1H-imidazo[4,5-c]quinolinone derivatives

Information

  • Patent Grant
  • 8476294
  • Patent Number
    8,476,294
  • Date Filed
    Wednesday, June 2, 2010
    14 years ago
  • Date Issued
    Tuesday, July 2, 2013
    11 years ago
Abstract
The invention relates to the use of 1H-imidazo[4,5-c]quinolinone derivatives and salts thereof in the treatment of protein and/or lipid kinase dependent diseases and for the manufacture of pharmaceutical preparations for the treatment of said diseases; 1H-imidazo[4,5-c]quinolinone derivatives for use in the treatment of protein and/or lipid kinase dependent diseases; a method of treatment against said diseases, comprising administering the 1H-imidazo[4,5-c]quinolinone derivatives to a warm-blooded animal, especially a human; pharmaceutical preparations comprising an 1H-imidazo[4,5-c]quinolinone derivative, especially for the treatment of a protein and/or lipid kinase dependent disease; novel 1H-imidazo[4,5-c]quinolinone derivatives; and a process for the preparation of the novel 1H-imidazo[4,5-c]quinolinone derivatives.
Description
BACKGROUND OF THE INVENTION

The invention relates to imidazoquinolinones, salts and prodrugs thereof, processes for their preparation, their use in the treatment of protein or lipid kinase dependent diseases and in particular phosphatidylinositol-3-kinase (PI3K) dependent diseases, their use, either alone or in combination with at least one additional therapeutic agent and optionally in combination with a pharmaceutically acceptable carrier, for the manufacture of pharmaceutical preparations, use of the pharmaceutical preparations for the treatment of protein or lipid kinase dependant diseases and in particular PI3K dependent diseases, and a method of treatment of said diseases, comprising administering the imidazoquinolinones to a warm-blooded animal, especially a human. The invention also relates to pharmaceutical preparations comprising an imidazoquinolinone of the invention, either alone or in combination with at least one additional therapeutic agent, and optionally in combination with a pharmaceutically acceptable carrier.


SUMMARY OF THE INVENTION

The phosphatidylinositol-3-kinases superfamily comprises 4 different PI3K related lipid or protein kinases. Class I, II and III are lipid kinases that differ from their substrate specificities whereas class IV PI3K also called PI3-kinase-related protein kinase (PIKK) are protein kinases. Class I phosphatidylinositol-3-kinases comprise a family of lipid kinases that catalyze the transfer of phosphate to the D-3′ position of inositol lipids to produce phosphoinositol-3-phosphate (PIP), phosphoinositol-3,4-diphosphate (PIP2) and phosphoinositol-3,4,5-triphosphate (PIP3) that, in turn, act as second messengers in signaling cascades by docking proteins containing pleckstrin-homology, FYVE, Phox and other phospholipid-binding domains into a variety of signaling complexes often at the plasma membrane ((Vanhaesebroeck et al., Annu. Rev. Biochem 70:535 (2001); Katso et al., Annu. Rev. Cell Dev. Biol. 17:615 (2001)). Of the two Class I PI3Ks, Class IA PI3Ks are heterodimers composed of a catalytic p110 subunit (α, β, δ isoforms) constitutively associated with a regulatory subunit that can be p85α, p55α, p50α, p85β or p55γ. The Class IB sub-class has one family member, a heterodimer composed of a catalytic p110γ subunit associated with one of two regulatory subunits, p101 or p84 (Fruman et al., Annu Rev. Biochem. 67:481 (1998); Suire et al., Curr. Biol. 15:566 (2005)). The modular domains of the p85/55/50 subunits include Src Homology (SH2) domains that bind phosphotyrosine residues in a specific sequence context on activated receptor and cytoplasmic tyrosine kinases, resulting in activation and localization of Class IA PI3Ks. Class IB PI3K is activated directly by G protein-coupled receptors that bind a diverse repertoire of peptide and non-peptide ligands (Stephens et al., Cell 89:105 (1997)); Katso et al., Annu. Rev. Cell Dev. Biol. 17:615-675 (2001)). Consequently, the resultant phospholipid products of class I PI3K link upstream receptors with downstream cellular activities including proliferation, survival, chemotaxis, cellular trafficking, motility, metabolism, inflammatory and allergic responses, transcription and translation (Cantley et al., Cell 64:281 (1991); Escobedo and Williams, Nature 335:85 (1988); Fantl et al., Cell 69:413 (1992)).


In many cases, PIP2 and PIP3 recruit Akt, the product of the human homologue of the viral oncogene v-Akt, to the plasma membrane where it acts as a nodal point for many intracellular signaling pathways important for growth and survival (Fantl et al., Cell 69:413-423(1992); Bader et al., Nature Rev. Cancer 5:921 (2005); Vivanco and Sawyer, Nature Rev. Cancer 2:489 (2002)). Aberrant regulation of PI3K, which often increases survival through Akt activation, is one of the most prevalent events in human cancer and has been shown to occur at multiple levels. The tumor suppressor gene PTEN, which dephosphorylates phosphoinositides at the 3′ position of the inositol ring and in so doing antagonizes PI3K activity, is functionally deleted in a variety of tumors. In other tumors, the genes for the p110α, isoform, PIK3CA, and for Akt are amplified and increased protein expression of their gene products has been demonstrated in several human cancers. Furthermore, mutations and translocation of p85α that serve to up-regulate the p85-p110 complex have been described in human cancers. Also, somatic missense mutations in PIK3CA that activate downstream signaling pathways have been described at significant frequencies in a wide diversity of human cancers (Kang at al., Proc. Natl. Acad. Sci. USA 102:802 (2005); Samuels et al., Science 304:554 (2004); Samuels et al., Cancer Cell 7:561-573 (2005)). These observations show that deregulation of phosphoinositol-3 kinase and the upstream and downstream components of this signaling pathway is one of the most common deregulations associated with human cancers and proliferative diseases (Parsons et al., Nature 436:792 (2005); Hennessey at el., Nature Rev. Drug Disc. 4:988-1004 (2005)).


The mammalian target of rapamycin (mTOR) is a member of the class IV PI3K. mTOR assembles a signaling network that transduces nutrient signals and various other stimuli to regulate a wide range of cellular functions including cell growth, proliferation, survival, autophagy, various types of differentiation and metabolism. In mammalian cells, the mTOR protein is found complexed in two distinct entities called mTORC1 and mTORC2. The mTORC1 complex, that is to say mTOR associated with raptor, has been the matter of numerous studies. It is mTORC1 that integrates nutrient and growth factor input, and is in turn responsible for cell growth regulation, mainly through protein synthesis regulators such as 4EBP1 or RPS6. Activation of mTORC1 requires input from active PI3K and Akt kinases meaning that mTORC1 is a downstream effector of the PI3K pathway. mTOR when associated in the mTOR complex 2 (mTORC2) has been shown to be responsible for the activation of Akt by phosphorylation of S473 (Akt 1 numbering) (Sarbassov et al., Science 307: 7098 (2005)). mTORC2 is hence here considered as an upstream activator of Akt. Interestingly mTOR can therefore be considered as being important both upstream and downstream of Akt. Taken together, mTOR can be regarded as a downstream effector and an upstream activator of Aid depending on its association with the mTOCR1 and mTORC2 complex, respectively. mTOR catalytic inhibition might therefore represent a unique way of introducing a very strong block in the PI3K-Akt pathway, by addressing both upstream and downstream effectors. Syndromes with an established or potential molecular link to disregulation of mTOR kinase activity are, for instance, described in “K. Inoki et al.; Disregulation of the TSC-mTOR pathway in human disease, Nature Genetics, vol 37, 19-24”; “D. M. Sabatini; mTOR and cancer: insights into a complex relationship, Nature Reviews, vol. 6, 729-734”; and in “B. T. Hennessy et al.; Exploiting the PI3K/Akt pathway for cancer drug discovery, Nature Reviews, vol. 4, 988-1004”, and are as follows:

    • Organ or tissue transplant rejection, e.g. for the treatment of recipients of e.g. heart, lung, combined heart-lung, liver, kidney, pancreatic, skin or corneal transplants; graft-versus-host disease, such as following bone marrow transplantation;
    • Restenosis
    • Tuberous sclerosis
    • Lymphangioleiomyomatosis
    • Retinitis pigmentosis
    • Autoimmune diseases including encephalomyelitis, insulin-dependent diabetes mellitus, lupus, dermatomyositis, arthritis and rheumatic diseases
    • Steroid-resistant acute Lymphoblastic Leukaemia
    • Fibrotic diseases including scleroderma, pulmonary fibrosis, renal fibrosis, cystic fibrosis
    • Pulmonary hypertension
    • Immunomodulation
    • Multiple sclerosis
    • VHL syndrome
    • Carney complex
    • Familial adenonamtous polyposis
    • Juvenile polyposis syndrome
    • Birt-Hogg-Duke syndrome
    • Familial hypertrophic cardiomyopathy
    • Wolf-Parkinson-White syndrome
    • Neurodegenarative disorders such as Parkinson's, Huntingtin's, Alzheimer's and dementias caused by tau mutations, spinocerebellar ataxia type 3, motor neuron disease caused by SOD1 mutations, neuronal ceroid lipofucinoses/Batten disease (pediatric neurodegeneration)
    • wet and dry macular degeneration
    • muscle wasting (atrophy, cachexia) and myopathies such as Danon's disease.
    • bacterial and viral infections including M. tuberculosis, group A streptococcus, HSV type I, HIV infection
    • Neurofibromatosis including Neurofibromatosis type 1,
    • Peutz-Jeghers syndrome


      or further any combinations thereof.


Compounds with an inhibitory activity on mTORC1 have shown benefit in immunomodulation and in treating proliferative diseases such as advance renal cell carcinoma or Tubero-Sclerosis (TSC) germ line mutation associated disorders.


The catalytic inhibition of mTOR Ser/Thr kinase activity or class I PI3 kinases activity and in particular dual class I PI3-kinase(s) and mTOR kinase inhibition is considered to be useful for the treatment of PI3K/Akt/mTOR pathway dependent diseases.


The efficacy of a dual PI3 kinase/mTOR inhibitor in malignant glioma has been recently described (Cancer Cell 9, 341-349).


In view of the above, inhibitors of class I and/or IV PI3Ks are considered to be of value in the treatment of proliferative disease and other disorders.


WO2003/097641, WO2005/054237, WO2005/054238 and WO2006/122806 describe imidazoquinolines for use in the treatment of protein kinase dependent diseases.


WO 2008/103636 describes imidazoquinolines as dual lipid kinase and mTor inhibitors.


It has now been found that the imidazoquinolinones derivatives of the formula (I) given below have advantageous pharmacological properties and inhibit, for example, lipid or protein kinases such as PI4K (phosphatidylinositol 4-kinase) and/or PI3 kinases (phosphatidylinositol 3-kinases), for example, inhibition of the PI3K superfamily which comprises PI3Kalpha, PI3Kbeta, PI3Kdelta, PI3Kgamma and mTOR, or one or more of the individual kinase members thereof. The class IV PI3K also called PI3-kinase-related protein kinase (PIKK) includes DNA-PK, ATM, ATR, hSMG-1 and mTOR. In particular, preferably imidazoquinolinones of the formula (I) given below show a high degree of selectivity in favour of one or more of the class I-IV P13K against other protein kinases, such as the receptor tyrosine kinases and/or the Ser/Thr kinases outside of the PIKK family in the biochemical and/or in the cellular assay. In addition, the imidazoquinolinones of the formula (I) preferably display a favourable solubility and/or membrane permeability at physiological pH. Hence, the compounds of formula (I) are suitable, for example, to be used in the treatment of diseases dependent on PI3 kinase, especially proliferative diseases such as tumor diseases, leukaemias, and myeloproliferative disorders such as polycythemia vera, essential thrombocythemia, and myelofibrosis with myeloid metaplasia, and proliferative skin diseases including basal cell carcinoma, squamous cell carcinoma and actinic keratosis and other benign hyperproliferative skin disorders caused by inflammation such as psoriasis or as a result of dysregulation of fibroblasts such as skin fibrosis, scleroderma or keloids.


DESCRIPTION OF THE INVENTION

In a first aspect, the present invention provides compounds of the formula (I)




embedded image



wherein

    • X is O or S;
    • Y is CH or N;
    • R1 is a substituted or unsubstituted 5-membered heteroaryl;
    • R2 is hydrogen, lower alkyl or lower alkenyl;
    • R3 is a substituted or unsubstituted aryl or heterocyclyl; and
    • R4, R5 and R6 are hydrogen;


      or a pharmaceutically acceptable salt, solvate, hydrate or prodrug thereof.


The present invention is also directed to use of compounds of formula (I) in the treatment of protein and/or lipid kinase dependent diseases; use of compounds of formula (I) for the manufacture of pharmaceutical preparations for the treatment of protein and/or lipid kinase dependent diseases and in particular PI3K superfamily (especially class I PI3K and/or mTOR) dependent diseases; methods of treating protein and/or lipid kinase dependant diseases and in particular PI3K superfamily (especially class I PI3K and/or mTOR) dependent diseases comprising administering imidazoquinolinone compounds of the formula (I) to a warm-blooded animal, especially a human; pharmaceutical preparations comprising an imidazoquinolinone compound of the formula (I), especially for the treatment of a protein and/or lipid kinase dependant disease and in particular a PI3K superfamily (especially class I PI3K and/or mTOR) dependent disease; a process for the manufacture of the novel imidazoquinolinone compounds of the formula (I); the manufacture of a pharmaceutical preparation for the treatment of protein and/or lipid kinase dependant diseases and in particular PI3K superfamily (especially class I PI3K and/or mTOR) dependent diseases, and novel intermediates for their manufacture. Preferably, the PI3K superfamily dependent diseases are class I PI3K and/or mTOR dependent diseases.


The invention may be more fully appreciated by reference to the following description, including the following glossary of terms and the concluding examples. As used herein, the terms “including”, “containing” and “comprising” are used herein in their open, non-limiting sense.


Any formula given herein is intended to represent compounds having structures depicted by the structural formula as well as certain variations or forms. In particular, compounds of any formula given herein may have asymmetric centers and therefore exist in different stereoisomeric forms such as different enantiomeric forms. If at least one asymmetrical carbon atom is present in a compound of the formula I, such a compound may exist in optically active form or in the form of a mixture of optical isomers, e.g. in the form of a racemic mixture. Thus an asymmetric carbon atom may be present in the (R)-, (S)- or (R,S)-configuration, preferably in the (R)- or (S)-configuration. All optical isomers and their mixtures, including the racemic mixtures, are part of the present invention. Thus, any given formula given herein is intended to represent a racemate, one or more enantiomeric forms, one or more diastereomeric forms, one or more atropisomeric forms, and mixtures thereof. Furthermore, certain structures may exist as geometric isomers (e.g. cis and trans isomers), as tautomers, or as atropisomers. For example, substituents at a double bond or a ring may be present in cis-(=Z-) or trans (=E-) form. The compounds of the invention may thus be present as mixtures of isomers or preferably as pure isomers, preferably as enantiomer-pure diastereomers or pure enantiomers.


Any formula given herein is intended to represent hydrates, solvates, and polymorphs of such compounds, and mixtures thereof.


Any formula given herein is also intended to represent unlabeled forms as well as isotopically labeled forms of the compounds. Isotopically labeled compounds have structures depicted by the formulas given herein except that one or more atoms are replaced by an atom having a selected atomic mass or mass number. Examples of isotopes that can be incorporated into compounds of the invention include isotopes of hydrogen, carbon, nitrogen, oxygen, phosphorous, fluorine, and chlorine, such as 2H, 3H, 11C, 13C, 14C, 15N, 31P, 32P, 18F, 35S, 36Cl, 125I respectively. Various isotopically labeled compounds of the present invention, for example those into which radioactive isotopes such as 3H, 13C, and 14C are incorporated. Such isotopically labelled compounds are useful in metabolic studies (preferably with 14C), reaction kinetic studies (with, for example 2H or 3H), detection or imaging techniques, such as positron emission tomography (PET) or single-photon emission computed tomography (SPECT) including drug or substrate tissue distribution assays, or in radioactive treatment of patients. In particular, an 18F or labeled compound may be particularly preferred for PET or SPECT studies. Further, substitution with heavier isotopes such as deuterium (i.e., 2H) may afford certain therapeutic advantages resulting from greater metabolic stability, for example increased in vivo half-life or reduced dosage requirements. Isotopically labeled compounds of this invention and prodrugs thereof can generally be prepared by carrying out the procedures disclosed in the schemes or in the examples and preparations described below by substituting a readily available isotopically labeled reagent for a non-isotopically labeled reagent.


When referring to any formula given herein, the selection of a particular moiety from a list of possible species for a specified variable is not intended to define the moiety for the variable appearing elsewhere. In other words, where a variable appears more than once, the choice of the species from a specified list is independent of the choice of the species for the same variable elsewhere in the formula (where one or more up to all more general expressions in embodiments characterized as preferred above or below can be replaced with a more specific definition, thus leading to a more preferred embodiment of the invention, respectively).


Where the plural form (e.g. compounds, salts, pharmaceutical preparations, diseases and the like) is used, this includes the singular (e.g. a single compound, a single salt, a single pharmaceutical preparation, a single disease, and the like). “A compound” does not exclude that (e.g. in a pharmaceutical formulation) more than one compound of the formula (I) (or a salt thereof) is present.


Salts are preferably the pharmaceutically acceptable salts of compounds of formula (I) if they are carrying salt-forming groups.


The salts of compounds of formula (I) are preferably pharmaceutically acceptable salts; acids/bases required to form the salts are generally known in the field.


Salt-forming groups in a compound of formula (I) are groups or radicals having basic or acidic properties. Compounds having at least one basic group or at least one basic radical, e.g., amino; a secondary amino group not forming a peptide bond or a pyridyl radical, may form acid addition salts, e.g., with inorganic acids, such as hydrochloric acid, sulfuric acid or a phosphoric acid; or with suitable organic carboxylic or sulfonic acids, e.g., aliphatic mono- or di-carboxylic acids, such as trifluoroacetic acid, acetic acid, propionic acid, glycolic acid, succinic acid, maleic acid, fumaric acid, hydroxymaleic acid, malic acid, tartaric acid, citric acid or oxalic acid; or amino acids, such as arginine or lysine; aromatic carboxylic acids, such as benzoic acid; 2-phenoxy-benzoic acid; 2-acetoxy-benzoic acid; salicylic acid; 4-aminosalicylic acid; aromatic-aliphatic carboxylic acids, such as mandelic acid or cinnamic acid; heteroaromatic carboxylic acids, such as nicotinic acid or isonicotinic acid; aliphatic sulfonic acids, such as methane-, ethane- or 2-hydroxyethanesulfonic acid; or aromatic sulfonic acids, e.g., benzene-, p-toluene- or naphthalene-2-sulfonic acid. When several basic groups are present mono- or poly-acid addition salts may be formed.


Compounds of formula (I) having acidic groups, a carboxy group or a phenolic hydroxy group, may form metal or ammonium salts, such as alkali metal or alkaline earth metal salts, e.g., sodium, potassium, magnesium or calcium salts; or ammonium salts with ammonia or suitable organic amines, such as tertiary monoamines, e.g., triethylamine or tri(2-hydroxyethyl)-amine, or heterocyclic bases, e.g., N-ethyl-piperidine or N,N′-dimethylpiperazine. Mixtures of salts are possible.


Compounds of formula (I) having both acidic and basic groups can form internal salts.


For the purposes of isolation or purification, as well as in the case of compounds that are used further as intermediates, it is also possible to use pharmaceutically-unacceptable salts, e.g., the picrates. Only pharmaceutically-acceptable, non-toxic salts may be used for therapeutic purposes, however, and those salts are therefore preferred.


Owing to the close relationship between the novel compounds in free form and in the form of their salts, including those salts that can be used as intermediates, e.g., in the purification of the novel compounds or for the identification thereof, any reference hereinbefore and hereinafter to the free compounds shall be understood as including the corresponding salts, where appropriate and expedient.


Compounds of the present invention may also form solvates and hydrates, and as such any reference to a compound of formula (I) is therefore to be understood as referring also to the corresponding solvate and/or hydrate of the compound of formula (I), as appropriate and expedient.


The present invention also relates to pro-drugs of a compound of formula (I) that convert in vivo to the compound of formula (I) as such. Any reference to a compound of formula (I) is therefore to be understood as referring also to the corresponding pro-drugs of the compound of formula (I), as appropriate and expedient.


The general terms used hereinbefore and hereinafter preferably have within the context of this disclosure the following meanings, unless otherwise indicated:


The prefix “lower” denotes a radical having 1 carbon atom up to and including a maximum of 7 carbon atoms, especially 1 carbon atom up to and including a maximum of 4 carbon atoms, the radicals in question being either linear or branched with single- or multiple-branching.


Halo or halogen is preferably fluoro, chloro, bromo or iodo, most preferably fluoro, chloro or bromo.


Alkyl preferably has 1 up 12 carbon atoms (C1-12alkyl) and is linear or branched one or more times; in particular alkyl is lower alkyl, especially C1-C4alkyl. For example, alkyl includes methyl, ethyl, n-propyl, iso-propyl, n-butyl, isobutyl, sec-butyl, tert-butyl, n-pentyl, n-hexyl, n-heptyl, n-octyl, n-nonyl, n-decyl, n-undecyl, n-dodecyl, with particular preference given to methyl, ethyl, n-propyl, iso-propyl, n-butyl and iso-butyl. Lower alkyl, for example, is represented as C1-C7alkyl, e.g. methyl, ethyl, n-propyl, iso-propyl, n-butyl, isobutyl, sec-butyl, tert-butyl, n-pentyl, n-hexyl or n-heptyl, lower alkyl is especially represented as C1-C4alkyl, e.g. methyl, ethyl, n-propyl, iso-propyl, n-butyl, isobutyl, sec-butyl, tert-butyl, with preference given to methyl, ethyl or propyl.


Alkyl, in particular lower alkyl, is unsubstituted or substituted, preferably by one or more substituents independently selected from those mentioned below under “substituted”. Exemplary substituents include, but are not limited to hydroxy, alkoxy, aryl, heterocyclyl, cycloalkyl, halogen, amino and nitro. An example of a substituted alkyl is halo-alkyl, such as halomethyl, for example fluoromethyl, e.g. trifluoromethyl. Another example of a substituted alkyl is hydroxymethyl or hydroxyethyl. A further example of a substituted alkyl is alkoxyalkyl, such as methoxyethyl or methoxypropyl. The alkoxyalkyl may be further substituted, for example to give benzyloxyethyl or benzyloxypropyl.


Alkyl may also be cyclic as defined below under “cycloalkyl”. Cycloalkyl may also be a substituent to alkyl. Cycloalkyl-lower alkyl is preferably lower alkyl that is substituted (preferably terminally) by unsubstituted or substituted cycloalkyl as defined below. An example of cycloalkyl as a substituent to alkyl is alkandiyl-cycloalkyl, such as alkandiyl-cycloloweralkyl, e.g. alkandiyl-cyclopropyl, e.g. —CH2-cyclopropyl.


Aryl-lower alkyl is preferably lower alkyl that is substituted (preferably terminally or in 1-position) by unsubstituted or substituted aryl as defined below. Aryl-lower alkyl is especially phenyl-lower alkyl, such as benzyl (i.e. phenylmethyl) or phenylethyl, especially 1-phenylethyl.


Heterocyclyl-lower alkyl is preferably lower alkyl that is substituted (preferably terminally) by unsubstituted or substituted heterocyclyl as defined below.


Each alkyl part of other groups like “alkoxy”, “alkoxyalkyl”, “alkoxyalkoxy”, “alkoxycarbonyl”, “alkoxy-carbonylalkyl”, “alkylsulfonyl”, “alkylsulfonamide”, “alkylsulfinyl”, “alkylamino”, “halogenalkyl” shall have the same meaning as described in the above-mentioned definition of “alkyl”, including the prefix ‘lower’, including substitutions thereof.


For example, aryl-lower alkoxy is preferably lower alkoxy that is substituted (preferably terminally on the alkyl part) by unsubstituted or substituted aryl as defined below. Aryl-lower alkoxy is especially phenyl-lower alkoxy, such as phenyl methoxy (i.e. benzoxy) or phenyl ethoxy.


Alkoxyalkoxy is, for example, methoxyethoxy, or methoxypropoxy, and may include further substitutions e.g. by aryl such as phenyl, for example to give phenylmethoxyethoxy (alternatively stated benzoxy-ethoxy) or phenylmethoxypropoxy (alternatively stated benzoxy-propoxy).


Alkandiyl is a straight-chain or branched-chain divalent alkyl group. It preferably represents a straight-chain or branched-chain C1-12 alkandiyl, particularly preferably represents a straight-chain or branched-chain C1-6 alkandiyl; for example, methandiyl (—CH2—), 1,2-ethanediyl (—CH2—CH2—), 1,1-ethanediyl ((—CH(CH3)—), 1,1-, 1,2-, 1,3-propanediyl and 1,1-, 1,2-, 1,3-, 1,4-butanediyl, with particular preference given to methandiyl, 1,1-ethanediyl, 1,2-ethanediyl, 1,3-propanediyl, 1,4-butanediyl.


Alkenyl is preferably a moiety with one or more double bonds and preferably has 2-12 carbon atoms; it is linear or branched one or more times (as far as possible in view of the number of carbon atoms). Preferred is C2-C7alkenyl, especially C3-C4alkenyl, such as allyl or crotyl. For example, —CH═CH—, —CH═C(CH3)—, —CH═CH—CH2—, —C(CH3)═CH—CH2—, —CH═C(CH3)—CH2—, —CH═CH—C(CH3)H—, —CH═CH—CH═CH—, —C(CH3)═CH—CH═CH—, —CH═C(CH3)—CH═CH—. Alkenyl can be unsubstituted or substituted, especially by one or more, more especially up to three of the substituents mentioned below under “substituted”. Substituents, such as amino or hydroxy (with free dissociable hydrogen) preferably are not bound to carbon atoms that participate at a double bond, and also other substituents that are not sufficiently stable are preferably excluded. Unsubstituted alkenyl, in particular, C2-C7alkenyl is preferred.


Alkynyl is preferably a moiety with one or more triple bonds and preferably has 2-12 carbon atoms; it is linear of branched one or more times (as far as possible in view of the number of carbon atoms). Preferred is C2-C7alkynyl, especially C3-C4alkynyl, such as ethynyl or propyn-2-yl. Alkynyl can be unsubstituted or substituted, especially by one or more, more especially up to three of the substituents mentioned below under “substituted”. Substituents, such as amino or hydroxy (with free dissociable hydrogen) preferably are not bound to carbon atoms that participate at a triple bond, and also other substituents that are not sufficiently stable are preferably excluded. Unsubstituted alkynyl, in particular, C2-C7alkynyl is preferred.


