethyl)phenyl isocyanate was reacted with 4-(2-(N-ethylcarbamoyl)-4-pyridyloxy)aniline to afford the urea.


Entry 52: According to Method A, Step 4,4-amino-2-chlorophenol was reacted with 4-chloro-N-methyl-2-pyridinecarboxamide, which had been synthesized according to Method A2, Step 3b, to give 4-(2-(N-methylcarbamoyl)-4-pyridyloxy)-3-chloroaniline. According to Method C1a, 4-chloro-3-(trifluoromethyl)phenyl isocyanate was reacted with 4-(2-(N-methylcarbamoyl)-4-pyridyloxy)-3-chloroaniline to afford the urea.


Entry 53: 4-(4-Methylthiophenoxy)-1-nitrobenzene was oxidized according to Method A19, Step 1 to give 4-(4-methylsulfonylphenoxy)-1-nitrobenzene. The nitrobenzene was reduced according to Method A19, Step 2 to give 4-(4-methylsulfonylphenoxy)-1-aniline. According to Method C1a, 4-chloro-3-(trifluoromethyl)phenyl isocyanate was reacted with 4-(4-methylsulfonylphenoxy)-1-aniline to afford the urea.


Entry 54: 4-Bromobenzenesulfonyl chloride was reacted with methylamine according to Method A15, Step 1 to afford N-methyl-4-bromobenzenesulfonamide. N-Methyl-4-bromobenzenesulfonamide was coupled with phenol according to Method A15, Step 2 to afford 4-(4-(N-methylsulfamoyl)phenoxy)benzene. 4-(4-(N-Methylsulfamoyl)phenoxy)benzene was converted into 4-(4-(N-methylsulfamoyl)phenoxy)-1-nitrobenzene according to Method A15, Step 3. 4-(4-(N-Methylsulfamoyl)phenoxy)-1-nitrobenzene was reduced to 4-(4-N-methylsulfamoyl)phenyloxy)aniline according to Method A15, Step 4. According to Method C1a, 4-chloro-3-(trifluoromethyl)phenyl isocyanate was reacted with 4-(3-N-methylsulfamoyl)phenyloxy)aniline to afford the urea.


Entry 55: 5-Hydroxy-2-methylpyridine was coupled with 1-fluoro-4-nitrobenzene according to Method A18, Step 1 to give 4-(5-(2-Methyl)pyridyloxy)-1-nitrobenzene. The methylpyridine was oxidized according to the carboxylic acid, then esterified according to Method A18, Step 2 to give 4-(5-(2-methoxycarbonyl)pyridyloxy)-1-nitrobenzene. The nitrobenzene was reduced according the Method A18, Step 3 to give 4-(5-(2-methoxycarbonyl)pyridyloxy)aniline. The aniline was reacted with 4-chloro-3-(trifluoromethyl)phenyl isocyanate according to Method C1a to afford the urea.


Entry 56: 5-Hydroxy-2-methylpyridine was coupled with 1-fluoro-4-nitrobenzene according to Method A18, Step 1 to give 4-(5-(2-Methyl)pyridyloxy)-1-nitrobenzene. The methylpyridine was oxidized according to the carboxylic acid, then esterified according to Method A18, Step 2 to give 4-(5-(2-methoxycarbonyl)pyridyloxy)-1-nitrobenzene. The nitrobenzene was reduced according the Method A18, Step 3 to give 4-(5-(2-methoxycarbonyl)pyridyloxy)aniline. The aniline was reacted with 4-chloro-3-(trifluoromethyl)phenyl isocyanate according to Method C1a to give N-(4-chloro-3-(trifluoromethyl)phenyl)-N′-(4-(2-(methoxycarbonyl)-5-pyridyloxy)phenyl) urea. The methyl ester was reacted with methylamine according to Method D2 to afford N-(4-chloro-3-(trifluoromethyl)phenyl)-N′-(4-(2-(N-methylcarbamoyl)-5-pyridyloxy)phenyl) urea.


Entry 57: N-(4-Chloro-3-(trifluoromethyl)phenyl-N′-(4-aminophenyl) urea was prepared according to Method C1d. N-(4-Chloro-3-(trifluoromethyl)phenyl-N-(4-aminophenyl) urea was coupled with mono-methyl isophthalate according to Method D1a to afford the urea.


Entry 58: N-(4-Chloro-3-(trifluoromethyl)phenyl-N′-(4-aminophenyl) urea was prepared according to Method C1d. N-(4-Chloro-3-(trifluoromethyl)phenyl-N′-(4-aminophenyl) urea was coupled with mono-methyl isophthalate according to Method D1a to afford N-(4-chloro-3-(trifluoromethyl)phenyl-N′-(4-(3-methoxycarbonylphenyl)carboxyaminophenyl) urea. According to Method D2, N-(4-chloro-3-(trifluoromethyl)phenyl-N′-(4-(3-methoxycarbonylphenyl)carboxyaminophenyl) urea was reacted with methylamine to afford the corresponding methyl amide.


Entry 59: 4-Chloropyridine-2-carbonyl chloride was reacted with dimethylamine according to Method M, Step 3b. The resulting 4-chloro-N,N-dimethyl-2-pyridinecarboxamide was reacted with 4-aminophenol according to Method A2, Step 4 to give 4-(2-(N,N-dimethylcarbamoyl)-4-pyridyloxy)aniline. According to Method C1a, 4-chloro-3-(trifluoromethyl)phenyl isocyanate was reacted with 4-(2-(N,N-dimethylcarbamoyl)-4-pyridyloxy)aniline to afford the urea.


Entry 60: 4-Hydroxyacetophenone was reacted with 4-fluoronitrobenzene according to Method A13, Step 1 to give 4-(4-acetylphenoxy)nitrobenzene. The nitrobenzene was reduced according to Method 13, Step 4 to afford 4-(4-acetylphenoxy)aniline, which was converted to the 4-(4-(1-(N-methoxy)iminoethyl)phenoxyaniline HCl salt according to Method A16. According to Method C1a, 4-chloro-3-(trifluoromethyl)phenyl isocyanate was reacted with 4-(4-acetylphenoxy)aniline to afford the urea.


Entry 61: 4-(3-Carboxyphenoxy)-1-nitrobenzene was synthesized according to Method A13, Step 2. 4-(3-Carboxyphenoxy)-1-nitrobenzene was coupled with 4-(2-aminoethyl)morpholine according to Method A13, Step 3 to give 4-(3-(N-(2-morpholinylethyl)carbamoyl)phenoxy)-1-nitrobenzene. According to Method A13 Step 4,4-(3-(N-(2-morpholinylethyl)carbamoyl)phenoxy)-1-nitrobenzene was reduced to 4-(3-(N-(2-morpholinylethyl)carbamoyl)phenoxy)aniline. According to Method C1a, 4-chloro-3-(trifluoromethyl)phenyl isocyanate was reacted with 4-(3-(N-(2-morpholinylethyl)carbamoyl)phenoxy)aniline to afford the urea.


Entry 62: 4-(3-Carboxyphenoxy)-1-nitrobenzene was synthesized according to Method A13, Step 2. 4-(3-Carboxyphenoxy)-1-nitrobenzene was coupled with 1-(2-aminoethyl)piperidine according to Method A13, Step 3 to give 4-(3-(N-(2-piperidylethyl)carbamoyl)phenoxy)-1-nitrobenzene. According to Method A13 Step 4, 4-(3-(N-(2-piperidylethyl)carbamoyl)phenoxy)-1-nitrobenzene was reduced to 4-(3-(N-(2-piperidylethyl)carbamoyl)phenoxy)aniline. According to Method C1a, 4-chloro-3-(trifluoromethyl)phenyl isocyanate was reacted with 4-(3-(N-(2-piperidylethyl)carbamoyl)phenoxy)aniline to afford the urea.


Entry 63: 4-(3-Carboxyphenoxy)-1-nitrobenzene was synthesized according to Method A13, Step 2. 4-(3-Carboxyphenoxy)-1-nitrobenzene was coupled with tetrahydrofurfurylamine according to Method A13, Step 3 to give 4-(3-(N-(tetrahydrofurylmethyl)carbamoyl)phenoxy)-1-nitrobenzene. According to Method A13 Step 4,4-(3-(N-(tetrahydrofurylmethyl)carbamoyl)phenoxy)-1-nitrobenzene was reduced to 4-(3-(N-(tetrahydrofurylmethyl)carbamoyl)phenoxy)aniline. According to Method C1a, 4-chloro-3-(trifluoromethyl)phenyl isocyanate was reacted with 4-(3-(N-(tetrahydrofurylmethyl)carbamoyl)phenoxy)aniline to afford the urea.


Entry 64: 4-(3-Carboxyphenoxy)-1-nitrobenzene was synthesized according to Method A13, Step 2. 4-(3-Carboxyphenoxy)-1-nitrobenzene was coupled with 2-aminomethyl-1-ethylpyrrolidine according to Method A13, Step 3 to give 4-(3-(N-((1-methylpyrrolidinyl)methyl)carbamoyl)phenoxy)-1-nitrobenzene. According to Method A13 Step 4,4-(3-(N-((1-methylpyrrolidinyl)methyl)carbamoyl)phenoxy)-1-nitrobenzene was reduced to 4-(3-(N-((1-methylpyrrolidinyl)methyl)carbamoyl)phenoxy)aniline. According to Method C1a, 4-chloro-3-(trifluoromethyl)phenyl isocyanate was reacted with 4-(3-(N-((1-methylpyrrolidinyl)methyl)carbamoyl)phenoxy)aniline to afford the urea.


Entry 65: 4-Chloro-N-methylpyridinecarboxamide was synthesized as described in Method A2, Step 3b. The chloropyridine was reacted with 4-aminothiophenol according to Method A2, Step 4 to give 4-(4-(2-(N-methylcarbamoyl)phenylthio)aniline. According to Method C1a, 4-chloro-3-(trifluoromethyl)phenyl isocyanate was reacted with 4-(4-(2-(N-methylcarbamoyl)phenylthio)aniline to afford the urea.


Entry 66; 4-Chloropyridine-2-carbonyl chloride was reacted with isopropylamine according to Method A, Step 3b. The resulting 4-chloro-N-isopropyl-2-pyridinecarboxamide was reacted with 4-aminophenol according to Method A2, Step 4 to give 4-(2-(N-isopropylcarbamoyl)-4-pyridyloxy)aniline. According to Method C1a, 4-chloro-3-(trifluoromethyl)phenyl isocyanate was reacted with 4-(2-(N-isopropylcarbamoyl)-4-pyridyloxy)aniline to afford the urea.


Entry 67: N-(4-Chloro-3-(trifluoromethyl)phenyl-N′-(4-ethoxycarbonylphenyl) urea was synthesized according to Method C1e. N-(4-Chloro-3-(trifluoromethyl)phenyl-N′-(4-ethoxycarbonylphenyl) urea was saponified according to Method D3 to give N-(4-chloro-3-(trifluoromethyl)phenyl-N-(4-carboxyphenyl) urea. N-(4-Chloro-3-(trifluoromethyl)phenyl-N′-(4-carboxyphenyl) urea was coupled with 3-methylcarbamoylaniline according to Method D1b to give N-(4-chloro-3-(trifluoromethyl)phenyl-N′-(4-(3-methylcarbamoylphenyl)carbamoylphenyl) urea.


Entry 68: 5-(4-Aminophenoxy)-2-methylisoindoline-1,3-dione was synthesized according to Method A9. According to Method C1a, 4-chloro-3-(trifluoromethyl)phenyl isocyanate was reacted with 5-(4-aminophenoxy)-2-methylisoindoline-1,3-dione to afford the urea.


