The present invention relates to a 0° unidirectional yarn prepreg, a method for producing the same, and a method for producing a multiaxial prepreg composite material using the same.
More specifically, the present invention relates to a unidirectional yarn prepreg in which high-strength filaments are arranged in parallel to each other in an axial direction X of a winding roller around which unidirectional yarn prepregs are wound and a resin is impregnated (hereinafter referred to as a “0° unidirectional yarn prepreg”), and a method for continuously preparing the same.
Further, the present invention relates to a method for producing a composite material in which two unidirectional yarn prepregs having different arrangement directions of high-strength filaments from each other are laminated (hereinafter referred to as a “multiaxial prepreg composite material), which includes the steps of: simultaneously and continuously supplying (i) the 0° unidirectional yarn prepreg prepared as described above, and (ii) a unidirectional yarn prepreg prepared by a conventional warping method, in which high-strength filaments are arranged in parallel to each other in a direction Y perpendicular to an axial direction X of a winding roller around which unidirectional yarn prepregs are wound and a resin is impregnated (hereinafter referred to as a “90° unidirectional yarn prepreg”) to a thermal compression roller; and performing thermal compression thereon.
As a conventional method for preparing a unidirectional yarn prepreg in which high-strength filaments are arranged in one direction and a resin is impregnated, a method, in which high-strength filaments are arranged in parallel to each other in a winding direction using a warping machine, and a resin is impregnated therein, followed by wining on a winding roller 1, has been used in the art.
However, the above-described conventional method has a problem that only a 90° unidirectional yarn prepreg B, in which high-strength filaments are arranged in parallel to each other in a direction Y perpendicular to an axial direction X of a winding roller around which unidirectional yarn prepregs are wound as illustrated in
Meanwhile, there is also a problem in the art that, in order to produce a multiaxial prepreg composite material C by using only the 90° unidirectional yarn prepreg B prepared by the conventional method, in which (i) two or more unidirectional yarn prepregs are laminated, and (ii) one unidirectional yarn prepreg of two unidirectional yarn prepregs laminated adjacent to each other includes high-strength filaments whose orientation direction forms an inclination angle of 90° with respect to the orientation direction of the high-strength filaments included in the other unidirectional yarn prepreg, a cut part of the 90° unidirectional yarn prepreg B, which is cut in the same length as a width of the 90° unidirectional yarn prepreg B in a length direction of the 90° unidirectional yarn prepreg B, should be laminated on the 90° unidirectional yarn prepreg B illustrated in
It is an object of the present invention to provide a 0° unidirectional yarn prepreg in which high-strength filaments are arranged in parallel to each other in an axial direction X of a winding roller around which unidirectional yarn prepregs are wound and a resin is impregnated, and a method capable of continuously preparing the same in a roll form by a simple process.
Another object of the present invention is to provide a method capable of continuously producing a multiaxial prepreg composite material C in which the 0° unidirectional yarn prepreg A and a 90° unidirectional yarn prepreg B are laminated in a roll form.
In order to achieve the above objects, the present invention prepares a 0° unidirectional yarn prepreg, in which high-strength filaments are arranged in parallel to each other in an axial direction X of a winding roller around which unidirectional yarn prepregs are wound and a resin is impregnated, by using the steps of: (i) weaving a fabric using a thermoplastic film tape having a width of 5 to 60 mm as a warp and using high-strength filaments as wefts; and (ii) performing thermal compression on the woven fabric at a temperature in which the warp is melted.
Meanwhile, the present invention produces a multiaxial prepreg composite material having a structure in which (i) two or more unidirectional yarn prepregs are laminated, and (ii) one unidirectional yarn prepreg of two unidirectional yarn prepregs laminated adjacent to each other includes high-strength filaments whose orientation direction forms an inclination angle of 90° with respect to the orientation direction of the high-strength filaments included in the other unidirectional yarn prepreg, by using the steps of: simultaneously and continuously supplying the 0° unidirectional yarn prepreg A prepared as described above and a 90° unidirectional yarn prepreg B prepared by the conventional warping method to a thermal compression roller 2, and performing thermal compression thereon.
According to the present invention, a 0° unidirectional yarn prepreg, in which high-strength filaments are arranged in parallel to each other in an axial direction X of the winding roller around which unidirectional yarn prepregs are wound and a resin is impregnated, may be continuously prepared in a roll form.
According to the present invention, it is possible to continuously produce a multiaxial prepreg composite material C in which (i) two or more unidirectional yarn prepregs are laminated, and (ii) one unidirectional yarn prepreg of two unidirectional yarn prepregs laminated adjacent to each other includes high-strength filaments whose orientation direction forms an inclination angle of 90° with respect to the orientation direction of the high-strength filaments included in the other unidirectional yarn prepreg through a simpler process, thereby improving productivity and reducing manufacturing costs.
Hereinafter, the present invention will be described in detail with reference to the accompanying drawings.
The present invention prepares a 0° unidirectional yarn prepreg A, in which high-strength filaments are arranged in parallel to each other in an axial direction X of a winding roller around which unidirectional yarn prepregs are wound and a resin is impregnated, by using the steps of: (i) weaving a fabric using a thermoplastic film tape having a width of 5 to 60 mm as a warp and using high-strength filaments as wefts; and (ii) performing thermal compression on the woven fabric at a temperature in which the warp is melted.
