1,4-benzodiazepin-2-one derivatives and use thereof

Information

  • Patent Grant
  • 11358939
  • Patent Number
    11,358,939
  • Date Filed
    Saturday, December 29, 2018
    6 years ago
  • Date Issued
    Tuesday, June 14, 2022
    3 years ago
  • CPC
  • Field of Search
    • CPC
    • A61K31/5513
    • A61P25/04
    • A61P25/24
    • A61P25/28
    • C07D243/24
  • International Classifications
    • A61K31/5513
    • A61P25/04
    • A61P25/24
    • A61P25/28
    • C07D243/24
Abstract
The invention relates to novel compounds that are derivatives of 1,4-benzodiazepin-2-one, having the general formula I:
Description
CROSS-REFERENCE TO RELATED APPLICATIONS

This present application claims the benefit of International Application No. PCT/RU2018/000907, entitled, “1,4-BENZODIAZEPIN-2-ONE DERIVATIVES AND USE THEREOF”, filed Dec. 29, 2018, which claims priority to Russian Application No. 201714001, entitled, “1,4-BENZODIAZEPIN-2-ONE DERIVATIVES AND USE THEREOF”, filed Nov. 24, 2017. The contents of International Application No. PCT/RU2018/000907 and Russian Application No. 201714001 are incorporated herein by reference.


FIELD OF THE INVENTION

The invention relates to organic chemistry, pharmacology and medicine, in particular, to compounds of benzodiazepine series, which can be used for pain treatment (analgesic), weight regulation, treatment of medical disorders, obsessive disorders, panic attacks and other central nervous system disorders.


DESCRIPTION OF THE PRIOR ART

1,4-benzodiazepine derivatives are widely used in medicine, since they have hypnotic, sedative, anxiolytic, myorelaxant and anticonvulsive action. Over 50 pharmaceutical substances based on 1,4-benzodiazepines are included in different drugs used to prevent and treat different central nervous system disorders as anxiolytic medications (tranquilizers) and as hypnotic and anticonvulsant drugs.


Over the last 20 years great progress was made in the chemistry and pharmacology of 1,4-benzodiazepines: many new compounds—ligands of benzodiazepine sites of GABAA receptors were synthesized, some of which, in addition to anxiolytic properties, also have analgesic, anorexigenic, antidepressant, antihypoxic, nootropic and other properties.


In particular, it was discovered that 1,4-benzodiazepine derivatives, that have amide residues in the third position, exert considerable analgesic activity and high affinity to the receptors of bradykinin—a potent natural pain inducer [1,2].


It's also known that some 3-substituted-1,2-dihydro-3H-1,4-benzodiazepin-2-ones have not only analgesic activity, but also anorexigenic, antidepressant, antihypoxic, nootropic and other types of activity. Pharmacological properties of these compounds are mediated by their binding with the receptors of benzodiazepine, cholecystokinin and bradykinin [3, 4, 5, 6, 7].


Thus, synthesis of new 1,4-benzodiazepine derivatives is a promising approach for creating new drugs for solving relevant medical problems: pain alleviation, weight regulation and treatment of different disorders of central nervous system.


Chronic pain of different causes and the accompanying depression, anxiety and insomnia pose a serious medical and social problem. Modern analgesic drugs are either not effective enough (in case of non-steroidal anti-inflammatory drugs) or have dangerous adverse effects, especially prominent in narcotic analgesic drugs.


Over 1 billion people worldwide suffer from excessive weight and obesity [8], which poses a serious medical problem, since it increases the risk of diabetes, cardiovascular and other diseases. On the other hand, advertising of thinness, lack of appetite, severe body mass loss in diseases such as tuberculosis, cancer, AIDS, leads to an increase in the number of people with anorexia [9]. This increases the interest in the problem of weight regulation and eating behavior.


An important task of modern pharmacology is the search for drugs increasing human life expectancy and survival in conditions of severe hypoxia. The existing antihypoxic and nootropic drugs do not fully satisfy the requirements of practical medicine.


Treatment of depression remains a highly relevant problem. The incidence of depressive disorders in the population is growing, including masked depressions with somatovegetative component. According to the WHO data, worldwide over 110 million people (3-6% of the population) have clinically significant manifestations of depression.


The closest compound to the disclosed compounds, 1,4-benzodiazepin-2-one derivatives, in chemical structure and pharmacology, a prototype of the invention, is methyl-2-(7-bromo-3-etoxy-2-oxo-5-phenyl-2,3-dihydro-1H-benzo[e][1,4]diazepin-1-yl) acetate, which demonstrates analgesic activity in acetic acid-induced writing test with ED50=0.47±0.15 mg/kg [10]:




embedded image


Analogs of the disclosed compounds, 1,4-benzodiazepin-2-one derivatives, in certain types of pharmacological activity are: sodium diclofenac, demonstrating analgesic activity in acetic acid-induced writing test with ED50=10.0±1.8 mg/kg; the hormone leptin, which reduces appetite and body mass but doesn't have antihypoxic and antidepressant activity; antidepressant amitriptyline which has potent antidepressant effect, but doesn't have antihypoxic action and doesn't affect the appetite.


SUMMARY OF THE INVENTION

The goal of the present invention is to widen the range of pharmacologically active benzodiazepine compounds by using 3-substituted-1,2-dihydro-3H-1,4-benzodiazepin-2-ones of general formula I:




embedded image


as potential medical drugs, having analgesic activity, regulating appetite and body weight, having antihypoxic, nootropic, antidepressant and anxiolytic properties.







DETAILED DESCRIPTION OF THE INVENTION

The goal is solved by the synthesis of 3-substituted-1,2-dihydro-3H-1,4-benzodiazepin-2-ones of general formula I, including its variants:


a) 1-substituted 3-alcoxy-1,3-dihydro-2H-benzo[e][1,4]diazepin-2-ones of general formula Ia;


b) 1-substituted 3-arylamino-1,3-dihydro-2H-benzo[e][1,4]diazepin-2-ones of general formula Ib.




embedded image


Embodiment 1

Table 1 lists the synthesized 1-substituted 3-alcoxy-1,3-dihydro-2H-benzo[e][1,4]diazepin-2-ones (Ia).


General Method of Synthesis of 1-substituted 3-alcoxy-1,3-dihydro-2H-benzo[e][1,4]diazepin-2-ones (Ia) ( 1-82, Table 1)
7-nitro-5-phenyl-3-propoxy-1,3-dihydro-2H-benzo[e][1,4]diazepin-2-one

1 g (3.367 mmol) of 3-hydroxy-7-nitro-5-phenyl-1,3-dihydro-2H-benzo[e][1,4]diazepin-2-one is put into a 100 ml flask, 50 ml of anhydrous chloroform is added, then 1.0 ml (13.78 mmol) of thionyl chloride is added, the mixture is boiled for 40 min, the precipitate is dissolved, then 5 ml of anhydrous 1-propanol is added. The mixture is boiled for 1 hours, rinsed with water (5×5 ml), chloroform is evaporated at a rotary evaporator. The precipitate is crystallized from xylol. Yield=79%, (0.9 g); melting point=220-222° C.


Methyl-2-(7-nitro-2-oxo-5-phenyl-3-propoxy-2,3-dihydro-1H-benzo[e]
[1,4]di-azepin-1-yl)acetate ( 48 in Table 1)

1 g (3.367 mmol) of 7-nitro-5-phenyl-3-propoxy-1,3-dihydro-2H-benzo[e][1,4]diazepin-2-one is put into a 100 ml flask, 40 ml of dioxane is added, then 20 ml of saturated potassium carbonate solution is added, 10 mg of tetrabutylammonium iodide is added, then 1.5 ml (15.78 mmol) of methylbromoacetate is added. The reaction mixture is stirred at room temperature for 2-3 hours. Dioxane is separated at a separation funnel and evaporated at a rotary evaporator. The precipitate is crystallized from xylol. Yield=65.0%, (0.9 g); melting point=214-215° C., needle-like white to off white crystals. Compounds custom character 1-47, 49-82 in Table 1 are produced in a similar way).


Embodiment 2

Table 2 lists 1-substituted 3-arylamino-1,3-dihydro-2H-benzo[e][1,4]diazepin-2-ones of general formula Ib.