Entry 69: 4-Chloro-N-methylpyridinecarboxamide was synthesized as described in Method A2, Step 3b. The chloropyridine was reacted with 3-aminothiophenol according to Method A2, Step 4 to give 3-(4-(2-(N-methylcarbamoyl)phenylthio)aniline. According to Method C1a, 4-chloro-3-(trifluoromethyl)phenyl isocyanate was reacted with 3-(4-(2-(N-methylcarbamoyl)phenylthio)aniline to afford the urea.


Entry 70: 4-(2-(N-(2-Morpholin-4-ylethyl)carbamoyl)pyridyloxy)aniline was synthesized according to Method A10. According to Method C1a, 4-chloro-3-(trifluoromethyl)phenyl isocyanate was reacted with 4-(2-(N-(2-morpholin-4-ylethyl)carbamoyl)pyridyloxy)aniline to afford the urea.


Entry 71: 4-(3-(5-Methoxycarbonyl)pyridyloxy)aniline was synthesized according to Method A14. 4-Chloro-3-(trifluoromethyl)-2-methoxyphenyl isocyanate was reacted with 4-(3-(5-methoxycarbonyl)pyridyloxy)aniline according to Method C1a to afford the urea. N-(4-Chloro-3-(trifluoromethyl)phenyl)-N-(4-(3-(5-methoxycarbonylpyridyl)oxy)phenyl) urea was saponified according to Method D4, Step 1, and the corresponding acid was coupled with 4-(2-aminoethyl)morpholine to afford the amide.


Entry 72: 4-(3-(5-Methoxycarbonyl)pyridyloxy)aniline was synthesized according to Method A14. 4-Chloro-3-(trifluoromethyl)phenyl isocyanate was reacted with 4-(3-(5-methoxycarbonyl)pyridyloxy)amine according to Method C1a to afford the urea. N-(5-(Trifluoromethyl)-2-methoxyphenyl)-N-(4-(3-(5-methoxycarbonylpyridyl)oxy)phenyl) urea was saponified according to Method D4, Step 1, and the corresponding acid was coupled with methylamine according to Method D4, Step 2 to afford the amide.


Entry 73: 4-(3-(5-Methoxycarbonyl)pyridyloxy)aniline was synthesized according to Method A14. 4-Chloro-3-(trifluoromethyl)phenyl isocyanate was reacted with 4-(3-(5-methoxycarbonyl)pyridyloxy)aniline according to Method C1a to afford the urea. N-(5-(Trifluoromethyl)-2-methoxyphenyl)-N′-(4-(3-(5-methoxycarbonylpyridyl)oxy)phenyl) urea was saponified according to Method D4, Step 1, and the corresponding acid was coupled with N,N-dimethylethylenediamine according to Method D4, Step 2 to afford the amide.


Entry 74: 4-Chloropyridine-2-carbonyl chloride HCl salt was reacted with 2-hydroxyethylamine according to Method A2, Step 3b to form 4-chloro-N-(2-triisopropylsilyloxy)ethylpyridine-2-carboxamide. 4-Chloro-N-(2-triisopropylsilyloxy)ethylpyridine-2-carboxamide was reacted with triisopropylsilyl chloride, followed by 4-aminophenol according to Method A17 to form 4-(4-(2-(N-(2-triisopropylsilyloxy)ethylcarbamoyl)pyridyloxyaniline. According to Method C1a, 4-chloro-3-(trifluoromethyl)phenyl isocyanate was reacted with 4-(4-(2-(N-(2-triisopropylsilyloxy)ethylcarbamoyl)pyridyloxyaniline to afford N-(4-chloro-3-((trifluoromethyl)phenyl)-N′-(4-(4-(2-(N-(2-triisopropylsilyloxy)ethylcarbamoyl)pyridyloxyphenyl) urea.


Entry 75: 4-(3-Carboxyphenoxy)aniline was synthesized according to Method A11. 4-Chloro-3-(trifluoromethyl)phenyl isocyanate was reacted with 4-(3-(5-methoxycarbonyl)pyridyloxy)aniline according to Method C1f to afford the urea, which was coupled with 3-aminopyridine according to Method D1c.


Entry 76: 4-(3-Carboxyphenoxy)aniline was synthesized according to Method A11. 4-Chloro-3-(trifluoromethyl)phenyl isocyanate was reacted with 4-(3-carboxyphenoxy)aniline according to Method C1f to afford the urea, which was coupled with N-(4-acetylphenyl)piperazine according to Method D1c.


Entry 77: 4-(3-Carboxyphenoxy)aniline was synthesized according to Method A11. 4-Chloro-3-(trifluoromethyl)phenyl isocyanate was reacted with 4-(3-carboxyphenoxy)aniline according to Method C1f to afford the urea, which was coupled with 4-fluoroaniline according to Method D1c.


Entry 78: 4-(3-Carboxyphenoxy)aniline was synthesized according to Method A11. 4-Chloro-3-(trifluoromethyl)phenyl isocyanate was reacted with 4-(3-carboxyphenoxy)aniline according to Method C1f to afford the urea, which was coupled with 4-(dimethylamino)aniline according to Method D1c.


Entry 79: 4-(3-Carboxyphenoxy)aniline was synthesized according to Method A11. 4-Chloro-3-(trifluoromethyl)phenyl isocyanate was reacted with 4-(3-carboxyphenoxy)aniline according to Method C1f to afford the urea, which was coupled with N-phenylethylenediamine according to Method D1c.


Entry 80: 4-(3-Carboxyphenoxy)aniline was synthesized according to Method A11. 4-Chloro-3-(trifluoromethyl)phenyl isocyanate was reacted with 4-(3-carboxyphenoxy)aniline according to Method C1f to afford the urea, which was coupled with 2-methoxyethylamine according to Method D1c.


Entry 81: 4-(3-Carboxyphenoxy)aniline was synthesized according to Method A11. 4-Chloro-3-(trifluoromethyl)phenyl isocyanate was reacted with 4-(3-carboxyphenoxy)aniline according to Method C1f to afford the urea, which was coupled with 5-amino-2-methoxypyridine according to Method D1c.


Entry 82: 4-(3-Carboxyphenoxy)aniline was synthesized according to Method A11. 4-Chloro-3-(trifluoromethyl)phenyl isocyanate was reacted with 4-(3-carboxyphenoxy)aniline according to Method C1f to afford the urea, which was coupled with 4-morpholinoaniline according to Method D1c.


Entry 83: 4-(3-Carboxyphenoxy)aniline was synthesized according to Method A11. 4-Chloro-3-(trifluoromethyl)phenyl isocyanate was reacted with 4-(3-carboxyphenoxy)aniline according to Method C1f to afford the urea, which was coupled with N-(2-pyridyl)piperazine according to Method D1c.


Entry 84: 4-Chloropyridine-2-carbonyl chloride HCl salt was reacted with 2-hydroxyethylamine according to Method A2, Step 3b to form 4-chloro-N-(2-triisopropylsilyloxy)ethylpyridine-2-carboxamide. 4-Chloro-N-(2-triisopropylsilyloxy)ethylpyridine-2-carboxamide was reacted with triisopropylsilyl chloride, followed by 4-aminophenol according to Method A17 to form 4-(4-(2-(N-(2-triisopropylsilyloxy)ethylcarbamoyl)pyridyloxyaniline. According to Method C1a, 4-chloro-3-(trifluoromethyl)phenyl isocyanate was reacted with 4-(4-(2-(N-(2-triisopropylsilyloxy)ethylcarbamoyl)pyridyloxyaniline to give N-(4-chloro-3-(trifluoromethyl)phenyl)-N′-(4-(4-(2-(N-(2-triisopropylsilyloxy)ethylcarbamoyl)pyridyloxyphenyl) urea. The urea was deprotected according to Method D5 to afford N-(4-chloro-3-((trifluoromethyl)phenyl)-N′-(4-(4-(2-(N-(2-hydroxy)ethylcarbamoyl)pyridyloxyphenyl) urea.


Entry 85: 4-(2-(N-Methylcarbamoyl)-4-pyridyloxy)aniline was synthesized according to Method A2. 4-Bromo-3-(trifluoromethyl)aniline was converted to 4-bromo-3-(trifluoromethyl)phenyl isocyanate according to Method B1. According to Method C1a, 4-bromo-3-(trifluoromethyl)phenyl isocyanate was reacted with 4-(2-(N-methylcarbamoyl)-4-pyridyloxy)aniline to afford the urea.


Entry 86: 4-(2-(N-Methylcarbamoyl)-4-pyridyloxy)-2-chloroaniline was synthesized according to Method A6. 4-Bromo-3-(trifluoromethyl)aniline was converted into 4-bromo-3-(trifluoromethyl)phenyl isocyanate according to Method B1. According to Method C1a, 4-bromo-3-(trifluoromethyl)phenyl isocyanate was reacted with 4-(2-(N-methylcarbamoyl)-4-pyridyloxy)-2-chloroaniline to afford the urea.


Entry 87: According to Method A2, Step 4,4-amino-2-chlorophenol was reacted with 4-chloro-N-methyl-2-pyridinecarboxamide, which had been synthesized according to Method A2, Step 3b, to give 4-(2-(N-methylcarbamoyl)-4-pyridyloxy)-3-chloroaniline. 4-Bromo-3-(trifluoromethyl)aniline was converted into 4-bromo-3-(trifluoromethyl)phenyl isocyanate according to Method B1. According to Method C1a, 4-bromo-3-(trifluoromethyl)phenyl isocyanate was reacted with 4-(2-(N-methylcarbamoyl)-4-pyridyloxy)-3-chloroaniline to afford the urea.


Entry 88: 4-Chloropyridine-2-carbonyl chloride was reacted with ethylamine according to Method A2, Step 3b. The resulting 4-chloro-N-ethyl-2-pyridinecarboxamide was reacted with 4-aminophenol according to Method A2, Step 4 to give 4-(2-(N-ethylcarbamoyl)-4-pyridyloxy)aniline. 4-Bromo-3-(trifluoromethyl)aniline was converted into 4-bromo-3-(trifluoromethyl)phenyl isocyanate according to Method B1. According to Method C1a, 4-bromo-3-(trifluoromethyl)phenyl isocyanate was reacted with 4-(2-(N-ethylcarbamoyl)-4-pyridyloxy)aniline to afford the urea.


Entry 89: 4-Chloro-N-methyl-2-pyridinecarboxamide, which was synthesized according to Method A2, Step 3a, was reacted with 3-aminophenol according to Method A2, Step 4 to form 3-(-2-(N-methylcarbamoyl)-4-pyridyloxy)aniline. 4-Bromo-3-(trifluoromethyl)aniline was converted into 4-bromo-3-(trifluoromethyl)phenyl isocyanate according to Method B1. According to Method C1a, 4-bromo-3-(trifluoromethyl)phenyl isocyanate was reacted with 3-(-2-(N-methylcarbamoyl)-4-pyridyloxy)aniline to afford the urea.


Entry 90: According to Method A2, Step 4,5-amino-2-methylphenol was reacted with 4-chloro-N-methyl-2-pyridinecarboxamide, which had been synthesized according to Method A2, Step 3b, to give 3-(2-(N-methylcarbamoyl)-4-pyridyloxy)-4-methylaniline. 4-Bromo-3-(trifluoromethyl)aniline was converted into 4-bromo-3-(trifluoromethyl)phenyl isocyanate according to Method 131. According to Method C1a, 4-bromo-3-(trifluoromethyl)phenyl isocyanate was reacted with 3-(2-(N-methylcarbamoyl)-4-pyridyloxy)-4-methylaniline to afford the urea.