Cycloalkyl is a saturated, monocyclic, fused polycyclic, or Spiro polycyclic, carbocycle having from 3 to 12 ring atoms per carbocycle. Cycloalkyl is preferably C3-C10cycloalkyl, and includes cyclo lower alkyl, especially cyclopropyl, cyclobutyl, cyclopentyl, cyclohexyl or cycloheptyl; cycloalkyl being unsubstituted or substituted by one or more substituents, especially 1-3 substituents independently selected from the group consisting of the substituents defined below under “substituted”.


Cycloalkenyl is preferably C5-C10cycloalkenyl, especially cyclopentenyl, cyclohexenyl or cycloheptenyl; cycloalkenyl being unsubstituted or substituted by one or more substituents, especially 1-3 substituents, independently selected from the group consisting of the substituents defined below under “substituted”.


Aryl refers to an unsaturated carbocyclic aromatic ring system, preferably, having a ring system of not more than 16 carbon atoms, especially not more than 10 carbon atoms, e.g. having 6 to 16, preferably 6 to 10 ring carbon atoms, is preferably mono- or bi-cyclic, and is unsubstituted or substituted preferably as defined below under “substituted”. For example, aryl is selected from phenyl or naphthyl, preferably phenyl, and is preferably in each case unsubstituted or substituted with substituents described under “substituted”, in particular from the group consisting of halo, especially fluoro, chloro, bromo or iodo, in particular fluoro; halo-lower alkyl, especially fluoroalkyl, in particular trifluoromethyl; hydroxyl; amino, mono or disubstituted amino, especially alkyl-substituted amino, hydroxyalkyl-substituted amino or alkoxyalkyl-substituted amino, e.g. dimethyl amino, 2-hydroxyethyl amino or 2-methoxyethylamino; cyclic amino, such as aziridinyl, azetidinyl or pyrrolidinyl; amino-lower alkyl, e.g., aminomethyl, 2-aminoethyl or 3-aminopropyl; alkylamino-lower alkyl, e.g. methylaminomethyl, ethylaminomethyl, methylaminoethyl or ethylaminoethyl; dialkylamino-loweralkyl, e.g. dimethylaminomethyl, dimethylaminoethyl, methylethylaminomethyl, methylethylaminoethyl, diethylaminomethyl or diethylaminoethyl; cycloalkylaminoalkyl, e.g. cyclopropylaminomethyl, cyclopropylaminoethyl, cyclobutylaminomethyl, cyclobutylaminoethyl, cyclopentylaminomethyl or cyclopentylaminoethyl; dicycloalkylaminoalkyl, e.g. dicyclopropylaminomethyl, dicyclopropylaminoethyl, cyclopropylcyclobutylaminomethyl or cyclopropylcyclobutylaminoethyl; alkylcycloalkylaminoalkyl, e.g. cyclopropylmethylaminomethyl, cyclopropylmethylaminoethyl, cyclopropylethylaminomethyl or cyclopropylethylaminoethyl; lower alkoxy, e.g., methoxy, ethoxy or propyloxy (e.g. iso-propyloxy); hydroxy-lower alkyl, e.g., hydroxymethyl or 2-hydroxyethyl; hydroxy lower alkoxy, e.g. hydroxyethoxy; alkoxy lower alkoxy, e.g. methoxyethoxy or ethoxyethoxy; lower alkyl, e.g., methyl, ethyl or iso-propyl; cyano; cyano-lower alkyl, e.g., 2-cyanoethyl, 2-cyanopropyl, 2-cyano-2-methylpropyl or 3-cyanopropyl; amidino; N-hydroxyamidino; amidino-lower alkyl, e.g., 2-amidino-ethyl; or N-hydroxyamidino-lower alkyl, e.g., 2-(N-hydroxyamidino)-ethyl; nitro; carboxylic acid; substituted sulfonyl, e.g. alkyl-substituted sulfonyl, such as methanesulfonyl; sulfonamide, e.g. N-methylsulfonamide (or lower alkylaminosulfonyl or N,N-di-loweralkyl aminosulfonyl, e.g. methylaminosufonyl or dimethylaminosulfonyl) or pyrrolidine-1-sulfonyl; lower alkyl sulfonyl amino, e.g. methylsulfonylamino; lower alkyl sulfonylalkandiylamino, e.g. methylsulfonylmethylamino; lower alkylsulfonyl-N-lower alkylamino, e.g. methylsulfonyl-N-methylamino; acylamino, e.g. acetylamino, acyl lower alkyl amino, e.g. acetyl methyl amino; [1,3]dioxolo; substituted [1,3]dioxolo, e.g. 2,2-difluoro-[1,3]dioxolo; alkoxy carbonyl, such as lower alkoxy carbonyl, e.g. methoxycarbonyl; carbamoyl; substituted carbamoyl, such as alkyl-substituted carbamoyl, e.g. methylcarbamoyl and dimethylcarbamoyl. The aryl group may also be substituted with a substituted or unsubstituted heterocycle, preferably a 4-7 membered ring, e.g. 1H-tetrazolyl (in particular 1H-tetrazol-5-yl), pyrazol, imidazole, triazole, azetidinyl, pyrrolidinyl, piperazinyl, methylpiperazinyl, ethylpiperazinyl, triazolonyl or methylimidazolyl. The aryl group may also be substituted with heterocyclyl lower alkyl, heteroaryl or heteroaryl lower alkyl as defined hereinbelow. Preferred unsubstituted or substituted aryl is selected from phenyl; hydroxyphenyl, e.g., 2-, 3- or 4-hydroxyphenyl; methoxyphenyl, e.g., 2-, 3- or 4-methoxyphenyl or 3,4-dimethoxyphenyl; ethoxyphenyl, e.g., 2-, 3- or 4-ethoxyphenyl or 3,4-diethon/phenyl; propoxyphenyl (e.g. iso-propoxyphenyl) such as 3-propoxyphenyl (e.g. 3-iso-propoxyphenyl); methoxy ethoxy-phenyl, e.g. 3-methoxy-4-ethoxy phenyl or 4-methoxy-3-ethoxy phenyl, or other lower-alkoxy phenyl, e.g. 3-methoxy-4-(2-methoxy ethoxy)-phenyl; halo-alkoxy-phenyl, e.g. fluoro-(iso-propoxy)-phenyl, e.g. 2-fluoro-3-(iso-propoxy)-phenyl; hydroxyalkoxy phenyl, e.g. 2-hydroxyethoxy-phenyl; hydroxy alkoxy phenyl, e.g. 3-methoxy-4-hydroxy phenyl; halo-hydroxy-phenyl, e.g. fluoro-hydroxy-phenyl such as 3-fluoro-5-hydroxy-phenyl; hydroxy-haloalkyl-phenyl, e.g. hydroxy-fluoroalkyl-phenyl such as 3-hydroxy-5-trifluoromethyl-phenyl; 2,2-difluoro-benzo[1,3]dioxolo, benzene sulfonamide, e.g. 3-N-methylbenzenesulfonamide, 3-N,N-dimethylbenzenesulfonamide, 3-(pyrrolidine-1-sulfonyl)-phenyl, N-phen-3-yl-methanesulfonamide or N-methyl-N-phen-3-yl-methanesulfonamide; alkyl-sulfonyl phenyl, e.g. 3-methanesulfonylphenyl; benzamide e.g. 3- or 4-benzamide, 3- or 4-N-methyl-benzamide or 2-, 3- or 4-N,N-dimethyl-benzamide; pyrazol-phenyl, e.g. 4-pyrazol-phenyl; imidazol-phenyl, e.g. (1H-imidazol-2-yl)phenyl.


Heterocyclyl refers to a heterocyclic radical that is unsaturated (=carrying the highest possible number of conjugated double bonds in the ring(s) e.g. heteroaryl, for example pyrazolyl, pyridyl, pyrimidinyl), saturated or partially saturated in the bonding ring and is preferably a monocyclic or in a broader aspect of the invention bicyclic ring; has 3-16 ring atoms, more preferably 4-10 ring atoms, such as 6, 9 or 10 ring atoms, wherein 1-4 ring atoms, especially one or two ring atoms are a heteroatom selected from the group consisting of nitrogen, oxygen and sulfur; the bonding ring preferably having 4-12 ring atoms, especially 4-7 ring atoms, for example 6 ring atoms, For bicyclic heterocyclyl, the ring which is bonded to the rest of the molecule of formula (I) may or may not contain a heteroatom. Also, for bicyclic heterocyclyl, both rings (i.e. both the bonding ring and non-bonding ring) may contain a heteroatom.


In an embodiment, heterocyclyl refers to a heterocyclic radical that is unsaturated (=carrying the highest possible number of conjugated double bonds in the ring(s) e.g. heteroaryl, for example pyrazolyl, pyridyl, pyrimidinyl), saturated or partially saturated in the bonding ring and is preferably a monocyclic or in a broader aspect of the invention bicyclic ring; has 3-16 ring atoms, more preferably 4-10 ring atoms, wherein at least in the ring bonding to the radical of the molecule of formula (I) one or more, preferably 1-4 ring atoms, especially one or two ring atoms are a heteroatom selected from the group consisting of nitrogen, oxygen and sulfur; the bonding ring preferably having 4-12 ring atoms, especially 4-7 ring atoms, for example 6-10 ring atoms, especially for heteroaryl, such as 6, 9 or 10 ring atoms.


In an embodiment, the heterocyclyl may be unsubstituted, or substituted by one or more, especially 1-4 substituents independently selected from the group consisting of the substituents defined below under “substituted”; especially being a heterocyclyl radical selected from the group consisting of oxiranyl, azirinyl, 1,2-oxathiolanyl, imidazolyl, thienyl, furyl, tetrahydrofuryl, tetrahydrothiophene, indolyl, 1-methyl-2,3-dihydro-1H-indolyl, 2,3-dihydro-1H-indolyl, 2-oxo-2,3-dihydro-1H-indolyl, azetidinyl, pyranyl, thiopyranyl, isobenzofuranyl, benzofuranyl, chromenyl, 2H-pyrrolyl, pyrrolyl, pyrrolinyl, pyrrolidinyl, imidazolyl, imidazolidinyl, benzimidazolyl, pyrazolyl, pyrazolidinyl, thiazolyl, isothiazolyl, dithiazolyl, oxazolyl, isoxazolyl, pyridyl, pyrazinyl, pyrimidinyl, piperidyl, piperazinyl, pyridazinyl, morpholinyl, thiomorpholinyl, indolizinyl, isoindolyl, 3H-indolyl, cumaryl, indazolyl, triazolyl, tetrazolyl, purinyl, 4H-quinolizinyl, isoquinolyl, quinolyl, tetrahydroquinolyl, tetrahydroisoquinolyl, decahydroquinolyl, octahydroisoquinolyl, benzofuranyl, dibenzofuranyl, benzothiophenyl, phthalazinyl, naphthyridinyl, 1H-pyrrolo[2,3-b]pyridinyl, quinoxalyl, quinazolinyl, quinazolinyl, cinnolinyl, pteridinyl, furazanyl, chromenyl, isochromanyl, chromanyl, 2-oxo-2,3-dihydro-1H-imidazo[4,5-b]pyridinyl (also termed 1H-imidazo[4,5-b]pyridin-2(3H)-one-6-yl), 1,3-Dimethyl-2-oxo-2,3-dihydro-1H-imidazo[4,5-b]pyridinyl (also termed 1,3-dimethyl-1H-imidazo[4,5-b]pyridin-2(3H)-oneyl), 1-ethyl-3-methyl-2-oxo-2,3-dihydro-1H-imidazo[4,5-b]pyridinyl (also termed 1-ethyl-3-methyl-1H-imidazo[4,5-b]pyridin-2(3H)-one-6-yl), 1-(2-methoxy-ethyl)-3-methyl-2-oxo-2,3-dihydro-1H-imidazo[4,5-b]pyridinyl (also termed 1-(2-methoxyethyl)-3-methyl-1H-imidazo[4,5-b]pyridin-2(3H)-one-6-yl), 3H-imidazo[4,5-b]pyridinyl, 3-methyl-3H-imidazo[4,5-b]pyridinyl, 2,3-Dimethyl-3H-imidazo[4,5-b]pyridinyl, 2-methoxy-3-methyl-3H-imidazo[4,5-b]pyridinyl, 2-Dimethylamino-3-methyl-3H-imidazo[4,5-b]pyridinyl, 3H-[1,2,3]triazolo[4,5-b]pyridinyl, 3-methyl-3H-[1,2,3]triazolo[4,5-b]pyridinyl, 1H-pyrrolo[3,2-b]pyridinyl, 1-methyl-1H-pyrrolo[3,2-b]pyridinyl, 1-methyl-1H-pyrrolo[2,3-b]pyridinyl, 2-oxo-1,4-dihydro-2H-pyrido[2,3-d][1,3]oxazinyl, 1-methyl-2-oxo-1,4-dihydro-2H-pyrido[2,3-d][1,3]oxazinyl, 3,4-dihydro-2H-pyrido[3,2-b][1,4]oxazinyl, 4-methyl-3,4-dihydro-2H-pyrido[3,2-b][1,4]oxazinyl, 2-oxo-2,3-dihydro-1H-pyrrolo[2,3-b]pyridinyl, 1,3,3-trimethyl-2-oxo-2,3-dihydro-1H-pyrrolo[2,3-b]pyridinyl, 2-oxo-1,4-dihydro-2H-pyrido[3,2-d][1,3]oxazinyl and 1-ethyl-2-oxo-1,4-dihydro-2H-pyrido[3,2-d][1,3]oxazinyl; each of these heterocycle radicals being unsubstituted or substituted by one to two radicals selected from the substituents described under “substituted”, in particular from the group consisting of halo, especially fluoro, chloro, bromo or iodo, more especially fluoro or chloro, in particular fluoro; halo-lower alkyl, especially fluoroalkyl, in particular trifluoromethyl; hydroxyl; amino, mono or disubstituted amino, especially alkyl-substituted amino, hydroxyalkyl-substituted amino or alkoxyalkyl-substituted amino, e.g. dimethyl amino, 2-hydroxyethyl amino or 2-methoxyethyl amino; cyclic amino, such as aziridinyl, azetidinyl or pyrrolidinyl; substituted cyclic amino, e.g. hydroxy cyclic amino; amino-lower alkyl, e.g., aminomethyl, 2-aminoethyl or 3-aminopropyl; alkylamino-lower alkyl, e.g. methylaminomethyl, ethylaminomethyl, methylaminoethyl or ethylaminoethyl; dialkylamino-loweralkyl, e.g. dimethylaminomethyl, dimethylaminoethyl, methylethylaminomethyl, methylethylaminoethyl, diethylaminomethyl or diethylaminoethyl; cycloalkylaminoalkyl, e.g. cyclopropylaminomethyl, cyclopropylaminoethyl, cyclobutylaminomethyl, cyclobutylaminoethyl, cyclopentylaminomethyl or cyclopentylaminoethyl; dicycloalkylaminoalkyl, e.g. dicyclopropylaminomethyl, dicyclopropylaminoethyl, cyclopropylcyclobutylaminomethyl or cyclopropylcyclobutylaminoethyl; alkylcycloalkylaminoalkyl, e.g. cyclopropylmethylaminomethyl, cyclopropylmethylaminoethyl, cyclopropylethylaminomethyl or cyclopropylethylaminoethyl; lower alkoxy, e.g., methoxy, ethoxy or propyloxy; cycloalkoxy, e.g. cyclobutoxy; lower-alkoxyalkyl, e.g. methoxymethyl, methoxypropyl, ethoxypropyl; hydroxy-lower alkyl, e.g., hydroxymethyl or 2-hydroxyethyl; hydroxy lower cycloalkyl, e.g. hydroxy cyclopentyl; hydroxy lower alkoxy, e.g. hydroxyethoxy; alkoxy lower alkoxy, e.g. methoxyethoxy or ethoxyethoxy; lower alkyl, e.g., methyl, ethyl or iso-propyl; cyano; cyano-lower alkyl, e.g., 2-cyanoethyl, 2-cyanopropyl, 2-cyano-2-methylpropyl or 3-cyanopropyl; cyano lower cycloalkyl, e.g cyano cyclobutyl; amidino; N-hydroxyamidino; amidino-lower alkyl, e.g., 2-amidino-ethyl; or N-hydroxyamidino-lower alkyl, e.g., 2-(N-hydroxyamidino)-ethyl; nitro; carboxylic acid; substituted sulfonyl, e.g. alkyl-substituted sulfonyl, such as methanesulfonyl; sulfonamide, e.g. N-methylsulfonamide or pyrrolidine-1-sulfonyl; alkylsulfonylamino, e.g. methylsulfonylamino; alkylsulfonylalkylamino, e.g. methylsulfonylmethylamino; acylamino (also termed alkyl carbonyl amino), e.g. acetylamino; acyl alkyl amino, e.g. acetyl methyl amino; alkylcarbonylaminoalkyl, e.g. methylcarbonylaminomethyl; alkylaminocarbonylalkyl e.g. methylaminocarbonylmethyl; alkylcarbonyl-N-alkylamino, e.g. methylcarbonyl-N-methylamino; [1,3]dioxolo; substituted [1,3]dioxolo, e.g. 2,2-difluoro-[1,3]dioxolo; alkoxy carbonyl, such as lower alkoxy carbonyl, e.g. methoxycarbonyl; carbamoyl (also termed aminocarbonyl); substituted carbamoyl, such as alkyl-substituted carbamoyl, e.g. methylcarbamoyl, ethyl carbamoyl, iso-propyl carbamoyl or alkoxyalkyl-substituted carbamoyl (also termed alkoxyalkylaminocarbonyl), e.g. 2-methoxyethylcarbamoyl. The heterocycle group may also be substituted with another substituted or unsubstituted heterocycle, preferably a 4-7 membered ring, e.g. 1H-tetrazolyl (in particular 1H-tetrazol-5-yl), pyrazol, imidazole, triazole, azetidinyl, pyrrolidinyl, piperazinyl, methylpiperazinyl, ethylpiperazinyl, triazolonyl, methylimidazolyl or morpholino. The heterocycle group may also be substituted with heterocyclyl lower alkyl, heteroaryl or heteroaryl lower alkyl as defined herein.


In another embodiment, the heterocyclyl may be unsubstituted, or substituted by one or more, especially 1-4 substituents independently selected from the group consisting of the substituents defined below under “substituted”; especially being a heterocyclyl radical selected from the group consisting of oxiranyl, azirinyl, 1,2-oxathiolanyl, imidazolyl, thienyl, furyl, tetrahydrofuryl, tetrahydrothiophene, indolyl, 1-methyl-2,3-dihydro-1H-indolyl, 2-oxo-2,3-dihydro-1H-indolyl, azetidinyl, pyranyl, thiopyranyl, isobenzofuranyl, benzofuranyl, chromenyl, 2H-pyrrolyl, pyrrolyl, pyrrolinyl, pyrrolidinyl, imidazolyl, imidazolidinyl, benzimidazolyl, pyrazolyl, pyrazolidinyl, thiazolyl, isothiazolyl, dithiazolyl, oxazolyl, isoxazolyl, pyridyl, pyrazinyl, pyrimidinyl, piperidyl, piperazinyl, pyridazinyl, morpholinyl, thiomorpholinyl, indolizinyl, isoindolyl, 3H-indolyl, cumaryl, indazolyl, triazolyl, tetrazolyl, purinyl, 4H-quinolizinyl, isoquinolyl, quinolyl, tetrahydroquinolyl, tetrahydroisoquinolyl, decahydroquinolyl, octahydroisoquinolyl, benzofuranyl, dibenzofuranyl, benzothiophenyl, phthalazinyl, naphthyridinyl, 1H-pyrrolo[2,3-b]pyridinyl, quinoxalyl, quinazolinyl, quinazolinyl, cinnolinyl, pteridinyl, furazanyl, chromenyl, isochromanyl and chromanyl and; each of these heterocycle radicals being unsubstituted or substituted by one to two radicals selected from the substituents described under “substituted”, in particular from the group consisting of halo, especially fluoro, chloro, bromo or iodo, more especially fluoro or chloro, in particular fluoro; halo-lower alkyl, especially fluoroalkyl, in particular trifluoromethyl; hydroxyl; amino, mono or disubstituted amino, especially alkyl-substituted amino, hydroxyalkyl-substituted amino or alkoxyalkyl-substituted amino, e.g. dimethyl amino, 2-hydroxyethyl amino or 2-methoxyethyl amino; cyclic amino, such as aziridinyl, azetidinyl or pyrrolidinyl; amino-lower alkyl, e.g., aminomethyl, 2-aminoethyl or 3-aminopropyl; alkylamino-lower alkyl, e.g. methylaminomethyl, ethylaminomethyl, methylaminoethyl or ethylaminoethyl; dialkylamino-loweralkyl, e.g. dimethylaminomethyl, dimethylaminoethyl, methylethylaminomethyl, methylethylaminoethyl, diethylaminomethyl or diethylaminoethyl; cycloalkylaminoalkyl, e.g. cyclopropylaminomethyl, cyclopropylaminoethyl, cyclobutylaminomethyl, cyclobutylaminoethyl, cyclopentylaminomethyl or cyclopentylaminoethyl; dicycloalkylaminoalkyl, e.g. dicyclopropylaminomethyl, dicyclopropylaminoethyl, cyclopropylcyclobutylaminomethyl or cyclopropylcyclobutylaminoethyl; alkylcycloalkylaminoalkyl, e.g. cyclopropylmethylaminomethyl, cyclopropylmethylaminoethyl, cyclopropylethylaminomethyl or cyclopropylethylaminoethyl; lower alkoxy, e.g., methoxy, ethoxy or propyloxy; hydroxy-lower alkyl, e.g., hydroxymethyl or 2-hydroxyethyl; hydroxy lower alkoxy, e.g. hydroxyethoxy; alkoxy lower alkoxy, e.g. methoxyethoxy or ethoxyethoxy; lower alkyl, e.g., methyl, ethyl or iso-propyl; cyano; cyano-lower alkyl, e.g., 2-cyanoethyl, 2-cyanopropyl, 2-cyano-2-methylpropyl or 3-cyanopropyl; amidino; N-hydroxyamidino; amidino-lower alkyl, e.g., 2-amidino-ethyl; or N-hydroxyamidino-lower alkyl, e.g., 2-(N-hydroxyamidino)-ethyl; nitro; carboxylic acid; substituted sulfonyl, e.g. alkyl-substituted sulfonyl, such as methanesulfonyl; sulfonamide, e.g. N-methylsulfonamide or pyrrolidine-1-sulfonyl; alkylsulfonylamino, e.g. methylsulfonylamino; alkylsulfonylalkylamino, e.g. methylsulfonylmethylamino; acylamino, e.g. acetylamino; acyl alkyl amino, e.g. acetyl methyl amino; [1,3]dioxolo; substituted [1,3]dioxolo, e.g. 2,2-difluoro-[1,3]dioxolo; alkoxy carbonyl, such as lower alkoxy carbonyl, e.g. methoxycarbonyl; carbamoyl; substituted carbamoyl, such as alkyl-substituted carbamoyl, e.g. methylcarbamoyl. The heterocycle group may also be substituted with another substituted or unsubstituted heterocycle, preferably a 4-7 membered ring, e.g. 1H-tetrazolyl (in particular 1H-tetrazol-5-yl), pyrazol, imidazole, triazole, azetidinyl, pyrrolidinyl, piperazinyl, methylpiperazinyl, ethylpiperazinyl, triazolonyl or methylimidazolyl. The heterocycle group may also be substituted with heterocyclyl lower alkyl, heteroaryl or heteroaryl lower alkyl as defined herein.


In an embodiment, very preferred heterocyclic groups, which may be substituted or unsubstituted, include indolyl, 1-methyl-2,3-dihydro-1H-indolyl, 2-oxo-2,3-dihydro-1H-indolyl, pyridyl, pyrimidinyl, 1H-pyrrolo[2,3-b]pyridinyl, 1-methyl-1H-pyrrolo[2,3-b]pyridinyl, pyrazolyl, pyrazinyl, quinolyl, quinoxalyl, 1,3-Dimethyl-2-oxo-2,3-dihydro-1H-imidazo[4,5-b]pyridinyl, 2-oxo-2,3-dihydro-1H-imidazo[4,5-b]pyridinyl, 1-ethyl-3-methyl-2-oxo-2,3-dihydro-1H-imidazo[4,5-b]pyridinyl, 1-(2-methoxy-ethyl)-3-methyl-2-oxo-2,3-dihydro-1H-imidazo[4,5-b]pyridinyl, 2-Dimethylamino-3-methyl-3H-imidazo[4,5-b]pyridinyl, 2-methoxy-3-methyl-3H-imidazo[4,5-b]pyridinyl, 3H-imidazo[4,5-b]pyridinyl, 3-methyl-3H-[1,2,3]triazolo[4,5-b]pyridinyl, 3H-[1,2,3]triazolo[4,5-b]pyridinyl, 2,3-Dimethyl-3H-imidazo[4,5-b]pyridinyl, 3-methyl-3H-imidazo[4,5-b]pyridinyl, 1H-pyrrolo[3,2-b]pyridinyl, 1-methyl-1H-pyrrolo[3,2-b]pyridinyl, 1-methyl-2-oxo-1,4-dihydro-2H-pyrido[2,3-d][1,3]oxazinyl, 2-oxo-1,4-dihydro-2H-pyrido[2,3-d][1,3]oxazinyl, 4-methyl-3,4-dihydro-2H-pyrido[3,2-b][1,4]oxazinyl, 3,4-dihydro-2H-pyrido[3,2-b][1,4]oxazinyl, 1,3,3-trimethyl-2-oxo-2,3-dihydro-1H-pyrrolo[2,3-b]pyridinyl, 2-oxo-2,3-dihydro-1H-pyrrolo[2,3-b]pyridinyl, 1-ethyl-2-oxo-1,4-dihydro-2H-pyrido[3,2-d][1,3]oxazinyl, and 2-oxo-1,4-dihydro-2H-pyrido[3,2-d][1,3]oxazinyl each of which may be unsubstituted or substituted.