General Method of synthesizing 1-substituted 3-arylamino-1,3-dihydro-2H-benzo[e][1,4]diazepin-2-ones (Ib) ( 83-400 in Table 2)
7-nitro-5-phenyl-3-(2-nitrophenyl)amino-1,3-dihydro-2H-benzo[e][1,4]diazepin-2-one ( 275 in Table 2)

1 g (3.367 mmol) of 3-hydroxy-7-nitro-5-phenyl-1,3-dihydro-2H-benzo[e][1,4]diazepin-2-one is put into a 100 ml flask, 50 ml of anhydrous chloroform is added, then 1.0 ml (13.78 mmol) of thionyl chloride is added, the mixture is boiled for 40 min, the precipitate is dissolved, then 0.93 g (6.73 mmol) of 2-nitroaniline is added. The mixture is boiled for 1 hours, rinsed with water (5×5 ml), chloroform is evaporated at a rotary evaporator. The precipitate is crystallized from ethanol. Yield=64%, (0.9 g); melting point=225-227° C.


Methyl-2-(7-nitro-2-oxo-5-phenyl-3-(2-nitrophenyl)amino-2,3-dihydro-1H-benzo[e][1,4]di-azepin-1-yl)acetate ( 278 in Table 2)

1 g (3.367 mmol) of 7-nitro-5-phenyl-(2-nitrophenyl)amino-1,3-dihydro-2H-benzo[e][1,4]diazepin-2-one (custom character 275 in Table 2) is put into a 100 ml flask, 40 ml of dioxane is added, then 20 ml of saturated potassium carbonate solution is added, 10 mg of tetrabutylammonium iodide is added, then 1.5 ml (15.78 mmol) of methylbromoacetate is added. The reaction mixture is stirred at room temperature for 2-3 hours. Dioxane is separated at a separation funnel and evaporated at a rotary evaporator. The precipitate is crystallized from xylol. Yield=65.0%, (0.9 g); melting point=218-220° C., yellow crystals. Compounds custom character 83-274, 276, 277, 279-400 in Table 2 are produced in a similar way).


Embodiment 3. Affinity of Compounds Ia to Central and Peripheral Benzodiazepine Receptors

Affinity of the compounds to central benzodiazepine receptors (CBR) was studied using radioreceptor method of competitive displacement of radioligant [3H]-flumazenil (Ro 15-1788) from its specific binding sites at the receptor. Ligand displacement were performed in 1×10−6 mol/L concentration.


Data on the affinity of 3-alcoxy-1,3-dihydro-2H-benzo[e][1,4]diazepin-2-ones (Ia) to central and peripheral benzodiazepine receptors is presented in Table 3.


Embodiment 4. Assessment of Analgesic Activity of Compounds of General Formula I

Assessment of analgesic activity was performed in a model of peripheral pain based on chemical pain induced by intraperitoneal administration of acetic acid, leading to involuntary contractions of abdominal muscles, termed “writhes”, accompanied by hind leg extension and spine arching. The writhes were induced by 0.75% solution of acetic acid, which was administered intraperitoneally 40 min after intraperitoneal administration of test compounds in 0.001-5 mg/kg dose range. The animals were observed for 20 min and the number of writhes in each animal was counted. Analgesic activity was assessed by the ability of the compounds to reduce the number of writhes in test group compared to control group, and indicated as percentage using the following formula:

AA=(Wc−Wt/Wc)×100%,


where AA—analgesic activity in %;


Wc—average number of writhes in control group;


Wt—average number of writhes in test group


Test compounds were studied in comparison with the reference drug sodium diclofenac in 10 mg/kg dose [11]. ED50 was calculated using Prozorovsky method [12].


As the data in Table 4 shows, all studied derivatives of 3-alcoxy-1,3-dihydro-2H-benzo[e][1,4]diazepin-2-ones (Ia) exert potent analgesic action, inhibiting writhes in animals in 1 mg/kg dose by 45-88% compared to control. For certain derivatives of Ia (custom character 21, 22, 44, 45, 48 in Table 4) effective dose ED50 was determined, which was: 0.29±0.025; 0.08±0.02; 0.07±0.02; 0.047±0.014; 0.058±0.015, respectively. ED50 values of reference drugs were: 1.50±0.26 mg/kg for indomethacin, 10.0±1.8 mg/kg for sodium diclofenac. Thus, the disclosed compounds of formula Ia have more potent analgesic activity than the reference drugs, since they have a much lower (by 1-2 orders of magnitude) ED50 value.


The derivatives of 3-arylamino-1,3-dihydro-2H-benzo[e][1,4]diazepin-2-ones (Ib) also have potent analgesic activity, inhibiting writhes in animals in 1 mg/kg dose by over 50% (data on their analgesic activity is presented in Table 5).


Studies of pharmacological activity of 3-arylamino-1,3-dihydro-2H-benzo[e][1,4]diazepin-2-ones, namely, their action of appetite, assessment of antihypoxic and antidepressant activity was performed in white male rats with body mass 150-180 g and male mice with body mass 18-22 g. The animals were kept on a standard laboratory diet and natural lighting. Animals of control group were given a water-Tween suspension. Test compounds were administered in a suspension with Tween-80 Reference drugs were the hormone leptin, in 0.0002 mg/kg dose, and a well-known antidepressant amitriptyline (solution for injections in 1 ml vials. Test compounds and the water-Tween suspension were administered in a dose of 0.2 ml/100 g of rat body mass.


Embodiment 5. Assessment of Action on Appetite (Anorexigenic Action) of Compounds of Formula Ib

The action of the compounds on rat appetite was studied using «norexia» method. For 2 weeks in an experimental equipment the rats were conditioned to consume liquid food. Then a water-Tween suspension of test articles was administered intraperitoneally to conditioned animals one day before the experiment. After 40 minutes the animals were allowed access to liquid food and the amount of consumed food (in ml) of every rat was registered every 30 minutes for 3 hours. The next day after 2 hours of deprivation the rats in control group were administered a water-Tween suspension intraperitoneally, while the test group was administered the test articles. After 40 minutes the animals were allowed access to liquid food and the amount of consumed food (in ml) of every rat was registered every 30 minutes for 3 hours. Then all food consumption values for each rat were summed and compared to control values. The control group has consumed on average 7 ml of liquid food per 30 minutes. The effect was calculated in percentage compared to control [13].


Effect of 3-arylamino-1,3-dihydro-2H-benzo[e][1,4]diazepin-2-ones (Ib) on food consumption by rats, assessed using «Anorexia» method, is presented in Table 6.


Among test articles compounds custom character 194, 248 and 356 (Table 6) have anorexigenic action, as evidenced by the reduction in appetite and food consumption by the studied rats by 47%, 41% and 39%, respectively, compared to control (Table 6).


The hormone leptin has reduced appetite and food consumption by 63% compared to control. It should be noted that compound custom character 358 (Table 6) had a hyperphagic effect, i.e. increased the appetite.


Embodiment 6. Assessment of Antihypoxic Activity of Compounds Ib

Screening of antihypoxic activity was performed using the model of acute confined space hypoxia (CSH). CSH was modeled by placing mice into isolated sealed chambers (V=200 ml). Each group included 10 animals. The observation lasted until the death of the animals. Antihypoxic effect was assessed by the survival duration (in min) compared to control, which was taken as 100%, and according to the calculation of antihypoxic protection ratio (Rpr):Rpr=Tt/Tc, where Tt—average animal survival time in the test group; Tc—average animal survival time in the control group [11].


The advantage of the test compound over the reference drug, the hormone leptin, is the presence of potent antihypoxic and antidepressant activity, in addition to high anorexigenic activity. It was shown, that the derivatives of 3-arylamino-1,3-dihydro-2H-benzo[e][1,4]diazepin-2-ones in 10 mg/kg dose have antihypoxic action in a model of acute confined space hypoxia in mice. The highest efficacy was observed in compounds custom character 250 and 357, the action of which increased mice survival time during acute confined space hypoxia by 70% and 40.5%, respectively, compared to control. The reference drug, hormone leptin, had no antihypoxic properties [14].


Embodiment 7. Assessment of Antidepressant Activity of Compounds Ib

Antidepressant activity was studied using «Porsolt forced swimming test» [15], which models stress in mice by forcing them to swim in a narrow translucent cylinder, filled by ⅓ volume with water at 23-25° C. temperature. Antidepressant action is assessed by the reduction in immobility time, when the animals have minimal amount of paddling, in seconds or percentage compared to control. The animal behavior was registered for 4 minutes after acclimatization for 2 minutes.