Entry 91: 4-Chloropyridine-2-carbonyl chloride was reacted with dimethylamine according to Method A2, Step 3b. The resulting 4-chloro-N,N-dimethyl-2-pyridinecarboxamide was reacted with 4-aminophenol according to Method A2, Step 4 to give 4-(2-(N,N-dimethylcarbamoyl)-4-pyridyloxy)aniline. 4-Bromo-3-(trifluoromethyl)aniline was converted into 4-bromo-3-(trifluoromethyl)phenyl isocyanate according to Method B1. According to Method C1a, 4-bromo-3-(trifluoromethyl)phenyl isocyanate was reacted with 4-(2-(N,N-dimethylcarbamoyl)-4-pyridyloxy)aniline to afford the urea.


Entry 92: 4-Chloro-N-methylpyridinecarboxamide was synthesized as described in Method A, Step 3b. The chloropyridine was reacted with 4-aminothiophenol according to Method A2, Step 4 to give 4-(4-(2-(N-methylcarbamoyl)phenylthio)aniline. 4-Bromo-3-(trifluoromethyl)aniline was converted into 4-bromo-3-(trifluoromethyl)phenyl isocyanate according to Method B1. According to Method C1a, 4-bromo-3-(trifluoromethyl)phenyl isocyanate was reacted with 4-(4-(2-(N-methylcarbamoyl)phenylthio)aniline to afford the urea.


Entry 93: 4-Chloro-N-methylpyridinecarboxamide was synthesized as described in Method A2, Step 3b. The chloropyridine was reacted with 3-aminothiophenol according to Method A2, Step 4 to give 3-(4-(2-(N-methylcarbamoyl)phenylthio)aniline. 4-Bromo-3-(trifluoromethyl)aniline was converted into 4-bromo-3-(trifluoromethyl)phenyl isocyanate according to Method B1. According to Method C1a, 4-bromo-3-(trifluoromethyl)phenyl isocyanate was reacted with 3-(4-(2-(N-methylcarbamoyl)phenylthio)aniline to afford the urea.


Entry 94: 4-(2-(N-(2-Morpholin-4-ylethyl)carbamoyl)pyridyloxy)aniline was synthesized according to Method A10. 4-Bromo-3-(trifluoromethyl)aniline was converted into 4-bromo-3-(trifluoromethyl)phenyl isocyanate according to Method B1. According to Method C1a, 4-bromo-3-(trifluoromethyl)phenyl isocyanate was reacted with 4-(2-(N-(2-Morpholin-4-ylethyl)carbamoyl)pyridyloxy)aniline to afford the urea.


Entry 95: 4-(2-(N-Methylcarbamoyl)-4-pyridyloxy)aniline was synthesized according to Method A2. 4-Chloro-2-methoxy-5-(trifluoromethyl)aniline was synthesized according to Method A7. 4-Chloro-2-methoxy-5-(trifluoromethyl)aniline was converted into 4-chloro-2-methoxy-5-(trifluoromethyl)phenyl isocyanate according to Method B1. According to Method C1a, 4-chloro-2-methoxy-5-(trifluoromethyl)phenyl isocyanate was reacted with 4-(2-(N-methylcarbamoyl)-4-pyridyloxy)aniline to afford the urea.


Entry 96: 4-(2-(N-Methylcarbamoyl)-4-pyridyloxy)-2-chloroaniline was synthesized according to Method A6. 4-Chloro-2-methoxy-5-(trifluoromethyl)aniline was synthesized according to Method A7. 4-Chloro-2-methoxy-5-(trifluoromethyl)aniline was converted into 4-chloro-2-methoxy-5-(trifluoromethyl)phenyl isocyanate according to Method B1. According to Method C1a, 4-chloro-2-methoxy-5-(trifluoromethyl)phenyl isocyanate was reacted with 4-(2-(N-methylcarbamoyl)-4-pyridyloxy)-2-chloroaniline afford the urea.


Entry 97: According to Method A1, Step 4,4-amino-2-chlorophenol was reacted with 4-chloro-N-methyl-2-pyridinecarboxamide, which had been synthesized according to Method A2, Step 3b, to give 4-(2-(N-methylcarbamoyl)-4-pyridyloxy)-3-chloroaniline. 4-Chloro-2-methoxy-5-(trifluoromethyl)aniline was synthesized according to Method A7. 4-Chloro-2-methoxy-5-(trifluoromethyl)aniline was converted into 4-chloro-2-methoxy-5-(trifluoromethyl)phenyl isocyanate according to Method B1. According to Method C1a, 4-chloro-2-methoxy-5-(trifluoromethyl)phenyl isocyanate was reacted with 4-(2-(N-methylcarbamoyl)-4-pyridyloxy)-3-chloroaniline to afford the urea.


Entry 98: 4-Chloro-N-methyl-2-pyridinecarboxamide, which was synthesized according to Method A2, Step 3a, was reacted with 3-aminophenol according to Method A2, Step 4 to form 3-(-2-(N-methylcarbamoyl)-4-pyridyloxy)aniline. 4-Chloro-2-methoxy-5-(trifluoromethyl)aniline was synthesized according to Method A7. 4-Chloro-2-methoxy-5-(trifluoromethyl)aniline was converted into 4-chloro-2-methoxy-5-(trifluoromethyl)phenyl isocyanate according to Method B1. According to Method C1a, 4-chloro-2-methoxy-5-(trifluoromethylphenyl isocyanate as was reacted with 3-(-2-(N-methylcarbamoyl)-4-pyridyloxy)aniline to afford the urea.


Entry 99: 4-Chloropyridine-2-carbonyl chloride was reacted with ethylamine according to Method A2, Step 3b. The resulting 4-chloro-N-ethyl-2-pyridinecarboxamide was reacted with 4-aminophenol according to Method A2, Step 4 to give 4-(2-(N-ethylcarbamoyl)-4-pyridyloxy)aniline. 4-Chloro-2-methoxy-5-(trifluoromethyl)aniline was synthesized according to Method A7. 4-Chloro-2-methoxy-5-(trifluoromethyl)aniline was converted into 4-chloro-2-methoxy-5-(trifluoromethyl)phenyl isocyanate according to Method B1. According to Method C1a, 4-chloro-2-methoxy-5-(trifluoromethyl)phenyl isocyanate was reacted with 4-(2-(N-ethylcarbamoyl)-4-pyridyloxy)aniline to afford the urea.


Entry 100: 4-Chloropyridine-2-carbonyl chloride was reacted with dimethylamine according to Method A2, Step 3b. The resulting 4-chloro-N,N-dimethyl-2-pyridinecarboxamide was reacted with 4-aminophenol according to Method A2, Step 4 to give 4-(2-(N,N-dimethylcarbamoyl)-4-pyridyloxy)aniline. 4-Chloro-2-methoxy-5-(trifluoromethyl)aniline was synthesized according to Method A7. 4-Chloro-2-methoxy-5-(trifluoromethyl)aniline was converted into 4-chloro-2-methoxy-5-(trifluoromethyl)phenyl isocyanate according to Method B1. According to Method C1a, 4-chloro-2-methoxy-5-(trifluoromethyl)phenyl isocyanate was reacted with 4-(2-(N,N-dimethylcarbamoyl)-4-pyridyloxy)aniline to afford the urea.


Entry 101: 4-Chloro-N-methyl-2-pyridinecarboxamide, which was synthesized according to Method A2, Step 3a, was reacted with 3-aminophenol according to Method A1, Step 4 to form 3-(-2-(N-methylcarbamoyl)-4-pyridyloxy)aniline. 2-Amino-3-methoxynaphthalene was synthesized as described Method A1. According to Method C3,2-amino-3-methoxynaphthalene was reacted with bis(trichloromethyl) carbonate followed by 3-(-2-(N-methylcarbamoyl)-4-pyridyloxy)aniline to form the urea.


Entry 102: 4-(2-(N-Methylcarbamoyl)-4-pyridyloxy)aniline was synthesized according to Method A2. 5-tert-Butyl-2-(2,5-dimethylpyrrolyl)aniline was synthesized according to Method A4. 5-tert-Butyl-2-(2,5-dimethylpyrrolyl)aniline was reacted with CDI followed by 4-(2-(N-methylcarbamoyl)-4-pyridyloxy)aniline according to Method C2d to afford the urea.


Entry 103: 4-Chloro-N-methyl-2-pyridinecarboxamide was synthesized according to Method A2, Step 3b. 4-Chloro-N-methyl-2-pyridinecarboxamide was reacted with 4-aminophenol according to Method A2, Step 4 using DMAC in place of DMF to give 4-(2-(N-methylcarbamoyl)-4-pyridyloxy)aniline. According to Method C2b, reaction of 3-amino-2-methoxyquinoline with CDI followed by 4-(2-(N-methylcarbamoyl)-4-pyridyloxy)aniline afforded bis(4-(2-(N-methylcarbamoyl)-4-pyridlyoxy)phenyl) urea.


Tables

The compounds listed in Tables 1-6 below were synthesized according to the general methods shown above, and the more detailed exemplary procedures are in the entry listings above and characterizations are indicated in the tables.









TABLE 1







3-tert-Butylphenyl Ureas




embedded image
























TLC
Mass





mp
HPLC
TLC
Solvent
Spec.
Synth.


Entry
R
(° C.)
(min.)
Rf
System
[Source]
Method





1


embedded image




0.22
50% EtOAc/ 50% hexane
418 (M + H)+ (HPLC ES-MS)
A13 C3





2


embedded image




0.58
50% EtOAc/ 50% hexane
403 (M + H)+ (HPLC ES-MS)
A13 C3





3


embedded image


133- 135

0.68
100% EtOAc
448 (M + H)+ (FAB)
A8 C2d
















TABLE 2







5-tert-Butyl-2-methoxyphenyl Ureas




embedded image
























TLC
Mass





mp
HPLC
TLC
Solvent
Spec.
Synth.


Entry
R
(° C.)
(min.)
Rf
System
[Source]
Method





4


embedded image



5.93


448 (M + H)+ (HPLC ES-MS)
A13 B1 C1a





5


embedded image


120- 122

0.67
100% EtOAc
478 (M + H)+ (FAB)
A8 C2d





6


embedded image




0.40
50% EtOAc/ 50% hexane
460 (M + H)+ (HPLC ES-MS)
A3 C2d





7


embedded image




0.79
50% EtOAc/ 50% hexane
446 (M + H)+ (HPLC ES-MS)
A12 C2d
















TABLE 3







5-(Trifluoromethyl)-2-methoxyphenyl Ureas




embedded image
























TLC
Mass





mp
HPLC
TLC
Solvent
Spec.
Synth.