In an further embodiment, very preferred heterocyclic groups, each of which may be substituted or unsubstituted, include 1-methyl-2,3-dihydro-1H-indolyl, 2-oxo-2,3-dihydro-1H-indolyl, pyridyl, pyrimidinyl, 1H-pyrrolo[2,3-b]pyridinyl, 1-methyl-1H-pyrrolo[2,3-b]pyridinyl, pyrazolyl, pyrazinyl, quinolyl, 1,3-Dimethyl-2-oxo-2,3-dihydro-1H-imidazo[4,5-b]pyridinyl, 2-oxo-2,3-dihydro-1H-imidazo[4,5-b]pyridinyl, 1-ethyl-3-methyl-2-oxo-2,3-dihydro-1H-imidazo[4,5-b]pyridinyl, 1-(2-methoxy-ethyl)-3-methyl-2-oxo-2,3-dihydro-1H-imidazo[4,5-b]pyridinyl, 2-Dimethylamino-3-methyl-3H-imidazo[4,5-b]pyridinyl, 2-methoxy-3-methyl-3H-imidazo[4,5-b]pyridinyl, 3H-imidazo[4,5-b]pyridinyl, 3-methyl-3H-[1,2,3]triazolo[4,5-b]pyridinyl, 3H-[1,2,3]triazolo[4,5-b]pyridinyl, 2,3-Dimethyl-3H-imidazo[4,5-b]pyridinyl, 3-methyl-3H-imidazo[4,5-b]pyridinyl, 1H-pyrrolo[3,2-b]pyridinyl, 1-methyl-1H-pyrrolo[3,2-b]pyridinyl, 1-methyl-2-oxo-1,4-dihydro-2H-pyrido[2,3-d][1,3]oxazinyl, 2-oxo-1,4-dihydro-2H-pyrido[2,3-d][1,3]oxazinyl, 4-methyl-3,4-dihydro-2H-pyrido[3,2-b][1,4]oxazinyl, 3,4-dihydro-2H-pyrido[3,2-b][1,4]oxazinyl, 1,3,3-trimethyl-2-oxo-2,3-dihydro-1H-pyrrolo[2,3-b]pyridinyl, 2-oxo-2,3-dihydro-1H-pyrrolo[2,3-b]pyridinyl, 1-ethyl-2-oxo-1,4-dihydro-2H-pyrido[3,2-d][1,3]oxazinyl, and 2-oxo-1,4-dihydro-2H-pyrido[3,2-d][1,3]oxazinyl.


In another embodiment, heterocyclic groups, which may be substituted or unsubstituted, include indolyl, 1-methyl-2,3-dihydro-1H-indolyl, 2-oxo-2,3-dihydro-1H-indolyl, pyridyl, pyrimidinyl, 1H-pyrrolo[2,3-b]pyridinyl, 1-methyl-1H-pyrrolo[2,3-b]pyridinyl, pyrazolyl, pyrazinyl, quinolyl, quinoxalyl, each of which may be unsubstituted or substituted.


In an embodiment, unsubstituted or substituted heterocyclyl is selected from pyridyl; alkylpyridyl, in particular lower-alkylpyridyl, e.g. methylpyridyl, e.g., 2-, 3- or 4-methylpyridyl, especially 2-methylpyridyl or 3-methylpyridyl; alkoxypyridyl, in particular lower-alkoxypyridyl, e.g. methyoxpyridyl, e.g., 2-, 3- or 4-methoxypyridyl, especially 2-methoxypyridyl or 3-methoxypyridyl or di-methoxypyridyl, e.g. 2,3-dimethoxypyridyl, or ethoxypyridyl, e.g., 2-, 3- or 4-ethoxypyridyl especially 2-ethoxypyridyl or 3-ethoxypyridyl or di-ethoxypyridyl e.g. 2,3-diethoxypyridyl, or propyloxypyridyl, e.g., 2- or 3-propyloxypyridyl or isopropyloxypyridyl, e.g., 2- or 3-isopropyloxypyridyl; cycloalkyloxypyridyl, e.g. 2- or 3-cyclobutyloxypyridyl; (haloalkoxy)pyridyl e.g. 3(1,3-difluoropropan-2-yloxy)-pyridyl or 3-(2-fluoroethan-1-yloxy)-pyridyl or 3-(difluoromethyloxy)-pyridyl; cycloalkylalkoxypyridyl, e.g. cyclopropylmethoxy-pyridyl, e.g. 2 or 3-cyclopropylmethoxy-pyridyl; alkoxyalkylpyridyl, e.g. methoxymethylpyridyl, e.g. 2 or 3-methoxymethylpyridyl or ethoxymethylpyridyl or 2-methoxy-prop-2-yl or 2-ethoxy-prop-2-yl; alkoxyalkoxypyridyl, in particular methoxyethoxypyridyl, e.g. 2 or 3-methoxyethoxypyridyl; (alkyl)(alkoxyalkoxy)pyridyl, e.g. (methyl)(methoxyethoxy)pyridyl; benzyloxyalkoxypyridyl, in particular benzyloxyethoxypyridyl or benzyloxypropoxypyridyl, e.g. 2-benzyloxyethoxypyridyl or 3-benzyloxypropoxypyridyl; hydroxyalkylpyridyl, e.g. 2 or 3(2-hydroxyethyl)-pyridyl or hydroxypentylpyridyl e.g. 3(3-hydroxypentyl)-pyridyl or hydroxypropylridyl, e.g. 3(2-hydroxyprop-2-yl)-pyridyl or hydroxy-1,1-dimethyl-ethylpyridyl; hydroxycycloalkylpyridyl, e.g. 3-(1-hydroxycyclopentyl)-pyridyl; hydroxyfluoroalkylpyridyl, e.g. hydroxyfluoropropylpyridyl; aminoalkylpyridyl, e.g. aminomethylpyridyl; alkyl-sulfonyl pyridyl, e.g. methanesulfonylpyridyl, especially 3-methanesulfonylpyridyl; hydroxyalkoxypyridyl, e.g. 2-(2-hydroxyethoxy)-pyridyl or 2-(3-hydroxypropoxy)-pyridyl; hydroxyalkylpyridyl, e.g. hydroxymethylpyridyl, especially 2-(hydroxymethyl)-pyridyl; alkoxycarbonylpyridyl, e.g. methoxycarbonylpyridyl, especially 2-methoxycarbonyl-pyridyl; aminopyridyl, e.g. 2- or 3-aminopyridyl; alkylaminopyridyl, in particular lower alkylaminopyridyl, e.g. 2-, 3- or 4-methylaminopyridyl, especially 2- or 3-methylaminopyridyl, 2-, 3- or 4-ethylaminopyridyl, especially 2- or 3-ethylaminopyridyl, e.g. 2- or 3-(1- or 2-propyl)aminopyridyl; dialkylaminopyridyl, in particular di-loweralkylaminopyridyl, e.g. 2-, 3- or 4-dimethylaminopyridyl, especially 2-dimethylaminopyridyl or 2-, 3- or 4-diethylaminopyridyl, especially 2- or 3-diethylaminopyridyl or e.g. 2-, 3- or 4-ethylmethylaminopyridyl especially 2-ethylmethylaminopyridyl or 3-ethylmethylaminpyridyl or e.g. 2-, 3- or 4-isopropylmethylaminopyridyl, especially 2-isopropylmethylaminopyridyl or 3-isopropylmethylaminopyridyl; cycloalkylaminopyridyl, e.g. cyclobutylaminopyridyl; (N-alkyl-N-cycloalkylamino)pyridyl, e.g. (N-methyl-N-cyclobutyalmino)pyridyl; (alkyl)(amino)pyridyl, e.g. (loweralkyl)(amino)pyridyl, in particular (methyl)(amino)pyridyl such as 2-methyl-3-amino-pyridyl or (ethyl)(amino)pyridyl such as 2-ethyl-3-amino-pyridyl; (halo)(amino)pyridyl, e.g. (fluoro)(amino)pyridyl or (chloro)(amino)pyridyl; (halo)(alkylamino)pyridyl, e.g. (fluoro)(methylamino)pyridyl, (fluoro)(ethylamino)pyridyl; (halo)(dialkylamino)pyridyl, e.g. (fluoro)(dimethylamino)pyridyl; (halo)(hydroxyalkyl)pyridyl, e.g. (chloro)(hydroxymethyl)pyridyl; (alkoxy)(alkyl)pyridyl e.g. (methoxy)(methyl)pyridyl or (ethoxy)(methyl)pyridyl, or (propoxy)(methyl)pyridyl or (propoxy)(ethyl)pyridyl or (ethoxy)(ethyl)pyridyl; (alkoxy)(alkoxy)pyridyl e.g. (propoxy)(methoxy)pyridyl or (propoxy)(ethoxy)pyridyl or (methoxy)(methoxy)pyridyl or (ethoxy)(methoxy)pyridyl; (alkoxy)(alkoxyalkyl)pyridyl e.g. (isopropoxy)(methoxymethyl)pyridyl or (methoxy)(methoxymethyl)pyridyl or (methoxy)(ethoxymethyl)pyridyl or (ethoxy)(methoxymethyl)pyridyl; (alkoxy)(deuteroalkoxy-alkyl)pyridyl e.g. (ethoxy)(trideuteromethoxymethyl)pyridyl; (alkoxy)(hydroxyalkyl)pyridyl e.g. (isopropoxy)(hydroxymethyl)pyridyl or (methoxy)(hydroxymethyl)pyridyl, such as 3-methoxy-2-hydroxymethyl-pyridyl or 2-methoxy-3-hydroxymethyl-pyridyl or (ethoxy)(hydroxymethyl)pyridyl, such as 3-ethoxy-2-hydroxymethyl-pyridyl; (haloalkoxy)(alkyl)pyridyl e.g. (halo-isopropoxy)(methyl)pyridyl, such as 3-(1,3-difluoropropan-2-yloxy)-2-(methyl)-pyridyl; (haloalkoxy)(hydroxyalkyl)pyridyl e.g. 3-(1,3-difluoropropan-2-yloxy)-2-(hydroxymethyl)-pyridyl; (alkoxyalkoxy)(hydroxyalkyl)pyridyl, e.g. (methoxyethoxy)(hydroxymethyl)pyridyl, such as 3-methoxyethoxy-2-hydroxymethyl-pyridyl (in particular 3-methoxyethoxy-2-hydroxymethyl-pyrid-5-yl); (alkyl)(alkylamino)pyridyl, e.g. (methyl)(ethylamino)pyridyl such as 2-methyl-3-ethylamino-pyridyl or (methyl)(methylamino)pyridyl such as 3-methyl-2-methylamino-pyridyl or (ethyl)(ethylamino)pyridyl such as 2-ethyl-3-ethylamino-pyridyl or (ethyl)(isopropylamino)pyridyl such as 2-ethyl-3-isopropylamino-pyridyl; (alkyl)(di-alkylamino)pyridyl, e.g. (methyl)(N-methyl-N-ethylamino)pyridyl such as 2-methyl-3-(N-methyl-N-ethylamino)-pyridyl or (methyl)(N,N-dimethylamino)pyridyl such as 2-methyl-3-(N,N-dimethylamino)-pyridyl; cycloaminopyridyl, e.g. azetidinylpyridyl, especially 2-azetidin-1-yl-pyridyl or pyrrolidinylpyridyl, especially 2-pyrrolidin-2-ylpyridyl; cyclic ether-substituted amino-pyridyl, e.g. tetrahydro-pyranylamino-pyridyl; hydroxy-cycloaminopyridyl, e.g. hydroxy-pyrrolidinylpyridyl; loweralkoxy-cycloaminopyridyl, e.g. methoxy-pyrrolidinylpyridyl; hydroxyalkylaminopyridyl, e.g. 2-(2-hydroxyethylamino)-pyridyl; (alkyl)(hydroxy)pyridyl, e.g. 2-(methyl)-3-(hydroxy)-pyridyl or 2-(ethyl)-3-(hydroxy)-pyridyl; (hydroxyalkyl)(alkylamino)pyridyl, e.g. (hydroxymethyl)(ethylamino)-pyridyl, e.g. or (hydroxymethyl)(methylamino)-pyridyl; (hydroxyalkyl)(amino)pyridyl, e.g. (hydroxymethyl)(amino)-pyridyl; (alkoxyalkyl)(alkylamino)pyridyl, e.g. (methoxymethyl)(ethylamino)-pyridyl, or (methoxymethyl)(methylamino)-pyridyl, or (ethoxmethyl)(ethylamino)-pyridyl; (alkoxyalkyl)(amino)pyridyl, e.g. (ethoxymethyl)(amino)-pyridyl, or (methoxymethyl)(amino)-pyridyl; amino-haloloweralkyl-pyridyl, e.g. amino-trifluoromethyl-pyridyl, especially 2-amino-3-trifluoromethyl-pyridyl; alkylamino-haloalkyl-pyridyl, e.g. methylamino-trifluoromethyl-pyridyl or e.g. ethylamino-trifluoromethyl-pyridyl; haloalkyl-deuteroloweralkylamino-pyridyl, e.g. trifluoromethyl-trideuteromethylamino-pyridyl; haloalkylpyridinyl, in particular haloloweralkylpyridyl, especially, 2-, 3- or 4-trifluoromethylpyridyl, most especially 2-trifluoromethylpyridyl; cyanoalkylpyridinyl, e.g. cyanopropylpyridyl; cyanocycloalkylpyridinyl, e.g. cyanocyclobutylpyridyl; halopyridyl, in particular fluoropyridyl, especially 2-fluoropyridyl; halo-alkoxy-pyridyl, e.g. fluoro-methoxy-pyridyl such as 3-fluoro-2-methoxy-pyridyl; carbamoylpyridyl, especially 2-(carbamoyl)pyridyl; alkyl-substituted carbamoyl, e.g. methylcarbamoyl, especially 2-(methylcarbamoyl)pyridyl; piperazinylpyridyl, e.g. 1-piperazinylpyridyl; N-alkylpiperazinylpyridyl, e.g. N-methylpiperazinylpyridyl; alkylsulfonamidopyridyl, e.g. methylsulfonamidopyridyl; dialkylsulfonamidopyridyl, e.g. dimethylsulfonamidopyridyl; (alkylsulfonamido)(alkyl)pyridyl e.g. (methylsutfonamido)(methyl)pyridyl; (alkylsulfonamido)(halo)pyridyl e.g. (methylsulfonamido)(chloro)pyridyl; (alkylsulfonamidoalkyl)pyridyl e.g. (methylsulfonamidomethyl)pyridyl; dialkylsulfonamido(alkyl)pyridyl, e.g. dimethylsulfonamido(methyl)pyridyl; 3H-tetrazol-5-yl pyridyl, e.g. 2-(3H-tetrazol-5-yl)pyridyl (in particular 2-(3H-tetrazol-5-yl)pyrid-5-yl); alkylcarbonylaminoalkylpyridyl, e.g. methylcarbonylaminomethylpyridyl; (halo)(alkylcarbonylamino)pyridyl, e.g. (chloro)(methylcarbonylamino)pyridyl; (alkoxy)(alkylcarbonylamino)pyridyl, e.g. (methoxy)(methylcarbonylamino)pyridyl or (ethoxy)(methylcarbonylamino)pyridyl; (alkoxy)(alkylcarbonyl-N-alkylamino)pyridyl, e.g. (methoxy)(methylcarbonyl-N-methylamino)pyridyl or (ethoxy)(methylcarbonyl-N-methylamino)pyridyl; (alkoxy)(nitro)pyridyl, e.g. (methoxy)(nitro)pyridyl; (alkoxy)(cyano)pyridyl, e.g. (methoxy)(cyano)pyridyl; (alkoxy)(amino)pyridyl, e.g. (methoxy)(amino)pyridyl; (alkoxy)(alkylamino)pyridyl, e.g. (methoxy)(ethylamino)pyridyl; (alkoxyalkyl)(alkylamino)pyridyl, e.g. (methoxymethyl)(methylamino)pyridyl, or (methoxymethyl)(ethylamino)pyridyl; (alkoxy)(alkylaminocarbonyl)pyridyl, e.g. (methoxy)(methylaminocarbonyl)pyridyl; alkylaminocarbonylalkylpyridyl, e.g. methylaminocarbonylmethylpyridyl; (amino)(alkylaminocarbonyl)pyridyl, e.g. (amino)(methylaminocarbonyl)pyridyl, or (amino)(ethylaminocarbonyl)pyridyl or (amino)(isopropylaminocarbonyl)pyridyl; (amino)(alkoxyalkylaminocarbonyl)pyridyl, e.g. (amino)(methoxyethylaminocarbonyl)pyridyl; (alkylamino)(alkylaminocarbonyl)pyridyl, e.g. (methylamino)(ethylaminocarbonyl)pyridyl; (alkoxy)(aminocarbonyl)pyridyl, e.g. (methoxy)(aminocarbonyl)pyridyl; (alkoxy)(hydroxycarbonyl)pyridyl, e.g. (methoxy)(hydroxycarbonyl)pyridyl; morpholinylpyridinyl, e.g. morpholin-4-ylpyridinyl; (1H-pyrazolyl)-pyridinyl, e.g. (1H-pyrazol-1yl)-pyridinyl; loweralkyl substituted (1H-imidazol-1-yl)-pyridinyl, e.g. methyl-substituted (1H-imidazol-1-yl)-pyridinyl; pyrimidinyl; loweralkylaminopyrimidinyl, e.g. 2- or 4-methylaminopyrimidinyl or 2- or 4-ethylaminopyrimidinyl; di-loweralkylaminopyrimidinyl, e.g. 2- or 4-methylethylaminopyrimidinyl, 2- or 4-dimethylaminopyrimidinyl, especially 2-dimethylaminopyrimidinyl; alkoxypyrimidinyl, in particular methoxypyrimidinyl or ethoxypyrimidinyl, e.g. 2-methoxypyrimidinyl or 2-ethoxypyrimidinyl; di-alkoxypyrimidinyl, e.g. 2,4-dimethoxypyrimidinyl; (alkylamino)(alkoxy)pyrimidinyl, e.g. (methylamino)(methoxy)pyrimidinyl or (ethylamino)(methoxy)pyrimidinyl; cycloaminopyrimidinyl, e.g. pyrrolidinylpyrimidinyl; aminopyrimidinyl, in particular 2-aminopyrimidinyl; alkylaminopyrimidinyl, e.g. 2-methylaminopyrimidinyl; dialkylaminopyrimidinyl, e.g. 2-dimethylaminopyrimidinyl; 1H-pyrrolo[2,3-b]pyridinyl; 1-methyl-1H-pyrrolo[2,3-b]pyridinyl; pyrazinyl; pyrazolyl; substituted pyrazolyl, e.g. hydroxyalkylpyrazolyl, especially 1-(2-hydroxy-ethyl)-1H-pyrazolyl or 1-[2-(tetrahydro-pyran-2-yloxy)-ethyl]-1H-pyrazolyl; quinolinyl; 2-oxo-2,3-dihydro-1H-indol-5-yl; 1-methyl-2,3-dihydro-1H-indol-5-yl; 1,3-Dimethyl-2-oxo-2,3-dihydro-1H-imidazo[4,5-b]pyridinyl, 1-ethyl-3-methyl-2-oxo-2,3-dihydro-1H-imidazo[4,5-b]pyridinyl, 1-(2-methoxy-ethyl)-3-methyl-2-oxo-2,3-dihydro-1H-imidazo[4,5-b]pyridinyl, 2-Dimethylamino-3-methyl-3H-imidazo[4,5-b]pyridinyl, 2-methoxy-3-methyl-3H-imidazo[4,5-b]pyridinyl, 3-methyl-3H-[1,2,3]triazolo[4,5-b]pyridinyl, 2,3-Dimethyl-3H-imidazo[4,5-b]pyridinyl, 3-methyl-3H-imidazo[4,5-b]pyridinyl, 1H-pyrrolo[3,2-b]pyridinyl, 1-methyl-1H-pyrrolo[3,2-b]pyridinyl, 1-methyl-2-oxo-1,4-dihydro-2H-pyrido[2,3-d][1,3]oxazinyl, 4-methyl-3,4-dihydro-2H-pyrido[3,2-b][1,4]oxazinyl, 1,3,3-trimethyl-2-oxo-2,3-dihydro-1H-pyrrolo[2,3-b]pyridinyl, and 1-ethyl-2-oxo-1,4-dihydro-2H-pyrido[3,2-d][1,3]oxazinyl.


In another embodiment, unsubstituted or substituted heterocyclyl is selected from pyridyl; alkylpyridyl, in particular lower-alkylpyridyl, e.g. methylpyridyl, e.g., 2-, 3- or 4-methylpyridyl, especially 2-methylpyridyl or 3-methylpyridyl; alkoxypyridyl, in particular lower-alkoxypyridyl, e.g. methoxypyridyl, e.g., 2-, 3- or 4-methoxypyridyl, especially 2-methoxypyridyl or 3-methoxypyridyl or di-methoxypyridyl, e.g. 2,3-dimethoxypyridyl, or ethoxypyridyl, e.g., 2-, 3- or 4-ethoxypyridyl especially 2-ethoxypyridyl or 3-ethoxypyridyl or di-ethoxypyridyl e.g. 2,3-diethoxypyridyl, or propyloxypyridyl, e.g., 2- or 3-propyloxypyridyl or isopropyloxypyridyl, e.g., 2- or 3-isopropyloxypyridyl; cycloalkyloxypyridyl, e.g. 2- or 3-cyclobutyloxypyridyl; cycloalkylalkoxypyridyl, e.g. cyclopropylmethoxy-pyridyl, e.g. 2 or 3-cyclopropylmethoxypyridyl; methoxymethylpyridyl, e.g. 2 or 3-methoxymethylpyridyl; alkoxyalkoxypyridyl, in particular methoxyethoxypyridyl, e.g. 2 or 3-methoxyethoxypyridyl; benzyloxyalkoxypyridyl, in particular benzyloxyethoxypyridyl or benzyloxypropoxypyridyl, e.g. 2-benzyloxyethoxypyridyl or 3-benzyloxypropoxypyridyl; hydroxyalkylpyridyl, e.g. 2 or 3-(2-hydroxyethyl)-pyridyl; alkylsulfonyl pyridyl, e.g. methanesulfonylpyridyl, especially 3-methanesulfonylpyridyl; hydroxyalkoxypyridyl, e.g. 2-(2-hydroxyethoxy)-pyridyl or 2-(3-hydroxypropoxy)-pyridyl; hydroxyalkylpyridyl, e.g. hydroxymethylpyridyl, especially 2-(hydroxymethyl)-pyridyl; alkoxycarbonylpyridyl, e.g. methoxycarbonylpyridyl, especially 2-methoxycarbonyl-pyridyl; aminopyridyl, e.g. 2- or 3-aminopyridyl; alkylaminopyridyl, in particular loweralkylaminopyridyl, e.g. 2-, 3- or 4-methylaminopyridyl, especially 2- or 3-methylaminopyridyl, 2-, 3- or 4-ethylaminopyridyl, especially 2- or 3-ethylaminopyridyl, e.g. 2- or 3-(1- or 2-propypaminopyridyl; dialkylaminopyridyl, in particular di-loweralkylaminopyridyl, e.g. 2-, 3- or 4-dimethylaminopyridyl, especially 2-dimethylaminopyridyl; cycloaminopyridyl, e.g. azetidinylpyridyl, especially 2-azetidin-1-yl-pyridyl or pyrrolidinylpyridyl, especially 2-pyrrolidin-2-ylpyridyl; hydroxyalkylaminopyridyl, e.g. 2-(2-hydroxyethylamino)-pyridyl; amino-haloloweralkyl-pyridyl, e.g. amino-trifluoromethylpyridyl, especially 2-amino-3-trifluoromethyl-pyridyl; haloalkylpyridinyl, in particular haloloweralkylpyridyl, especially, 2-, 3- or 4-trifluoromethylpyridyl, most especially 2-trifluoromethylpyridyl; halopyridyl, in particular fluoropyridyl, especially 2-fluoropyridyl; halo-alkoxy-pyridyl, e.g. fluoro-methoxy-pyridyl such as 3-fluoro-2-methoxy-pyridyl; carbamoylpyridyl, especially 2-(carbamoyl)pyridyl; alkyl-substituted carbamoyl, e.g. methylcarbamoyl, especially 2-(methylcarbamoyl)pyridyl; pyrimidinyl; loweralkylaminopyrimidinyl, e.g. 2- or 4-methylaminopyrimidinyl or 2- or 4-ethylaminopyrimidinyl; di-loweralkylaminopyrimidinyl, e.g. 2- or 4-methylethylaminopyrimidinyl, 2- or 4-dimethylaminopyrimidinyl, especially 2-dimethylaminopyrimidinyl; alkoxypyrimidinyl, in particular methoxypyrimidinyl or ethoxypyrimidinyl, e.g. 2-methoxypyrimidinyl or 2-ethoxypyrimidinyl; 1H-pyrrolo[2,3-b]pyridinyl; 1-methyl-1H-pyrrolo[2,3-b]pyridinyl; pyrazinyl; pyrazolyl; substituted pyrazolyl, e.g. hydroxyalkylpyrazolyl, especially 1-(2-hydroxy-ethyl)-1H-pyrazolyl or 1-[2-(tetrahydro-pyran-2-yloxy)-ethyl]-1H-pyrazolyl; quinolinyl; 2-oxo-2,3-dihydro-1H-indol-5-yl; 1-methyl-2,3-dihydro-1H-indol-5-yl.


The term 5-membered heteroaryl refers to aromatic 5-membered heterocyclyl. “5-membered” meaning that there are 5 ring atoms, one or more being a heteroatom, such as nitrogen, oxygen or sulfur, and, for example includes monocyclic rings, such as thienyl, furyl, pyrrolyl, pyrazolyl, thiazolyl, isothiazolyl, oxazolyl, isoxazolyl, oxadiazolyl, triazolyl, imidazolyl, tetrazolyl or thiadiazolyl, preferably pyrazolyl, each being unsubstituted or substituted with 1 to 3 substituents.


In an embodiment, the term 5-membered heteroaryl as defined above refers to pyrazolyl or isoxazolyl, each being unsubstituted or substituted with 1 to 3 substituents. Most preferably the 5-membered heteroaryl as defined above refers to pyrazolyl, which is unsubstituted or substituted with 1 to 3 substituents,


“Substituted”, wherever used for a moiety, means that one or more hydrogen atoms in the respective moiety, especially up to 5 hydrogen atoms, more especially up to three of the hydrogen atoms are replaced independently of each other by a corresponding number of substituents, which preferably are independently selected from the group consisting of lower alkyl, e.g., methyl, ethyl, isopropyl or propyl; halo, e.g., F, Cl, Br or I; halo-lower alkyl, e.g., fluoroalkyl, such as trifluoromethyl; hydroxy; carboxy; lower alkoxy, e.g., methoxy, ethoxy, propyloxy or isopropyloxy; aryl-lower alkyl, e.g. phenyl-lower alkyl; aryl-lower alkoxy, e.g. phenyl-lower alkoxy; lower alkanoyloxy; lower alkanoyl; hydroxy-lower alkyl, e.g., hydroxymethyl or 2-hydroxyethyl; alkoxy lower alkyl, e.g. 2-methoxyethyl; hydroxy lower alkoxy, e.g. hydroxyethoxy; amino; mono- or di-substituted amino; cyclic amino, e.g. aziridinyl, azetidinyl or pyrrrolidinyl; amino-lower alkyl, e.g., aminomethyl, 2-aminoethyl or 3-aminopropyl; alkylamino-lower alkandiyl; dialkylamino-lower alkandiyl; N-lower alkylamino; N,N-di-lower alkylamino; amino lower alkoxy; lower alkanoylamino; lower alkanoyl-lower alkyl-amino; benzoylamino; carbamoyl-lower alkoxy; N-lower alkylcarbamoyl-lower alkoxy or N,N-di-lower alkylcarbamoyl-lower alkoxy; amidino; N-hydroxy-amidino; hydroxylamine; alkoxyamino; nitro; guanidino; amidino-lower alkyl, e.g., 2-amidinoethyl; N-hydroxyamidino-lower alkyl, e.g., N-hydroxy-amidino-methyl or -2-ethyl; carboxy; lower alkoxycarbonyl; phenyl-lower alkoxycarbonyl, e.g., benzyloxycarbonyl; lower alkanoyl; sulfa; lower alkanesulfonyl, e.g., methanesulfonyl (CH3—S(O)2—); sulfonamide (NH2—S(O)2—); dioxolo; phosphono (—P(═O)(OH)2); hydroxy-lower alkoxy phosphoryl or di-lower alkoxyphosphoryl; carbamoyl; mono- or di-lower alkylcarbamoyl; carbamoyl lower alkyl; sulfamoyl; sulfamide; mono- or di-lower alkylaminosutfonyl; lower alkanesulfonylamino; lower alkanesulfonyl-lower alkyl-amino; cyano; cyano-lower alkyl, e.g., cyanomethyl, 2-cyanoethyl or 3-cyanopropyl; aryl (e.g., phenyl), where aryl is unsubstituted or substituted with any of the substituents defined above, and especially is phenyl which is unsubstituted or substituted with up to 4 substituents, preferably up to 2 substituents, wherein the substituents are the same or different and are independently selected from halo, (e.g., Cl or F)cyano, cyano lower alkyl, (e.g., cyanomethyl, cyanoethyl and cyanopropyl)lower alkyl, lower alkoxy, amino-lower alkyl sulfanyl, thiol-lower alkyl, amino-lower alkyl, or amino-lower alkoxy, wherein the amino group in each case can be mono- or di-substituted, e.g., —(C1-C7)mNR8R9; or —O—(C1-C7)mNR8R9, wherein

    • m is 0 or 1; and
    • R8 and R9 can be the same or different and are independently H; lower alkyl, e.g., methyl, ethyl or propyl; lower cycloalkyl, e.g., cyclopropyl, or
    • R8 and R9, together with the N atom, form a 3- to 8-membered heterocyclic ring containing 1-4 nitrogen, oxygen or sulfur atoms, e.g., azetidinyl, pyrrolidinyl, piperidino, morpholinyl, imidazolinyl, piperazinyl or lower alkyl-piperazinyl.