Study of action of 3-arylamino-1,3-dihydro-2H-benzo[e][1,4]diazepin-2-ones of formula Ib on mice immobility time in forced swimming test has shown that all test compounds in 1 mg/kg dose have antidepressant effects. Compounds custom character 159 and custom character 194 have the most potent antidepressant action, reducing immobility time in mice by 32% and 40%, respectively, compared to control, being as effective as the reference drug amitriptyline in 1 mg/kg dose (40%). The hormone leptin in 0.0002 mg/kg dose reduces immobility time by only 14% compared to control, i.e. it has a weak antidepressant effect.


The performed studies have shown that among 3-arylamino-1,3-dihydro-2H-benzo[e][1,4]diazepin-2-ones of formula 1b there are compounds having potent anorexigenic activity and interesting for further research as potential medical drugs, regulating eating behavior and reducing appetite and body mass. The advantage of the disclosed compounds over the reference drugs is the additional presence of potent antihypoxic and antidepressant activity compared to the reference drugs amitriptyline and the hormone leptin.


Embodiment 8. Assessment of Anxiolytic Activity of Compounds Ib

Anxiolytic activity was assessed in a model of conflict situation based on the conflict of two reflexes (drinking and defensive) when drinking water from a water fountain. Anxiolytic activity was assessed by the number of drinking actions despite electric shock [16].


General movement activity was assessed in an open field test. While the animals were in the open field (3 min), the number of rearings (vertical movement activity), transitions between squares (horizontal movement activity) and the number of explored holes (exploratory activity) were registered. The sum of these values is general movement activity [17].


Diazepam drug was used as the reference drug. All test compounds and the reference drug diazepam were administered in a suspension with Tween-80 in 5 mg/kg dose 30 min before the start of experiments.


Anxiolytic properties and action on general movement activity of 1-methoxy-carbonylmethyl-3-arylamino-1,3-dihydro-2H-benzo[e][1,4]diazepin-2-ones (Ib) is presented in Table 7.


Table 7 shows that compounds custom character 173, 227 and custom character 281 had potent anxiolytic properties, while compounds custom character 89, 317, 327, 363 and custom character 399 don't have sedative properties, their general movement activity values didn't statistically differ from animals of the control group.


Thus, many of the synthesized compounds—derivatives of 1,4-benzodiazepin-2-one of general formula I, including compounds of formula Ia and compounds of formula Ib, have potent analgesic action. The disclosed compounds may be used as non-opioid analgesics for treating pain of different causes and intensity. At the same time, among 3-arylamino-1,3-dihydro-2H-benzo[e][1,4]diazepin-2-ones of formula Ib, unlike the compounds of formula Ia, compounds with high anorexigenic activity were discovered, manifested in the reduction in appetite and body mass in rats under effect of the test compounds in low doses 0.1-0.05 mg/kg using “Anorexia” method compared to control and the reference drug—satiation hormone leptin (0.0002 mg/kg).


In addition to anorexigenic activity, the disclosed compounds of formula Ib have antihypoxic, antidepressant and anxiolytic properties, which makes them different from the reference drugs—satiation hormone leptin and amitriptyline. Therefore compounds of formula Ib, in addition to their use as analgesics, can also be used to regulate weight (gain or loss) as anorexigenic or orexigenic drugs, treat mental disorders as antidepressant and anxiolytic drugs, and also to prevent and treat disorders of CNS functioning as antihypoxic and nootropic drugs.


REFERENCES CITED



  • 1. Dziadulewicz E. K., Brown M. C., Dunstan A. R. et al. The design of non-peptide human bradykinin B2 antagonists employing the benzodiazepine peptidomimetic scaffold. Bioorg. Med. Chem. Lett. 1999. V. 9 P. 463-468.

  • 2. Wood M. R., Kim J. J., Han V et al. Benzodiazepines as Potent and Selective Bradykinin B1 Antagonists. J. Med. Chem. 2003. V. 46 N 10 P. 1803-1806.

  • 3. Andronati K. S., Kostenko E. A, Karaseva T. L., Andronati S. A. Synthesis and pharmacological properties of derivatives of 3-amino-1,2-dihydro-3H-,4-benzodiazepin-2-one. Chem.-Pharm. J. 2002. V. 36 custom character P. 16-18.

  • 4. Andronati S. A., Karaseva T. L., Kazakova A. A., Pavlovsky V. I., Bachinskiy S. Y. Synthesis and neurotropic properties of 3-aryliden-1,2-dihydro-3H-1,4-benzodiazepin-2-ones. Chem.-Pharm. J. 2011. V. 45 custom character 4 P. 101-102.

  • 5. Petty F., Trivedi M. H., Fulton M., and Rush A. J. Benzodiazepines as antidepressants: Does GABA play a role in depression? Biol Psychiatry. 1995. November 1; 38(9):578-591.

  • 6. Furukawa T. A., Streiner D., Young L. T., Kinoshita Y. Antidepressants plus benzodiazepines for major depression (Review) Cochrane Database of Systematic Reviews 2001, Issue 3. Art. No.: CD001026. DOI: 10.1002/14651858.CD001026

  • 7. Kunchandy J., Kulkarni S. K. Hypoxic stress-induced convulsion and death: protective effect of alpha 2-adrenoceptor and benzodiazepine receptor agonists and Ro 5-4864. Arch Int Pharmacodyn Ther. 1988, 292:35-44.

  • 8. Stevens G. A., Singh G. M., Lu Y. et al. National, regional, and global trends in adult overweight and obesity prevalences. Population Health Metrics. 2012. 10:22 https://doi.org/10.1186/1478-7954-10-22.

  • 9. Halmi K. A., Tozzi F., Thornton L. M., et al. The relation among perfectionism, obsessive-compulsive personality disorder, and obsessive-compulsive disorder in individuals with eating disorders. International Journal of Eating Disorders. 2005. V. 38 P. 371-374. DOI:10.1002/eat.20190

  • 10. Ukrainian patent custom character 102273 “3-alkoxy-1,2-dihydro-3h-1,4-benzodiazepine-2-ones exhibiting high analgetic activity”/V. I. Pavlovsky, K. O. Semenishyna, S. A. Andronati et al. —custom character a 2011 05837. Appl. 10 May 2011. Publ. 25 Jun. 2013. Bul. custom character 12.

  • 11. Gacura V. V. Methods of preliminary pharmacological research of biologically active compounds. M.: Medicine. 1974. 144 p.

  • 12. Prozorovsky V. B. Statistical processing of the results of pharmacological research. Psychopharmacology and biological narcology. 2007. V. 7 custom character 3-4 P. 2090-2120.

  • 13. Pierson M. E. et al. CCK Peptides with combined features of hexa- and tetrapeptide CCK-A agonists. J. Med Chem. 2000. Vol. 43 N 12 P. 2350-2355.

  • 14. Yadav V. K., Oury F., Suda N. et al. A Serotonin-Dependent Mechanism Explains the Leptin Regulation of Bone Mass, Appetite, and Energy Expenditure. Cell. 2009. Vol. 138 Issue 5 P. 976-938. https://doi.org/10.1016/j.cell.2009.06.051

  • 15. Porsolt R. D. Animal model of depression. Biomed. 1979. V. 30 (3). P. 139-140.

  • 16. Andronati S. A., Avrucky G. Y., Voronina T. A., et al. Phenazepam, edited by Bogatsky A. V., K.: Naukova Dumka, 1982, P. 288.

  • 17. Vychlaev Y. I., Voronina T. A. Phenazepam pharmacology. Express-inform. VNIIMI—New drugs. 1978. custom character 3. P. 2-16.