Entry
R
(° C.)
(min.)
Rf
System
[Source]
Method





8


embedded image


250 (dec)



460 (M + H)+ (FAB)
A13 C2a





9


embedded image


206- 208

0.54
10% MeOH/ 90% CH2Cl2
446 (M + H)+ (HPLC ES-MS)
A3 step 2, A8 step 4, B1, C1a





10


embedded image




0.33
50% EtOAc/ 50% pet ether
445 (M + H)+ (HPLC ES-MS)
A13 C3





11


embedded image




0.20
2% Et3N/ 98% EtOAc
461 (M + H)+ (HPLC ES-MS)
A2 C4





12


embedded image




0.27
1% Et3N/ 99% EtOAc
447 (M + H)+ (HPLC ES-MS)
A2 C4





13


embedded image




0.62
100% EtOAc
461 (M + H)+ (FAB)
A2 C2a





14


embedded image


114- 117

0.40
1% Et3N/ 99% EtOAc
447 (M + H)+ (FAB)
A2 C4





15


embedded image


232- 235

0.54
100% EtOAc
490 (M + H)+ (FAB)
A8 C2d





16


embedded image


210- 213

0.29
5% MeOH/ 45% EtOAc/ 50% pet ether
475 (M + H)+ (HPLC ES-MS)
A5 B1 C1c





17


embedded image


187- 188

0.17
50% EtOAc/ 50% pet ether
495 (M + H)+ (HPLC ES-MS)
A6 B1 C1a





18


embedded image




0.48
100% EtOAc
475 (M + H)+ (HPLC ES-MS)
A2 step 4, B1 C1a





19


embedded image


194- 196

0.31
5% MeOH/ 45% EtOAc/ 50% pet ether
475 (M + H)+ (HPLC ES-MS)
A2 B1 C1a





20


embedded image


214- 216

0.25
5% MeOH/ 45% EtOAc/ 50% pet ether
495 (M + H)+ (HPLC ES-MS)
A2 C1a





21


embedded image


208- 210

0.30
50% EtOAc/ 50% hexane
481 (M + H)+ (HPLC ES-MS)
A19 C2a





22


embedded image


188- 190

0.30
70% EtOAc/ 50% hexane
447 (M + H)+ (HPLC ES-MS)
A15, step 4, C1a





23


embedded image




0.50
70% EtOAc/ 30% hexane
472 (M + H)+ (FAB)
A3 B1 C1a





24


embedded image


203- 205

0.13
100% EtOAc
479 (M + H)+ (HPLC ES-MS)
A2 B1 C1a





25


embedded image




0.09
75% EtOAc/ 25% hexane
458 (M + H)+ (HPLC ES-MS)
A12 C2d





26


embedded image


169- 171

0.67
50% EtOAc/ 50% pet ether
474 (M + H)+ (HPLC ES-MS)
A13 step 1, A13 step 4, A16, B1 C1a





27


embedded image


218- 219

0.40
50% EtOAc/ 50% pet ether
477 (M + H)+ (HPLC ES-MS)
A2 step 3b, A2 step 4, B1, C1a





28


embedded image


212- 214

0.30
40% EtOAc/ 60% hexane

A9 B1 C1a





29


embedded image




0.33
50% EtOAc/ 50% pet ether
474 (M + H)+ (HPLC ES-MS)
A2 step 3b, A2 step 4, B1, C1a





30


embedded image


210- 211




A2 B1 C1a





31


embedded image


210- 204

0.43
10% MeOH/ CH2Cl2

A14 B1 C1a D4





32


embedded image


247- 249

0.57
10% MeOH/ CH2Cl2

A14 B1 C1a D4





33


embedded image


217- 219

0.07
10% MeOH/ CH2Cl2

A14 B1 C1a D4





34


embedded image




0.11
70% EtOAc/ 30% hexane

A11 B1 C1f D1c





35


embedded image




0.38
70% EtOAc/ 30% hexane

A11 B1 C1f D1c





36


embedded image




0.77
70% EtOAc/ 30% hexane

A11 B1 C1f D1c





37


embedded image




0.58
70% EtOAc/ 30% hexane

A11 B1 C1f D1c





38


embedded image




0.58
70% EtOAc/ 30% hexane

A11 B1 C1f D1c





39


embedded image




0.17
70% EtOAc/ 30% hexane

A11 B1 C1f D1c





40


embedded image




0.21
70% EtOAc/ 30% hexane

A11 B1 C1f D1c
















TABLE 4







3-(Trifluoromethyl)-4-chlorophenyl Ureas




embedded image
























TLC
Mass





mp
HPLC
TLC
Solvent
Spec.
Synth.


Entry
R
(° C.)
(min.)
Rf
System
[Source]
Method





41


embedded image


163- 165

0.08
50% EtOAc/ 50% pet ether
464 (M + H)+ (HPLC ES-MS)
A13 C3





42


embedded image


215

0.06
50% EtOAc/ 50% pet ether
465 (M + H)+ (HPLC ES-MS)
A2 C1a





43


embedded image




0.10
50% EtOAc/ 50% pet ether
451 (M + H)+ (HPLC ES-MS)
A2 C1a





44


embedded image




0.25
30% EtOAc/ 70% pet ether
451 (M + H)+ (HPLC ES-MS)
A2 C1a





45


embedded image




0.31
30% EtOAc/ 70% pet ether
465 (M + H)+ (HPLC ES-MS)
A2 C1a





46


embedded image


176- 179

0.23
40% EtOAc/ 60% hexane
476 (M + H)+ (FAB)
A3 C1a





47


embedded image




0.29
5% MeOH/ 45% EtOAc/ 50% pet ether
478 (M + H)+ (HPLC ES-MS)
A5 C1c





48


embedded image


206- 209




A15 C1a





49


embedded image


147- 151

0.22
50% EtOAc/ 50% pet ether
499 (M + H)+ (HPLC ES-MS)
A6 C1a





50


embedded image




0.54
100% EtOAc
479 (M + H)+ (HPLC ES-MS)
A2 C1a





51


embedded image


187- 189

0.33
5% MeOH/ 45% EtOAc/ 50% pet ether
479 (M + H)+ (HPLC ES-MS)
A2 C1a





52


embedded image


219

0.18
5% MeOH/ 45% EtOAc/ 50% pet ether
499 (M + H)+ (HPLC ES-MS)
A2 C1a





53


embedded image


246- 248

0.30
50% EtOAc/ 50% hexane
485 (M + H)+ (HPLC ES-MS)
A19, C1a





54


embedded image


196- 200

0.30
70% EtOAc/ 30% hexane)
502 (M + H)+ (HPLC ES-MS)
A15 C1a





55


embedded image


228- 230

0.30
30% EtOAc/ 70% CH2Cl2
466 (M + H)+ (HPLC ES-MS)





56


embedded image


238- 245





57


embedded image


221- 222

0.75
80% EtOAc/ 20% hexane
492 (M + H)+ (FAB)
C1d D1a





58


embedded image


247

0.35
100% EtOAc

C1d D1a D2





59


embedded image


198- 200

0.09
100% EtOAc
479 (M + H)+ (HPLC ES-MS)
A2 C1a





60


embedded image


158- 160

0.64
50% EtOAc/ 50% pet ether





61


embedded image


195- 197

0.39
10% MeOH/ CH2Cl2

A13 C1a





62


embedded image


170- 172

0.52
10% MeOH/ CH2Cl2

A13 C1a





63


embedded image


168- 171

0.39
10% MeOH/ CH2Cl2

A13 C1a





64


embedded image


176- 177

0.35
10% MeOH/ CH2Cl2

A13 C1a





65


embedded image


130- 133



487 (M + H)+ (HPLC ES-MS)
A2 B1 C1a





66


embedded image


155




A2 C1a





67


embedded image


225- 229

0.23
100% EtOAc

C1e D3 D1b





68


embedded image


234- 236

0.29
40% EtOAc/ 60% hexane

A9 C1a





69


embedded image




0.48
50% EtOAc/ 50% pet ether
481 (M + H)+ (HPLC ES-MS)





70


embedded image




0.46
5% MeOH/ 95% CH2Cl2
564 (M + H)+ (HPLC ES-MS)
A10 C1a





71


embedded image


199- 201

0.50
10% MeOH/ CH2Cl2

A14 C1a D4





72


embedded image


235- 237

0.55
10% MeOH/ CH2Cl2

A14 C1a D4





73


embedded image


200- 201

0.21
50% MeOH/ CH2Cl2

A14 C1a D4





74


embedded image


145- 148





75


embedded image




0.12
70% EtOAc/ 30% hexane
527 (M + H)+ (HPLC ES-MS)
A11 C1f D1c





76


embedded image




0.18
70% EtOAc/ 30% hexane

A11 C1f D1c





77


embedded image




0.74
70% EtOAc/ 30% hexane

A11 C1f D1c





78


embedded image




0.58
70% EtOAc/ 30% hexane

A11 C1f D1c





79


embedded image




0.47
70% EtOAc/ 30% hexane
569 (M + H)+ (HPLC ES-MS)
A11 C1f D1c





80


embedded image




0.18
70% EtOAc/ 30% hexane
508 (M + H)+ (HPLC ES-MS)
A11 C1f D1c





81


embedded image




0.58
70% EtOAc/ 30% hexane
557 (M + H)+ (HPLC ES-MS)
A11 C1f D1c





82


embedded image




0.37
70% EtOAc/ 30% hexane
611 (M + H)+ (HPLC ES-MS)
A11 C1f D1c





83


embedded image




0.19
70% EtOAc/ 30% hexane

A11 C1f D1c





84


embedded image


170 183




A2 A17 C1a D5
















TABLE 5







3-(Trifluoromethyl)-4-bromophenyl Ureas




embedded image
























TLC
Mass





mp
HPLC
TLC
Solvent
Spec.
Synth.


Entry
R
(° C.)
(min.)
Rf
System
[Source]
Method





85


embedded image


186- 187

0.13
50% EtOAc/ 50% pet ether
509 (M + H)+ (HPLC ES-MS)
A2 B1 C1a





86


embedded image


150- 152

0.31
50% EtOAc/ 50% pet ether
545 (M + H)+ (HPLC ES-MS)
A6 B1 C1a





87


embedded image


217- 219

0.16
50% EtOAc/ 50% pet ether
545 (M + H)+ (HPLC ES-MS)
A2 B1 C1a





88


embedded image


183- 184

0.31
50% EtOAc/ 50% pet ether
545 (M + H)+ (HPLC ES-MS)
A2 B1 C1a





89


embedded image




0.21
50% EtOAc/ 50% pet ether
511 (M + H)+ (HPLC ES-MS)
A2 B1 C1a





90


embedded image




0.28
50% EtOAc/ 50% pet ether
525 (M + H)+ (HPLC ES-MS)
A2 B1 C1a





91


embedded image


214- 216

0.28
50% EtOAc/ 50% pet ether
522 (M + H)+ (HPLC ES-MS)
A2 B1 C1a





92


embedded image




0.47
50% EtOAc/ 50% pet ether
527 (M + H)+ (HPLC ES-MS)
A2 step 3b, A2 step 4, B1, C1a





93


embedded image




0.46
50% EtOAc/ 50% pet ether
527 (M + H)+ (HPLC ES-MS)
A2 step 3b, A2 step 4, B1, C1a





94


embedded image


145- 150

0.41
5% MeOH/ 95% CH2Cl2

A10 B1 C1a
















TABLE 6







5-(Trifluoromethyl)-4-chloro-2-methoxyphenyl Ureas




embedded image
























TLC
Mass





mp
HPLC
TLC
Solvent
Spec.
Synth.


Entry
R
(° C.)
(min.)
Rf
System
[Source]
Method

















95


embedded image


140- 144

0.29
5% MeOH/ 45% EtOAc/ 50% pet ether
495 (M + H)+ (HPLC ES-MS)
A2 A7 B1 C1a





96


embedded image


244 245

0.39
5% MeOH/ 45% EtOAc/ 50% pet ether
529 (M + H)+ (HPLC ES-MS)
A2 A7 B1 C1a





97


embedded image


220 221

0.25
5% MeOH/ 45% EtOAc/ 50% pet ether
529 (M + H)+ (HPLC ES-MS)
A2 A7 B1 C1a





98


embedded image




0.27
5% MeOH/ 45% EtOAc/ 50% pet ether
495 (M + H)+ (HPLC ES-MS)
A2 A7 B1 C1a





99


embedded image


180- 181

0.52
5% MeOH/ 45% EtOAc/ 50% pet ether
509 (M + H)+ (HPLC ES-MS)
A2 A7 B1 C1a





100


embedded image


162- 165




A2 A7 B1 C1a
















TABLE 7







Additional Ureas



















TLC
Mass





mp
HPLC
TLC
Solvent
Spec.
Synth.