“Substituted” also includes amino-carbonyl-lower alkyl, e.g., R8R9N—C(O)—CH2—, wherein R8 and R9 are as defined above. “Substituted” also includes heterocyclyl, heterocyclyl-lower alkyl, heterocyclyl-lower alkoxy or heterocyclyl-lower alkanesulfanyl, wherein the heterocyclyl in each case is a substituted or unsubstituted 3- to 8-membered heterocyclic ring containing 1-4 nitrogen, oxygen or sulfur atoms, e.g., imidazolyl, imidazolinyl, pyrrolidinyl, morpholinyl, azetidinyl, pyridyl, pyrazolyl, piperidino, piperidyl, piperazinyl or lower alkyl-piperazinyl. “Substituted” also includes C3-C10cycloalkyl, e.g., cyclopropyl or cyclohexyl; hydroxyC3-C8cycloalkyl, e.g., hydroxy-cyclohexyl; heteroaryl with 4 or 6 ring atoms and 1-4 ring heteroatoms selected from O, N and S, especially furyl, 1,4 oxazinyl, or pyridyl. “Substituted” also includes —NR8R9, wherein R8 and R9 can be the same or different and are independently H; lower alkyl, e.g., methyl, ethyl or propyl; lower cycloalkyl, e.g., cyclopropyl; or the R8 and R9 can, with the N atom, form a 3- to 8-membered heterocyclic ring containing 1-4 nitrogen, oxygen or sulfur atoms, e.g., azetidinyl, pyrrolidinyl, piperidino, morpholinyl, imidazolinyl, piperazinyl or lower alkyl-piperazinyl.


In an embodiment, the present invention provides compounds of the formula (I)




embedded image



wherein

    • X is O or S;
    • Y is CH or N;
    • R1 is a substituted or unsubstituted 5-membered heteroaryl;
    • R2 is hydrogen or lower alkyl;
    • R3 is a substituted or unsubstituted aryl or heterocyclyl; and
    • R4, R5 and R6 are hydrogen;


      or a pharmaceutically acceptable salt, solvate, hydrate or prodrug thereof.


For the avoidance of doubt, substituents are only bound at positions where chemically possible, the person skilled in the art being able to decide (either experimentally or theoretically) without inappropriate effort, which substitutions are possible and which are not. For example, amino or hydroxy groups with free hydrogen may be unstable if bound to carbon atoms with unsaturated, e.g., olefinic, bonds.


The terms “treatment” or “therapy” refer to the prophylactic or preferably therapeutic including, but not limited to, palliative, curing, symptom-alleviating, symptom-reducing, kinase-regulating and/or kinase-inhibiting, treatment of said diseases, especially of the diseases mentioned below.


Where subsequently or above the term “use” is mentioned (as verb or noun) (relating to the use of a compound of the formula (I) or a pharmaceutically acceptable salt thereof), this includes any one or more of the following embodiments of the invention, respectively: the use in the treatment of a protein or lipid kinase dependant disease and in particular PI3K dependent disease, the use for the manufacture of pharmaceutical compositions for use in the treatment of a protein or lipid kinase dependant disease and in particular PI3K dependent disease, methods of use of one or more compounds of the formula (I) in the treatment of a protein or lipid kinase dependant disease and in particular PI3K dependent disease, the use of pharmaceutical preparations comprising one or more compounds of the formula (I) for the treatment of a protein or lipid kinase dependent disease, and one or more compounds of the formula (I) for use in the treatment of a protein or lipid kinase dependent disease, as appropriate and expedient and if not stated otherwise. In particular, diseases to be treated and are thus preferred for “use” of a compound of formula (I) are selected from protein or lipid kinase dependent (“dependent” meaning also “supported”, not only “solely dependent”) diseases mentioned herein, especially proliferative diseases mentioned herein, more especially any one or more of these or other diseases that depend on one or more of protein or lipid kinases such as PI4K (phosphatidylinositol 4-kinase) and/or PI3 kinases (phosphatidylinositol 3-kinase), for example, inhibition of the PI3K superfamily which comprises PI3Kalpha, PI3Kbeta, PI3Kdelta, PI3Kgamma and mTOR, or one or more of the individual kinase members thereof, including Vps34 (class III PI3K), PI3-kinase-related protein kinase family (PIKK, class IV PI3K) which includes DNA-PK, ATM, ATR, hSMG-1 and mTOR, or any combinations of two or more of these, or a mutant of any one or more of these, and a compound of the formula (I) can therefore be used in the treatment of a lipid or protein kinase dependent disease, especially a disease depending on one or more of the kinases mentioned above and below, where (especially in the case of aberrantly highly-expressed, constitutively activated and/or mutated kinases or defective dephosphorylation of their substrate(s)) said kinase-dependent disease is dependent on the activity of one or more of the said kinases or the pathways in which they are involved.


The compounds of formula (I) have valuable pharmacological properties and are useful in the treatment of lipid and/or protein kinase dependent diseases, e.g., as drugs to treat proliferative diseases.


In the following detailed description and embodiments, which are to be taken independently, collectively or in any combination or sub-combination, the invention relates to a compound of the formula (I), in e.g. free base form or in acid addition salt form, wherein the substituents are as defined herein.







DETAILED DESCRIPTION OF THE INVENTION

With respect to formula (I), the following detailed description is provided.


R1


As indicated hereinabove, R1 is a 5-membered heteroaryl having the appropriate corresponding meaning as for heteroaryl given above, with “5-membered” meaning that there are 5 ring atoms, one or more being a heteroatom, such as nitrogen, oxygen or sulfur. Such 5-membered heteroaryl groups include monocyclic rings, such as pyrazolyl, thienyl, furyl, pyrrolyl, thiazolyl, isothiazolyl, oxazolyl, isoxazolyl, oxadiazolyl, triazolyl, imidazolyl, tetrazolyl or thiadiazolyl, preferably pyrazolyl, each being unsubstituted or substituted, e.g. by the groups listed herein under “substituted”.


In an embodiment, R1 is pyrazolyl or isoxazolyl, each being unsubstituted or substituted, e.g. by the groups listed herein under “substituted”.


In an embodiment, R1 is unsubstituted or substituted pyrazolyl or unsubstituted or substituted isoxazolyl. Preferably the pyrazolyl is substituted, preferably by one, two or three substituents and the isoxazolyl is substituted, preferably by one or two substituents, wherein in each case, said substituents may for example be independently selected from halo, unsubstituted or substituted alkyl, unsubstituted or substituted alkenyl, unsubstituted or substituted alkynyl, unsubstituted or substituted lower alkoxy, unsubstituted or substituted lower alkylamino, unsubstituted or substituted alkoxy lower alkyl, unsubstituted or substituted cycloalkyl, unsubstituted or substituted cycloalkenyl, unsubstituted or substituted carbamoyl lower alkyl, lower mono- and di-alkyl carbamoyl lower alkyl, unsubstituted or substituted cycloaminocarbonyl lower alkyl, unsubstituted or substituted heterocyclylcarbonyl lower alkyl, unsubstituted or substituted hydroxyl lower alkyl, unsubstituted or substituted carboxy lower alkyl, halo-loweralkyl, hydroxycarbonyl-loweralkyl, morpholinecarbonylalkyl, hydroxy or amino.


In an embodiment, R1 is unsubstituted isoxazolyl.


In an embodiment, R1 is isoxazolyl substituted by one or two substituents selected from halo, lower alkyl, unsubstituted or substituted lower alkenyl, unsubstituted or substituted alkynyl, unsubstituted or substituted cycloalkyl, unsubstituted or substituted cycloalkenyl, unsubstituted or substituted lower alkoxy, substituted or unsubstituted lower alkyl amino, hydroxy or amino. In an embodiment, R1 is isoxazolyl substituted by one or two substituents selected from halo, unsubstituted or substituted lower alkyl, unsubstituted or substituted lower alkenyl, unsubstituted or substituted lower alkynyl, unsubstituted or substituted cycloalkyl, hydroxy or amino.


In an embodiment, R1 is isoxazolyl substituted by one or two substituents selected from unsubstituted lower alkyl, unsubstituted lower alkenyl, unsubstituted alkynyl, unsubstituted cycloloweralkyl, hydroxy or amino.


In an embodiment, R1 is isoxazolyl substituted by one or two, same or different, unsubstituted lower alkyl substituents (in particular C1-C4alkyl) such as methyl or ethyl, preferably methyl.


In an embodiment, when R1 is unsubstituted or substituted isoxazolyl, said isoxazolyl is isoxazol-3-yl, isoxazol-4-yl or isoxazol-5-yl.


It is preferred that a substituent of said substituted isoxazolyl is bonded to the isoxazolyl ring at the alpha position to the ring atom which bonds the isoxazolyl ring to the rest of the molecule (that is, the alpha position is at a position on the isoxazolyl ring which is next to the isoxazolyl ring atom which is bonded to the imidazoquinolinone part of the molecule). The isoxazolyl ring atom which is bonded to the rest of the molecule (i.e. the imidazoquinolinone part) is a carbon atom. Thus, preferred isoxazolyl groups are alpha-substituted isoxazolyl. For the avoidance of doubt the ring atom at the alpha position may be a carbon, nitrogen or oxygen ring atom, with at least one atom in the alpha position being a carbon atom, but, for chemical valency reasons, only an alpha carbon atom may be substituted.


An embodiment of the invention includes compounds of formula (I) wherein R1 is unsubstituted or substituted isoxazol-4-yl, thus R1 in this embodiment is represented by a group of formula (AB):




embedded image



wherein, the curved line indicates the bonding position to the rest of the molecule and the alpha position is shown by the atoms labeled with a * symbol, and


R16 and R17 are independently selected from hydrogen, halo, unsubstituted or substituted lower alkyl (especially C1-C4alkyl), unsubstituted or substituted lower alkenyl, unsubstituted or substituted lower alkynyl, unsubstituted or substituted lower alkoxy, unsubstituted or substituted lower alkylamino, unsubstituted or substituted cycloalkyl or unsubstituted or substituted cycloalkenyl.


In an embodiment, R16 and R17 are independently selected from hydrogen, halo or unsubstituted or substituted lower alkyl (especially C1-C4alkyl) such as methyl or ethyl.


In an embodiment, R16 and R17 are independently selected from hydrogen, methyl or ethyl.


In an embodiment, at least one of R16 and R17 is not hydrogen.


In an embodiment of the present invention, R1 is of formula (AB) shown above; and

    • R16 is C1-C4alkyl (especially methyl or ethyl); and
    • R17 is C1-C4alkyl (especially methyl or ethyl);


In a specific embodiment of the present invention, R1 is of formula (AB) shown above; and


R16 and R17 are each methyl.


Preferably R1 is unsubstituted or substituted pyrazolyl. Preferably the pyrazolyl is substituted, preferably by one, two or three substituents, wherein said substituents may for example be independently selected from halo, unsubstituted or substituted alkyl, unsubstituted or substituted alkenyl, unsubstituted or substituted alkynyl, unsubstituted or substituted lower alkoxy, unsubstituted or substituted lower alkylamino, unsubstituted or substituted alkoxy lower alkyl, unsubstituted or substituted cycloalkyl, unsubstituted or substituted cycloalkenyl, unsubstituted or substituted carbamoyl lower alkyl, lower mono- and di-alkyl carbamoyl lower alkyl, unsubstituted or substituted cycloaminocarbonyl lower alkyl, unsubstituted or substituted heterocyclylcarbonyl lower alkyl, unsubstituted or substituted hydroxyl lower alkyl, unsubstituted or substituted carboxy lower alkyl, halo-loweralkyl, hydroxycarbonyl-loweralkyl, morpholinecarbonylalkyl, hydroxy or amino.


Preferred substituents are selected from the group consisting of halo, lower alkyl, lower alkenyl, lower alkynyl, cycloloweralkyl, hydroxy, amino, halo lower alkyl, 2-hydroxyethyl, methoxyethyl, hydroxycarbonylmethyl (HOC(O)CH2—), dialkylaminocarbonylmethyl e.g. dimethylaminocarbonylmethyl (Me2NC(O)CH2—) or ethylmethylaminocarbonylmethyl (EtMeNC(O)CH2—), (methoxyethyl)(methyl)aminocarbonylmethyl ((MeOEt)(Me)NC(O)CH2—), azetidinylcarbonylmethyl e.g. 2-azetidin-1-yl-2-oxo-ethyl, morpholinecarbonylmethyl, (4-methylpiperazin-1yl)carbonylmethyl.


It is preferred that the substituent (if mono-substituted) or at least one of the substituents (if two or three substituents are present) is bonded to the pyrazole ring at the alpha position to the ring atom which bonds the pyrazole ring to the rest of the molecule (that is, the alpha position is at a position on the pyrazole ring which is next to the pyrazole ring atom which is bonded to the imidazoquinolinone part of the molecule). The pyrazole ring atom which is bonded to the rest of the molecule (i.e. the imidazoquinolinone part) is preferably a carbon atom. Thus, preferred pyrazolyl groups are alpha-substituted pyrazolyl. For the avoidance of doubt the ring atom at the alpha position may be a carbon or nitrogen ring atom. Thus an embodiment of the invention includes compounds of formula (I) wherein R1 is a group selected from:




embedded image



wherein, the curved line indicates the bonding position to the rest of the molecule and the alpha position is shown by the atoms labeled with a * symbol, and


R10 is independently selected from hydrogen, unsubstituted or substituted lower alkyl, unsubstituted or substituted lower alkenyl, unsubstituted or substituted alkynyl, unsubstituted or substituted cycloalkyl, unsubstituted or substituted cycloalkenyl, unsubstituted or substituted lower alkoxy, substituted or unsubstituted lower alkyl amino, hydroxy or amino.


Preferably, R10 is independently selected from hydrogen, unsubstituted or substituted lower alkyl, unsubstituted or substituted lower alkenyl, unsubstituted or substituted lower alkynyl, unsubstituted or substituted cycloalkyl, hydroxy or amino.


More preferably, R10 is independently selected from hydrogen, unsubstituted lower alkyl, unsubstituted lower alkenyl, unsubstituted alkynyl, unsubstituted cycloloweralkyl, hydroxy or amino.


More preferably, R10 is independently selected from hydrogen or lower alkyl such as methyl or ethyl.


R11 is independently selected from hydrogen, halo, unsubstituted or substituted alkyl, unsubstituted or substituted alkenyl, unsubstituted or substituted alkynyl, unsubstituted or substituted lower alkoxy, unsubstituted or substituted lower alkylamino, unsubstituted or substituted alkoxy lower alkyl, unsubstituted or substituted cycloalkyl or unsubstituted or substituted cycloalkenyl; unsubstituted or substituted carbamoyl lower alkyl; lower mono- and di-alkyl carbamoyl lower alkyl; unsubstituted or substituted cycloaminocarbonyl lower alkyl; unsubstituted or substituted heterocyclylcarbonyl lower alkyl.


More preferably R11 is independently selected from hydrogen, unsubstituted or substituted lower alkyl such as methyl, ethyl, propyl, isopropyl; halo lower alkyl such as trifluoromethyl; hydroxyl lower alkyl such as hydroxyl ethyl; alkoxy lower alkyl such as methoxyethyl; carbamoyl lower alkyl such as carbamoylmethyl; lower mono- or di-alkyl carbamoyl lower alkyl such as methylcarbamoylmethyl, ethylcarbamoylmethyl, dimethylcarbamoylmethyl, ethylmethylcarbamoylmethyl or diethylcarbamoylmethyl; cycloaminocarbonyl lower alkyl such as azetidinylcarbonylmethyl; or carboxy lower alkyl such as carboxymethyl.


More preferably R11 is independently selected from hydrogen, lower alkyl such as methyl, ethyl, propyl, isopropyl or halo lower alkyl such as trifluoromethyl.


More preferably, R11 is independently selected from hydrogen, methyl, ethyl or trifluoromethyl.


R14 is independently selected from hydrogen, unsubstituted or substituted alkyl, unsubstituted or substituted alkenyl, unsubstituted or substituted alkynyl, unsubstituted or substituted hydroxyl lower alkyl, unsubstituted or substituted lower alkoxy, unsubstituted or substituted lower alkylamino, unsubstituted or substituted alkoxy lower alkyl, unsubstituted or substituted cycloalkyl; unsubstituted or substituted cycloalkenyl; unsubstituted or substituted carbamoyl lower alkyl; lower mono- or di-alkyl carbamoyl lower alkyl; unsubstituted or substituted cycloaminocarbonyl lower alkyl; unsubstituted or substituted heterocyclylcarbonyl lower alkyl; unsubstituted or substituted carboxy lower alkyl.


More preferably R14 is independently selected from hydrogen or unsubstituted or substituted lower alkyl such as unsubstituted or substituted hydroxyl lower alkyl; unsubstituted or substituted alkoxy lower alkyl; unsubstituted or substituted carbamoyl lower alkyl; lower mono- or di-alkyl carbamoyl lower alkyl; unsubstituted or substituted cycloaminocarbonyl lower alkyl; unsubstituted or substituted heterocyclylcarbonyl lower alkyl; unsubstituted or substituted carboxy lower alkyl.


More preferably R14 is independently selected from hydrogen; unsubstituted lower alkyl such as methyl, ethyl, propyl or isopropyl; hydroxyl lower alkyl such as hydroxyl ethyl; alkoxy lower alkyl such as methoxyethyl; carbamoyl lower alkyl such as carbamoylmethyl; lower mono- or di-alkyl carbamoyl lower alkyl such as methylcarbamoylmethyl, ethylcarbamoylmethyl, dimethylcarbamoylmethyl, ethylmethylcarbamoylmethyl; diethylcarbamoylmethyl or (methoxyethyl)(methyl)carbamoylmethyl; cycloaminocarbonyl lower alkyl such as azetidinylcarbonylmethyl; unsubstituted or substituted heterocyclylcarbonyl lower alkyl such as morpholinecarbonyl lower alkyl or piperazinecarbonyl lower alkyl; or carboxy lower alkyl such as carboxymethyl;


More, preferably R14 is independently selected from hydrogen; unsubstituted or substituted C1-C4alkyl, unsubstituted or substituted haloC1-C4alkyl, 2-hydroxyethyl, methoxyethyl, hydroxycarbonylmethyl (HOC(O)CH2—), dialkylaminocarbonylmethyl e.g. dimethylaminocarbonylmethyl (Me2NC(O)CH2—) or ethylmethylaminocarbonylmethyl (EtMeNC(O)CH2—), (methoxyethyl)(methyl)aminocarbonylmethylmethyl ((MeOEt)(Me)NC(O)CH2—), azetidinylcarbonylmethyl e.g. 2-azetidin-1-yl-2-oxo-ethyl, morpholinecarbonylmethyl e.g. 4-morpholinecarbonylmethyl, (4-methylpiperazin-1yl)carbonylmethyl.


Most preferably R14 is independently selected from hydrogen, methyl, ethyl, isopropyl, trifluoromethyl, 2-hydroxyethyl, methoxyethyl, hydroxycarbonylmethyl (HOC(O)CH2—), dimethylaminocarbonylmethyl (Me2NC(O)CH2—), ethylmethylaminocarbonylmethyl (EtMeNC(O)CH2—), (methoxyethyl)(methyl)aminocarbonylmethylmethyl ((MeOEt)(Me)NC(O)CH2—), 2-azetidin-1-yl-2-oxo-ethyl, 4-morpholinecarbonylmethyl and (4-methylpiperazin-1yl)carbonylmethyl.


R12, R13 and R15 are independently selected from hydrogen, halo, unsubstituted or substituted alkyl, unsubstituted or substituted alkenyl, unsubstituted or substituted alkynyl, unsubstituted or substituted lower alkoxy, unsubstituted or substituted lower alkylamino, unsubstituted or substituted cycloalkyl or unsubstituted or substituted cycloalkenyl.


More preferably R12, R13 and R15 are independently selected from hydrogen, halo such as fluoro, chloro, bromo, or unsubstituted or substituted lower alkyl such as methyl or ethyl.


More preferably R12, R13 and R15 are independently selected from hydrogen, chloro, methyl or ethyl.


Preferably, one of R10 and R12 is not hydrogen.


Preferably, at least one of R13 and R15 is not hydrogen.


In an embodiment of the present invention, R1 is of formula (A) or (B) shown above; and

    • R10 is C1-C4alkyl (especially methyl or ethyl);
    • R11 is hydrogen or C1-C4alkyl (especially methyl) or fluoroC1-C4alkyl (especially trifluoromethyl); and
    • R12 (is hydrogen or C1-C4alkyl (especially methyl);
    • R13 is hydrogen or C1-C4alkyl (especially methyl);
    • R14 is C1-C4alkyl (especially methyl, ethyl or isopropyl), 2-hydroxyethyl, methoxyethyl, hydroxycarbonylmethyl (HOC(O)CH2—), dimethylaminocarbonylmethyl (Me2NC(O)CH2—), diethylaminocarbonylmethyl (Et2NC(O)CH2—), ethylmethylaminocarbonylmethyl (EtMeNC(O)CH2—), (methoxyethyl)(methyl)aminocarbonylmethylmethyl ((MeOEt)(Me)NC(O)CH2—), 4-morpholinecarbonylmethyl, (4-methylpiperazin-1yl)carbonylmethyl, 2-azetidin-1-yl-2-oxo-ethyl; and
    • R15 is methyl or chloro.


In another embodiment of the present invention, R1 is of formula (A) shown above; and

    • R10 is C1-C4alkyl (especially methyl or ethyl);
    • R11 is hydrogen or C1-C4alkyl (especially methyl) or fluoroC1-C4alkyl (especially trifluoromethyl); and
    • R12 is hydrogen or C1-C4alkyl (especially methyl).


In another embodiment of the present invention, R1 is of formula (B) shown above; and

    • R13 is hydrogen or C1-C4alkyl (especially methyl);
    • R14 is C1-C4alkyl (especially methyl, ethyl or isopropyl), 2-hydroxyethyl, methoxyethyl, hydroxycarbonylmethyl (HOC(O)CH2—), dimethylaminocarbonylmethyl (Me2NC(O)CH2—), ethylmethylaminocarbonylmethyl (EtMeNC(O)CH2—), (methoxyethyl)(methyl)aminocarbonylmethylmethyl ((MeOEt)(Me)NC(O)CH2—), 2-azetidin-1-yl-2-oxo-ethyl, 4-morpholinecarbonylmethyl and (4-methylpiperazin-1yl)carbonylmethyl; and
    • R15 is methyl or chloro.


In an embodiment, R1 is selected from 1,5-dimethyl-1H-pyrazol-4-yl, 2-ethyl-2H-pyrazol-3-yl, 2-methyl-2H-pyrazol-3-yl, 2,5-dimethyl-2H-pyrazol-3-yl, 1-isopropyl-3-methyl-1H-pyrazol-4-yl, 1-ethyl-3-methyl-1H-pyrazol-4-yl, 2,4-dimethyl-2H-pyrazol-3-yl, 1,3-dimethyl-1H-pyrazol-4-yl, 1,3,5-trimethyl-1H-pyrazol-4-yl, 2-methyl-5-trifluoromethyl-2H-pyrazol-3-yl, 1-hydroxycarbonyl methyl-3-methyl-pyrazol-4-yl, 1-dimethylaminocarbonylmethyl-3-methyl-pyrazol-4-yl, 1-dimethylaminocarbonylmethyl-3,5-dimethyl-pyrazol-4-yl, 1-diethylaminocarbonylmethyl-3-methyl-pyrazol-4-yl, 1-(2-hydroxyethyl)-3-methyl-pyrazol-4-yl, 1-(2-azetidin-1-yl-2-oxo-ethyl)-3-methyl-1H-pyrazol-4-yl, 1-(4-morpholin)-carbonylmethyl-3-methyl-pyrazol-4-yl, 3-methyl-1-[2-(4-methyl-piperazin-1-yl)-2-oxo-ethyl]-1H-pyrazol-4-yl, 1-methyl-3-chloro-pyrazol-4-yl, 1-(2-methoxyethyl)-3,5-dimethyl-pyrazol-4-yl, 1-N-ethyl-N-methylaminocarbonylmethyl-3-methyl-pyrazol-4-yl or 3,5-dimethyl-isoxazol-4-yl.


In another embodiment R1 is selected from 1,5-dimethyl-1H-pyrazol-4-yl, 2-ethyl-2H-pyrazol-3-yl, 2-methyl-2H-pyrazol-3-yl, 2,5-dimethyl-2H-pyrazol-3-yl, 1-isopropyl-3-methyl-1H-pyrazol-4-yl, 1-ethyl-3-methyl-1H-pyrazol-4-yl, 2,4-dimethyl-2H-pyrazol-3-yl, 1,3-dimethyl-1H-pyrazol-4-yl, 1,3,5-trimethyl-1H-pyrazol-4-yl, 2-methyl-5-trifluoromethyl-2H-pyrazol-3-yl, 1-hydroxycarbonylmethyl-3-methyl-pyrazol-4-yl, 1-dimethylaminocarbonylmethyl-3-methyl-pyrazol-4-yl, 1-dimethylaminocarbonylmethyl-3,5-dimethyl-pyrazol-4-yl, 1-diethylaminocarbonylmethyl-3-methyl-pyrazol-4-yl, 1-(2-hydroxyethyl)-3-methyl-pyrazol-4-yl, 1-(2-azetidin-1-yl-2-oxo-ethyl)-3-methyl-1H-pyrazol-4-yl, 1-(4-morpholin)-carbonylmethyl-3-methyl-pyrazol-4-yl, 1-methyl-3-chloro-pyrazol-4-yl, 1-(2-methoxyethyl)-3,5-dimethyl-pyrazol-4-yl.