1,4-benzodiazepin-2-one Derivatives and Use Thereof








TABLE 1







The list of synthesized 1-substituted 3-alcoxy-1,3-dihydro-2H-


benzo[e][1,4]diazepin-2-ones


















Melting
Yield,


No
R1
R2
Alk
R4
point, ° C.
%
















1
Br
H
C2H5
F
205-208
60


2
Br
H
C3H7
F
185-187
66


3
Br
H
C4H9
F
192-195
65


4
Br
H
(CH2)2OH
F
120-123
75


5
Br
H
(CH2)2OCH3
F
178-180
44





6
Br
H


embedded image


F
221-223
40





7
Br
CH2COCH3
C2H5
F
172-175
61


8
Br
CH2COCH3
C3H7
F
175-177
65


9
Br
CH2COCH3
C4H9
F
155-157
59


10
Br
CH2COOCH3
C2H5
F
181-182
57


11
Br
CH2COOCH3
C3H7
F
183-185
52


12
Br
CH2COOCH3
C4H9
F
177-179
48


13
Br
CH2CONHNH2
C2H5
F
202-205
57


14
Br
CH2CONHNH2
C3H7
F
207-209
63


15
Br
CH2CONHNH2
C4H9
F
205-206
65


16
Cl
H
(CH2)2OCH3
H
210-212
41





17
Cl
H


embedded image


H
242-245
43





18
Cl
CH2COCH3
C2H5
H
172-173
62


19
Cl
CH2COCH3
C3H7
H
177-179
61


20
Cl
CH2COCH3
C4H9
H
165-167
53


21
Cl
CH2COOCH3
C2H5
H
183-185
51


22
Cl
CH2COOCH3
C3H7
H
181-182
54


23
Cl
CH2COOCH3
C4H9
H
174-177
43


24
Cl
CH2CONHNH2
C2H5
H
206-207
55


25
Cl
CH2CONHNH2
C3H7
H
202-204
61


26
Cl
CH2CONHNH2
C4H9
H
207-209
66


27
OCF3
H
C2H5
H
219-222
66


28
OCF3
H
C3H7
H
228-229
73


29
OCF3
H
C4H9
H
197-199
67


30
OCF3
H
(CH2)2OH
H
227-229
71


31
OCF3
H
(CH2)2OCH3
H
211-213
46





32
OCF3
H


embedded image


H
242-245
48





33
OCF3
CH2COCH3
C2H5
H
177-178
60


34
OCF3
CH2COCH3
C3H7
H
171-174
67


35
OCF3
CH2COCH3
C4H9
H
165-167
53


36
OCF3
CH2COOCH3
C2H5
H
187-189
57


37
OCF3
CH2COOCH3
C3H7
H
185-186
56


38
OCF3
CH2COOCH3
C4H9
H
180-182
44


39
OCF3
CH2CONHNH2
C2H5
H
207-208
56


40
OCF3
CH2CONHNH2
C3H7
H
212-214
64


41
OCF3
CH2CONHNH2
C4H9
H
217-219
68


42
NO2
H
(CH2)2OCH3
H
215-218
45





43
NO2
H


embedded image


H
232-235
45





44
NO2
CH2COCH3
C2H5
H
176-179
60


45
NO2
CH2COCH3
C3H7
H
180-182
63


46
NO2
CH2COCH3
C4H9
H
166-167
52


47
NO2
CH2COOCH3
C2H5
H
188-189
57


48
NO2
CH2COOCH3
C3H7
H
214-215
65


49
NO2
CH2COOCH3
C4H9
H
184-187
47


50
NO2
CH2CONHNH2
C2H5
H
226-227
55


51
NO2
CH2CONHNH2
C3H7
H
222-224
61


52
NO2
CH2CONHNH2
C4H9
H
227-229
65


53
NO2
H
C2H5
Cl
221-223
52


54
NO2
H
C3H7
Cl
225-226
61


55
NO2
H
C4H9
Cl
195-197
68


56
NO2
H
(CH2)2OH
Cl
222-224
71


57
NO2
H
(CH2)2OCH3
Cl
220-222
46





58
NO2
H


embedded image


Cl
232-235
55





59
NO2
CH2COCH3
C2H5
Cl
182-183
65


60
NO2
CH2COCH3
C3H7
Cl
187-189
61


61
NO2
CH2COCH3
C4H9
Cl
185-187
56


62
NO2
CH2COOCH3
C2H5
Cl
203-205
58


63
NO2
CH2COOCH3
C3H7
Cl
212-215
61


64
NO2
CH2COOCH3
C4H9
Cl
214-217
43


65
NO2
CH2CONHNH2
C2H5
Cl
226-228
59


66
NO2
CH2CONHNH2
C3H7
Cl
222-224
67


67
NO2
CH2CONHNH2
C4H9
Cl
227-229
71


68
NO2
H
C2H5
F
224-225
57


69
NO2
H
C3H7
F
224-226
62


70
NO2
H
C4H9
F
195-198
67


71
NO2
H
(CH2)2OH
F
221-222
72


72
NO2
H
(CH2)2OCH3
F
208-210
43





73
NO2
H


embedded image


F
222-225
45





74
NO2
CH2COCH3
C2H5
F
192-193
62


75
NO2
CH2COCH3
C3H7
F
197-199
66


76
NO2
CH2COCH3
C4H9
F
195-197
55


77
NO2
CH2COOCH3
C2H5
F
223-225
53


78
NO2
CH2COOCH3
C3H7
F
221-222
59


79
NO2
CH2COOCH3
C4H9
F
214-217
62


80
NO2
CH2CONHNH2
C2H5
F
210-212
53


81
NO2
CH2CONHNH2
C3H7
F
208-209
63


82
NO2
CH2CONHNH2
C4H9
F
212-214
65
















TABLE 2







List of 1-substituted 3-arylamino-1,3-


dihydro-2H-benzo[e][1,4]diazepin-2-ones


















Melting








point,
Yield,


No
R1
R2
R4
R5
° C.
%
















83
Br
H
F
2-COCH3
227-229
74


84
Br
H
F
3-COCH3
215-219
66


85
Br
H
F
4-COCH3
244-249
65


86
Br
CH2COCH3
F
2-COCH3
185-187
53


87
Br
CH2COCH3
F
3-COCH3
175-178
49


88
Br
CH2COCH3
F
4-COCH3
167-169
53


89
Br
CH2COOCH3
F
2-COCH3
178-180
57


90
Br
CH2COOCH3
F
3-COCH3
168-172
60


91
Br
CH2COOCH3
F
4-COCH3
178-180
60


92
Br
H
F
2-Cl
225-226
70


93
Br
H
F
3-Cl
212-215
62


94
Br
H
F
4-Cl
234-239
61


95
Br
CH2COCH3
F
2-Cl
181-183
56


96
Br
CH2COCH3
F
3-Cl
175-178
55


97
Br
CH2COCH3
F
4-Cl
177-179
58


98
Br
CH2COOCH3
F
2-Cl
198-200
57


99
Br
CH2COOCH3
F
3-Cl
178-180
64


100
Br
CH2COOCH3
F
4-Cl
184-186
55


101
Br
H
F
2-F
225-226
70


102
Br
H
F
3-F
212-215
62


103
Br
H
F
4-F
234-239
61


104
Br
CH2COCH3
F
2-F
181-183
56


105
Br
CH2COCH3
F
3-F
175-178
55


106
Br
CH2COCH3
F
4-F
177-179
58


107
Br
CH2COOCH3
F
2-F
198-200
57


108
Br
CH2COOCH3
F
3-F
178-180
64


109
Br
CH2COOCH3
F
4-F
184-186
55


110
Br
H
F
2-Br
225-226
70


111
Br
H
F
3-Br
212-215
62


112
Br
H
F
4-Br
234-239
61


113
Br
CH2COCH3
F
2-Br
181-183
56


114
Br
CH2COCH3
F
3-Br
175-178
55


115
Br
CH2COCH3
F
4-Br
177-179
58


116
Br
CH2COOCH3
F
2-Br
198-200
57


117
Br
CH2COOCH3
F
3-Br
178-180
64


118
Br
CH2COOCH3
F
4-Br
184-186
55


119
Br
H
F
2-NO2
222-224
44


120
Br
H
F
3-NO2
225-227
65


121
Br
H
F