Entry
R
(° C.)
(min.)
Rf
System
[Source]
Method

















101


embedded image


162- 165




A1 A2 C3





102


embedded image




0.10
50% EtOAc/ 50% hexane
442 (M + H)+ (HPLC ES-MS)
A2 A4 C2d





103


embedded image


125- 130

0.24
40% EtOAc/ 60% hexane
512 (M + H)+ (FAB)
A2 C2b









BIOLOGICAL EXAMPLES

P38 Kinase Assay:


The in vitro inhibitory properties of compounds were determined using a p38 kinase inhibition assay. P38 activity was detected using an in vitro kinase assay run in 96-well microtiter plates. Recombinant human p38 (0.5 μg/mL) was mixed with substrate (myelin basic protein, 5 μg/mL) in kinase buffer (25 mM Hepes, 20 mM MgCl2 and 150 mM NaCl) and compound. One μCi/well of 33P-labeled ATP (10 μM) was added to a final volume of 100 μL. The reaction was run at 32° C. for 30 min. and stopped with a 1M HCl solution. The amount of radioactivity incorporated into the substrate was determined by trapping the labeled substrate onto negatively charged glass fiber filter paper using a 1% phosphoric acid solution and read with a scintillation counter. Negative controls include substrate plus ATP alone.


All compounds exemplified displayed p38 IC50s of between 1 nM and 10 μM.


LPS Induced TNFα Production in Mice:


The in vivo inhibitory properties of selected compounds were determined using a murine LPS induced TNFα production in vivo model. BALB/c mice (Charles River Breeding Laboratories; Kingston, N.Y.) in groups of ten were treated with either vehicle or compound by the route noted. After one hour, endotoxin (EB coli lipopolysaccharide (LPS) 100 μg) was administered intraperitoneally (i.p.). After 90 min, animals were euthanized by carbon dioxide asphyxiation and plasma was obtained from individual animals by cardiac puncture into heparinized tubes. The samples were clarified by centrifugation at 12,500×g for 5 min at 4° C. The supernatants were decanted to new tubes, which were stored as needed at −20° C. TNFα levels in sera were measured using a commercial. murine TNF ELISA kit (Genzyme).


The preceding examples can be repeated with similar success by substituting the generically or specifically described reactants and/or operating conditions of this invention for those used in the preceding examples.


From the foregoing discussion, one skilled in the art can easily ascertain the essential characteristics of this invention and, without departing from the spirit and scope thereof, can make various changes and modifications of the invention to adapt it to various usages and conditions.

Claims
  • 1. A pharmaceutical composition comprising N-(4-chloro-3-(trifluoromethyl)phenyl)-N′-(4-(2-(N-methylcarbamoyl)-4-pyridyloxy)phenyl)urea of the formula X
  • 2. The pharmaceutical composition of claim 1 wherein the pharmaceutically acceptable salt thereof is a tosylate salt of N-(4-chloro-3-(trifluoromethyl)phenyl)-N′-(4-(2-(N-methylcarbamoyl)-4-pyridyloxy)phenyl)urea of the formula X
  • 3. A pharmaceutical composition comprising N-(4-chloro-3-(trifluoromethyl)phenyl)-N′-(4-(2-(N-methylcarbamoyl)-4-pyridyloxy)phenyl)urea of the formula X
  • 4. The pharmaceutical composition of claim 3 wherein the pharmaceutically acceptable salt thereof is a tosylate salt of N-(4-chloro-3-(trifluoromethyl)phenyl)-N′-(4-(2-(N-methylcarbamoyl)-4-pyridyloxy)phenyl)urea of the formula X
  • 5. A tablet comprising N-(4-chloro-3-(trifluoromethyl)phenyl)-N′-(4-(2-(N-methylcarbamoyl)-4-pyridyloxy)phenyl)urea of the formula X
  • 6. A tablet of claim 5 wherein the pharmaceutically acceptable salt thereof is a tosylate salt of N-(4-chloro-3-(trifluoromethyl)phenyl)-N′-(4-(2-(N-methylcarbamoyl)-4-pyridyloxy)phenyl)urea of the formula X
  • 7. A tablet of claim 5 wherein the pharmaceutically acceptable excipient is a diluent, a granulating agent, a disintegrating agent or a binding agent.
  • 8. A tablet of claim 6 wherein the pharmaceutically acceptable excipient is a diluent, a granulating agent, a disintegrating agent or a binding agent.
CROSS-REFERENCE TO RELATED APPLICATIONS

This application is a continuation of abandoned application Ser. No. 10/086,417, filed Mar. 4, 2002, which is a continuation of abandoned application Ser. No. 09/425,229, filed Oct. 22, 1999 which is a continuation-in-part of abandoned application Ser. No. 09/257,265 filed Feb. 25, 1999. This application claims the benefit of the filing date of U.S. Provisional Application No. 60/115,878, filed Jan. 13, 1999. The content of these applications are incorporated herein by reference.