R2


In an embodiment, R2 is preferably selected from hydrogen, C1-C4alkyl or C1-C4alkenyl. In particular R2 is selected from hydrogen, methyl, ethyl and propenyl (especially propen-3-yl).


In another embodiment, R2 is preferably selected from hydrogen or C1-C4alkyl. Most preferably R2 is selected from hydrogen, methyl and ethyl.


R3


R3 is unsubstituted or substituted aryl or unsubstituted or substituted heterocycyl as defined herein above, each of which, when substituted, is substituted by one or more, especially 1-3, substituents independently selected from the group consisting of the substituents defined under “substituted”.


When R3 is unsubstituted or substituted aryl, it is preferably C6-C10aryl which is unsubstituted, or substituted by one or more, especially 1-3, substituents independently selected from the group consisting of the substituents defined under “substituted”.


When R3 is an aryl group, (especially C6-C10aryl, more especially phenyl) it is unsubstituted, or substituted by one or more, especially 1-3, substituents independently selected from the group consisting of the substituents defined under “substituted”.


When the R3 group is an aryl group, (especially C6-C10aryl, more especially phenyl) when substituted, the substituents may be selected from the group consisting of halo, especially fluoro, chloro, bromo or iodo, in particular fluoro; halo-lower alkyl, especially fluoroalkyl, in particular trifluoromethyl; hydroxyl; amino; mono or disubstituted amino, especially alkyl-substituted amino or hydroxyalkyl-substituted amino, e.g. dimethyl amino or 2-hydroxyethyl amino; cyclic amino, such as aziridinyl or azetidinyl; amino-lower alkyl, e.g., aminomethyl, 2-aminoethyl or 3-aminopropyl; lower alkoxy, e.g., methoxy, ethoxy or propoxy (e.g. iso-propoxy); hydroxy-lower alkyl, e.g., hydroxymethyl or 2-hydroxyethyl; hydroxy lower alkoxy, e.g. hydroxyethoxy; lower alkyl, e.g., methyl, ethyl or iso-propyl; cyano; cyano-lower alkyl, e.g., 2-cyanoethyl or 3-cyanopropyl; amidino; N-hydroxyamidino; hydroxyamino; alkoxyamino; nitro; amidino-lower alkyl, e.g., 2-amidino-ethyl; or N-hydroxyamidino-lower alkyl, e.g., 2-(N-hydroxyamidino)-ethyl; substituted phenyl or (especially 1- or 2-)naphthyl; sulfonyl; substituted sulfonyl, e.g. alkyl-substituted sulfonyl, such as methanesulfonyl; sulfonamide, e.g. N-methylsulfonamide (or lower alkylaminosulfonyl or N,N-di-loweralkyl aminosulfonyl, e.g. methylaminosufonyl or dimethylaminosulfonyl) or pyrrolidine-1-sulfonyl; lower alkyl sulfonyl amino, e.g. methylsulfonylamino; lower alkyl sulfonylalkandiylamino, e.g. methylsulfonylmethylamino; lower alkylsulfonyl-N-lower alkylamino, e.g. methylsulfonyl-N-methylamino; [1,3]dioxolo; substituted [1,3]dioxolo, e.g. 2,2-difluoro-[1,3]dioxolo; alkoxy carbonyl, such as lower alkoxy carbonyl, e.g. methoxycarbonyl; carbamoyl; substituted carbamoyl, such as alkyl-substituted carbamoyl, e.g. methylcarbamoyl; heterocycle, e.g. pyrazol; heterocyclyl lower alkyl; heteroaryl or heteroaryl lower alkyl.


In an embodiment, when the R3 group is an aryl group, (especially C6-C10aryl, more especially phenyl) when substituted, the substituents may be selected from the group consisting of halo, especially fluoro, chloro, bromo or iodo, in particular fluoro; halo-lower alkyl, especially fluoroalkyl, in particular trifluoromethyl; hydroxyl; amino; mono or disubstituted amino, especially alkyl-substituted amino or hydroxyalkyl-substituted amino, e.g. dimethyl amino or 2-hydroxyethyl amino; cyclic amino, such as aziridinyl or azetidinyl; amino-lower alkyl, e.g., aminomethyl, 2-aminoethyl or 3-aminopropyl; lower alkoxy, e.g., methoxy or ethoxy; hydroxy-lower alkyl, e.g., hydroxymethyl or 2-hydroxyethyl; hydroxy lower alkoxy, e.g. hydroxyethoxy; lower alkyl, e.g., methyl, ethyl or iso-propyl; cyano; cyano-lower alkyl, e.g., 2-cyanoethyl or 3-cyanopropyl; amidino; N-hydroxyamidino; hydroxyamino; alkoxyamino; nitro; amidino-lower alkyl, e.g., 2-amidino-ethyl; or N-hydroxyamidino-lower alkyl, e.g., 2-(N-hydroxyamidino)-ethyl; substituted phenyl or (especially 1- or 2-)naphthyl; sulfonyl; substituted sulfonyl, e.g. alkyl-substituted sulfonyl, such as methanesulfonyl; sulfonamide, e.g. N-methylsulfonamide or pyrrolidine-1-sulfonyl; [1,3]dioxolo; substituted [1,3]dioxolo, e.g. 2,2-difluoro-[1,3]dioxolo; alkoxy carbonyl, such as lower alkoxy carbonyl, e.g. methoxycarbonyl; carbamoyl; substituted carbamoyl, such as alkyl-substituted carbamoyl, e.g. methylcarbamoyl; heterocycle, e.g. pyrazol; heterocyclyl lower alkyl; heteroaryl or heteroaryl lower alkyl.


In an embodiment, unsubstituted or substituted aryl for R3 is selected from phenyl; hydroxyphenyl, e.g., 2-, 3- or 4-hydroxyphenyl; methoxyphenyl, e.g., 2-, 3- or 4-methoxyphenyl or 3,4-dimethoxyphenyl; ethoxyphenyl, e.g., 2-, 3- or 4-ethoxyphenyl or 3,4-diethoxyphenyl; propoxyphenyl (e.g. iso-propoxyphenyl) such as 3-propoxyphenyl (e.g. 3-iso-propoxyphenyl); methoxy ethoxy-phenyl, e.g. 3-methoxy-4-ethoxy phenyl or 4-methoxy-3-ethoxy phenyl, other lower-alkoxy phenyl, e.g. 3-methoxy-4-(2-methoxy ethoxy)-phenyl, halo-alkoxy-phenyl, e.g. fluoro-(iso-propoxy)-phenyl, e.g. 2-fluoro-3-(iso-propoxy)-phenyl; hydroxy alkoxy phenyl, e.g. 3-methoxy-4-hydroxy phenyl; halo-hydroxy-phenyl, e.g. fluoro-hydroxy-phenyl such as 3-fluoro-5-hydroxy-phenyl; hydroxy-haloalkyl-phenyl, e.g. hydroxy-fluoroalkyl-phenyl such as 3-hydroxy-5-trifluoromethyl-phenyl; 2,2-difluoro-benzo[1,3]dioxolo; benzene sulfonamide, e.g. N-methylbenzenesulfonamide and N,N-dimethylbenzenesulfonamide; 3-(pyrrolidine-1-sulfonyl)-phenyl, N-(phen-3-yl)-methanesulfonamide or N-methyl-N-phen-3-yl-methanesulfonamide; alkyl-sulfonyl phenyl, e.g. 3-methanesulfonylphenyl; benzamide e.g. 2-, 3- or 4-benzamide, 2-, 3- or 4-N-methyl-benzamide or 2-, 3- or 4-N,N-dimethyl-benzamide; pyrazol-phenyl, e.g. 4-(pyrazol)-phenyl or alternatively (1H-pyrazol-1yl)-phenyl, in particular 4-(1H-pyrazol-1yl)-phenyl; imidazol-phenyl, especially (1H-imidazol-2-yl)phenyl, in particular 4-(1H-imidazol-2-yl)phenyl.


In an embodiment, unsubstituted or substituted aryl for R3 is selected from phenyl; hydroxyphenyl, e.g., 2-, 3- or 4-hydroxyphenyl; methoxyphenyl, e.g., 2-, 3- or 4-methoxyphenyl or 3,4-dimethoxyphenyl; ethoxyphenyl, e.g., 2-, 3- or 4-ethoxyphenyl or 3,4-diethoxyphenyl; methoxy ethoxy-phenyl, e.g. 3-methoxy-4-ethoxy phenyl or 4-methoxy-3-ethoxy phenyl, other lower-alkoxy phenyl, e.g. 3-methoxy-4-(2-methoxy ethoxy)-phenyl, hydroxy alkoxy phenyl, e.g. 3-methoxy-4-hydroxy phenyl; halo-hydroxy-phenyl, e.g. fluoro-hydroxy-phenyl such as 3-fluoro-5-hydroxy-phenyl; hydroxy-haloalkyl-phenyl, e.g. hydroxy-fluoroalkyl-phenyl such as 3-hydroxy-5-trifluoromethyl-phenyl; 2,2-difluoro-benzo[1,3]dioxolo; benzene sulfonamide, e.g. N-methylbenzenesulfonamide; 3-(pyrrolidine-1-sulfonyl)-phenyl, N-(phen-3-yl)-methanesulfonamide or N-methyl-N-phen-3-yl-methanesulfonamide; alkyl-sulfonyl phenyl, e.g. 3-methanesulfonylphenyl; benzamide e.g. 2-, 3- or 4-benzamide, 2-, 3- or 4-N-methyl-benzamide or 2-, 3- or 4-N,N-dimethyl-benzamide; pyrazol-phenyl, e.g. 4-(pyrazol)-phenyl or alternatively (1H-pyrazol-1yl)-phenyl, in particular 4-(1H-pyrazol-1yl)-phenyl; imidazol-phenyl, especially (1H-imidazol-2-yl)phenyl, in particular 4-(1H-imidazol-2-yl)phenyl.


When the R3 group is a heterocyclyl or preferably heteroaryl, said heterocyclyl or heteroaryl may be selected from the group consisting of indolyl, 2,3-dihydro-1H-indol-5-yl, 1-methyl-2,3-dihydro-1H-indol-5-yl, 2-oxo-2,3-dihydro-1H-indol-5-yl, pyridyl, pyrimidinyl (especially pyrimidin-5-yl), 1H-pyrrolo[2,3-b]pyridin-5-yl, 1-methyl-1H-pyrrolo[2,3-b]pyridin-5-yl, pyrazolyl, pyrazol-4-yl, pyrazinyl, quinolyl, quinol-3-yl, 1H-imidazo[4,5-b]pyridin-2(3H)-one-6-yl, 3H-imidazo[4,5-b]pyridin-6-yl, 3H-[1,2,3]triazolo[4,5-b]pyridin-6-yl each of these heterocycle radicals being unsubstituted or substituted by one or two radicals selected from the substituents described under “substituted”, in particular from the group consisting of halo, especially fluoro, chloro, bromo or iodo, more especially fluoro or chloro; halo-lower alkyl, especially fluoroalkyl, in particular trifluoromethyl; hydroxyl; amino, mono or disubstituted amino, especially alkyl-substituted amino or hydroxyalkyl-substituted amino, e.g. dimethyl amino or 2-hydroxyethyl amino; cyclic amino, such as aziridinyl or azetidinyl; amino-lower alkyl, e.g., aminomethyl, 2-aminoethyl or 3-aminopropyl; lower alkoxy, e.g., methoxy or ethoxy; lower alkoxy lower alkyl, e.g. 2-methoxyethyl; hydroxy-lower alkyl, e.g., hydroxymethyl or 2-hydroxyethyl; hydroxy lower alkoxy, e.g. hydroxyethoxy; lower alkyl, e.g., methyl, ethyl or iso-propyl; cyano; cyano-lower alkyl, e.g., 2-cyanoethyl and 3-cyanopropyl; amidino; N-hydroxyamidino; amidino-lower alkyl, e.g., 2-amidino-ethyl; or N-hydroxyamidino-lower alkyl, e.g., 2-(N-hydroxyamidino)-ethyl; substituted phenyl or (especially 1- or 2-) naphthyl; sulfonyl; substituted sulfonyl, e.g. alkyl-substituted sulfonyl, such as methanesulfonyl; sulfonamide, e.g. N-methylsulfonamide or pyrrolidine-1-sulfonyl; [1,3]dioxolo; substituted [1,3]dioxolo, e.g. 2,2-difluoro-[1,3]dioxolo; alkoxy carbonyl, such as lower alkoxy carbonyl, e.g. methoxycarbonyl; carbamoyl; substituted carbamoyl, such as alkyl-substituted carbamoyl, e.g. methylcarbamoyl; aminocarbonylalkyl, such as aminocarbonyl loweralkyl, e.g. aminocarbonylmethyl; N-mono-substituted aminocarbonylalkyl, such as N-loweralkyl aminocarbonyl loweralkyl, e.g. methylaminocarbonylmethyl; N-di-substituted aminocarbonylalkyl, such as N-di-loweralkyl aminocarbonyl loweralkyl, e.g. dimethylaminocarbonylmethyl, or other N-di-substituted aminocarbonylalkyl, such as 4-morpholinecarbonylmethyl. The heterocycle group may also be substituted with another heterocycle, e.g. 3H-tetrazolyl (in particular 3H-tetrazol-5-yl), pyrazol, heterocyclyl lower alkyl, heteroaryl or heteroaryl lower alkyl as defined herein.


Very preferred heterocyclic groups, which may be substituted or unsubstituted, include indolyl, 1-methyl-2,3-dihydro-1H-indolyl, 2-oxo-2,3-dihydro-1H-indolyl, pyridyl, pyrimidinyl, 1H-pyrrolo[2,3-b]pyridinyl, 1-methyl-1H-pyrrolo[2,3-b]pyridinyl, pyrazolyl, pyrazinyl, quinolyl, 1,3-Dimethyl-2-oxo-2,3-dihydro-1H-imidazo[4,5-b]pyridinyl, 1-ethyl-3-methyl-2-oxo-2,3-dihydro-1H-imidazo[4,5-b]pyridinyl, 1-(2-methoxy-ethyl)-3-methyl-2-oxo-2,3-dihydro-1H-imidazo[4,5-b]pyridinyl, 2-Dimethylamino-3-methyl-3H-imidazo[4,5-b]pyridinyl, 2-methoxy-3-methyl-3H-imidazo[4,5-b]pyridinyl, 3-methyl-3H-[1,2,3]triazolo[4,5-b]pyridinyl, 2,3-Dimethyl-3H-imidazo[4,5-b]pyridinyl, 3-methyl-3H-imidazo[4,5-b]pyridinyl, 1H-pyrrolo[3,2-b]pyridinyl, 1-methyl-1H-pyrrolo[3,2-b]pyridinyl, 1-methyl-2-oxo-1,4-dihydro-2H-pyrido[2,3-d][1,3]oxazinyl, 4-methyl-3,4-dihydro-2H-pyrido[3,2-b][1,4]oxazinyl, 1,3,3-trimethyl-2-oxo-2,3-dihydro-1H-pyrrolo[2,3-b]pyridinyl and 1-ethyl-2-oxo-1,4-dihydro-2H-pyrido[3,2-d][1,3]oxazinyl each of these heterocycle radicals being unsubstituted or substituted by one to two radicals selected from the substituents described under “substituted”, in particular from the group consisting of halo, especially fluoro, chloro, bromo or iodo, more especially fluoro or chloro, in particular fluoro; halo-lower alkyl, especially fluoroalkyl, in particular trifluoromethyl; hydroxyl; amino, mono or disubstituted amino, especially alkyl-substituted amino, hydroxyalkyl-substituted amino or alkoxyalkyl-substituted amino, e.g. dimethyl amino, 2-hydroxyethyl amino or 2-methoxyethyl amino; cyclic amino, such as aziridinyl, azetidinyl or pyrrolidinyl; substituted cyclic amino, e.g. hydroxy cyclic amino; amino-lower alkyl, e.g., aminomethyl, 2-aminoethyl or 3-aminopropyl; alkylamino-lower alkyl, e.g. methylaminomethyl, ethylaminomethyl, methylaminoethyl or ethylaminoethyl; dialkylamino-loweralkyl, e.g. dimethylaminomethyl, dimethylaminoethyl, methylethylaminomethyl, methylethylaminoethyl, diethylaminomethyl or diethylaminoethyl; cycloalkylaminoalkyl, e.g. cyclopropylaminomethyl, cyclopropylaminoethyl, cyclobutylaminomethyl, cyclobutylaminoethyl, cyclopentylaminomethyl or cyclopentylaminoethyl; dicycloalkylaminoalkyl, e.g. dicyclopropylaminomethyl, dicyclopropylaminoethyl, cyclopropylcyclobutylaminomethyl or cyclopropylcyclobutylaminoethyl; alkylcycloalkylaminoalkyl, e.g. cyclopropylmethylaminomethyl, cyclopropylmethylaminoethyl, cyclopropylethylaminomethyl or cyclopropylethylaminoethyl; lower alkoxy, e.g., methoxy, ethoxy or propyloxy; cycloalkoxy, e.g. cyclobutoxy; lower-alkoxyalkyl, e.g. methoxymethyl, methoxypropyl, ethoxypropyl; hydroxy-lower alkyl, e.g., hydroxymethyl or 2-hydroxyethyl; hydroxy lower cycloalkyl, e.g. hydroxy cyclopentyl; hydroxy lower alkoxy, e.g. hydroxyethoxy; alkoxy lower alkoxy, e.g. methoxyethoxy or ethoxyethoxy; lower alkyl, e.g., methyl, ethyl or iso-propyl; cyano; cyano-lower alkyl, e.g., 2-cyanoethyl, 2-cyanopropyl, 2-cyano-2-methylpropyl or 3-cyanopropyl; cyano lower cycloalkyl, e.g. cyano cyclobutyl; amidino; N-hydroxyamidino; amidino-lower alkyl, e.g., 2-amidino-ethyl; or N-hydroxyamidino-lower alkyl, e.g., 2-(N-hydroxyamidino)-ethyl; nitro; carboxylic acid; substituted sulfonyl, e.g. alkyl-substituted sulfonyl, such as methanesulfonyl; sulfonamide, e.g. N-methylsulfonamide or pyrrolidine-1-sulfonyl; alkylsulfonylamino, e.g. methylsulfonylamino; alkylsulfonylalkylamino, e.g. methylsulfonylmethylamino; acylamino (also termed alkyl carbonyl amino), e.g. acetylamino; acyl alkyl amino, e.g. acetyl methyl amino; alkylcarbonylaminoalkyl, e.g. methylcarbonylaminomethyl; alkylaminocarbonylalkyl e.g. methylaminocarbonylmethyl; alkylcarbonyl-N-alkylamino, e.g. methylcarbonyl-N-methylamino; [1,3]dioxolo; substituted [1,3]dioxolo, e.g. 2,2-difluoro-[1,3]dioxolo; alkoxy carbonyl, such as lower alkoxy carbonyl, e.g. methoxycarbonyl; carbamoyl (also termed aminocarbonyl); substituted carbamoyl, such as alkyl-substituted carbamoyl, e.g. methylcarbamoyl, ethyl carbamoyl, iso-propyl carbamoyl or alkoxyalkyl-substituted carbamoyl (also termed alkoxyalkylaminocarbonyl), e.g. 2-methoxyethylcarbamoyl. The heterocycle group may also be substituted with another substituted or unsubstituted heterocycle, preferably a 4-7 membered ring, e.g. 1H-tetrazolyl (in particular 1H-tetrazol-5-yl), pyrazol, imidazole, triazole, azetidinyl, pyrrolidinyl, piperazinyl, methylpiperazinyl, ethylpiperazinyl, triazolonyl, methylimidazolyl or morpholino. The heterocycle group may also be substituted with heterocyclyl lower alkyl, heteroaryl or heteroaryl lower alkyl as defined herein.


In an embodiment, R3 is heterocycyl. In another embodiment, R3 is heterocycyl which is heteroaryl. In an embodiment, said heterocycyl or heteroaryl is a monocyclic 6 membered ring wherein one or two ring heteroatoms are nitrogen atoms. In a preferred embodiment, R3 is a monocyclic 6 membered heteroaryl wherein one or two ring heteroatoms are nitrogen atoms. In an embodiment, R3 is pyridyl, pyrimidinyl or pyrazinyl, each independently being unsubstituted or substituted. In an embodiment, R3 is pyridyl or pyrimidinyl, each independently being unsubstituted or substituted. In an embodiment, R3 is unsubstituted or substituted pyridyl (especially pyrid-3-yl or pyridyl-5-yl). In another embodiment R3 is unsubstituted or substituted pyrimidinyl (especially pyrimidin-5-yl).


In an embodiment, said pyrimidinyl (especially pyrimidin-5-yl) is unsubstituted or substituted, preferably substituted. When substituted, said pyrimidinyl is preferably substituted in the 2-, 4- or 2- and 4-positions on the pyrimidine ring. Typically, when mono-substituted, the pyrimidine ring is substituted in the 2-position, and when di-substituted, in the 2- and 4-positions.


When substituted, said pyrimidinyl is substituted by one or two substituents independently selected from:


di-loweralkylamino, di-alkoxy, alkylamino, alkoxy, cycloamino.


In an embodiment, heterocyclyl or heteroaryl for R3 is pyridyl, especially pyrid-3-yl or pyrid-5-yl—both of these terms mean that the pyridine ring is bonded to the rest of the imidazoquinolinone part of the molecule of formula (I) at a pyridine carbon atom which is arrived at by counting 3 atoms or 5 atoms round the pyridine ring, starting at the nitrogen atom of the pyridine ring, which counts as 1. In an embodiment, said pyridyl (preferably pyrid-3-yl or pyrid-5-yl) is unsubstituted or substituted, preferably substituted. When substituted, said pyridinyl is preferably substituted in the 5-, 6-, or 5- and 6-position positions of the pyridine ring (with reference to pyridin-3-yl),


When substituted, said pyridyl is substituted by one or two substituents independently selected from:


loweralkyl, lower-alkoxy, cycloalkoxy, haloalkyl, cycloalkylalkoxy, alkoxyalkyl, alkoxyalkoxy, benzyloxyalkoxy, hydroxyalkyl, hydroxycycloalkyl, hydroxyfluoroalkyl, aminoalkyl, alkyl-sulfonyl, hydroxyalkoxy, alkoxycarbonyl, amino, alkylamino, dialkylamino, cycloalkylamino, N-alkyl-N-cycloalkylamino, halo, deuteroalkoxy-alkyl, haloalkoxy, cycloamino, cyclic ether-substituted amino, hydroxy-cycloamino, loweralkoxy-cycloamino, hydroxyalkylamino, amino-haloloweralkyl, deuteroloweralkylamino, cyanoalkyl, cyanocycloalkyl, carbamoyl, piperazinyl, alkylsulfonamido, dialkylsulfonamido, alkylsulfonamidoalkyl, dialkylsulfonamido(alkyl), 3H-tetrazol-5-yl, alkylcarbonylaminoalkyl, alkylcarbonyl-N-alkylamino, nitro, alkylaminocarbonylalkyl, alkoxyalkylaminocarbonyl, morpholinyl, 1H-pyrazolyl, loweralkyl substituted (1H-imidazol-1-yl).