4-NO2
222-225
67


122
Br
CH2COCH3
F
2-NO2
232-234
46


123
Br
CH2COCH3
F
3-NO2
235-237
62


124
Br
CH2COCH3
F
4-NO2
232-235
64


125
Br
CH2COOCH3
F
2-NO2
242-244
65


126
Br
CH2COOCH3
F
3-NO2
223-226
51


127
Br
CH2COOCH3
F
4-NO2
240-244
67


128
Br
H
F
2-CF3
225-226
70


129
Br
H
F
3-CF3
212-215
62


130
Br
H
F
4-CF3
234-239
61


131
Br
CH2COCH3
F
2-CF3
181-183
56


132
Br
CH2COCH3
F
3-CF3
175-178
55


133
Br
CH2COCH3
F
4-CF3
177-179
58


134
Br
CH2COOCH3
F
2-CF3
198-200
57


135
Br
CH2COOCH3
F
3-CF3
178-180
64


136
Br
CH2COOCH3
F
4-CF3
184-186
55


137
Cl
H
H
2-COCH3
225-226
70


138
Cl
H
H
3-COCH3
212-215
62


139
Cl
H
H
4-COCH3
234-239
61


140
Cl
CH2COCH3
H
2-COCH3
181-183
56


141
Cl
CH2COCH3
H
3-COCH3
175-178
55


142
Cl
CH2COCH3
H
4-COCH3
177-179
58


143
Cl
CH2COOCH3
H
2-COCH3
198-200
57


144
Cl
CH2COOCH3
H
3-COCH3
178-180
64


145
Cl
CH2COOCH3
H
4-COCH3
184-186
55


146
Cl
CH2COCH3
H
2-Cl
181-183
56


147
Cl
CH2COCH3
H
3-Cl
175-178
55


148
Cl
CH2COCH3
H
4-Cl
177-179
58


149
Cl
CH2COOCH3
H
2-Cl
198-200
57


150
Cl
CH2COOCH3
H
3-Cl
178-180
64


151
Cl
CH2COOCH3
H
4-Cl
184-186
55


152
Cl
H
H
2-F
225-226
70


153
Cl
H
H
3-F
212-215
62


154
Cl
H
H
4-F
234-239
61


155
Cl
CH2COCH3
H
2-F
181-183
56


156
Cl
CH2COCH3
H
3-F
175-178
55


157
Cl
CH2COCH3
H
4-F
177-179
58


158
Cl
CH2COOCH3
H
2-F
198-200
57


159
Cl
CH2COOCH3
H
3-F
178-180
64


160
Cl
CH2COOCH3
H
4-F
184-186
55


161
Cl
H
H
2-Br
225-226
70


162
Cl
H
H
3-Br
212-215
62


163
Cl
H
H
4-Br
234-239
61


164
Cl
CH2COCH3
H
2-Br
181-183
56


165
Cl
CH2COCH3
H
3-Br
175-178
55


166
Cl
CH2COCH3
H
4-Br
177-179
58


167
Cl
CH2COOCH3
H
2-Br
198-200
57


168
Cl
CH2COOCH3
H
3-Br
178-180
64


169
Cl
CH2COOCH3
H
4-Br
184-186
55


170
Cl
CH2COCH3
H
2-NO2
181-183
56


171
Cl
CH2COCH3
H
3-NO2
175-178
55


172
Cl
CH2COCH3
H
4-NO2
177-179
58


173
Cl
CH2COOCH3
H
2-NO2
198-200
57


174
Cl
CH2COOCH3
H
3-NO2
178-180
64


175
Cl
CH2COOCH3
H
4-NO2
184-186
55


176
Cl
H
H
2-CF3
225-226
70


177
Cl
H
H
3-CF3
212-215
62


178
Cl
H
H
4-CF3
234-239
61


179
Cl
CH2COCH3
H
2-CF3
181-183
56


180
Cl
CH2COCH3
H
3-CF3
175-178
55


181
Cl
CH2COCH3
H
4-CF3
177-179
58


182
Cl
CH2COOCH3
H
2-CF3
198-200
57


183
Cl
CH2COOCH3
H
3-CF3
178-180
64


184
Cl
CH2COOCH3
H
4-CF3
184-186
55


185
OCF3
H
H
2-COCH3
225-226
70


186
OCF3
H
H
3-COCH3
212-215
62


187
OCF3
H
H
4-COCH3
234-239
61


188
OCF3
CH2COCH3
H
2-COCH3
181-183
56


189
OCF3
CH2COCH3
H
3-COCH3
175-178
55


190
OCF3
CH2COCH3
H
4-COCH3
177-179
58


191
OCF3
CH2COOCH3
H
2-COCH3
198-200
57


192
OCF3
CH2COOCH3
H
3-COCH3
178-180
64


193
OCF3
CH2COOCH3
H
4-COCH3
184-186
55


194
OCF3
H
H
2-Cl
225-226
70


195
OCF3
H
H
3-Cl
212-215
62


196
OCF3
H
H
4-Cl
234-239
61


197
OCF3
CH2COCH3
H
2-Cl
181-183
56


198
OCF3
CH2COCH3
H
3-Cl
175-178
55


199
OCF3
CH2COCH3
H
4-Cl
177-179
58


200
OCF3
CH2COOCH3
H
2-Cl
198-200
57


201
OCF3
CH2COOCH3
H
3-Cl
178-180
64


202
OCF3
CH2COOCH3
H
4-Cl
184-186
55


203
OCF3
H
H
2-F
225-226
70


204
OCF3
H
H
3-F
212-215
62


205
OCF3
H
H
4-F
234-239
61


206
OCF3
CH2COCH3
H
2-F
181-183
56


207
OCF3
CH2COCH3
H
3-F
175-178
55


208
OCF3
CH2COCH3
H
4-F
177-179
58


209
OCF3
CH2COOCH3
H
2-F
198-200
57


210
OCF3
CH2COOCH3
H
3-F
178-180
64


211
OCF3
CH2COOCH3
H
4-F
184-186
55


212
OCF3
H
H
2-Br
225-226
70


213
OCF3
H
H
3-Br
212-215
62


214
OCF3
H
H
4-Br
234-239
61


215
OCF3
CH2COCH3
H
2-Br
181-183
56


216
OCF3
CH2COCH3
H
3-Br
175-178
55


217
OCF3
CH2COCH3
H
4-Br
177-179
58


218
OCF3
CH2COOCH3
H
2-Br
198-200
57


219
OCF3
CH2COOCH3
H
3-Br
178-180
64


220
OCF3
CH2COOCH3
H
4-Br
184-186
55


221
OCF3
H
H
2-NO2
225-226
70


222
OCF3
H
H
3-NO2
212-215
62


223
OCF3
H
H
4-NO2
234-239
61


224
OCF3
CH2COCH3
H
2-NO2
181-183
56


225
OCF3
CH2COCH3
H
3-NO2
175-178
55


226
OCF3
CH2COCH3
H
4-NO2
177-179
58


227
OCF3
CH2COOCH3
H
2-NO2
198-200
57


228
OCF3
CH2COOCH3
H
3-NO2
178-180
64


229
OCF3
CH2COOCH3
H
4-NO2
184-186
55


230
OCF3
H
H
2-CF3
225-226
70


231
OCF3
H
H
3-CF3
212-215
62


232
OCF3
H
H
4-CF3
234-239
61


233
OCF3
CH2COCH3
H
2-CF3
181-183
56


234
OCF3
CH2COCH3
H
3-CF3
175-178
55


235
OCF3
CH2COCH3
H
4-CF3
177-179
58


236
OCF3
CH2COOCH3
H
2-CF3
198-200
57


237
OCF3
CH2COOCH3
H
3-CF3
178-180
64


238
OCF3
CH2COOCH3
H
4-CF3
184-186
55


239
NO2
H
H
2-COCH3
225-226
70


240
NO2
H
H
3-COCH3
212-215
62


241
NO2
H
H
4-COCH3
234-239
61


242
NO2
CH2COCH3
H
2-COCH3
181-183
56


243
NO2
CH2COCH3
H
3-COCH3
175-178
55


244
NO2
CH2COCH3
H
4-COCH3
177-179
58


245
NO2
CH2COOCH3
H
2-COCH3
198-200
57


246
NO2
CH2COOCH3
H
3-COCH3
178-180
64


247
NO2
CH2COOCH3
H
4-COCH3
184-186
55


248
NO2
H
H
2-Cl
225-226
70


249
NO2
H
H
3-Cl
212-215
62


250
NO2
H
H
4-Cl
234-239
61


251
NO2
CH2COCH3
H
2-Cl
181-183
56


252
NO2
CH2COCH3
H