US Referenced Citations (349)
Number Name Date Kind
502504 Thorns Aug 1893 A
1792156 Fitzky Feb 1931 A
2046375 Goldstein et al. Jul 1936 A
2093265 Coffby et al. Sep 1937 A
2288422 Rohm Jun 1942 A
2649476 Martin et al. Aug 1953 A
2683082 Hill et al. Jul 1954 A
2722544 Martin et al. Nov 1955 A
2745874 Schetty et al. May 1956 A
2781330 Downey Feb 1957 A
2797214 Werner-Bossard Jun 1957 A
2867659 Model et al. Jan 1959 A
2877268 Applegate et al. Mar 1959 A
2960488 Tamblyn et al. Nov 1960 A
2973386 Weldon Feb 1961 A
3151023 Martin Sep 1964 A
3200035 Martin et al. Aug 1965 A
3230141 Frick et al. Jan 1966 A
3284433 Becker et al. Nov 1966 A
3424760 Helsley et al. Jan 1969 A
3424761 Helsley et al. Jan 1969 A
3424762 Helsley et al. Jan 1969 A
3547940 Brantley Dec 1970 A
3639668 Alles et al. Feb 1972 A
3646059 Brantley Feb 1972 A
3668222 Hauser Jun 1972 A
3689550 Schellenbaum et al. Sep 1972 A
3743498 Brantley Jul 1973 A
3754887 Brantley Aug 1973 A
3823161 Lesser Jul 1974 A
3828001 Broad et al. Aug 1974 A
3860645 Nikawitz Jan 1975 A
3990879 Soper Nov 1976 A
4001256 Callahan et al. Jan 1977 A
4009847 Aldrich et al. Mar 1977 A
4042372 Harper Aug 1977 A
4062861 Yukinaga et al. Dec 1977 A
4063928 Johnston Dec 1977 A
4071524 Banitt Jan 1978 A
4103022 Sirrenberg et al. Jul 1978 A
4111680 Yukinaga et al. Sep 1978 A
4111683 Singer Sep 1978 A
4116671 Yukinaga et al. Sep 1978 A
4173637 Nishiyama et al. Nov 1979 A
4173638 Nishiyama et al. Nov 1979 A
4183854 Crossley Jan 1980 A
4212981 Yukinaga et al. Jul 1980 A
4240820 Dickore et al. Dec 1980 A
4279639 Okamoto et al. Jul 1981 A
4293328 Yukinaga et al. Oct 1981 A
4358596 Krüger Nov 1982 A
4405644 Kabbe et al. Sep 1983 A
4410697 Török et al. Oct 1983 A
4437878 Acker et al. Mar 1984 A
4468380 O'Doherty et al. Aug 1984 A
4473579 Devries et al. Sep 1984 A
4499097 Tomcufcik et al. Feb 1985 A
4511571 Böger et al. Apr 1985 A
4514571 Nakai et al. Apr 1985 A
4526997 O'Doherty et al. Jul 1985 A
4540566 Davis et al. Sep 1985 A
4546191 Nishiyama et al. Oct 1985 A
4587240 Hider et al. May 1986 A
4623662 De Vries Nov 1986 A
4643849 Hirai et al. Feb 1987 A
4740520 Hallenbach et al. Apr 1988 A
4760063 Hallenbach et al. Jul 1988 A
4775763 Dalton et al. Oct 1988 A
4808588 King Feb 1989 A
4820871 Kissener et al. Apr 1989 A
4863924 Haga et al. Sep 1989 A
4921525 Grossman et al. May 1990 A
4973675 Israel et al. Nov 1990 A
4977169 Häusermann et al. Dec 1990 A
4983605 Kondo et al. Jan 1991 A
4985449 Haga et al. Jan 1991 A
4996325 Kristinsson Feb 1991 A
5036072 Nakajima et al. Jul 1991 A
5059614 Lepage et al. Oct 1991 A
5063247 Sekiya et al. Nov 1991 A
5098907 Kondo et al. Mar 1992 A
5100883 Schiehser Mar 1992 A
5118677 Caufield Jun 1992 A
5118678 Kao et al. Jun 1992 A
5120842 Failli et al. Jun 1992 A
5130331 Pascual Jul 1992 A
5151344 Abe et al. Sep 1992 A
5151413 Caufield et al. Sep 1992 A
5162360 Creswell et al. Nov 1992 A
5177110 Oechslein et al. Jan 1993 A
5185358 Creswell Feb 1993 A
5256790 Nelson Oct 1993 A
5258389 Goulet et al. Nov 1993 A
5270458 Lemischka Dec 1993 A
5283354 Lemischka Feb 1994 A
5312820 Ashton et al. May 1994 A
5319099 Kamata et al. Jun 1994 A
5378725 Bonjouklian et al. Jan 1995 A
5399566 Katano et al. Mar 1995 A
5423905 Fringeli Jun 1995 A
5429918 Seto et al. Jul 1995 A
5432468 Moriyama et al. Jul 1995 A
5441947 Dodge et al. Aug 1995 A
5447957 Adams et al. Sep 1995 A
5456920 Matoba et al. Oct 1995 A
5468773 Dodge et al. Nov 1995 A
5470882 Dixon et al. Nov 1995 A
5480906 Creemer et al. Jan 1996 A
5500424 Nagamine et al. Mar 1996 A
5508288 Forbes et al. Apr 1996 A
5547966 Atwal et al. Aug 1996 A
5559137 Adams et al. Sep 1996 A
5596001 Hamanaka Jan 1997 A
5597719 Freed et al. Jan 1997 A
5624937 Reel et al. Apr 1997 A
5656612 Monia Aug 1997 A
5658903 Adams et al. Aug 1997 A
5667226 Janich Sep 1997 A
5696138 Olesen et al. Dec 1997 A
5698581 Kleemann et al. Dec 1997 A
5710094 Minami et al. Jan 1998 A
5721237 Myers et al. Feb 1998 A
5726167 Dodge et al. Mar 1998 A
5747498 Schnur et al. May 1998 A
5773459 Tang et al. Jun 1998 A
5777097 Lee et al. Jul 1998 A
5780262 Brent et al. Jul 1998 A
5780483 Widdowson et al. Jul 1998 A
5783664 Lee et al. Jul 1998 A
5786362 Krongrad Jul 1998 A
5801794 Lehureau et al. Sep 1998 A
5807876 Armistead et al. Sep 1998 A
5807891 Bold et al. Sep 1998 A
5808080 Bell et al. Sep 1998 A
5814646 Heinz Sep 1998 A
5869043 McDonnell et al. Feb 1999 A
5871934 Lee et al. Feb 1999 A
5886044 Widdowson et al. Mar 1999 A
5891895 Shiraishi et al. Apr 1999 A
5908865 Doi et al. Jun 1999 A
5919773 Monia et al. Jul 1999 A
5929250 Widdowson et al. Jul 1999 A
5955366 Lee et al. Sep 1999 A
5965573 Petrie et al. Oct 1999 A
6004965 Breu et al. Dec 1999 A
6005008 Widdowson et al. Dec 1999 A
6015908 Widdowson et al. Jan 2000 A
6017692 Brent et al. Jan 2000 A
6020345 Vacher et al. Feb 2000 A
6022884 Mantlo et al. Feb 2000 A
6025151 Peterson Feb 2000 A
6033873 McDonnell et al. Mar 2000 A
6040339 Yoshida et al. Mar 2000 A
6043374 Widdowson et al. Mar 2000 A
6080763 Regan et al. Jun 2000 A
6093742 Salituro et al. Jul 2000 A
6103692 Avruch et al. Aug 2000 A
6114517 Monia et al. Sep 2000 A
6130053 Thompson et al. Oct 2000 A
6133319 Widdowson Oct 2000 A
6136779 Foulkes et al. Oct 2000 A
6143764 Kubo et al. Nov 2000 A
6147107 Dent et al. Nov 2000 A
6147116 Barbachyn et al. Nov 2000 A
6150415 Hammock et al. Nov 2000 A
6159901 Kanno et al. Dec 2000 A
6174901 Mantlo et al. Jan 2001 B1
6177401 Ullrich et al. Jan 2001 B1
6178399 Takebayashi et al. Jan 2001 B1
6180631 McMahon et al. Jan 2001 B1
6180675 Widdowson et al. Jan 2001 B1
6187799 Wood et al. Feb 2001 B1
6193965 Karin et al. Feb 2001 B1
6204267 Tang et al. Mar 2001 B1
6210710 Skinner Apr 2001 B1
6211373 Widdowson et al. Apr 2001 B1
6218539 Widdowson Apr 2001 B1
6228881 Regan et al. May 2001 B1
6235764 Larson et al. May 2001 B1
6236125 Oudet et al. May 2001 B1
6242601 Breu et al. Jun 2001 B1
6262113 Widdowson et al. Jul 2001 B1
6271261 Widdowson Aug 2001 B1
6294350 Peterson Sep 2001 B1
6297381 Cirillo et al. Oct 2001 B1
6310068 Böttcher et al. Oct 2001 B1
6316462 Bishop et al. Nov 2001 B1
6319921 Cirillo et al. Nov 2001 B1
6329415 Cirillo et al. Dec 2001 B1
6333341 Mantlo et al. Dec 2001 B1
6339045 Kanno et al. Jan 2002 B1
6344476 Ranges et al. Feb 2002 B1
6352977 Astles et al. Mar 2002 B1
6358525 Guo et al. Mar 2002 B1
6358945 Breitfelder et al. Mar 2002 B1
6361773 Lee et al. Mar 2002 B1
6372773 Regan Apr 2002 B1
6372933 Baine et al. Apr 2002 B1
6380218 Marfat et al. Apr 2002 B1
6383734 Marshall et al. May 2002 B1
6387900 Pevarello et al. May 2002 B1
6391917 Petrie et al. May 2002 B1
6403588 Hayakawa et al. Jun 2002 B1
6414011 Hogenkamp et al. Jul 2002 B1
6444691 Oremus et al. Sep 2002 B1
6448079 Monia et al. Sep 2002 B1
6479519 Astles et al. Nov 2002 B1
6492393 Breitfelder et al. Dec 2002 B1
6495331 Gelfand et al. Dec 2002 B1
6500863 Jin et al. Dec 2002 B1
6511800 Singh Jan 2003 B1
6511997 Minami et al. Jan 2003 B1
6521407 Warenius et al. Feb 2003 B1
6521592 Ko et al. Feb 2003 B2
6524832 Kufe et al. Feb 2003 B1
6525046 Cirillo et al. Feb 2003 B1
6525065 Caldwell et al. Feb 2003 B1
6525091 Robinson et al. Feb 2003 B2
6583282 Zhang et al. Jun 2003 B1
6608052 Breitfelder et al. Aug 2003 B2
6617324 Naraian et al. Sep 2003 B1
6635421 Klagsbrun et al. Oct 2003 B1
6653320 Hayakawa et al. Nov 2003 B2
6656963 Firestone et al. Dec 2003 B2
6673777 Tracey et al. Jan 2004 B1
6689560 Rapp et al. Feb 2004 B1
6797823 Kubo et al. Sep 2004 B1
6958333 Hayama et al. Oct 2005 B1
7070968 Kufe et al. Jul 2006 B2
7235576 Riedl et al. Jun 2007 B1
7253286 Funahashi et al. Aug 2007 B2
7307071 Lyons et al. Dec 2007 B2
7329670 Dumas et al. Feb 2008 B1
7351834 Riedl et al. Apr 2008 B1
7371763 Dumas et al. May 2008 B2
7517880 Miller et al. Apr 2009 B2
7528255 Riedl et al. May 2009 B2
7547695 Hoelzemann et al. Jun 2009 B2
7557129 Scott et al. Jul 2009 B2
7605261 Deprez et al. Oct 2009 B2
7612092 Funahashi et al. Nov 2009 B2
7678811 Dumas et al. Mar 2010 B2
20010006975 Wood et al. Jul 2001 A1
20010011135 Riedl et al. Aug 2001 A1
20010011136 Riedl et al. Aug 2001 A1
20010016659 Riedl et al. Aug 2001 A1
20010027202 Riedl et al. Oct 2001 A1
20010034447 Riedl et al. Oct 2001 A1
20010038842 Achen et al. Nov 2001 A1
20020037276 Ptasznik et al. Mar 2002 A1
20020042517 Uday et al. Apr 2002 A1
20020062763 Macholdt et al. May 2002 A1
20020065283 McMahon et al. May 2002 A1
20020065296 Dumas et al. May 2002 A1
20020082255 Eastwood Jun 2002 A1
20020085857 Kim et al. Jul 2002 A1
20020085859 Hashimoto et al. Jul 2002 A1
20020103253 Ranges et al. Aug 2002 A1
20020111495 Magee et al. Aug 2002 A1
20020128321 Widdowson et al. Sep 2002 A1
20020137774 Riedl et al. Sep 2002 A1
20020161014 Sadhu et al. Oct 2002 A1
20020165275 Wu et al. Nov 2002 A1
20020165349 Kirsch et al. Nov 2002 A1
20020165394 Dumas et al. Nov 2002 A1