In an embodiment, specifically preferred unsubstituted or substituted heterocyclyl or heteroaryl for R3 is selected from:

    • pyridyl, e.g. pyrid-2-yl, pyrid-3-yl or pyrid-4-yl; especially pyrid-3-yl;
    • alkylpyridyl, in particular loweralkylpyridyl, e.g. methylpyridyl, e.g., 2-, 3- or 4-methylpyridyl, especially 2-methylpyridyl or 3-methylpyridyl, in particular 2-methyl pyrid-5-yl or 3-methylpyrid-5-yl;
    • alkoxypyridyl, in particular lower-alkoxypyridyl, e.g. methoxypyridyl, e.g., 2-, 3- or 4-methoxypyridyl, especially 2-methoxypyridyl or 3-methoxypyridyl (in particular 2-methoxypyridin-5-yl, 3-methoxypyridin-5-yl); ethoxypyridyl, e.g., 2-, 3- or 4-ethoxypyridyl especially 2-ethoxypyridyl or 3-ethoxypyridyl (in particular 3-ethoxypyrid-5-yl, 2-ethoxypyrid-5-yl, 2-ethoxypyrid-4-yl); propoxypyridyl, e.g. n-propoxypyridyl or iso-propoxypyridyl (in particular 6-(n-propoxy)pyrid-3-yl or 3-(iso-propoxy)pyridin-5-yl or 2-(iso-propoxy)pyridin-4-yl);
    • cycloalkoxypyridyl, e.g. cyclobutoxy-pyridyl, especially 3-cyclobutoxy-pyridyl (in particular 3-cyclobutoxy-pyrid-5-yl);
    • (haloalkoxy)pyridyl e.g. (halo-isopropoxy)pyridyl, such as 3-(1,3-difluoropropan-2-yloxy)-pyridyl (in particular 3-(1,3-difluoropropan-2-yloxy)-pyrid-5-yl) or 3-(2-fluoroethan-1-yloxy)-pyridyl (in particular 3-(2-fluoroethan-1-yloxy)-pyrid-5-yl) or 3-(difluoromethyloxy)-pyridyl (in particular 3-(difluoromethyloxy)-pyrid-5-yl);
    • cycloalkylalkoxypyridyl, e.g. cyclopropylmethoxy-pyridyl, especially 2-cyclopropylmethoxy-pyridyl (in particular 2-cyclopropylmethoxy-pyrid-5-yl);
    • alkoxyalkylpyridyl e.g. ethoxymethylpyridyl, 2-methoxymethylpyridyl (in particular 2-methyoxymethylpyrid-5-yl) or 3-methoxymethylpyridyl (in particular 3-methoxymethylpyrid-5-yl) or 3-(2-methoxy-prop-2-yl)pyridyl (in particular 3-(2-ethoxy-prop-2-yl)pyrid-5-yl;
    • alkoxyalkoxypyridyl, in particular methoxyethoxypyridyl, e.g. 3-(2-methoxyethoxy)pyridyl or 2-(2-methoxyethoxy)pyridyl (in particular 3(2-methoxyethoxy)pyrid-5-yl or 2-(2-methoxyethoxy)pyrid-5-yl);
    • (alkyl)(alkoxyalkoxy)pyridyl, in particular (loweralkyl)(loweralkoxyalkoxy)pyridyl, such as (methyl)(methoxyethoxy)pyridyl, e.g. (2-methyl)-(3-(2-methoxyethoxy))pyridyl (in particular (2-methyl)-(3-(2-methoxyethoxy)))pyrid-5-yl;
    • benzyloxyalkoxypyridyl, in particular benzyloxyethoxypyridyl or benzyloxypropoxypyridyl, e.g. 2-benzyloxyethoxypyridyl or 3-benzyloxypropoxypyridyl (in particular 2-benzyloxyethoxypyrid-5-yl or 3-benzyloxypropoxypyrid-5-yl);
    • hydroxyalkylpyridyl, e.g. hydroxymethylpyridyl, especially 2-(hydroxymethyl)-pyridyl (in particular 2-hydroxymethylpyrid-5-yl) or hydroxyethylpyridyl, especially 3-(1-hydroxyethyl)-pyridyl (in particular 3-(1-hydroxyethyl)pyrid-5-yl) or hydroxypentylpyridyl (alternatively termed 1-hydroxy-1-ethyl-propyl), such as 3-(3-hydroxypentyl)-pyridyl especially 3-(3-hydroxypent-3-yl)pyridyl (in particular 3-(3-hydroxypent-3-yl)pyrid-5-yl) or hydroxypropylpyridyl, especially 3-(2-hydroxyprop-2-yl)-pyridyl (in particular 3-(2-hydroxyprop-2yl)pyrid-5-yl) or hydroxy-1,1-dimethyl-ethylpyridyl, especially 3(2-hydroxy-1,1-dimethyl-ethyl)-pyridyl (in particular 3-(2-hydroxy-1,1-dimethyl-ethyl)pyrid-5-yl);
    • hydroxycycloalkylpyridyl, e.g. hydroxylowercycloalkylpyridyl, especially 3-(1-hydroxycyclopentyl)-pyridyl (in particular 3-(1-hydroxycyclopentyl)-pyrid-5-yl);
    • hydroxyfluoroalkylpyridyl, e.g. hydroxyfluoropropylpyridyl, especially 3(1,3-difluoro-2-hydroxyprop-2-yl)-pyridyl (in particular 3-(1,3-difluoro-2-hydroxyprop-2-yl)pyrid-5-yl)
    • aminoalkylpyridyl, e.g. aminomethylpyridyl, especially 3-(aminomethyl)-pyridyl (in particular 3-aminomethylpyrid-5-yl);
    • alkyl-sulfonyl pyridyl, e.g. methanesulfonylpyridyl, especially 3-methanesulfonylpyridyl (in particular 3-methanesulfonylpyrid-5-yl);
    • hydroxyalkoxypyridyl, e.g. 2-(2-hydroxyethoxy)-pyridyl or 2-(3-hydroxypropoxy)-pyridyl (in particular 2-(2-hydroxyethoxy)-pyrid-5-yl or 2-(3-hydroxypropoxy)-pyrid-5-yl);
    • alkoxycarbonylpyridyl, e.g. methoxycarbonylpyridyl, especially 2-methoxycarbonyl-pyridyl (in particular 2-methoxycarbonyl-pyrid-5-yl);
    • aminopyridyl, e.g. 2- or 3-aminopyridyl (in particular 2-aminopyrid-5-yl or 3-aminopyrid-5-yl);
    • alkylaminopyridyl, e.g. loweralkylaminopyridyl, in particular methylaminopyridyl such as 2-methylaminopyridyl, 3-methylaminopyridyl or ethylaminopyridyl such as 2-ethylaminopyridyl (especially 2-methylaminopyrid-5-yl, 3-methylaminopyrid-5-yl or 3-ethylaminopyrid-5-yl) or isopropylaminopyridyl such as 3-isopropylaminopyridyl (especially 3-isopropylaminopyrid-5-yl;
    • dialkylaminopyridyl, in particular di-loweralkylaminopyridyl, e.g. 2-, 3- or 4-dimethylaminopyridyl, especially 2-dimethylaminopyridyl or 3-dimethylaminopyridyl (in particular 2-dimethylaminopyrid-5-yl or 3-dimethylaminopyrid-5-yl) or e.g. 2-, 3- or 4-diethylaminopyridyl, especially 2-diethylaminopyridyl or 3-diethylaminopyridyl (in particular 2-diethylaminopyrid-5-yl or 3-diethylaminopyrid-5-yl) or e.g. 2-, 3- or 4-ethylmethylaminopyridyl especially 2-ethylmethylaminopyridyl (in particular 2-ethylmethylaminopyrid-5-yl or 3-ethylmethylaminopyridyl (in particular 3-ethylmethylaminopyrid-5-yl) or e.g. 2-, 3- or 4-isopropylmethylaminopyridyl, especially 2-isopropylmethylaminopyridyl or 3-isopropylmethylaminopyridyl (in particular 2-isopropylmethylaminopyrid-5-yl or 3-isopropylmethylaminopyrid-5-yl;
    • cycloalkylaminopyridyl, e.g. cycloloweralkylaminopyridyl, in particular cyclobutylaminopyridyl such as 3-cyclobutylaminopyridyl or (especially 3-methylaminopyrid-5-yl);
    • (N-alkyl-N-cycloalkylamino)pyridyl, e.g. (N-loweralkyl-N-cycloloweralkylamino)pyridyl, in particular (N-methyl-N-cyclobutylamino)pyridyl such as 3-(N-methyl-N-cyclobutylamino)pyridyl or (especially 3-(N-methyl-N-cyclobutylamino)pyrid-5-yl);
    • (alkyl)(amino)pyridyl, e.g. (loweralkyl)(amino)pyridyl, in particular (methyl)(amino)pyridyl such as 2-methyl-3-amino-pyridyl (especially 2-methyl-3-amino-pyrid-5-yl) or (ethyl)(amino)pyridyl such as 2-ethyl-3-amino-pyridyl (especially 2-ethyl-3-amino-pyrid-5-yl);
    • (halo)(amino)pyridyl, e.g. (fluoro)(amino)pyridyl, in particular 3-fluoro-2-amino-pyridyl (especially 3-fluoro-2-amino-pyrid-5-yl), 2-fluoro-3-amino-pyridyl (especially 2-fluoro-3-amino-pyrid-5-yl), 3-chloro-2-amino-pyridyl (especially 3-chloro-2-amino-pyrid-5-yl) or 2-chloro-3-amino-pyridyl (especially 2-chloro-3-amino-pyrid-5-yl);
    • (halo)(alkylamino)pyridyl, e.g. (halo)(loweralkylamino)pyridyl, in particular (fluoro)(methylamino)pyridyl such as 3-fluoro-2-methylamino-pyridyl (especially 3-fluoro-2-methylamino-pyrid-5-yl), 2-fluoro-3-methylamino-pyridyl (especially 2-fluoro-3-methylamino-pyrid-5-yl), 2-fluoro-3-ethylamino-pyridyl (especially 2-fluoro-3-ethylamino-pyrid-5-yl), 3-chloro-2-methylamino-pyridyl (especially 3-chloro-2-methylamino-pyrid-5-yl), 3-chloro-2-ethylamino-pyridyl (especially 3-chloro-2-ethylamino-pyrid-5-yl) or 2-chloro-3-ethylamino-pyridyl (especially 2-chloro-3-ethylamino-pyrid-5-yl);
    • (halo)(dialkylamino)pyridyl, e.g. (halo)(di-loweralkylamino)pyridyl, in particular (fluoro)(dimethylamino)pyridyl such as 2-fluoro-3-dimethylamino-pyridyl (especially 2-fluoro-3-dimethylamino-pyrid-5-yl);
    • (halo)(hydroxyalkyl)pyridyl, e.g. (halo)(hydroxyloweralkyl)pyridyl, in particular (chloro)(hydroxymethyl)pyridyl such as 3-chloro-2-hydroxymethyl-pyridyl (especially 3-chloro-2-hydroxymethyl-pyrid-5-yl)
    • (alkoxy)(alkyl)pyridyl e.g. (methoxy)(methyl)pyridyl, such as 3-methoxy-2-methyl-pyridyl (in particular 3-methoxy-2-methyl-pyrid-5-yl), (ethoxy)(methyl)pyridyl, such as 3-ethoxy-2-methyl-pyridyl (in particular 3-ethoxy-2-methyl-pyrid-5-yl) or e.g. (propoxy)(methyl)pyridyl, such as 3-propoxy-2-methyl-pyridyl (in particular 3-propoxy-2-methyl-pyrid-5-yl) or e.g. (propoxy)(ethyl)pyridyl, such as 3-propoxy-2-ethyl-pyridyl (in particular 3-propoxy-2-ethyl-pyrid-5-yl) or e.g. (ethoxy)(ethyl)pyridyl, such as 3-ethoxy-2-ethyl-pyridyl (in particular 3-ethoxy-2-ethyl-pyrid-5-yl);
    • (alkoxy)(alkoxy)pyridyl e.g. (propoxy)(methoxy)pyridyl, such as 3-propoxy-2-methoxy-pyridyl (in particular 3-propoxy-2-methoxy-pyrid-5-yl); or e.g. (propoxy)(ethoxy)pyridyl, such as 3-propoxy-2-ethoxy-pyridyl (in particular 3-propoxy-2-ethoxy-pyrid-5-yl) or e.g. (methoxy)(methoxy)pyridyl, such as 3-methoxy-2-methoxy-pyridyl (in particular 3-methoxy-2-methoxy-pyrid-5-yl) or e.g. (ethoxy)(methoxy)pyridyl, such as 3-ethoxy-2-methoxy-pyridyl (in particular 3-ethoxy-2-methoxy-pyrid-5-yl);
    • (alkoxy)(alkoxyalkyl)pyridyl e.g. (isopropoxy)(methoxymethyl)pyridyl, such as 3-isopropoxy-2-methoxymethyl-pyridyl (in particular 3-isopropoxy-2-methoxymethyl-pyrid-5-yl) or (methoxy)(methoxymethyl)pyridyl, such as 3-methoxy-2-methoxymethyl-pyridyl or 2-methoxy-3-methoxymethyl-pyridyl (in particular 3-methoxy-2-methoxymethyl-pyrid-5-yl or 2-methoxy-3-methoxymethyl-pyrid-5-yl) or (methoxy)(ethoxymethyl)pyridyl, such as 3-methoxy-2-ethoxymethyl-pyridyl (in particular 3-methoxy-2-ethoxymethyl-pyrid-5-yl) or (ethoxy)(methoxymethyl)pyridyl, such as 3-ethoxy-2-methoxymethyl-pyridyl (in particular 3-ethoxy-2-methoxymethyl-pyrid-5-yl);
    • (alkoxy)(deuteroalkoxy-alkyl)pyridyl e.g. (ethoxy)(trideuteromethoxymethyl)pyridyl, such as 3-ethoxy-2-trideuteromethoxymethyl-pyridyl (in particular 3-ethoxy-2-trideuteromethoxymethyl-pyrid-5-yl);
    • (alkoxy)(hydroxyalkyl)pyridyl e.g. (isopropoxy)(hydroxymethyl)pyridyl, such as 3-isopropoxy-2-hydroxymethyl-pyridyl (in particular 3-isopropoxy-2-hydroxymethyl-pyrid-5-yl) or (methoxy)(hydroxymethyl)pyridyl, such as 3-methoxy-2-hydroxymethyl-pyridyl (in particular 3-methoxy-2-hydroxymethyl-pyrid-5-yl) or 2-methoxy-3-hydroxymethyl-pyridyl (in particular 2-methoxy-3-hydroxymethyl-pyrid-5-yl) or (ethoxy)(hydroxymethyl)pyridyl, such as 3-ethoxy-2-hydroxymethyl-pyridyl (in particular 3-ethoxy-2-hydroxymethyl-pyrid-5-yl);
    • (haloalkoxy)(alkyl)pyridyl e.g. (halo-isopropoxy)(methyl)pyridyl, such as 3-(1,3-difluoropropan-2-yloxy)-2-(methyl)-pyridyl (in particular 3-(1,3-difluoropropan-2-yloxy)-2-(methyl)-pyrid-5-yl);
    • (haloalkoxy)(hydroxyalkyl)pyridyl e.g. (halo-isopropoxy)(hydroxymethyl)pyridyl, such as 3-(1,3-difluoropropan-2-yloxy)-2-(hydroxymethyl)-pyridyl (in particular 3-(1,3-difluoropropan-2-yloxy)-2-(hydroxymethyl)-pyrid-5-yl);
    • (alkoxyalkoxy)(hydroxyalkyl)pyridyl, in particular (loweralkoxy loweralkoxy)(hydroxyloweralkyl)pyridyl, e.g. (methoxyethoxy)(hydroxymethyl)pyridyl, such as 3-methoxyethoxy-2-hydroxymethyl-pyridyl (in particular 3-methoxyethoxy-2-hydroxymethyl-pyrid-5-yl);
    • (alkyl)(alkylamino)pyridyl, e.g. (loweralkyl)(loweralkylamino)pyridyl, in particular (methyl)(ethylamino)pyridyl such as 2-methyl-3-ethylamino-pyridyl (especially 2-methyl-3-ethylamino-pyrid-5-yl) or (methyl)(methylamino)pyridyl such as 3-methyl-2-methylamino-pyridyl (especially 3-methyl-2-methylamino-pyrid-5-yl) or (ethyl)(ethylamino)pyridyl such as 2-ethyl-3-ethylamino-pyridyl (especially 2-methyl-3-ethylamino-pyrid-5-yl) or (ethyl)(isopropylamino)pyridyl such as 2-ethyl-3-isopropylamino-pyridyl (especially 2-ethyl-3-isopropylamino-pyrid-5-yl);
    • (alkyl)(di-alkylamino)pyridyl, e.g. (loweralkyl)(di-loweralkylamino)pyridyl, in particular (methyl)(N-methyl-N-ethylamino)pyridyl such as 2-methyl-3-(N-methyl-N-ethylamino)-pyridyl (especially 2-methyl-3-(N-methyl-N-ethylamino)-pyrid-5-yl) or (methyl)(N,N-dimethylamino)pyridyl such as 2-methyl-3-(N,N-dimethylamino)-pyridyl (especially 2-methyl-3-(N,N-dimethylamino)-pyrid-5-yl);
    • cycloaminopyridyl, e.g. azetidinylpyridyl, especially 2-azetidin-1-yl-pyridinyl (in particular 2-azetidin-1-yl-pyridin-5-yl) or 3-azetidin-1-yl-pyridinyl (in particular 3-azetidin-1-yl-pyridin-5-yl) or pyrrolidinylpyridyl, especially 2-pyrrolidinyl-1-yl-pyridinyl (in particular 2-pyrrolidinyl-1-yl-pyridin-5-yl);
    • cyclic ether-substituted amino-pyridyl, e.g. tetrahydro-pyranylamino-pyridyl, especially 2-(tetrahydro-pyran-4-ylamino)-pyridyl (in particular 2-(tetrahydro-pyran-4-ylamino)pyridyl-5-yl;
    • hydroxy-cycloaminopyridyl, such as hydroxy-pyrrolidinylpyridyl, e.g. 3-hydroxy-pyrrolidin-1-yl-pyridinyl (in particular 6-(3-hydroxy-pyrrolidin-1-yl)-pyridin-3-yl, more particularly, 6-((R)-3-hydroxy-pyrrolidin-1-yl)-pyridin-3-yl or 6-((S)3-hydroxy-pyrrolidin-1-yl)-pyridin-3-yl;
    • loweralkoxy-cycloaminopyridyl, such as methoxy-pyrrolidinylpyridyl, e.g. 3-methoxy-pyrrolidin-1-yl-pyridinyl (in particular 6-(3-methoxy-pyrrolidin-1-yl)-pyridin-3-yl, more particularly, 6-((R)-3-methoxy-pyrrolidin-1-yl)-pyridin-3-yl or 64(S)3-methoxy-pyrrolidin-1-yl)-pyridin-3-yl;
    • hydroxyalkylaminopyridyl, e.g. 2-(2-hydroxyethylamino)-pyridyl (in particular 2-(2-hydroxyethylamino)-pyrid-5-yl);
    • (alkyl)(hydroxy)pyridyl, in particular (loweralkyl)(hydroxy)pyridyl e.g. 2-(methyl)-3-(hydroxy)-pyridyl (in particular 2-(methyl)-3-(hydroxy)-pyrid-5-yl) or 2-(ethyl)-3-(hydroxy)-pyridyl (in particular 2-(ethyl)-3-(hydroxy)-pyrid-5-yl);
    • (hydroxyalkyl)(alkylamino)pyridyl, in particular (hydroxyloweralkyl)(loweralkylamino)pyridyl, such as (hydroxymethyl)(ethylamino)-pyridyl, e.g. 2-(hydroxymethyl)-3-(ethylamino)-pyridyl (in particular 2-(hydroxymethyl)-3-(ethylamino)-pyrid-5-yl) or such as (hydroxymethyl)(methylamino)-pyridyl, e.g. 2-(hydroxymethyl)-3-(methylamino)-pyridyl (in particular 2-(hydroxymethyl)-3-(methylamino)-pyrid-5-yl) 3-(hydroxymethyl)-2-(methylamino)-pyridyl (in particular 3-(hydroxymethyl)-2-(methylamino)-pyrid-5-yl);
    • (hydroxyalkyl)(amino)pyridyl, in particular (hydroxyloweralkyl)(amino)pyridyl, such as (hydroxymethyl)(amino)-pyridyl, e.g. 3-(hydroxymethyl)-2-(amino)-pyridyl (in particular 3-(hydroxymethyl)-2-(amino)-pyrid-5-yl);
    • (alkoxyalkyl)(alkylamino)pyridyl, in particular (loweralkoxyloweralkyl)(loweralkylamino)pyridyl, such as (methoxymethyl)(ethylamino)-pyridyl, e.g. 2-(methoxymethyl)-3-(ethylamino)-pyridyl (in particular 2-(methoxymethyl)-3-(ethylamino)-pyrid-5-yl) or such as (methoxymethyl)(methylamino)-pyridyl, e.g. 2-(methoxymethyl)-3-(methylamino)-pyridyl (in particular 2-(methoxymethyl)-3-(methylamino)-pyrid-5-yl or or such as (ethoxymethyl)(ethylamino)-pyridyl, e.g. 3-(ethoxymethyl)-2-(ethylamino)-pyridyl (in particular 3-(ethoxymethyl)-2-(methylamino)-pyrid-5-yl;
    • (alkoxyalkyl)(amino)pyridyl, in particular (alkoxyloweralkyl)(amino)pyridyl, such as (ethoxymethyl)(amino)-pyridyl, e.g. 3-(ethoxymethyl)-2-(amino)-pyridyl (in particular 3-(ethoxymethyl)-2-(amino)-pyrid-5-yl) or (methoxymethyl)(amino)-pyridyl, e.g. 3-(methoxymethyl)-2-(amino)-pyridyl (in particular 3-(methoxymethyl)-2-(amino)-pyrid-5-yl);
    • amino-haloloweralkyl-pyridyl, e.g. amino-trifluoromethyl-pyridyl, especially 2-amino-3-trifluoromethyl-pyridyl (in particular 2-amino-3-trifluoromethyl-pyrid-5-yl);
    • alkylamino-haloalkyl-pyridyl, such as loweralkylamino-haloloweralkyl-pyridyl, e.g. methylamino-trifluoromethyl-pyridyl, especially 2-methylamino-3-trifluoromethyl-pyridyl (in particular 2-methylamino-3-trifluoromethyl-pyrid-5-yl) or e.g. ethylamino-trifluoromethyl-pyridyl, especially 2-ethylamino-3-trifluoromethyl-pyridyl (in particular 2-ethylamino-3-trifluoromethyl-pyrid-5-yl);
    • haloalkyl-deuteroloweralkylamino-pyridyl, e.g. trifluoromethyl-trideuteromethylamino-pyridyl, especially 3-trifluoromethyl-2-trideuteromethylamino-pyridyl (in particular 3-trifluoromethyl-2-trideuteromethylamino-pyrid-5-yl);
    • haloalkylpyridinyl, in particular haloloweralkylpyridyl, especially, 2-, 3- or 4-trifluoromethylpyridyl, most especially 2-trifluoromethylpyridyl (in particular 2-trifluoromethylpyrid-5-yl);
    • cyanoalkylpyridinyl, in particular cyanoloweralkylpyridyl, especially, cyanopropylpyridyl, most especially 2-cyanoprop-2-ylpyridyl (in particular 3-(2-cyanoprop-2-yl)-pyrid-5-yl);
    • cyanocycloalkylpyridinyl, in particular cyanolowercycloalkylpyridyl, especially, cyanocyclobutylpyridyl, most especially 1-cyanocyclobutylpyridyl (in particular 3-(1-cyanocyclobutyl)-pyrid-5-yl);
    • halopyridyl, in particular fluoropyridyl, especially 2-fluoropyridyl (in particular 2-fluoropyrid-3-yl or 2-fluoropyrid-4-yl);
    • halo-alkoxy-pyridyl, e.g. fluoro-methoxy-pyridyl such as 3-fluoro-2-methoxy-pyridyl (in particular 3-fluoro-2-methoxy-pyrid-5-yl);
    • carbamoylpyridyl, especially 2-(carbamoyl)pyridyl (in particular 2-(carbamoyl)pyrid-5-yl); alkyl-substituted carbamoyl, e.g. methylcarbamoyl, especially 2-(methylcarbamoyl)pyridyl (in particular 2-(methylcarbamoyl)pyrid-5-yl);
    • piperazinylpyridyl, e.g. 1-piperazinylpyridyl, especially 2-(1-piperazinyl)pyridyl (in particular 2-(1-piperazinyl)pyrid-5-yl); N-alkylpiperazinylpyridyl, such as N-loweralkylpiperazinylpyridyl, e.g. N-methylpiperazinylpyridyl, especially 2-(4-methylpiperazin-1-yl)-pyridyl (in particular 2-(4-methylpiperazin-1-yl)-pyrid-5-yl);
    • alkylsulfonamidopyridyl, such as loweralkylsulfonamidopyridyl, especially methylsulfonamidopyridyl, e.g. 3-(methylsulfonamido) pyridyl (in particular 3-(methylsulfonamido)-pyridin-5-yl);
    • dialkylsulfonamidopyridyl, such as diloweralkylsulfonamidopyridyl, especially dimethylsulfonamidopyridyl, e.g. 3-(dimethylsulfonamido) pyridyl (in particular 3-(dimethylsulfonamido)-pyridin-5-yl);
    • (alkylsulfonamido)(alkyl)pyridyl such as (loweralkylsulfonamido)(loweralkyl)pyridyl, especially (methylsulfonamido)(methyl)pyridyl, e.g. 3-(methylsulfonamido)(methyl)pyridyl (in particular 3-(methylsulfonamido)-2-methyl pyridin-5-yl);
    • (alkylsulfonamido)(halo)pyridyl such as (loweralkylsulfonamido)(chloro)pyridyl, especially (methylsulfonamido)(chloro)pyridyl, e.g. 3-(methylsulfonamido)(chloro)pyridyl (in particular 3-(methylsulfonamido)-2-chloro-pyridin-5-yl);
    • (alkylsulfonamidoalkyl)pyridyl such as (loweralkylsulfonamido-loweralkyl)pyridyl, especially (methylsulfonamidomethyl)pyridyl, e.g. 3-(methylsulfonamidomethyl)pyridyl (in particular 3-(methylsulfonamidomethyl)-pyridin-5-yl);
    • dialkylsulfonamido(alkyl)pyridyl, such as diloweralkylsulfonamido(loweralkyl)pyridyl, especially dimethylsulfonamido(methyl)pyridyl, e.g. 3-(dimethylsulfonamido)(2-methyl)pyridyl (in particular 3-(dimethylsulfonamido)-(2-methyl)-pyridin-5-yl);
    • 3H-tetrazol-5-yl pyridyl, e.g. 2-(3H-tetrazol-5-yl)pyridyl (in particular 2-(3H-tetrazol-5-yl)pyrid-5-yl);
    • alkylcarbonylaminoalkylpyridyl, such as loweralkylcarbonylaminoloweralkyl)pyridyl, e.g. methylcarbonylaminomethylpyridyl, especially 3-methylcarbonylaminomethylpyridyl (in particular 3-methylcarbonylaminomethylpyrid-5-yl);
    • (halo)(alkylcarbonylamino)pyridyl, such as (halo)(loweralkylcarbonylamino)pyridyl, e.g. (chloro)(methylcarbonylamino)pyridyl, especially 2-(chloro)-3-(methylcarbonylamino)pyridyl (in particular 2-(chloro)-3-(methylcarbonylamino)pyrid-5-yl);
    • (alkoxy)(alkylcarbonylamino)pyridyl, such as (loweralkoxy)(loweralkylcarbonylamino) pyridyl, e.g. (methoxy)(methylcarbonylamino)pyridyl or (ethoxy)(methylcarbonylamino)pyridyl, especially 2-(methoxy)-3-(methylcarbonylamino)pyridyl or 2-(ethoxy)-3-(methylcarbonylamino)pyridyl (in particular 2-(methoxy)-3-(methylcarbonylamino)pyrid-5-yl or 2-(ethoxy)-3-(methylcarbonylamino)pyrid-5-yl);
    • (alkoxy)(alkylcarbonyl-N-alkylamino)pyridyl, such as (loweralkoxy)(loweralkylcarbonyl-N-loweralkylamino)pyridyl, e.g. (methoxy)(methylcarbonyl-N-methylamino)pyridyl or (ethoxy)(methylcarbonyl-N-methylamino)pyridyl, especially 2-(methoxy)-3-(methylcarbonyl-N-methylamino)pyridyl or 2-(ethoxy)-3-(methylcarbonyl-N-methylamino)pyridyl (in particular 2-(methoxy)-3-(methylcarbonyl-N-methylamino)pyrid-5-yl or 2-(ethoxy)-3-(methylcarbonyl-N-methylamino)pyrid-5-yl);
    • (alkoxy)(nitro)pyridyl, such as (loweralkoxy)(nitro)pyridyl, e.g. (methoxy)(nitro)pyridyl, especially 2-(methoxy)-3-(nitro)-pyridyl (in particular 2-(methoxy)-3-(nitro)-pyrid-5-yl);
    • (alkoxy)(cyano)pyridyl, such as (loweralkoxy)(cyano)pyridyl, e.g. (methoxy)(cyano)pyridyl, especially 2-(methoxy)-3-(cyano)-pyridyl (in particular 2-(methoxy)-3-(cyano)-pyrid-5-yl);
    • (alkoxy)(amino)pyridyl, such as (loweralkoxy)(amino)pyridyl, e.g. (methoxy)(amino)pyridyl, especially 2-(methoxy)-3-(amino)-pyridyl (in particular 2-(methoxy)-3-(amino)-pyrid-5-yl);
    • (alkoxy)(alkylamino)pyridyl, such as (loweralkoxy)(alkylamino)pyridyl, e.g. (methoxy)(ethylamino)pyridyl, especially 2-(methoxy)-3-(ethylamino)pyridyl (in particular 2-(methoxy)-3-(ethylamino)pyrid-5-yl;
    • (alkoxyalkyl)(alkylamino)pyridyl, such as (loweralkoxyloweralkyl)(alkylamino)pyridyl, e.g. (methoxymethyl)(methylamino)pyridyl, especially 3-(methoxymethyl)-2-(methylamino)pyridyl (in particular 3-(methoxymethyl)-2-(methylamino)pyrid-5-yl) or (methoxymethyl)(ethylamino)pyridyl, especially 3-(methoxymethyl)-2-(ethylamino)pyridyl (in particular 3-(methoxymethyl)-2-(ethylamino)pyrid-5-yl);
    • (alkoxy)(alkylaminocarbonyl)pyridyl, such as (loweralkoxy)(loweralkylaminocarbonyl)pyridyl, e.g. (methoxy)(methylaminocarbonyl)pyridyl, especially 2-(methoxy)-3-(methylaminocarbonyl)pyridyl (in particular 2-(methoxy)-3-(methylaminocarbonyl)pyrid-5-yl;
    • alkylaminocarbonylalkylpyridyl, such as loweralkylaminocarbonylloweralkylpyridyl, e.g. methylaminocarbonylmethylpyridyl, especially 3-methylaminocarbonylmethylpyridyl (in particular 3-methylaminocarbonylmethylpyrid-5-yl;
    • (amino)(alkylaminocarbonyl)pyridyl, such as (amino)(loweralkylaminocarbonyl)pyridyl, e.g. (amino)(methylaminocarbonyl)pyridyl, especially 2-(amino)-3-(methylaminocarbonyl)pyridyl (in particular 2-(amino)-3-(methylaminocarbonyl)pyrid-5-yl) or (amino)(ethylaminocarbonyl)pyridyl, especially 2-(amino)-3-(ethylaminocarbonyl)pyridyl (in particular 2-(amino)-3-(ethylaminocarbonyl)pyrid-5-yl) or (amino)(isopropylaminocarbonyl)pyridyl, especially 2-(amino)-3-(isopropylaminocarbonyl)pyridyl (in particular 2-(amino)-3-(isopropylaminocarbonyl)pyrid-5-yl);
    • (amino)(alkoxyalkylaminocarbonyl)pyridyl, such as amino)(loweralkoxyloweralkylaminocarbonyl)pyridyl, e.g. (amino)(methoxyethylaminocarbonyl)pyridyl, especially 2-(amino)-3-(2-methoxyethylaminocarbonyl)pyridyl (in particular 2-(amino)-3-(2-methoxyethylaminocarbonyl)pyrid-5-yl)
    • (alkylamino)(alkylaminocarbonyl)pyridyl, such as (loweralkylamino)(loweralkylaminocarbonyl)pyridyl, e.g. (methylamino)(ethylaminocarbonyl)pyridyl, especially 2-(methylamino)-3-(ethylaminocarbonyl)pyridyl (in particular 2-(methylamino)-3-(ethylaminocarbonyl)pyrid-5-yl);
    • (alkoxy)(aminocarbonyl)pyridyl, such as (loweralkoxy)(aminocarbonyl)pyridyl, e.g. (methoxy)(aminocarbonyl)pyridyl, especially 2-(methoxy)-3-(aminocarbonyl)pyridyl (in particular 2-(methoxy)-3-(aminocarbonyl)pyrid-5-yl);
    • (alkoxy)(hydroxycarbonyl)pyridyl, such as (loweralkoxy)(hydroxycarbonyl)pyridyl, e.g. (methoxy)(hydroxycarbonyl)pyridyl, especially 2-(methoxy)-3-(hydroxycarbonyl)pyridyl (in particular 2-(methoxy)-3-(hydroxycarbonyl)pyrid-5-yl;
    • morpholinylpyridinyl, such as morpholin-4-ylpyridinyl, e.g. 3-morpholin-4-ylpyridinyl, especially 3-morpholin-4-ylpyridin-5-yl;
    • (1H-pyrazolyl)-pyridinyl, such as (1H-pyrazol-1yl)-pyridinyl, especially 2-(1H-pyrazol-1yl)-pyridinyl, in particular (1H-pyrazol-1yl)-pyridin-5-yl;
    • loweralkyl substituted (1H-imidazol-1-yl)-pyridinyl, such as methyl-substituted (1H-imidazol-1-yl)-pyridinyl, e.g. (2-methyl-1H-imidazol-1-yl)-pyridinyl, especially (2-methyl-1H-imidazol-1-yl)-pyridin-5-yl;
    • pyrimidinyl, in particular pyrimidin-5-yl;
    • di-loweralkylaminopyrimidinyl, e.g. 2- or 4-dimethylaminopyrimidinyl, especially 2-dimethylaminopyrimidinyl (in particular 2-dimethylaminopyrimidin-5-yl);
    • alkoxypyrimidinyl, in particular methoxypyrimidinyl or ethoxypyrimidinyl, e.g. 2-methoxypyrimidinyl or 2-ethoxypyrimidinyl (in particular 2-methoxypyrimidin-5-yl or 2-ethoxypyrimidin-5-yl);
    • di-alkoxypyrimidinyl, in particular di-methoxypyrimidinyl, e.g. 2,4-dimethoxypyrimidinyl or (in particular 2,4-dimethoxypyrimidin-5-yl);
    • (alkylamino)(alkoxy)pyrimidinyl, in particular (loweralkylamino)(loweralkoxy)pyrimidinyl, e.g. (methylamino)(methoxy)pyrimidinyl or (ethylamino)(methoxy)pyrimidinyl e.g. 2-(methylamino)-4-(methoxy)pyrimidinyl or 2-(ethylamino)-4-(methoxy)pyrimidinyl (in particular 2-(methylamino)-4-(methoxy)pyrimidin-5-yl or 2-(ethylamino)-4-(methoxy)pyrimidin-5-yl);
    • cycloaminopyrimidinyl, e.g. pyrrolidinylpyrimidinyl, especially 2-(pyrrolidinyl)pyrimidinyl (in particular 2-(pyrrolidinyl)pyrimidin-5-yl);
    • aminopyrimidinyl, in particular 2-aminopyrimidinyl (especially 2-aminopyrimidin-5-yl;
    • alkylaminopyrimidinyl, in particular loweralkylaminopyrimidinyl, e.g. 2-methylaminopyrimidinyl (especially 2-methylaminopyrimidin-5-yl);
    • dialkylaminopyrimidinyl, in particular di-loweralkylaminopyrimidinyl, e.g. 2-dimethylaminopyrimidinyl (especially 2-dimethylaminopyrimidin-5-yl);
    • 1H-pyrrolo[2,3-b]pyridinyl (in particular 1H-pyrrolo[2,3-b]pyridin-5-yl);
    • 1-methyl-1H-pyrrolo[2,3-b]pyridinyl (in particular 1-methyl-1H-pyrrolo[2,3-b]pyridin-5-yl);
    • pyrazinyl;
    • pyrazolyl, e.g. pyrazol-4yl;
    • substituted pyrazolyl, e.g. hydroxyalkylpyrazolyl, especially 1-(2-hydroxy-ethyl)-1H-pyrazolyl (in particular 1-(2-hydroxy-ethyl)-1H-pyrazol-4-yl) or 1-[2-(tetrahydro-pyran-2-yloxy)-ethyl]-1H-pyrazolyl (in particular 1-[2-(tetrahydro-pyran-2-yloxy)-ethyl]-1H-pyrazol-4-yl);
    • quinolinyl (in particular quinolin-3-yl);
    • 2-oxo-2,3-dihydro-1H-indol-5-yl;
    • 1-methyl-2,3-dihydro-1H-indol-5-yl;
    • 1H-imidazo[4,5-b]pyridin-2(3H)-one-6-yl (in particular 1,3-dimethyl-1H-imidazo[4,5-b]pyridin-2(3H)-one-6-yl, 1-ethyl-3-methyl-1H-imidazo[4,5-b]pyridin-2(3H)-one-6-yl or 1-(2-methoxyethyl)-3-methyl-1H-imidazo[4,5-b]pyridin-2(3H)-one-6-yl;
    • 3H-imidazo[4,5-b]pyridin-6-yl, e.g. (3-methyl)-3H-imidazo[4,5-b]pyridin-6-yl, (2-methyl)-(3-methyl)-3H-imidazo[4,5-b]pyridin-6-yl, (2-methoxy)-(3-methyl)-3H-imidazo[4,5-b]pyridin-6-yl, (2-dimethylamino)-(3-methyl)-3H-imidazo[4,5-b]pyridin-6-yl;
    • 3H-[1,2,3]triazolo[4,5-b]pyridin-6-yl, e.g. (3-methyl)-3H-[1,2,3]triazolo[4,5-b]pyridin-6-yl;
    • 1H-pyrrolo[3,2-b]pyridinyl, e.g. 1H-pyrrolo[3,2-b]pyridin-6-yl;
    • 1-methyl-1H-pyrrolo[3,2-b]pyridinyl, e.g. 1-methyl-1H-pyrrolo[3,2-b]pyridin-6-yl;
    • 2-oxo-1,4-dihydro-2H-pyrido[2,3-d][1,3]oxazinyl, e.g. 2-oxo-1,4-dihydro-2H-pyrido[2,3-d][1,3]oxazin-6-yl, in particular 1-methyl-2-oxo-1,4-dihydro-2H-pyrido[2,3-d][1,3]oxazinyl, especially 1-methyl-2-oxo-1,4-dihydro-2H-pyrido[2,3-d][1,3]oxazin-6-yl;
    • 3,4-dihydro-2H-pyrido[3,2-b][1,4]oxazinyl, e.g. 3,4-dihydro-2H-pyrido[3,2-b][1,4]oxazin-7-yl, in particular 4-methyl-3,4-dihydro-2H-pyrido[3,2-b][1,4]oxazinyl, especially 4-methyl-3,4-dihydro-2H-pyrido[3,2-b][1,4]oxazin-7-yl;
    • 1,3,3-trimethyl-2-oxo-2,3-dihydro-1H-pyrrolo[2,3-b]pyridinyl, in particular 1,3,3-trimethyl-2-oxo-2,3-dihydro-1H-pyrrolo[2,3-b]pyridin-5-yl;
    • 2-oxo-1,4-dihydro-2H-pyrido[3,2-d][1,3]oxazinyl, e.g. 2-oxo-1,4-dihydro-2H-pyrido[3,2-d][1,3]oxazin-7-yl, in particular 1-ethyl-2-oxo-1,4-dihydro-2H-pyrido[3,2-d][1,3]oxazinyl, especially 1-ethyl-2-oxo-1,4-dihydro-2H-pyrido[3,2-d][1,3]oxazin-7-yl.