3-Cl
175-178
55


253
NO2
CH2COCH3
H
4-Cl
177-179
58


254
NO2
CH2COOCH3
H
2-Cl
198-200
57


255
NO2
CH2COOCH3
H
3-Cl
178-180
64


256
NO2
CH2COOCH3
H
4-Cl
184-186
55


257
NO2
H
H
2-F
225-226
70


258
NO2
H
H
3-F
212-215
62


259
NO2
H
H
4-F
234-239
61


260
NO2
CH2COCH3
H
2-F
181-183
56


261
NO2
CH2COCH3
H
3-F
175-178
55


262
NO2
CH2COCH3
H
4-F
177-179
58


263
NO2
CH2COOCH3
H
2-F
198-200
57


264
NO2
CH2COOCH3
H
3-F
178-180
64


265
NO2
CH2COOCH3
H
4-F
184-186
55


266
NO2
H
H
2-Br
225-226
70


267
NO2
H
H
3-Br
212-215
62


268
NO2
H
H
4-Br
234-239
61


269
NO2
CH2COCH3
H
2-Br
181-183
56


270
NO2
CH2COCH3
H
3-Br
175-178
55


271
NO2
CH2COCH3
H
4-Br
177-179
58


272
NO2
CH2COOCH3
H
2-Br
198-200
57


273
NO2
CH2COOCH3
H
3-Br
178-180
64


274
NO2
CH2COOCH3
H
4-Br
184-186
55


275
NO2
H
H
2-NO2
225-227
64


276
NO2
H
H
3-NO2
212-215
62


277
NO2
H
H
4-NO2
234-239
61


278
NO2
CH2COCH3
H
2-NO2
181-183
56


279
NO2
CH2COCH3
H
3-NO2
175-178
55


280
NO2
CH2COCH3
H
4-NO2
177-179
58


281
NO2
CH2COOCH3
H
2-NO2
218-220
61


282
NO2
CH2COOCH3
H
3-NO2
178-180
64


283
NO2
CH2COOCH3
H
4-NO2
184-186
55


284
NO2
H
H
2-CF3
225-227
64


285
NO2
H
H
3-CF3
212-215
62


286
NO2
H
H
4-CF3
234-239
61


287
NO2
CH2COCH3
H
2-CF3
181-183
56


288
NO2
CH2COCH3
H
3-CF3
175-178
55


289
NO2
CH2COCH3
H
4-CF3
177-179
58


290
NO2
CH2COOCH3
H
2-CF3
218-220
61


291
NO2
CH2COOCH3
H
3-CF3
178-180
64


292
NO2
CH2COOCH3
H
4-CF3
184-186
55


293
NO2
H
Cl
2-COCH3
225-227
64


294
NO2
H
Cl
3-COCH3
212-215
62


295
NO2
H
Cl
4-COCH3
234-239
61


296
NO2
CH2COCH3
Cl
2-COCH3
181-183
56


297
NO2
CH2COCH3
Cl
3-COCH3
175-178
55


298
NO2
CH2COCH3
Cl
4-COCH3
177-179
58


299
NO2
CH2COOCH3
Cl
2-COCH3
218-220
61


300
NO2
CH2COOCH3
Cl
3-COCH3
178-180
64


301
NO2
CH2COOCH3
Cl
4-COCH3
184-186
55


302
NO2
H
Cl
2-Cl
225-227
64


303
NO2
H
Cl
3-Cl
212-215
62


304
NO2
H
Cl
4-Cl
234-239
61


305
NO2
CH2COCH3
Cl
2-Cl
181-183
56


306
NO2
CH2COCH3
Cl
3-Cl
175-178
55


307
NO2
CH2COCH3
Cl
4-Cl
177-179
58


308
NO2
CH2COOCH3
Cl
2-Cl
218-220
61


309
NO2
CH2COOCH3
Cl
3-Cl
178-180
64


310
NO2
CH2COOCH3
Cl
4-Cl
184-186
55


311
NO2
H
Cl
2-F
225-227
64


312
NO2
H
Cl
3-F
212-215
62


313
NO2
H
Cl
4-F
234-239
61


314
NO2
CH2COCH3
Cl
2-F
181-183
56


315
NO2
CH2COCH3
Cl
3-F
175-178
55


316
NO2
CH2COCH3
Cl
4-F
177-179
58


317
NO2
CH2COOCH3
Cl
2-F
218-220
61


318
NO2
CH2COOCH3
Cl
3-F
178-180
64


319
NO2
CH2COOCH3
Cl
4-F
184-186
55


320
NO2
H
Cl
2-Br
225-227
64


321
NO2
H
Cl
3-Br
212-215
62


322
NO2
H
Cl
4-Br
234-239
61


323
NO2
CH2COCH3
Cl
2-Br
181-183
56


324
NO2
CH2COCH3
Cl
3-Br
175-178
55


325
NO2
CH2COCH3
Cl
4-Br
177-179
58


326
NO2
CH2COOCH3
Cl
2-Br
218-220
61


327
NO2
CH2COOCH3
Cl
3-Br
178-180
64


328
NO2
CH2COOCH3
Cl
4-Br
184-186
55


329
NO2
H
Cl
2-NO2
225-227
64


330
NO2
H
Cl
3-NO2
212-215
62


331
NO2
H
Cl
4-NO2
234-239
61


332
NO2
CH2COCH3
Cl
2-NO2
181-183
56


333
NO2
CH2COCH3
Cl
3-NO2
175-178
55


334
NO2
CH2COCH3
Cl
4-NO2
177-179
58


335
NO2
CH2COOCH3
Cl
2-NO2
218-220
61


336
NO2
CH2COOCH3
Cl
3-NO2
178-180
64


337
NO2
CH2COOCH3
Cl
4-NO2
184-186
55


338
NO2
H
Cl
2-CF3
225-227
64


339
NO2
H
Cl
3-CF3
212-215
62


340
NO2
H
Cl
4-CF3
234-239
61


341
NO2
CH2COCH3
Cl
2-CF3
181-183
56


342
NO2
CH2COCH3
Cl
3-CF3
175-178
55


343
NO2
CH2COCH3
Cl
4-CF3
177-179
58


344
NO2
CH2COOCH3
Cl
2-CF3
218-220
61


345
NO2
CH2COOCH3
Cl
3-CF3
178-180
64


346
NO2
CH2COOCH3
Cl
4-CF3
184-186
55


347
NO2
H
F
2-COCH3
225-227
64


348
NO2
H
F
3-COCH3
212-215
62


349
NO2
H
F
4-COCH3
234-239
61


350
NO2
CH2COCH3
F
2-COCH3
181-183
56


351
NO2
CH2COCH3
F
3-COCH3
175-178
55


352
NO2
CH2COCH3
F
4-COCH3
177-179
58


353
NO2
CH2COOCH3
F
2-COCH3
218-220
61


354
NO2
CH2COOCH3
F
3-COCH3
178-180
64


355
NO2
CH2COOCH3
F
4-COCH3
184-186
55


356
NO2
H
F
2-Cl
225-227
64


357
NO2
H
F
3-Cl
212-215
62


358
NO2
H
F
4-Cl
234-239
61


359
NO2
CH2COCH3
F
2-Cl
181-183
56


360
NO2
CH2COCH3
F
3-Cl
175-178
55


361
NO2
CH2COCH3
F
4-Cl
177-179
58


362
NO2
CH2COOCH3
F
2-Cl
218-220
61


363
NO2
CH2COOCH3
F
3-Cl
178-180
64


364
NO2
CH2COOCH3
F
4-Cl
184-186
55


365
NO2
H
F
2-F
225-227
64


366
NO2
H
F
3-F
212-215
62


367
NO2
H
F
4-F
234-239
61


368
NO2
CH2COCH3
F
2-F
181-183
56


369
NO2
CH2COCH3
F
3-F
175-178
55


370
NO2
CH2COCH3
F
4-F
177-179
58


371
NO2
CH2COOCH3
F
2-F
218-220
61


372
NO2
CH2COOCH3
F
3-F
178-180
64


373
NO2
CH2COOCH3
F
4-F
184-186
55


374
NO2
H
F
2-Br
225-227
64


375
NO2
H
F
3-Br
212-215
62


376
NO2
H
F
4-Br
234-239
61


377
NO2
CH2COCH3
F
2-Br
181-183
56


378
NO2
CH2COCH3
F
3-Br
175-178
55


379
NO2
CH2COCH3
F
4-Br
177-179
58


380
NO2
CH2COOCH3
F
2-Br
218-220
61


381
NO2
CH2COOCH3
F
3-Br
178-180
64


382
NO2
CH2COOCH3
F
4-Br
184-186
55


383
NO2
H
F
2-NO2
225-227