20020173507 Santora et al. Nov 2002 A1
20020188027 Robinson et al. Dec 2002 A1
20020197256 Grewal Dec 2002 A1
20030069284 Keegan et al. Apr 2003 A1
20030105091 Riedl et al. Jun 2003 A1
20030125359 Lyons et al. Jul 2003 A1
20030130309 Moss et al. Jul 2003 A1
20030139605 Riedl et al. Jul 2003 A1
20030144278 Riedl et al. Jul 2003 A1
20030157104 Waksal Aug 2003 A1
20030181442 Riedl et al. Sep 2003 A1
20030207870 Dumas et al. Nov 2003 A1
20030207872 Riedl et al. Nov 2003 A1
20030207914 Dumas et al. Nov 2003 A1
20030216396 Dumas et al. Nov 2003 A1
20030216446 Dumas et al. Nov 2003 A1
20030232400 Radka et al. Dec 2003 A1
20030232765 Carter et al. Dec 2003 A1
20040023961 Dumas et al. Feb 2004 A1
20040052880 Kobayashi et al. Mar 2004 A1
20040096855 Stratton et al. May 2004 A1
20040147541 Lane et al. Jul 2004 A1
20040192770 Kozikowski et al. Sep 2004 A1
20040197256 Rogers et al. Oct 2004 A1
20040209905 Kubo et al. Oct 2004 A1
20040224937 Furness et al. Nov 2004 A1
20040229937 Dumas et al. Nov 2004 A1
20040235829 Scott et al. Nov 2004 A1
20050032798 Boyer et al. Feb 2005 A1
20050038031 Dumas et al. Feb 2005 A1
20050038080 Boyer et al. Feb 2005 A1
20050059703 Wilhelm et al. Mar 2005 A1
20050069963 Lokshin et al. Mar 2005 A1
20050096344 Fraley et al. May 2005 A1
20050175737 Knobel Aug 2005 A1
20050256174 Wood et al. Nov 2005 A1
20050288286 Flynn et al. Dec 2005 A1
20060058358 Dumas et al. Mar 2006 A1
20060078617 Schueckler Apr 2006 A1
20060211738 Mitchell et al. Sep 2006 A1
20060234931 Biggs et al. Oct 2006 A1
20060241301 Hoelzemann et al. Oct 2006 A1
20060247186 Carter et al. Nov 2006 A1
20060281762 Staehle et al. Dec 2006 A1
20070020704 Wilhelm et al. Jan 2007 A1
20070037224 Hamer et al. Feb 2007 A1
20070066660 Stahle et al. Mar 2007 A1
20070105142 Wilhelm May 2007 A1
20070149594 Finsinger et al. Jun 2007 A1
20070173514 Moss et al. Jul 2007 A1
20070178494 Elting et al. Aug 2007 A1
20070244120 Dumas et al. Oct 2007 A1
20070254295 Harvey et al. Nov 2007 A1
20070265315 Dumas et al. Nov 2007 A1
20080009527 Dumas et al. Jan 2008 A1
20080027061 Riedl et al. Jan 2008 A1
20080032979 Riedl et al. Feb 2008 A1
20080045546 Bouchon et al. Feb 2008 A1
20080045589 Kelley Feb 2008 A1
20080085902 Bold et al. Apr 2008 A1
20080108672 Riedl et al. May 2008 A1
20080153823 Riedl et al. Jun 2008 A1
20080194580 Dumas et al. Aug 2008 A1
20080207699 Hoelzemann et al. Aug 2008 A1
20080214545 Lee et al. Sep 2008 A1
20080227828 Dumas et al. Sep 2008 A1
20080242707 Schuckler et al. Oct 2008 A1
20080262236 Logers et al. Oct 2008 A1
20080269265 Miller et al. Oct 2008 A1
20080300281 Dumas et al. Dec 2008 A1
20080311601 Elting et al. Dec 2008 A1
20080311604 Elting et al. Dec 2008 A1
20090068146 Wilhelm Mar 2009 A1
20090093526 Miller et al. Apr 2009 A1
20090118268 Riedl et al. May 2009 A1
20090176791 Sandner et al. Jul 2009 A1
20090192127 Scheuring et al. Jul 2009 A1
20090215833 Grunenberg et al. Aug 2009 A1
20090215835 Wilhelm Aug 2009 A1
20090221010 Elting et al. Sep 2009 A1
20090227637 Weber et al. Sep 2009 A1
20090306020 Scheuring et al. Dec 2009 A1
20100035888 Sandner et al. Feb 2010 A1
20100063088 Wood et al. Mar 2010 A1
Foreign Referenced Citations (656)
Number Date Country
2028536 Apr 1991 CA
2 146 707 Oct 1995 CA
2146707 Oct 1995 CA
479557 Nov 1969 CH
479557 Nov 1969 CH
38688 Jun 1993 CL
253997 Feb 1988 DD
253997 Feb 1998 DD
487 014 Nov 1929 DE
487014 Nov 1929 DE
511468 Nov 1929 DE
0 487 014 Dec 1929 DE
0 511 468 Oct 1930 DE
511 468 Oct 1930 DE
511468 Oct 1930 DE
523 437 Apr 1931 DE
523437 Apr 1931 DE
0 523 437 May 1931 DE
2436179 Feb 1975 DE
2436179 Feb 1975 DE
2436179 Feb 1975 DE
25 01 648 Jul 1975 DE
25 01 648 Jul 1975 DE
2501648 Jul 1975 DE
2436179 Oct 1981 DE
3305866 Feb 1983 DE
3305866 Aug 1984 DE
2436179 Apr 1986 DE
35 29 247 Nov 1986 DE
3529247 Nov 1986 DE
35 29 247 Feb 1987 DE
3529247 Feb 1987 DE
35 40 377 May 1987 DE
3540377 May 1987 DE
0 253 997 Feb 1988 DE
253997 Feb 1988 DE
16371 Mar 1980 EP
0016371 Oct 1980 EP
0107214 May 1984 EP
0107214 May 1984 EP
0116932 Aug 1984 EP
0192263 Aug 1986 EP
0192263 Aug 1986 EP
0202538 Nov 1986 EP
0230400 Jul 1987 EP
0230400 Jul 1987 EP
0233559 Aug 1987 EP
0233559 Aug 1987 EP
242666 Oct 1987 EP
0242666 Oct 1987 EP
0264904 Apr 1988 EP
0264904 Apr 1988 EP
335156 Mar 1989 EP
0314615 May 1989 EP
0314615 May 1989 EP
0335156 Oct 1989 EP
371876 Nov 1989 EP
0359148 Mar 1990 EP
0359148 Mar 1990 EP
0371876 Jun 1990 EP
0379915 Aug 1990 EP
0379915 Aug 1990 EP
0380048 Aug 1990 EP
0380048 Aug 1990 EP
0381987 Aug 1990 EP
0381987 Aug 1990 EP
0425443 Oct 1990 EP
0 405 233 Jan 1991 EP
0405233 Jan 1991 EP
0405233 Jan 1991 EP
0425443 May 1991 EP
459887 May 1991 EP
0459887 Dec 1991 EP
0233559 May 1992 EP
0192263 Jul 1992 EP
0 502 504 Sep 1992 EP
0502504 Sep 1992 EP
0509795 Oct 1992 EP
0709225 May 1995 EP
0690344 Jun 1995 EP
0690344 Jun 1995 EP
0676395 Oct 1995 EP
0709225 Oct 1995 EP
0 690 344 Jan 1996 EP
0690344 Jan 1996 EP
0709220 May 1996 EP
0709225 May 1996 EP
676395 Jul 1996 EP
0 860 433 Aug 1998 EP
98963310 Aug 1998 EP
0709225 Aug 1998 EP
0860433 Aug 1998 EP
0860433 Aug 1998 EP
116932 Aug 2000 EP
1056725 Dec 2000 EP
98963810 Dec 2000 EP
0425443 Feb 2001 EP
0690344 May 2001 EP
0709225 Jan 2002 EP
1199306 Apr 2002 EP
903239.2-2103 Aug 2002 EP
1256587 Nov 2002 EP
1537075 Jun 2005 EP
1537075 Aug 2005 EP
905597.1-2123 Jul 2008 EP
1 457 172 Sep 1966 FR
1 457 172 Sep 1966 FR
1457172 Sep 1966 FR
0 828 231 Oct 1956 GB
828 231 Oct 1956 GB
0 771 333 Mar 1957 GB
771 333 Mar 1957 GB
771333 Mar 1957 GB
828231 Feb 1960 GB
0 921 682 Mar 1963 GB
921 682 Mar 1963 GB
921682 Mar 1963 GB
1110099 Jun 1966 GB
1110099 Apr 1968 GB
1110099 Apr 1968 GB
1111554 May 1968 GB
1 590 870 Jun 1981 GB
1590870 Jun 1981 GB
P0004437 Dec 1998 HU
P0004437 Jun 2001 HU
26555 Jan 2000 IR
26555 Jul 2000 IR
44 2569 Feb 1944 JP
44 2569 Feb 1969 JP
44-2569 Feb 1969 JP
50-76072 Jun 1975 JP
50-76072 Jun 1975 JP
50-77375 Jun 1975 JP
50-77375 Jun 1975 JP
50-149668 Nov 1975 JP
50-149668 Nov 1975 JP
51-63170 Jun 1976 JP
51063170 Jun 1976 JP
51-80862 Jul 1976 JP
51-080862 Jul 1976 JP
51-80862 Jul 1976 JP
53-86033 Jul 1978 JP
53086033 Jul 1978 JP
54-032468 Sep 1979 JP
54-32468 Sep 1979 JP
55 98152 Jul 1980 JP
55-98152 Jul 1980 JP
55-124763 Sep 1980 JP
55-124763 Sep 1980 JP
55-162772 Dec 1980 JP
55-162772 Dec 1980 JP
57-53785 Nov 1982 JP
57053785 Nov 1982 JP
58-21626 May 1983 JP
61020039 Jul 1984 JP
61-20039 Jan 1986 JP
02035450 Jul 1988 JP
63-214752 Sep 1988 JP
06075172 Sep 1988 JP
64-9455 Jan 1989 JP
01009455 Jan 1989 JP
1-102461 Apr 1989 JP
01102461 Apr 1989 JP
1-132580 May 1989 JP
1132580 May 1989 JP
1-200254 Aug 1989 JP
01200254 Aug 1989 JP
1-259360 Oct 1989 JP
01259360 Oct 1989 JP
03198049 Dec 1989 JP
2-22650 Jan 1990 JP
2-23337 Jan 1990 JP
2022650 Jan 1990 JP
2023337 Jan 1990 JP
2023337 Jan 1990 JP
2023337 Jan 1990 JP
2-35450 Feb 1990 JP
2-105146 Apr 1990 JP
2-108048 Apr 1990 JP
2-150840 Apr 1990 JP
02105016 Apr 1990 JP
02108048 Apr 1990 JP
2-150840 Jun 1990 JP
02150840 Jun 1990 JP
3 532 47 Mar 1991 JP
3 532 47 Mar 1991 JP
3-53247 Mar 1991 JP
3-144634 Jun 1991 JP
03144634 Jun 1991 JP
3-198049 Aug 1991 JP
06120039 Oct 1992 JP
6-75172 Sep 1994 JP
8 301841 Nov 1996 JP
8-301841 Nov 1996 JP
08-301841 Nov 1996 JP
56029871 Sep 1998 JP
10-306078 Nov 1998 JP
10-306078 Nov 1998 JP
5821626 Nov 1998 JP
2022650 Jan 2002 JP
2023337 Jan 2002 JP
57053785 Nov 2003 JP
6124 Jan 2000 LB
9002112 Mar 1990 WO
9002112 Mar 1990 WO
9203413 Mar 1992 WO
WO 9203413 Mar 1992 WO
9205179 Apr 1992 WO
9304170 Mar 1993 WO
9318028 Sep 1993 WO
9318028 Sep 1993 WO
9324458 Dec 1993 WO
9324458 Dec 1993 WO
9402136 Feb 1994 WO
9402485 Feb 1994 WO
9404541 Mar 1994 WO
9404541 Mar 1994 WO
9414801 Jul 1994 WO
9414801 Jul 1994 WO
9418170 Aug 1994 WO
9418170 Aug 1994 WO
94 22807 Oct 1994 WO
9422807 Oct 1994 WO
9423755 Oct 1994 WO
9423755 Oct 1994 WO
WO 9422807 Oct 1994 WO
9425012 Nov 1994 WO
9425012 Nov 1994 WO
9502136 Jan 1995 WO
9502591 Jan 1995 WO
9502591 Jan 1995 WO
9507922 Mar 1995 WO
9507922 Mar 1995 WO
9513067 May 1995 WO
9513067 May 1995 WO
9514023 May 1995 WO
9516691 Jun 1995 WO
9519169 Jul 1995 WO
9531451 Nov 1995 WO
9531451 Nov 1995 WO
9533458 Dec 1995 WO
9533458 Dec 1995 WO
9533460 Dec 1995 WO
9533460 Dec 1995 WO
WO 9533458 Dec 1995 WO
9602112 Jan 1996 WO
WO 9602112 Jan 1996 WO
9610559 Apr 1996 WO
9610559 Apr 1996 WO
WO 9610559 Apr 1996 WO
9613632 May 1996 WO
WO 9613632 May 1996 WO
9625157 Aug 1996 WO
9640673 Dec 1996 WO
9640673 Dec 1996 WO
9640675 Dec 1996 WO
9641807 Dec 1996 WO
A1 9640675 Dec 1996 WO
9703069 Jan 1997 WO
9703069 Jan 1997 WO
9709973 Mar 1997 WO
WO 9709973 Mar 1997 WO
WO 9709973 Mar 1997 WO
9717267 May 1997 WO
9717329 May 1997 WO
WO 9717267 May 1997 WO
WO 9717329 May 1997 WO
WO 9717329 May 1997 WO
9729743 Aug 1997 WO
9729743 Aug 1997 WO
9730992 Aug 1997 WO
WO 9730992 Aug 1997 WO
WO 9730992 Aug 1997 WO
9734146 Sep 1997 WO