The high-strength filament may be aramid filaments, carbon fiber filaments, or the like, and when weaving the fabric, the aramid filaments or the carbon fiber filaments may be used alone, or in a form in which the high-strength filaments different from each other are alternately arranged.
As the thermoplastic film tape, a polypropylene film tape, a polyethylene film tape, a polyimide film tape, a polyester film tape, a polyether ether ketone (PEEK) film tape, a polyurethane film tape, or the like is used. In the present invention, the thermoplastic film tape is not particularly limited in terms of a type.
The 0° unidirectional yarn prepreg prepared according to the present invention is free from the problem that a strength of the prepreg is weakened since there is no intersection of the warp and the wefts in comparison with the conventional prepreg.
According to the present invention, it is possible to continuously prepare the 0° unidirectional yarn prepreg A in a roll form, which cannot be prepared by a continuous process in the conventional method.
Meanwhile, in the present invention, the 0° unidirectional yarn prepreg A of
The multiaxial prepreg composite material C has a structure in which (i) two or more unidirectional yarn prepregs are laminated, and (ii) one unidirectional yarn prepreg of two unidirectional yarn prepregs laminated adjacent to each other includes high-strength filaments whose orientation direction forms an inclination angle of 90° with respect to the orientation direction of the high-strength filaments included in the other unidirectional yarn prepreg.
According to the present invention, it is possible to continuously produce the multiaxial prepreg composite material C in a roll form through a simpler process.
Hereinafter, the present invention will be described in more detail with reference to examples and a comparative example.
The following examples are proposed as preferred embodiments of the present invention, and it is duly not construed that the scope of the present invention is particularly limited to these examples.
A fabric having a plain-woven texture was woven using a polypropylene film tape having a density of 0.9 as a warp and using aramid filaments as wefts, then the woven fabric was subjected to thermal compression at 140° C. to melt the polypropylene film tape, thereby, as illustrated in
Next, the 0° unidirectional yarn prepreg A prepared as described above and the 90° unidirectional yarn prepreg B prepared by a conventional warping method in such a way the aramid filaments are arranged in parallel to each other in a direction Y perpendicular to the axial direction X of the winding roller were simultaneously and continuously supplied to a thermal compression roller 2 as illustrated in
A fabric having a plain-woven texture was woven using a polypropylene film tape as a warp and using carbon fiber filaments as wefts, then the woven fabric was subjected to thermal compression at 200° C. to melt the polypropylene film tape, thereby, as illustrated in
Next, the 0° unidirectional yarn prepreg A prepared as described above and the 90° unidirectional yarn prepreg B prepared by a conventional warping method in such a way the carbon fiber filaments are arranged in parallel to each other in a direction Y perpendicular to the axial direction X of the winding roller were simultaneously and continuously supplied to a thermal compression roller 2 as illustrated in
A fabric having a plain-woven texture was woven using a polypropylene film tape as a warp and using aramid filaments and carbon fiber filaments in a ratio of 2:2 as wefts, then the woven fabric was subjected to thermal compression at 140° C. to melt the polypropylene film tape, thereby, as illustrated in
Next, the 0° unidirectional yarn prepreg A prepared as described above and the 90° unidirectional yarn prepreg B prepared by a conventional warping method in such a way the aramid filaments and carbon fiber filaments are arranged in parallel to each other in a direction Y perpendicular to the axial direction X of the winding roller were simultaneously and continuously supplied to a thermal compression roller 2 as illustrated in
As illustrated in
Next, the 90° unidirectional yarn prepreg B was cut in the same length as a width of the 90° unidirectional yarn prepreg B, and the cut part was rotated 90 degrees, then the cut part was laminated on another 90° unidirectional yarn prepreg B, followed by performing thermal compression thereon, to continuously produce a multiaxial prepreg composite material C in a roll form.
In Examples 1 to 3, the 0° unidirectional yarn prepreg A was continuously prepared in a roll form, then was continuously laminated with the 90° unidirectional yarn prepreg B prepared by the conventional warping method in a roll form, followed by performing thermal compression thereon, such that the multiaxial prepreg composite material C could be continuously produced, but in Comparative Example 1, the above-described continuous production process was impossible.
1: Winding roller with unidirectional yarn prepreg wound thereon
A: 0° unidirectional yarn prepreg
B: 90° unidirectional yarn prepreg
X: Axial direction of winding roller 1
Y: Direction perpendicular to axial direction of winding roller 1
2: Thermal compression roller
C: Multiaxial prepreg composite material
3: Winding roller for multiaxial prepreg composite material
F: High-strength filament
The 0° unidirectional yarn prepreg according to the present invention may be used as a material for producing a multiaxial prepreg composite material, a material for manufacturing a helmet, a material for manufacturing a golf shaft, a material for manufacturing an impact beam for an automobile door and the like.
The multiaxial prepreg composite material according to the present invention may be used as a material for manufacturing a helmet, a material for manufacturing a golf shaft, a material for manufacturing an impact beam for an automobile door and the like.
Number | Date | Country | Kind |
---|---|---|---|
10-2015-0077258 | Jun 2015 | KR | national |
Filing Document | Filing Date | Country | Kind |
---|---|---|---|
PCT/KR2016/005059 | 5/13/2016 | WO | 00 |