64


384
NO2
H
F
3-NO2
212-215
62


385
NO2
H
F
4-NO2
234-239
61


386
NO2
CH2COCH3
F
2-NO2
181-183
56


387
NO2
CH2COCH3
F
3-NO2
175-178
55


388
NO2
CH2COCH3
F
4-NO2
177-179
58


389
NO2
CH2COOCH3
F
2-NO2
218-220
61


390
NO2
CH2COOCH3
F
3-NO2
178-180
64


391
NO2
CH2COOCH3
F
4-NO2
184-186
55


392
NO2
H
F
2-CF3
225-227
64


393
NO2
H
F
3-CF3
212-215
62


394
NO2
H
F
4-CF3
234-239
61


395
NO2
CH2COCH3
F
2-CF3
181-183
56


396
NO2
CH2COCH3
F
3-CF3
175-178
55


397
NO2
CH2COCH3
F
4-CF3
177-179
58


398
NO2
CH2COOCH3
F
2-CF3
218-220
61


399
NO2
CH2COOCH3
F
3-CF3
178-180
64


400
NO2
CH2COOCH3
F
4-CF3
184-186
55
















TABLE 3







Affinity of 3-alcoxy-1,3-dihydro-2H-benzo[e][1,4]diazepin-2-


ones (Ia) to central and peripheral benzodiazepine receptors

















Affinity













No
R1
R2
Alk
R4
CBR, %
PBR, %
















2
Br
H
C3H7
F
85
5


3
Br
H
C4H9
F
88
8


4
Br
H
(CH2)2OH
F
91
8


5
Br
H
(CH2)2OCH3
F
90
10





6
Br
H


embedded image


F
89
15





16
Cl
H
(CH2)2OCH3
H
88
15





17
Cl
H


embedded image


H
79
14





18
Cl
CH2COOCH3
C2H5
H
80
18


19
Cl
CH2COOCH3
C3H7
H
85
16


20
Cl
CH2COOCH3
C4H9
H
52
15


27
OCF3
H
C2H5
H
56
16


28
OCF3
H
C3H7
H
60
18


29
OCF3
H
C4H9
H
61
15


30
OCF3
H
(CH2)2OH
H
65
16


44
NO2
CH2COOCH3
C2H5
H
14
22


45
NO2
CH2COOCH3
C3H7
H
12
25


46
NO2
CH2COOCH3
C4H9
H
11
20


53
NO2
H
C2H5
Cl
85
15


54
NO2
H
C3H7
Cl
88
16


55
NO2
H
C4H9
Cl
87
19


59
NO2
CH2COOCH3
C2H5
Cl
50
18


60
NO2
CH2COOCH3
C3H7
Cl
58
18
















TABLE 4







Analgesic activity of 3-alcoxy-1,3-dihydro-2H-


benzo[e][1,4]diazepin-2-ones (Ia)

















Writhing







inhibition,







% of control







in 1 mg/kg


No
R1
R2
Alk
R4
dose















2
Br
H
C3H7
F
55


3
Br
H
C4H9
F
45


4
Br
H
(CH2)2OH
F
56


5
Br
H
(CH2)2OCH3
F
52





6
Br
H


embedded image


F
55





16
Cl
H
(CH2)2OCH3
H
55





17
Cl
H


embedded image


H
54





21
Cl
CH2COOCH3
C2H5
H
62


22
Cl
CH2COOCH3
C3H7
H
70


23
Cl
CH2COOCH3
C4H9
H
52


27
OCF3
H
C2H5
H
55


28
OCF3
H
C3H7
H
60


29
OCF3
H
C4H9
H
56


30
OCF3
H
(CH2)2OH
H
50


44
NO2
CH2COOCH3
C2H5
H
65


45
NO2
CH2COOCH3
C3H7
H
88


46
NO2
CH2COOCH3
C4H9
H
55


59
NO2
CH2COOCH3
C2H5
Cl
61


48
NO2
CH2COOCH3
C3H7
Cl
85
















TABLE 5







Analgesic activity of 3-arylamino-1,3-dihydro-


2H-benzo[e][1,4]diazepin-2-ones (Ib)



















Writhing








inhibition,








% of








control in








1 mg/kg



No
R1
R2
R4
R5
dose


















89
Br
CH2COOCH3
F
2-COCH3
66



90
Br
CH2COOCH3
F
3-COCH3
68



91
Br
CH2COOCH3
F
4-COCH3
62



173
Cl
CH2COOCH3
H
2-NO2
55



174
Cl
CH2COOCH3
H
3-NO2
58



175
Cl
CH2COOCH3
H
4-NO2
55



227
OCF3
CH2COOCH3
H
2-NO2
60



228
OCF3
CH2COOCH3
H
3-NO2
62



229
OCF3
CH2COOCH3
H
4-NO2
59



281
NO2
CH2COOCH3
H
2-NO2
61



282
NO2
CH2COOCH3
H
3-NO2
59



283
NO2
CH2COOCH3
H
4-NO2
54



317
NO2
CH2COOCH3
Cl
2-F
63



318
NO2
CH2COOCH3
Cl
3-F
65



319
NO2
CH2COOCH3
Cl
4-F
61



326
NO2
CH2COOCH3
Cl
2-Br
62



327
NO2
CH2COOCH3
Cl
3-Br
70



328
NO2
CH2COOCH3
Cl
4-Br
69



362
NO2
CH2COOCH3
F
2-Cl
65



363
NO2
CH2COOCH3
F
3-Cl
70



364
NO2
CH2COOCH3
F
4-Cl
64



398
NO2
CH2COOCH3
F
2-CF3
68



399
NO2
CH2COOCH3
F
3-CF3
70



400
NO2
CH2COOCH3
F
4-CF3
60

















TABLE 6







Effect of 3-arylamino-1,3-dihydro-2H-benzo[e][1,4]


diazepin-2-ones (Ib) on food consumption by rats




















Amount of









consumed









liquid









food
%








during
of







Dose
30 min
con-


No
R1
R2
R4
R5
mg/kg
in ml
trol

















152
Cl
H
H
2-F
0,1
 3,5 ± 1,3 
47


161
Cl
H
H
2-Br
0,1
 5,5 ± 2,4 
74


162
Cl
H
H
3-Br
0,1
 5,1 ± 2,2 
69


163
Cl
H
H
4-Br
0,1
 6,8 ± 2,7 
92


194
OCF3
H
H
2-Cl
0,1
 3,5 ± 2,3 
47


195
OCF3
H
H
3-Cl
0,1
 5,7 ± 2,2 
77


196
OCF3
H
H
4-Cl
0,1
 6,5 ± 3,2 
88


248
NO2
H
H
2-Cl
0,1
 3,1 ± 2,4 
41


249
NO2
H
H
3-Cl
0,1
 5,1 ± 2,2 
69


250
NO2
H
H
4-Cl
0,1
 6,3 ± 3,2 
85


320
NO2
H
Cl
2-Br
0,1
 6,5 ± 3,4 
88


321
NO2
H
Cl
3-Br
0,1
 6,1 ± 3,2 
82


322
NO2
H
Cl
4-Br
0,1
 7,8 ± 2,7 
105


347
NO2
H
F
2-COCH3
0,1
 6,5 ± 2,7 
105


348
NO2
H
F
3-COCH3
0,1
21,4 ± 4,9 
284


349
NO2
H
F
4-COCH3
0,1
  14 ± 1,8 
189


356
NO2
H
F
2-Cl
0,1
 2,9 ± 2,1*
39


357
NO2
H
F
3-Cl
0,1
 5,9 ± 2,2 
80


358
NO2
H
F
4-Cl
0,1
 6,7 ± 3,2 
90












Control



 7,4 ± 4,4 
100


Leptin


20 nM
 2,5 ± 0,2*
37
















TABLE 7







Anxiolytic activity of 1-methoxy-carbonylmethyl-3-


arylamino-1,3-dihydro-2H-benzo[e][1,4]diazepin-2-ones (Ib)


















Anxiolytic








activity








assessed








using
General







conflict
move-







situation
ment







method
activity


No
R1
R2
R4
R5
(5 mg/kg)
(5 mg/kg)
