In another embodiment, specifically preferred unsubstituted or substituted heterocyclyl or heteroaryl for R3 is selected from:

    • pyridyl, e.g. pyrid-2-yl, pyrid-3-yl or pyrid-4-yl;
    • alkylpyridyl, in particular loweralkylpyridyl, e.g. methylpyridyl, e.g., 2-, 3- or 4-methylpyridyl, especially 2-methylpyridyl or 3-methylpyridyl, in particular 2-methylpyrid-5-yl or 3-methylpyrid-5-yl;
    • alkoxypyridyl, in particular lower-alkoxypyridyl, e.g. methoxypyridyl, e.g., 2-, 3- or 4-methoxypyridyl, especially 2-methoxypyridyl or 3-methoxypyridyl (in particular 2-methoxypyridin-5-yl, 3-methoxypyridin-5-yl); ethoxypyridyl, e.g., 2-, 3- or 4-ethoxypyridyl especially 2-ethoxypyridyl or 3-ethoxypyridyl (in particular 3-ethoxypyrid-5-yl, 2-ethoxypyrid-5-yl, 2-ethoxypyrid-4-yl); propoxypyridyl, e.g. n-propoxypyridyl or iso-propoxypyridyl (in particular 6-(n-propoxy)pyrid-3-yl or 3-(iso-propoxy)pyridin-5-yl);
    • cycloalkylalkoxypyridyl, e.g. cyclopropylmethoxy-pyridyl, especially 2-cyclopropylmethoxy-pyridyl (in particular 2-cyclopropylmethoxy-pyrid-5-yl);
    • alkoxyalkylpyridyl e.g. ethoxymethylpyridyl, 2-methoxymethylpyridyl (in particular 2-methoxymethylpyrid-5-yl);
    • alkoxyalkoxypyridyl, in particular methoxyethoxypyridyl, e.g. 3-(2-methoxyethoxy)pyridyl or 2-(2-methoxyethoxy)pyridyl (in particular 3-(2-methoxyethoxy)pyrid-5-yl or 2-(2-methoxyethoxy)pyrid-5-yl);
    • benzyloxyalkoxypyridyl, in particular benzyloxyethoxypyridyl or benzyloxypropoxypyridyl, e.g. 2-benzyloxyethoxypyridyl or 3-benzyloxypropoxypyridyl (in particular 2-benzyloxyethoxypyrid-5-yl or 3-benzyloxypropoxypyrid-5-yl);
    • hydroxyalkylpyridyl, e.g. hydroxymethylpyridyl, especially 2-(hydroxymethyl)-pyridyl (in particular 2-hydroxymethylpyrid-5-yl);
    • alkyl-sulfonyl pyridyl, e.g. methanesulfonylpyridyl, especially 3-methanesulfonylpyridyl (in particular 3-methanesulfonylpyrid-5-yl);
    • hydroxyalkoxypyridyl, e.g. 2-(2-hydroxyethoxy)-pyridyl or 2-(3-hydroxypropoxy)-pyridyl (in particular 2-(2-hydroxyethoxy)-pyrid-5-yl or 2-(3-hydroxypropoxy)-pyrid-5-yl);
    • alkoxycarbonylpyridyl, e.g. methoxycarbonylpyridyl, especially 2-methoxycarbonyl-pyridyl (in particular 2-methoxycarbonyl-pyrid-5-yl);
    • aminopyridyl, e.g. 2- or 3-aminopyridyl (in particular 2-aminopyrid-5-yl or 3-aminopyrid-5-yl);
    • alkylaminopyridyl, e.g. loweralkylaminopyridyl, in particular methylaminopyridyl such as 2-methylaminopyridyl or ethylaminopyridyl such as 2-ethylaminopyridyl (especially 2-methylaminopyrid-5-yl or 3-ethylaminopyrid-5-yl);
    • dialkylaminopyridyl, in particular di-loweralkylaminopyridyl, e.g. 2-, 3- or 4-dimethylaminopyridyl, especially 2-dimethylaminopyridyl (in particular 2-dimethylaminopyrid-5-yl) or e.g. 2-, 3- or 4-diethylaminopyridyl, especially 2-diethylaminopyridyl (in particular 3-diethylaminopyrid-5-yl) or e.g. 2-, 3- or 4-ethylmethylaminopyridyl especially 2-ethylmethylaminopyridyl (in particular 2-ethylmethylaminopyrid-5-yl);
    • (alkyl)(amino)pyridyl, e.g. (loweralkyl)(amino)pyridyl, in particular (methyl)(amino)pyridyl such as 2-methyl-3-amino-pyridyl (especially 2-methyl-3-amino-pyrid-5-yl);
    • (alkoxy)(amino)pyridyl, e.g. (loweralkoxy)(amino)pyridyl, in particular (methoxy)(amino)pyridyl such as 2-methoxy-3-amino-pyridyl (especially 2-methoxy-3-amino-pyrid-5-yl);
    • (alkoxy)(alkyl)pyridyl e.g. (ethoxy)(methyl)pyridyl, such as 3-ethoxy-2-methyl-pyridyl (in particular 3-ethoxy-2-methyl-pyrid-5-yl) or e.g. (propoxy)(methyl)pyridyl, such as 3-propoxy-2-methyl-pyridyl (in particular 3-propoxy-2-methyl-pyrid-5-yl);
    • (alkoxy)(alkoxy)pyridyl e.g. (propoxy)(methoxy)pyridyl, such as 3-propoxy-2-methoxy-pyridyl (in particular 3-propoxy-2-methoxy-pyrid-5-yl); or e.g. (propoxy)(ethoxy)pyridyl, such as 3-propoxy-2-ethoxy-pyridyl (in particular 3-propoxy-2-ethoxy-pyrid-5-yl);
    • (alkyl)(alkylamino)pyridyl, e.g. (loweralkyl)(loweralkylamino)pyridyl, in particular (methyl)(ethylamino)pyridyl such as 2-methyl-3-ethylamino-pyridyl (especially 2-methyl-3-ethylamino-pyrid-5-yl);
    • (alkyl)(di-alkylamino)pyridyl, e.g. (loweralkyl)(di-loweralkylamino)pyridyl, in particular (methyl)(N-methyl-N-ethylamino)pyridyl such as 2-methyl-3-(N-methyl-N-ethylamino)-pyridyl (especially 2-methyl-3-(N-methyl-N-ethylamino)-pyrid-5-yl)
    • cycloaminopyridyl, e.g. azetidinylpyridyl, especially 2-azetidin-1-yl-pyridinyl (in particular 2-azetidin-1-yl-pyridin-5-yl);
    • hydroxyalkylaminopyridyl, e.g. 2-(2-hydroxyethylamino)-pyridyl (in particular 2-(2-hydroxyethylamino)-pyrid-5-yl); amino-haloloweralkyl-pyridyl, e.g. amino-trifluoromethyl-pyridyl, especially 2-amino-3-trifluoromethyl-pyridyl (in particular 2-amino-3-trifluoromethyl-pyrid-5-yl);
    • haloalkylpyridinyl, in particular haloloweralkylpyridyl, especially, 2-, 3- or 4-trifluoromethylpyridyl, most especially 2-trifluoromethylpyridyl (in particular 2-trifluoromethylpyrid-5-yl);
    • halopyridyl, in particular fluoropyridyl, especially 2-fluoropyridyl (in particular 2-fluoropyrid-3-yl or 2-fluoropyrid-4-yl);
    • halo-alkoxy-pyridyl, e.g. fluoro-methoxy-pyridyl such as 3-fluoro-2-methoxy-pyridyl (in particular 3-fluoro-2-methoxy-pyrid-5-yl);
    • carbamoylpyridyl, especially 2-(carbamoyl)pyridyl (in particular 2-(carbamoyl) pyrid-5-yl); alkyl-substituted carbamoyl, e.g. methylcarbamoyl, especially 2-(methylcarbamoyl)pyridyl (in particular 2-(methylcarbamoyl)pyrid-5-yl);
    • piperazinylpyridyl, e.g. 1-piperazinylpyridyl, especially 2-(1-piperazinyl)pyridyl (in particular 2-(1-piperazinyl)pyrid-5-yl); N-alkylpiperazinylpyridyl, such as N-loweralkylpiperazinylpyridyl, e.g. N-methylpiperazinylpyridyl, especially 2-(4-methylpiperazin-1-yl)-pyridyl (in particular 2-(4-methylpiperazin-1-yl)-pyrid-5-yl);
    • alkylsulfonamidopyridyl, such as loweralkylsulfonamidopyridyl, especially methylsulfonamidopyridyl, e.g. 3-(methylsulfonamido) pyridyl (in particular 3-(methylsulfonamido)-pyridin-5-yl);
    • dialkylsulfonamidopyridyl, such as diloweralkylsulfonamidopyridyl, especially dimethylsulfonamidopyridyl, e.g. 3-(dimethylsulfonamido) pyridyl (in particular 3-(dimethylsulfonamido)-pyridin-5-yl);
    • (alkylsulfonamido)(alkyl)pyridyl such as (loweralkylsulfonamido)(loweralkyl)pyridyl, especially (methylsulfonamido)(methyl)pyridyl, e.g. 3-(methylsulfonamido)(methyl)pyridyl (in particular 3-(methylsulfonamido)-2-methyl pyridin-5-yl);
    • dialkylsulfonamido(alkyl)pyridyl, such as diloweralkylsulfonamido(loweralkyl)pyridyl, especially dimethylsulfonamido(methyl)pyridyl, e.g. 3-(dimethylsulfonamido)(2-methyl)pyridyl (in particular 3-(dimethylsulfonamido)-(2-methyl)-pyridin-5-yl); 3H-tetrazol-5-yl pyridyl, e.g. 2-(3H-tetrazol-5-yl)pyridyl (in particular 2-(3H-tetrazol-5-yl)pyrid-5-yl);
    • (alkoxy)(alkylcarbonylamino)pyridyl, such as (loweralkoxy)(loweralkylcarbonylamino) pyridyl, e.g. (methoxy)(methylcarbonylamino)pyridyl or (ethoxy)(methylcarbonylamino)pyridyl, especially 2-(methoxy)-3-(methylcarbonylamino)pyridyl or 2-(ethoxy)-3-(methylcarbonylamino)pyridyl (in particular 2-(methoxy)-3-(methylcarbonylamino)pyrid-5-yl or 2-(ethoxy)-3-(methylcarbonylamino)pyrid-5-yl);
    • (alkoxy)(alkylcarbonyl-N-alkylamino)pyridyl, such as (loweralkoxy)(loweralkylcarbonyl-N-loweralkylamino)pyridyl, e.g. (methoxy)(methylcarbonyl-N-methylamino)pyridyl or (ethoxy)(methylcarbonyl-N-methylamino)pyridyl, especially 2-(methoxy)-3-(methylcarbonyl-N-methylamino)pyridyl or 2-(ethoxy)-3-(methylcarbonyl-N-methylamino)pyridyl (in particular 2-(methoxy)-3-(methylcarbonyl-N-methylamino)pyrid-5-yl or 2-(ethoxy)-3-(methylcarbonyl-N-methylamino)pyrid-5-yl);
    • (alkoxy)(nitro)pyridyl, such as (loweralkoxy)(nitro)pyridyl, e.g. (methoxy)(nitro)pyridyl, especially 2-(methoxy)-3-(nitro)-pyridyl (in particular 2-(methoxy)-3-(nitro)-pyrid-5-yl);
    • (alkoxy)(cyano)pyridyl, such as (loweralkoxy)(cyano)pyridyl, e.g. (methoxy)(cyano)pyridyl, especially 2-(methoxy)-3-(cyano)-pyridyl (in particular 2-(methoxy)-3-(cyano)-pyrid-5-yl);
    • (alkoxy)(amino)pyridyl, such as (loweralkoxy)(amino)pyridyl, e.g. (methoxy)(amino)pyridyl, especially 2-(methoxy)-3-(amino)-pyridyl (in particular 2-(methoxy)-3-(amino)-pyrid-5-yl);
    • (alkoxy)(alkylamino)pyridyl, such as (loweralkoxy)(alkylamino)pyridyl, e.g. (methoxy)(ethylamino)pyridyl, especially 2-(methoxy)-3-(ethylamino)pyridyl (in particular 2-(methoxy)-3-(ethylamino)pyrid-5-yl;
    • (alkoxy)(alkylaminocarbonyl)pyridyl, such as (loweralkoxy)(loweralkylaminocarbonyl)pyridyl, e.g. (methoxy)(methylaminocarbonyl)pyridyl, especially 2-(methoxy)-3-(methylaminocarbonyl)pyridyl (in particular 2-(methoxy)-3-(methylaminocarbonyl)pyrid-5-yl;
    • (alkoxy)(hydroxycarbonyl)pyridyl, such as (loweralkoxy)(hydroxycarbonyl)pyridyl, e.g. (methoxy)(hydroxycarbonyl)pyridyl, especially 2-(methoxy)-3-(hydroxycarbonyl)pyridyl (in particular 2-(methoxy)-3-(hydroxycarbonyl)pyrid-5-yl;
    • pyrimidinyl, in particular pyrimidin-5-yl;
    • di-loweralkylaminopyrimidinyl, e.g. 2- or 4-dimethylaminopyrimidinyl, especially 2-dimethylaminopyrimidinyl (in particular 2-dimethylaminopyrimidin-5-yl);
    • alkoxypyrimidinyl, in particular methoxypyrimidinyl or ethoxypyrimidinyl, e.g. 2-methoxypyrimidinyl or 2-ethoxypyrimidinyl (in particular 2-methoxypyrimidin-5-yl or 2-ethoxypyrimidin-5-yl);
    • 1H-pyrrolo[2,3-b]pyridinyl (in particular 1H-pyrrolo[2,3-b]pyridin-5-yl);
    • 1-methyl-1H-pyrrolo[2,3-b]pyridinyl (in particular 1-methyl-1H-pyrrolo[2,3-b]pyridin-5-yl);
    • pyrazinyl;
    • pyrazolyl, e.g. pyrazol-4yl;
    • substituted pyrazolyl, e.g. hydroxyalkylpyrazolyl, especially 1-(2-hydroxy-ethyl)-1H-pyrazolyl (in particular 1-(2-hydroxy-ethyl)-1H-pyrazol-4-yl) or 1-[2-(tetrahydro-pyran-2-yloxy)-ethyl]-1H-pyrazolyl (in particular 1-[2-(tetrahydro-pyran-2-yloxy)-ethyl]-1H-pyrazol-4-yl);
    • quinolinyl (in particular quinolin-3-yl);
    • 2-oxo-2,3-dihydro-1H-indol-5-yl;
    • 1-methyl-2,3-dihydro-1H-indol-5-yl;
    • 1H-imidazo[4,5-b]pyridin-2(3H)-one-6-yl (in particular 1,3-dimethyl-1H-imidazo[4,5-b]pyridin-2(3H)-one-6-yl, 1-ethyl-3-methyl-1H-imidazo[4,5-b]pyridin-2(3H)-one-6-yl or 1-(2-methoxyethyl)-3-methyl-1H-imidazo[4,5-b]pyridin-2(3H)-one-6-yl;
    • 3H-imidazo[4,5-b]pyridin-6-yl, e.g. (3-methyl)-3H-imidazo[4,5-b]pyridin-6-yl, (2-methyl)-(3-methyl)-3H-imidazo[4,5-b]pyridin-6-yl, (2-methoxy)-(3-methyl)-3H-imidazo[4,5-b]pyridin-6-yl, (2-dimethylamino)-(3-methyl)-3H-imidazo[4,5-b]pyridin-6-yl;
    • 3H-[1,2,3]triazolo[4,5-b]pyridin-6-yl, e.g. (3-methyl)-3H-[1,2,3]triazolo[4,5-b]pyridin-6-yl.
    • In an embodiment, R3 is selected from:
    • pyridyl, 2-methylpyridyl, 3-methylpyridyl, 2-methoxypyridinyl, 3-methoxypyridinyl, 3-ethoxypyridyl, 2-ethoxypyridyl, 2-ethoxypyridyl, 6-(n-propoxy)pyridyl or 3-(iso-propoxy)pyridinyl or 2-(iso-propoxy)pyridinyl, 3-cyclobutoxy-pyridyl, 3-(1,3-difluoropropan-2-yloxy)-pyridyl, 3-(2-fluoroethan-1-yloxy)-pyridyl, 3-(difluoromethyloxy)-pyridyl, 2-cyclopropylmethoxy-pyridyl, 2-methoxymethylpyridyl, 3-methoxymethylpyridyl, 3-(2-methoxy-prop-2-yl) pyridyl, 3-(2-ethoxy-prop-2-yl)pyridyl, 3-(2-methoxyethoxy)pyridyl, 2-(2-methoxyethoxy)pyridyl, (2-methyl)-(3-(2-methoxyethoxy))pyridyl, 2-benzyloxyethoxypyridyl, 3-benzyloxypropoxypyridyl, 2-hydroxymethylpyridyl, 3-(1-hydroxyethyl)pyridyl, 3-(3-hydroxypent-3-yl)pyridyl, 3-(2-hydroxyprop-2-yl)pyridyl, 3-(2-hydroxy-1,1-dimethyl-ethyl)pyridyl, 3-(1-hydroxycyclopentyl)-pyridyl, 3-(1,3-difluoro-2-hydroxyprop-2-yl)pyridyl, 3-aminomethylpyridyl, 3-methanesulfonylpyridyl, 2-(2-hydroxyethoxy)-pyridyl, 2-(3-hydroxypropoxy)-pyridyl, 2-methoxycarbonyl-pyridyl, 2-aminopyridyl or 3-aminopyridyl, 2-methylaminopyridyl, 3-methylaminopyridyl, 3-ethylaminopyridyl, 3-isopropylaminopyridyl, 2-dimethylaminopyridyl or 3-dimethylaminopyridyl, 2-diethylaminopyridyl, 3-diethylaminopyridyl, 2-ethylmethylaminopyridyl, 3-ethylmethylaminopyridyl, 2-isopropylmethylaminopyridyl, 3-isopropylmethylaminopyridyl, 3-methylaminopyridyl, 3-(N-methyl-N-cyclobutylamino)pyridyl, 2-methyl-3-amino-pyridyl, 2-ethyl-3-amino-pyridyl, 3-fluoro-2-amino-pyridyl, 2-fluoro-3-amino-pyridyl, 3-chloro-2-amino-pyridyl, 2-chloro-3-amino-pyridyl, 3-fluoro-2-methylamino-pyridyl, 2-fluoro-3-methylamino-pyridyl, 2-fluoro-3-ethylamino-pyridyl, 3-chloro-2-methylamino-pyridyl, 3-chloro-2-ethylamino-pyridyl, 2-chloro-3-ethylamino-pyridyl, 2-fluoro-3-dimethylamino-pyridyl, 3-chloro-2-hydroxymethyl-pyridyl, 3-ethoxy-2-methyl-pyridyl, 3-propoxy-2-methyl-pyridyl, 3-propoxy-2-ethyl-pyridyl, 3-ethoxy-2-ethyl-pyridyl, 3-propoxy-2-methoxy-pyridyl, 3-propoxy-2-ethoxy-pyridyl, 3-methoxy-2-methoxy-pyridyl, 3-ethoxy-2-methoxy-pyridyl, 3-isopropoxy-2-methoxymethyl-pyridyl, 3-methoxy-2-methoxymethyl-pyridyl, 2-methoxy-3-methoxymethyl-pyridyl, 3-methoxy-2-ethoxymethyl-pyridyl, 3-ethoxy-2-methoxymethyl-pyridyl, 3-ethoxy-2-trideuteromethoxymethyl-pyridyl, 3-isopropoxy-2-hydroxymethyl-pyridyl, 3-methoxy-2-hydroxymethyl-pyridyl, 2-methoxy-3-hydroxymethyl-pyridyl, 3-ethoxy-2-hydroxymethyl-pyridyl, 3-(1,3-difluoropropan-2-yloxy)-2-(methyl)-pyridyl, 3-(1,3-difluoropropan-2-yloxy)-2-(hydroxymethyl)-pyridyl, 3-methoxyethoxy-2-hydroxymethyl-pyridyl, 2-methyl-3-ethylamino-pyridyl, 3-methyl-2-methylamino-pyridyl, 2-methyl-3-ethylamino-pyridyl, 2-ethyl-3-isopropylamino-pyridyl, 2-methyl-3-(N-methyl-N-ethylamino)-pyridyl, 2-methyl-3-(N,N-dimethylamino)-pyridyl, 3-azetidin-1-yl-pyridinyl, 2-pyrrolidinyl-1-yl-pyridinyl, 2-(tetrahydro-pyran-4-ylamino)pyridylyl, 6-(3-hydroxy-pyrrolidin-1-yl)-pyridinyl, 6-((R)-3-hydroxy-pyrrolidin-1-yl)-pyridinyl, 6-((S)3-hydroxy-pyrrolidin-1-yl)-pyridinyl, 2-(2-hydroxyethylamino)-pyridyl, 2-(methyl)-3-(hydroxy)-pyridyl, 