9740028 Oct 1997 WO
9740842 Nov 1997 WO
9745400 Dec 1997 WO
9745400 Dec 1997 WO
9749399 Dec 1997 WO
9749399 Dec 1997 WO
9749400 Dec 1997 WO
9749400 Dec 1997 WO
9817207 Apr 1998 WO
9817267 Apr 1998 WO
WO 9817267 Apr 1998 WO
WO 9817267 Apr 1998 WO
9820868 May 1998 WO
9822103 May 1998 WO
9822103 May 1998 WO
9822432 May 1998 WO
9822432 May 1998 WO
WO 9820868 May 1998 WO
WO 9820868 May 1998 WO
WO 9822103 May 1998 WO
WO 9822103 May 1998 WO
9832439 Jul 1998 WO
WO 9832439 Jul 1998 WO
9834929 Aug 1998 WO
WO 9834929 Aug 1998 WO
9845268 Oct 1998 WO
WO 9845268 Oct 1998 WO
WO 9845268 Oct 1998 WO
9849150 Nov 1998 WO
9852558 Nov 1998 WO
9852559 Nov 1998 WO
9852559 Nov 1998 WO
9852937 Nov 1998 WO
9852941 Nov 1998 WO
WO 9852558 Nov 1998 WO
WO 9852558 Nov 1998 WO
WO 9852559 Nov 1998 WO
9856377 Dec 1998 WO
9856377 Dec 1998 WO
9900357 Jan 1999 WO
9900357 Jan 1999 WO
9900370 Jan 1999 WO
9900370 Jan 1999 WO
9920617 Apr 1999 WO
WO 9920617 Apr 1999 WO
9921835 May 1999 WO
9923091 May 1999 WO
9923091 May 1999 WO
9924035 May 1999 WO
9924035 May 1999 WO
9924398 May 1999 WO
9924398 May 1999 WO
9924635 May 1999 WO
WO 9921835 May 1999 WO
WO 9923091 May 1999 WO
WO 9924398 May 1999 WO
WO 9924635 May 1999 WO
WO 9924635 May 1999 WO
9926657 Jun 1999 WO
9928305 Jun 1999 WO
WO 9928305 Jun 1999 WO
WO 9928305 Jun 1999 WO
9932106 Jul 1999 WO
9932109 Jul 1999 WO
9932109 Jul 1999 WO
9932110 Jul 1999 WO
9932111 Jul 1999 WO
9932111 Jul 1999 WO
9932436 Jul 1999 WO
9932437 Jul 1999 WO
9932455 Jul 1999 WO
9932455 Jul 1999 WO
9932463 Jul 1999 WO
9933458 Jul 1999 WO
9935132 Jul 1999 WO
9935132 Jul 1999 WO
WO 9932106 Jul 1999 WO
WO 9932106 Jul 1999 WO
WO 9932110 Jul 1999 WO
WO 9932110 Jul 1999 WO
WO 9932111 Jul 1999 WO
WO 9932436 Jul 1999 WO
WO 9932436 Jul 1999 WO
WO 9932437 Jul 1999 WO
WO 9932437 Jul 1999 WO
WO 9932455 Jul 1999 WO
WO 9932463 Jul 1999 WO
WO 9932463 Jul 1999 WO
WO 9933458 Jul 1999 WO
WO 9933458 Jul 1999 WO
9940673 Aug 1999 WO
WO 9940673 Aug 1999 WO
WO 9940673 Aug 1999 WO
9958502 Nov 1999 WO
9962890 Dec 1999 WO
WO 9962890 Dec 1999 WO
0012497 Mar 2000 WO
0012497 Mar 2000 WO
0017175 Mar 2000 WO
0017175 Mar 2000 WO
WO 0017175 Mar 2000 WO
0019205 Apr 2000 WO
0026203 May 2000 WO
0027414 May 2000 WO
PCTUS0000648 May 2000 WO
PCTUS0000768 May 2000 WO
WO 0026203 May 2000 WO
0031238 Jun 2000 WO
0034303 Jun 2000 WO
0035454 Jun 2000 WO
0035455 Jun 2000 WO
0039116 Jun 2000 WO
WO 0035454 Jun 2000 WO
0039101 Jul 2000 WO
0039101 Jul 2000 WO
0039116 Jul 2000 WO
0041698 Jul 2000 WO
0042012 Jul 2000 WO
0043366 Jul 2000 WO
0043366 Jul 2000 WO
0043384 Jul 2000 WO
0043384 Jul 2000 WO
WO 0041698 Jul 2000 WO
WO 0042012 Jul 2000 WO
WO 0043366 Jul 2000 WO
WO 0043384 Jul 2000 WO
0047577 Aug 2000 WO
0050425 Aug 2000 WO
WO 0050425 Aug 2000 WO
WO 0047577 Aug 2000 WO
0055139 Sep 2000 WO
0055139 Sep 2000 WO
0055152 Sep 2000 WO
0055152 Sep 2000 WO
0056331 Sep 2000 WO
WO 0055139 Sep 2000 WO
WO 0055152 Sep 2000 WO
WO 0056331 Sep 2000 WO
0071506 Nov 2000 WO
0071532 Nov 2000 WO
WO 0071532 Nov 2000 WO
0104115 Jan 2001 WO
0207772 Jan 2001 WO
WO 0104115 Jan 2001 WO
0107411 Feb 2001 WO
0109088 Feb 2001 WO
0112188 Feb 2001 WO
WO 0107411 Feb 2001 WO
WO 0109088 Feb 2001 WO
WO 0112188 Feb 2001 WO
0136403 May 2001 WO
WO 0136403 May 2001 WO
WO 0136403 May 2001 WO
014789 Jul 2001 WO
0147892 Jul 2001 WO
0154723 Aug 2001 WO
0154727 Aug 2001 WO
0157008 Aug 2001 WO
0163403 Aug 2001 WO
WO 0157008 Aug 2001 WO
0166099 Sep 2001 WO
0166099 Sep 2001 WO
0166540 Sep 2001 WO
0180843 Nov 2001 WO
0206382 Jan 2002 WO
0207008 Jan 2002 WO
0207747 Jan 2002 WO
0207772 Jan 2002 WO
WO 0207747 Jan 2002 WO
WO 0207772 Jan 2002 WO
0210141 Feb 2002 WO
0214281 Feb 2002 WO
0214311 Feb 2002 WO
WO 0210141 Feb 2002 WO
WO 0214281 Feb 2002 WO
WO 0214311 Feb 2002 WO
WO 0214311 Feb 2002 WO
0218346 Mar 2002 WO
0224635 Mar 2002 WO
0225286 Mar 2002 WO
0225286 Mar 2002 WO
WO 0218346 Mar 2002 WO
WO 0224635 Mar 2002 WO
0232872 Apr 2002 WO
WO 0232872 Apr 2002 WO
0240445 May 2002 WO
0242012 May 2002 WO
WO 0242012 May 2002 WO
WO 0242012 May 2002 WO
0244156 Jun 2002 WO
0244158 Jun 2002 WO
0250091 Jun 2002 WO
WO 0244156 Jun 2002 WO
WO 0244158 Jun 2002 WO
02059081 Aug 2002 WO
02059102 Aug 2002 WO
02060900 Aug 2002 WO
02062763 Aug 2002 WO
WO 02059081 Aug 2002 WO
WO 02059102 Aug 2002 WO
WO 02062763 Aug 2002 WO
02070008 Sep 2002 WO
02070008 Sep 2002 WO
0276930 Oct 2002 WO
02076930 Oct 2002 WO
02076977 Oct 2002 WO
02076977 Oct 2002 WO
02083628 Oct 2002 WO
02083642 Oct 2002 WO
02085857 Oct 2002 WO
02085859 Oct 2002 WO
WO 02083628 Oct 2002 WO
WO 02083642 Oct 2002 WO
WO 02085857 Oct 2002 WO
WO 02085859 Oct 2002 WO
02088090 Nov 2002 WO
02092576 Nov 2002 WO
WO 02092576 Nov 2002 WO
03004523 Jan 2003 WO
03005999 Jan 2003 WO
03047523 Jan 2003 WO
WO 03005999 Jan 2003 WO
WO 03099771 May 2003 WO
03047523 Jun 2003 WO
03047579 Jun 2003 WO
WO 03047523 Jun 2003 WO
03056036 Jul 2003 WO
03059373 Jul 2003 WO
03060111 Jul 2003 WO
WO 2004019941 Jul 2003 WO
03065995 Aug 2003 WO
03068223 Aug 2003 WO
03068228 Aug 2003 WO
03068229 Aug 2003 WO
03068746 Aug 2003 WO
WO 03068223 Aug 2003 WO
WO 03068228 Aug 2003 WO
WO 03068229 Aug 2003 WO
WO 03068746 Aug 2003 WO
WO 03094626 Sep 2003 WO
03082272 Oct 2003 WO
WO 03082272 Oct 2003 WO
03094626 Nov 2003 WO
03097854 Nov 2003 WO
03099771 Dec 2003 WO
WO 03099771 Dec 2003 WO
WO 03099771 Dec 2003 WO
2004004720 Jan 2004 WO
2004004720 Mar 2004 WO
2004019941 Mar 2004 WO
2004019941 Mar 2004 WO
2004037789 May 2004 WO
2004043374 May 2004 WO
A22004037789 May 2004 WO
WO 2004037789 May 2004 WO
WO 2004043374 May 2004 WO
04045578 Jun 2004 WO
04052880 Jun 2004 WO
2004045578 Jun 2004 WO
2004052880 Jun 2004 WO
2004052882 Jun 2004 WO
04078128 Sep 2004 WO
04078748 Sep 2004 WO
2004078128 Sep 2004 WO
2004078746 Sep 2004 WO
2004078747 Sep 2004 WO
2004078748 Sep 2004 WO
WO 2004078746 Sep 2004 WO
WO 2004078747 Sep 2004 WO
2004078748 Oct 2004 WO
2004085399 Oct 2004 WO
2004085425 Oct 2004 WO
WO 2004085399 Oct 2004 WO
WO 2004085425 Oct 2004 WO
2004108713 Dec 2004 WO
2004108715 Dec 2004 WO
2004113274 Dec 2004 WO
WO 2004113274 Dec 2004 WO
05000284 Jan 2005 WO
2005000284 Jan 2005 WO
2005002673 Jan 2005 WO
2005004863 Jan 2005 WO
2005004864 Jan 2005 WO
2005005389 Jan 2005 WO
2005005434 Jan 2005 WO
WO 2005002673 Jan 2005 WO
WO 2005004863 Jan 2005 WO
WO 2005004864 Jan 2005 WO
WO 2005005389 Jan 2005 WO
2005009367 Feb 2005 WO
2005009961 Feb 2005 WO
2005011700 Feb 2005 WO
2005016252 Feb 2005 WO
WO 2005009367 Feb 2005 WO
WO 2005009367 Feb 2005 WO
WO 2005009961 Feb 2005 WO
2005019192 Mar 2005 WO
WO 2005019192 Mar 2005 WO
2005032548 Apr 2005 WO
2005037273 Apr 2005 WO
2005037285 Apr 2005 WO
2005037829 Apr 2005 WO
WO 2005032548 Apr 2005 WO
WO 2005037273 Apr 2005 WO
WO 2005037285 Apr 2005 WO
WO 2005037829 Apr 2005 WO
2005042520 May 2005 WO
2005047283 May 2005 WO
WO 2005042520 May 2005 WO
WO 2005047283 May 2005 WO
2005048948 Jun 2005 WO
2005049603 Jun 2005 WO
2005056764 Jun 2005 WO
2005058832 Jun 2005 WO
2005059179 Jun 2005 WO
WO 2005048948 Jun 2005 WO
WO 2005049603 Jun 2005 WO
WO 2005058832 Jun 2005 WO
2005075425 Aug 2005 WO
WO 2005075425 Aug 2005 WO
2005089443 Sep 2005 WO
WO 2005089443 Sep 2005 WO
2005110994 Nov 2005 WO
WO 2005110994 Nov 2005 WO
06026500 Mar 2006 WO
2006026500 Mar 2006 WO
2006026501 Mar 2006 WO
2006027346 Mar 2006 WO
WO 2006026501 Mar 2006 WO
2006034797 Apr 2006 WO
WO 2006034797 Apr 2006 WO
2006094262 Sep 2006 WO
2006094626 Sep 2006 WO
2006105844 Oct 2006 WO
WO 2006105844 Oct 2006 WO
06125540 Nov 2006 WO
2006125540 Nov 2006 WO
2007015947 Feb 2007 WO
WO 2007015947 Feb 2007 WO
2007039403 Apr 2007 WO
2007039404 Apr 2007 WO
2007047955 Apr 2007 WO
WO 2007039403 Apr 2007 WO
WO 2007039404 Apr 2007 WO
07053573 May 2007 WO
07054215 May 2007 WO
07059094 May 2007 WO
07059154 May 2007 WO
07059155 May 2007 WO
2007053573 May 2007 WO
2007054215 May 2007 WO
2007056011 May 2007 WO
2007056012 May 2007 WO
2007059094 May 2007 WO
2007059154 May 2007 WO
2007059155 May 2007 WO
2007064872 Jun 2007 WO
WO 2007064872 Jun 2007 WO
07087575 Aug 2007 WO
2007087575 Aug 2007 WO
2007096393 Aug 2007 WO
2007096395 Aug 2007 WO
WO 2007096393 Aug 2007 WO
WO 2007096395 Aug 2007 WO
07123722 Nov 2007 WO
2007123722 Nov 2007 WO
2007123722 Nov 2007 WO
07139930 Dec 2007 WO
2007139930 Dec 2007 WO
08055966 May 2008 WO
2008055966 May 2008 WO
08079968 Jul 2008 WO
08079972 Jul 2008 WO
08089389 Jul 2008 WO
2008055966 Jul 2008 WO
2008079968 Jul 2008 WO
2008079972 Jul 2008 WO
2008089389 Jul 2008 WO
2009034308 Mar 2009 WO
20090343308 Mar 2009 WO
2009054004 Apr 2009 WO
0206382 Dec 2009 WO
Related Publications (1)
Number Date Country
20080027061 A1 Jan 2008 US
Provisional Applications (1)
Number Date Country
60115878 Jan 1999 US
Continuations (2)
Number Date Country
Parent 10086417 Mar 2002 US
Child 11845597 US
Parent 09425229 Oct 1999 US
Child 10086417 US
Continuation in Parts (1)
Number Date Country
Parent 09257265 Feb 1999 US
Child 09425229 US