89
Br
CH2COOCH3
F
2-COCH3
 3.4 ± 1.2 
40.0 ± 2.7


90
Br
CH2COOCH3
F
3-COCH3
 8.2 ± 3.4 
24.5 ± 2.3


91
Br
CH2COOCH3
F
4-COCH3
 4.9 ± 2.2 
25.2 ± 2.1


173
Cl
CH2COOCH3
H
2-NO2
120.5 ± 10.3
15.0 ± 1.3


174
Cl
CH2COOCH3
H
3-NO2
 60.6 ± 7.0 
18.0 ± 2.4


175
Cl
CH2COOCH3
H
4-NO2
 48.7 ± 3.6 
20.0 ± 1.0


227
OCF3
CH2COOCH3
H
2-NO2
109.5 ± 8.3 
13.0 ± 1.3


228
OCF3
CH2COOCH3
H
3-NO2
 40.6 ± 3.9 
17.0 ± 2.4


229
OCF3
CH2COOCH3
H
4-NO2
 38.7 ± 2.6 
19.0 ± 1.0


281
NO2
CH2COOCH3
H
2-NO2
115.6 ± 9.3 
14.0 ± 1.4


282
NO2
CH2COOCH3
H
3-NO2
 44.7 ± 3.9 
19.0 ± 2.4


283
NO2
CH2COOCH3
H
4-NO2
 45.1 ± 2.6 
22.0 ± 2.0


317
NO2
CH2COOCH3
Cl
2-F
 33.4 ± 3.2 
47.0 ± 3.7


318
NO2
CH2COOCH3
Cl
3-F
 19.2 ± 3.4 
28.5 ± 2.3


319
NO2
CH2COOCH3
Cl
4-F
 18.1 ± 2.2 
27.2 ± 2.1


326
NO2
CH2COOCH3
Cl
2-Br
 45.1 ± 2.6 
22.0 ± 2.0


327
NO2
CH2COOCH3
Cl
3-Br
 43.4 ± 3.2 
45.0 ± 3.7


328
NO2
CH2COOCH3
Cl
4-Br
 23.2 ± 3.4 
24.5 ± 2.3


362
NO2
CH2COOCH3
F
2-Cl
 35.1 ± 3.5 
29.2 ± 2.3


363
NO2
CH2COOCH3
F
3-Cl
 46.4 ± 4.2 
41.0 ± 3.9


364
NO2
CH2COOCH3
F
4-Cl
 26.2 ± 3.4 
34.5 ± 3.3


398
NO2
CH2COOCH3
F
2-CF3
 33.1 ± 3.2 
28.2 ± 3.3


399
NO2
CH2COOCH3
F
3-CF3
 44.4 ± 4.3 
41.8 ± 4.3


400
NO2
CH2COOCH3
F
4-CF3
 32.2 ± 3.3 
36.5 ± 3.3












Diazepam



120.0 ± 4.9 
32.5 ± 2.8


Control



 9.0 ± 1.1 
35.0 ± 1.5








Claims
  • 1. Compounds having a formula I
  • 2. Compounds having a formula I
  • 3. Compounds having a formula I
Priority Claims (1)
Number Date Country Kind
201714001 Nov 2017 RU national
PCT Information
Filing Document Filing Date Country Kind
PCT/RU2018/000907 12/29/2018 WO 00
Publishing Document Publishing Date Country Kind
WO2019/103658 3/31/2019 WO A
Foreign Referenced Citations (3)
Number Date Country
102273 Jun 2013 UA
2004106310 Dec 2004 WO
201 9103658 May 2019 WO
Non-Patent Literature Citations (24)
Entry
Edward K. Dzladulewlcz,et al., The Design of Non-Peptide Human Bradykinin B 2 Receptor Antagonists Employing the Benzodiazepine Peptidomimetic Scaffold, Bioorganic & Medicinal Chemistry Letters 9 (1999) 463-468.
Michael R. Wood et al., Benzodiazepines as Potent and Selective Bradykinin B1 Antagonists, J. Med. Chem. 2003, 46, 1803-1806.
Frederick Petty et al., Benzodiazepines as Antidepressants:Does GABA Play a Role in Depression?, Biol Psychiatry 1995:38:578-591.
Furukawa et al., Antidepressants plus benzodiazepines for major depression (Review), Cochrane Database of Systematic Reviews. 2001, Issue 3. Art. No. CD001026.
Kunchandy et al., Hydroxic Stress-Induced Convulsion and Death: Protective Effect of a2-Adrenoceptor and Benzodiazepine Receptor Agonists and Ro5-4864, Arch. int. Pharmacodyn. 292. 35-44 (1988).
Stevens et al., National, regional, and global trends in adult overweight and obesity prevalences, Population Health Metrics, 2012, 10:22, http://populationhealthmetrics.com.content/10/1/22.
Katherine A. Halmi et al., The Relation among Perfectionism, ObsessiveCompulsive Personality Disorder and DbsessiveCompulsive Disorder in Individuals with Eating Disorders, Int J Eat Disord 2005; 38:371-374.
M. Edward Pierson et al., CCK Peptides with Combined Features of Hexa- and Tetrapeptide CCK-A Agonists, J. Med. Chem., 2000, 43, 2350-2355.
Vijay K. Yadav, A Serotonin-Dependent Mechanism Explains the Leptin Regulation of Bone Mass, Appetite, and Energy Expenditure, Cell 138, 976-989, Sep. 4, 2009 a2009 Elsevier Inc.
R. D. Porsolt, Animal Model of Depression, Biomedicine, 1979, 30, 139-140.
T. L. Karaseva et al., Synthesis of New 7-Bromo-5-(2′-Chlorophenyl)-3-Arylamino-1,2-Dihydro-3H-1,4-Benzodiazepine Derivatives and Their Influence on Appetite in Rats, Pharmaceutical Chemistry Journal, vol. 51, No. 4, Jul. 2017 (Russian Original vol. 51, No. 4, Mar. 2017).
V. I. Pavlovskii et al., Synthesis and Analgesic Activity of 3-Arylamino-1,2-Dihydro-3H-1,4-Benzodiazepin-2-Ones, Pharmaceutical Chemistry Journal, vol. 49, No. 9, Dec. 2015 (Russian Original vol. 49, No. 9, Sep. 2015).
V. I. Pavlovsky et al., Analgesic Effects of 3-Substituted Derivatives of 1,4-Benzodiazepines and their Possible Mechanisms, Neurophysiology, vol. 45, Nos. 5/6, Nov. 2013.
V. I. Pavlovsky et al., Synthesis and Anticonvulsant Activity of 3-Alkoxy-1,2-Dihydro-3H-1,4-Benzodiazepin-2-Ones, Pharmaceutical Chemistry Journal, vol. 46, No. 9, Dec. 2012 (Russian Original vol. 46, No. 9, Sep. 2012).
Sergey Andronati et al., Synthesis, structure and affinity of novel 3-alkoxy-1,2-dihydro-3H-1,4-benzodiazepin-2-ones for CNS central and peripheral benzodiazepine receptors, European Journal of Medicinal Chemistry 45 (2010) 1346-1351.
Michael Offel et al., Synthesis of Substituted 3-Anilino-5-phenyl-1,3-dihydro-2H-1,4-benzodiazepine-2-ones and their Evaluation as Cholecystokinin-Ligands, Arch. Pharm. Chem. Life Sci. 2006, 339, 163-173.
S. Yu. Makan et al., Molecular Targets of New 1,4-Benzodiazepin-2-One Derivatives Influencing the Appetite of Experimental Animals, Pharmaceutical Chemistry Journal, vol. 39, No. 6, 2005.
Shen K. Yang, Racemization and Stereoselective Alcoholysis of Temazepam, Chirality 11:179-186 (1999).
International Search Report and Written Opinion for PCT/RU2018/000907, dated Jun. 13, 2019.
Gacura V.V. Methods of preliminary pharmacological research of biologically active compounds. M.: Medicine. 1974. 144 p.
Prozorovsky V.B. Statistical processing of the results of pharmacological research. Psychopharmacology and biological narcology. 2007. V. 7 No. 3-4 p. 2090-2120.
Andronati S.A., Avrucky G.Y.,Voronina T.A., et al. Phenazepam, edited by Bogatsky A.V., K.: Naukova Dumka, 1982, p. 288.
K. S. Andronati,E. A. Kostenko,T. L. Karaseva, and S. A. Andronati. Synthesis and Pharmacological Properties of 3-Amino-1,2-Dihydro-3H-1,4-Benzodiazepin-2-One Derivatives. Pharmaceutical Chemistry Journal, vol. 36, No. 7, 2002. Translated from Khimiko-Farmatsevticheskii Zhumal, vol. 36, No. 7, pp. 16-18, Jul. 2002.Original article submitted Mar. 14, 2002.
S. A. Andronati, T. L. Karaseva, A. A. Kazakova, V. I. Pavlovskii, and S. Yu. Bachinskii. Synthesis and Neurotropic Properties of Arylidene-1,2-Dihydro-3H-1,4-Benzodiazepin-2-Ones. Pharmaceutical Chemistry Journal, vol. 45, No. 4, Jul. 2011 (Russian Original vol. 45, No. 4, Apr. 2011). Translated from Khimiko-Farmatsevticheskii Zhumal, vol. 45, No. 4, pp. 19-20, Apr. 2011. Original article submitted Feb. 6, 2009.
Related Publications (1)
Number Date Country
20200361878 A1 Nov 2020 US