2-(ethyl)-3-(hydroxy)-pyridyl, 2-(hydroxymethyl)-3-(ethylamino)-pyridyl, 2-(hydroxymethyl)-3-(methylamino)-pyridyl, 3-(hydroxymethyl)-2-(methylamino)-pyridyl, 3-(hydroxymethyl)-2-(amino)-pyridyl, 2-(methoxymethyl)-3-(ethylamino)-pyridyl, 2-(methoxymethyl)-3-(methylamino)-pyridyl, 3-(ethoxymethyl)-2-(methylamino)-pyridyl, 3-(ethoxymethyl)-2-(amino)-pyridyl, 3-(methoxymethyl)-2-(amino)-pyridyl, 2-amino-3-trifluoromethyl-pyridyl, 2-methylamino-3-trifluoromethyl-pyridyl, 2-ethylamino-3-trifluoromethyl-pyridyl, 3-trifluoromethyl-2-trideuteromethylamino-pyridyl, 2-trifluoromethylpyridyl, 3-(2-cyanoprop-2-yl)-pyridyl, 3-(1-cyanocyclobutyl)-pyridyl, 2-fluoropyridyl, 3-fluoro-2-methoxy-pyridyl, 2-(carbamoyl)pyridyl, 2-(methylcarbamoyl)pyridyl, 2-(1-piperazinyl)pyridyl, 2-(4-methylpiperazin-1-yl)-pyridyl, 3-(methylsulfonamido)-pyridinyl, 3-(dimethylsulfonamido)-pyridinyl, 3-(methylsulfonamido)-2-methyl pyridinyl, 3-(methylsulfonamido)-2-chloro-pyridinyl, 3-(methylsulfonamidomethyl)-pyridinyl, 3-(dimethylsulfonamido)-(2-methyl)-pyridinyl, 2-(3H-tetrazol-5-yl)pyridyl, 3-methylcarbonylaminomethylpyridyl, 2-(chloro)-3-(methylcarbonylamino)pyridyl, 2-(methoxy)-3-(methylcarbonylamino)pyridyl, 2-(ethoxy)-3-(methylcarbonylamino)pyridyl, 2-(methoxy)-3-(methylcarbonyl-N-methylamino)pyridyl, 2-(ethoxy)-3-(methylcarbonyl-N-methylamino)pyridyl, 2-(methoxy)-3-(nitro)-pyridyl, 2-(methoxy)-3-(cyano)-pyridyl, 2-(methoxy)-3-(amino)-pyridyl, 2-(methoxy)-3-(ethylamino)pyridyl, 3-(methoxymethyl)-2-(methylamino)pyridyl, 3-(methoxymethyl)-2-(ethylamino)pyridyl, 2-(methoxy)-3-(methylaminocarbonyl)pyridyl, 3-methylaminocarbonylmethylpyridyl, 2-(amino)-3-(methylaminocarbonyl)pyridyl, 2-(amino)-3-(ethylaminocarbonyl)pyridyl, 2-(amino)-3-(isopropylaminocarbonyl)pyridyl, 2-(amino)-3-(2-methoxyethylaminocarbonyl)pyridyl, 2-(methylamino)-3-(ethylaminocarbonyl)pyridyl, 2-(methoxy)-3-(aminocarbonyl)pyridyl, 2-(methoxy)-3-(hydroxycarbonyl)pyridyl, 3-morpholin-4-ylpyridinyl, (1H-pyrazol-1yl)-pyridinyl, (2-methyl-1H-imidazol-1-yl)-pyridinyl, pyrimidinyl, 2-dimethylaminopyrimidinyl, 2-methoxypyrimidinyl, 2-ethoxypyrimidinyl, 2,4-dimethoxypyrimidinyl, 2-(methylamino)-4-(methoxy)pyrimidinyl, 2-(ethylamino)-4-(methoxy)pyrimidinyl, 2-(pyrrolidinyl)pyrimidinyl, 2-aminopyrimidinyl, 2-methylaminopyrimidinyl, 2-dimethylaminopyrimidinyl, 1H-pyrrolo[2,3-b]pyridinyl, 1-methyl-1H-pyrrolo[2,3-b]pyridinyl, pyrazinyl, pyrazolyl, 1-(2-hydroxy-ethyl)-1H-pyrazolyl, 1-[2-(tetrahydro-pyran-2-yloxy)-ethyl]-1H-pyrazolyl, quinolinyl, 2-oxo-2,3-dihydro-1H-indolyl, 1-methyl-2,3-dihydro-1H-indolyl, 1,3-dimethyl-1H-imidazo[4,5-b]pyridin-2(31-1)-oneyl, 1-ethyl-3-methyl-1H-imidazo[4,5-b]pyridin-2(3H)-oneyl, 1-(2-methoxyethyl)-3-methyl-1H-imidazo[4,5-b]pyridin-2(3H)-oneyl, (3-methyl)-3H-imidazo[4,5-b]pyridinyl, (2-methyl)-(3-methyl)-3H-imidazo[4,5-b]pyridinyl, (2-methoxy)-(3-methyl)-3H-imidazo[4,5-b]pyridinyl, (2-dimethylamino)-(3-methyl)-3H-imidazo[4,5-b]pyridinyl, (3-methyl)-3H-[1,2,3]triazolo[4,5-b]pyridinyl, 1H-pyrrolo[3,2-b]pyridinyl, 1-methyl-1H-pyrrolo[3,2-b]pyridinyl, 1,3,3-trimethyl-2-oxo-2,3-dihydro-1H-pyrrolo[2,3-b]pyridinyl, 4-methyl-3,4-dihydro-2H-pyrido[3,2-b][1,4]oxazinyl, 1-methyl-2-oxo-1,4-dihydro-2H-pyrido[2,3-d][1,3]oxazinyl, 1-ethyl-2-oxo-1,4-dihydro-2H-pyrido[3,2-d][1,3]oxazinyl.
    • In another embodiment, R3 is selected from:
    • pyrid-3-yl, 2-methylpyrid-5-yl, 3-methylpyrid-5-yl, 2-methoxypyridin-5-yl, 3-methoxypyridin-5-yl, 3-ethoxypyrid-5-yl, 2-ethoxypyrid-5-yl, 2-ethoxypyrid-4-yl, 6-(n-propoxy)pyrid-3-yl or 3-(iso-propoxy)pyridin-5-yl or 2-(iso-propoxy)pyridin-4-yl, 3-cyclobutoxy-pyrid-5-yl, 3-(1,3-difluoropropan-2-yloxy)-pyrid-5-yl, 3-(2-fluoroethan-1-yloxy)-pyrid-5-yl, 3-(difluoromethyloxy)-pyrid-5-yl, 2-cyclopropylmethoxy-pyrid-5-yl, 2-methoxymethylpyrid-5-yl, 3-methoxymethylpyrid-5-yl, 3-(2-methoxy-prop-2-yl)pyrid-5-yl, 3-(2-ethoxy-prop-2-yl)pyrid-5-yl, 3-(2-methoxyethoxy)pyrid-5-yl, 2-(2-methoxyethoxy)pyrid-5-yl, (2-methyl)-(3-(2-methoxyethoxy))pyrid-5-yl, 2-benzyloxyethoxypyrid-5-yl, 3-benzyloxypropoxypyrid-5-yl, 2-hydroxymethylpyrid-5-yl, 3-(1-hydroxyethyl)pyrid-5-yl, 3-(3-hydroxypent-3-yl)pyrid-5-yl, 3-(2-hydroxyprop-2-yl)pyrid-5-yl, 3-(2-hydroxy-1,1-dimethyl-ethyl)pyrid-5-yl, 3-(1-hydroxycyclopentyl)-pyrid-5-yl, 3-(1,3-difluoro-2-hydroxyprop-2-yl)pyrid-5-yl, 3-aminomethylpyrid-5-yl, 3-methanesulfonylpyrid-5-yl, 2-(2-hydroxyethoxy)-pyrid-5-yl, 2-(3-hydroxypropoxy)-pyrid-5-yl, 2-methoxycarbonyl-pyrid-5-yl, 2-aminopyrid-5-yl or 3-aminopyrid-5-yl, 2-methylaminopyrid-5-yl, 3-methylaminopyrid-5-yl, 3-ethylaminopyrid-5-yl, 3-isopropylaminopyrid-5-yl, 2-dimethylaminopyrid-5-yl or 3-dimethylaminopyrid-5-yl, 2-diethylaminopyrid-5-yl, 3-diethylaminopyrid-5-yl, 2-ethylmethylaminopyrid-5-yl, 3-ethylmethylaminopyrid-5-yl, 2-isopropylmethylaminopyrid-5-yl, 3-isopropylmethylaminopyrid-5-yl, 3-methylaminopyrid-5-yl, 3-(N-methyl-N-cyclobutylamino)pyrid-5-yl, 2-methyl-3-amino-pyrid-5-yl, 2-ethyl-3-amino-pyrid-5-yl, 3-fluoro-2-amino-pyrid-5-yl, 2-fluoro-3-amino-pyrid-5-yl, 3-chloro-2-amino-pyrid-5-yl, 2-chloro-3-amino-pyrid-5-yl, 3-fluoro-2-methylamino-pyrid-5-yl, 2-fluoro-3-methylamino-pyrid-5-yl, 2-fluoro-3-ethylamino-pyrid-5-yl, 3-chloro-2-methylamino-pyrid-5-yl, 3-chloro-2-ethylamino-pyrid-5-yl, 2-chloro-3-ethylamino-pyrid-5-yl, 2-fluoro-3-dimethylamino-pyrid-5-yl, 3-chloro-2-hydroxymethyl-pyrid-5-yl, 3-ethoxy-2-methyl-pyrid-5-yl, 3-propoxy-2-methyl-pyrid-5-yl, 3-propoxy-2-ethyl-pyrid-5-yl, 3-ethoxy-2-ethyl-pyrid-5-yl, 3-propoxy-2-methoxy-pyrid-5-yl, 3-propoxy-2-ethoxy-pyrid-5-yl, 3-methoxy-2-methoxy-pyrid-5-yl, 3-ethoxy-2-methoxy-pyrid-5-yl, 3-isopropoxy-2-methoxymethyl-pyrid-5-yl, 3-methoxy-2-methoxymethyl-pyrid-5-yl, 2-methoxy-3-methoxymethyl-pyrid-5-yl, 3-methoxy-2-ethoxymethyl-pyrid-5-yl, 3-ethoxy-2-methoxymethyl-pyrid-5-yl, 3-ethoxy-2-trideuteromethoxymethyl-pyrid-5-yl, 3-isopropoxy-2-hydroxymethyl-pyrid-5-yl, 3-methoxy-2-hydroxymethyl-pyrid-5-yl, 2-methoxy-3-hydroxymethyl-pyrid-5-yl, 3-ethoxy-2-hydroxymethyl-pyrid-5-yl, 3-(1,3-difluoropropan-2-yloxy)-2-(methyl)-pyrid-5-yl, 3-(1,3-difluoropropan-2-yloxy)-2-(hydroxymethyl)-pyrid-5-yl, 3-methoxyethoxy-2-hydroxymethyl-pyrid-5-yl, 2-methyl-3-ethylamino-pyrid-5-yl, 3-methyl-2-methylamino-pyrid-5-yl, 2-methyl-3-ethylamino-pyrid-5-yl, 2-ethyl-3-isopropylamino-pyrid-5-yl, 2-methyl-3-(N-methyl-N-ethylamino)-pyrid-5-yl, 2-methyl-3-(N,N-dimethylamino)-pyrid-5-yl, 3-azetidin-1-yl-pyridin-5-yl, 2-pyrrolidinyl-1-yl-pyridin-5-yl, 2-(tetrahydro-pyran-4-ylamino)pyridyl-5-yl, 6-(3-hydroxy-pyrrolidin-1-yl)-pyridin-3-yl, 6-((R)-3-hydroxy-pyrrolidin-1-yl)-pyridin-3-yl, 6-((S)3-hydroxy-pyrrolidin-1-yl)-pyridin-3-yl, 2-(2-hydroxyethylamino)-pyrid-5-yl, 2-(methyl)-3-(hydroxy)-pyrid-5-yl, 2-(ethyl)-3-(hydroxy)-pyrid-5-yl, 2-(hydroxymethyl)-3-(ethylamino)-pyrid-5-yl, 2-(hydroxymethyl)-3-(methylamino)-pyrid-5-yl, 3-(hydroxymethyl)-2-(methylamino)-pyrid-5-yl, 3-(hydroxymethyl)-2-(amino)-pyrid-5-yl, 2-(methoxymethyl)-3-(ethylamino)-pyrid-5-yl, 2-(methoxymethyl)-3-(methylamino)-pyrid-5-yl, 3-(ethoxymethyl)-2-(methylamino)-pyrid-5-yl, 3-(ethoxymethyl)-2-(amino)-pyrid-5-yl, 3-(methoxymethyl)-2-(amino)-pyrid-5-yl, 2-amino-3-trifluoromethyl-pyrid-5-yl, 2-methylamino-3-trifluoromethyl-pyrid-5-yl, 2-ethylamino-3-trifluoromethyl-pyrid-5-yl, 3-trifluoromethyl-2-trideuteromethylamino-pyrid-5-yl, 2-trifluoromethyl pyrid-5-yl, 3-(2-cyanoprop-2-yl)-pyrid-5-yl, 3-(1-cyanocyclobutyl)-pyrid-5-yl, 2-fluoropyrid-3-yl, 2-fluoropyrid-4-yl, 3-fluoro-2-methoxy-pyrid-5-yl, 2-(carbamoyl) pyrid-5-yl, 2-(methylcarbamoyl)pyrid-5-yl, 2-(1-piperazinyl)pyrid-5-yl, 2-(4-methylpiperazin-1-yl)-pyrid-5-yl, 3-(methylsulfonamido)-pyridin-5-yl, 3-(dimethylsulfonamido)-pyridin-5-yl, 3-(methylsulfonamido)-2-methyl pyridin-5-yl, 3-(methylsulfonamido)-2-chloro-pyridin-5-yl, 3-(methylsulfonamidomethyl)-pyridin-5-yl, 3-(dimethylsulfonamido)-(2-methyl)-pyridin-5-yl, 2-(3H-tetrazol-5-yl)pyrid-5-yl, 3-methylcarbonylaminomethylpyrid-5-yl, 2-(chloro)-3-(methylcarbonylamino)pyrid-5-yl, 2-(methoxy)-3-(methylcarbonylamino)pyrid-5-yl, 2-(ethoxy)-3-(methylcarbonylamino)pyrid-5-yl, 2-(methoxy)-3-(methylcarbonyl-N-methylamino)pyrid-5-yl, 2-(ethoxy)-3-(methylcarbonyl-N-methylamino)pyrid-5-yl, 2-(methoxy)-3-(nitro)-pyrid-5-yl, 2-(methoxy)-3-(cyano)-pyrid-5-yl, 2-(methoxy)-3-(amino)-pyrid-5-yl, 2-(methoxy)-3-(ethylamino)pyrid-5-yl, 3-(methoxymethyl)-2-(methylamino)pyrid-5-yl, 3-(methoxymethyl)-2-(ethylamino)pyrid-5-yl, 2-(methoxy)-3-(methylaminocarbonyl)pyrid-5-yl, 3-methylaminocarbonylmethylpyrid-5-yl, 2-(amino)-3-(methylaminocarbonyl)pyrid-5-yl, 2-(amino)-3-(ethylaminocarbonyl)pyrid-5-yl, 2-(amino)-3-(isopropylaminocarbonyl)pyrid-5-yl, 2-(amino)-3-(2-methoxyethylaminocarbonyl)pyrid-5-yl, 2-(methylamino)-3-(ethylaminocarbonyl)pyrid-5-yl, 2-(methoxy)-3-(aminocarbonyl) pyrid-5-yl, 2-(methoxy)-3-(hydroxycarbonyl)pyrid-5-yl, 3-morpholin-4-ylpyridin-5-yl, (1H-pyrazol-1yl)-pyridin-5-yl, (2-methyl-1H-imidazol-1-yl)-pyridin-5-yl, pyrimidin-5-yl, 2-dimethylaminopyrimidin-5-yl, 2-methoxypyrimidin-5-yl, 2-ethoxypyrimidin-5-yl, 2,4-dimethoxypyrimidin-5-yl, 2-(methylamino)-4-(methoxy)pyrimidin-5-yl, 2-(ethylamino)-4-(methoxy)pyrimidin-5-yl, 2-(pyrrolidinyl)pyrimidin-5-yl, 2-aminopyrimidin-5-yl, 2-methylaminopyrimidin-5-yl, 2-dimethylaminopyrimidin-5-yl, 1H-pyrrolo[2,3-b]pyridin-5-yl, 1-methyl-1H-pyrrolo[2,3-b]pyridin-5-yl, pyrazinyl, pyrazol-4yl, 1-(2-hydroxy-ethyl)-1H-pyrazol-4-yl, 1-[2-(tetrahydro-pyran-2-yloxy)-ethyl]-1H-pyrazol-4-yl, quinolin-3-yl, 2-oxo-2,3-dihydro-1H-indol-5-yl, 1-methyl-2,3-dihydro-1H-indol-5-yl, 1,3-dimethyl-1H-imidazo[4,5-b]pyridin-2(3H)-one-6-yl, 1-ethyl-3-methyl-1H-imidazo[4,5-b]pyridin-2(3H)-one-6-yl, 1-(2-methoxyethyl)-3-methyl-1H-imidazo[4,5-b]pyridin-2(3H)-one-6-yl, (3-methyl)-3H-imidazo[4,5-b]pyridin-6-yl, (2-methyl)-(3-methyl)-3H-imidazo[4,5-b]pyridin-6-yl, (2-methoxy)-(3-methyl)-3H-imidazo[4,5-b]pyridin-6-yl, (2-dimethylamino)-(3-methyl)-3H-imidazo[4,5-b]pyridin-6-yl, (3-methyl)-3H-[1,2,3]triazolo[4,5-b]pyridin-6-yl, 1H-pyrrolo[3,2-b]pyridin-6-yl, 1-methyl-1H-pyrrolo[3,2-b]pyridin-6-yl, 1,3,3-trimethyl-2-oxo-2,3-dihydro-1H-pyrrolo[2,3-b]pyridin-5-yl, 4-methyl-3,4-dihydro-2H-pyrido[3,2-b][1,4]oxazin-7-yl, 1-methyl-2-oxo-1,4-dihydro-2H-pyrido[2,3-d][1,3]oxazin-6-yl, 1-ethyl-2-oxo-1,4-dihydro-2H-pyrido[3,2-d][1,3]oxazin-7-yl.


With the groups of preferred compounds of formula (I) mentioned herein, definitions of substituents from the general definitions mentioned hereinbefore may reasonably be used, e.g., to replace more general definitions with more specific definitions or especially with definitions characterized as being preferred.


A preferred group of compounds of the present invention of formula (I) are those wherein X is O.


Another preferred group of compounds of the present invention of formula (I) are those wherein Y is CH.


Another preferred group of compounds of the present invention of formula (I) are those wherein X is O or S and Y is CH.


Another preferred group of compounds of the present invention of formula (I) are those wherein X is O and Y is CH.


An alternative group of compounds of the present invention of formula (I) are those wherein Y is N.


An alternative group of compounds of the present invention of formula (I) are those wherein X is O or S and Y is N.


An preferred group of compounds of the present invention of formula (I) are those wherein X is O and Y is N.


An embodiment of the present invention includes compounds of formula (I) or pharmaceutically acceptable salts, solvates or hydrates thereof, wherein:

    • X is O or S;
    • Y is CH or N;
    • R1 is unsubstituted pyrazolyl or pyrazolyl substituted with one, two or three substituents, at least one of which is in the alpha-position, said substituents being independently selected from lower alkyl; halo; halo lower alkyl, hydroxy lower alkyl, alkoxy lower alkyl, carbamoyl lower alkyl, hydroxycarbonyl lower alkyl, dialkylaminocarbonyl lower alkyl, cycloaminocarbonyl lower alkyl, morpholinecarbonylalkyl, piperazinecarbonyl lower alkyl or alkyl-substituted piperazinecarbonyl lower alkyl; or
    • R1 is unsubstituted isoxazolyl or isoxazolyl substituted with one or two lower alkyl substituents;
    • R2 is hydrogen, lower alkyl or lower alkenyl;
    • R3 is unsubstituted phenyl, or phenyl substituted with one or two groups independently selected from the group consisting of halo; halo-lower alkyl; hydroxyl; amino; mono or disubstituted amino; cyclic amino; amino-lower alkyl; lower alkoxy; hydroxy-lower alkyl; hydroxy lower alkoxy; lower alkyl; cyano; cyano-lower alkyl; amidino; N-hydroxyamidino; amidino-lower alkyl; or N-hydroxyamidino-lower alkyl; sulfonyl; alkyl-substituted sulfonyl; sulfonamide; pyrrolidinesulfonyl; lower alkyl sulfonyl amino; lower alkyl sulfonylalkandiylamino; lower alkylsulfonyl-N-lower alkylamino; [1,3]dioxolo; halo-substituted [1,3]dioxolo; alkoxy carbonyl; carbamoyl; substituted carbamoyl; heterocycle; heterocyclyl lower alkyl; heteroaryl or heteroaryl lower alkyl; or
    • R3 is indolyl, 1-methyl-2,3-dihydro-1H-indolyl, 2-oxo-2,3-dihydro-1H-indolyl, pyridyl, pyrimidinyl, 1H-pyrrolo[2,3-b]pyridinyl, 1-methyl-1H-pyrrolo[2,3-b]pyridinyl, pyrazolyl, pyrazinyl, quinolyl, 1,3-Dimethyl-2-oxo-2,3-dihydro-1H-imidazo[4,5-b]pyridinyl, 1-ethyl-3-methyl-2-oxo-2,3-dihydro-1H-imidazo[4,5-b]pyridinyl, 1-(2-methoxy-ethyl)-3-methyl-2-oxo-2,3-dihydro-1H-imidazo[4,5-b]pyridinyl, 2-Dimethylamino-3-methyl-3H-imidazo[4,5-b]pyridinyl, 2-methoxy-3-methyl-3H-imidazo[4,5-b]pyridinyl, 3-methyl-3H-[1,2,3]triazolo[4,5-b]pyridinyl, 2,3-Dimethyl-3H-imidazo[4,5-b]pyridinyl, 3-methyl-3H-imidazo[4,5-b]pyridinyl, 1H-pyrrolo[3,2-b]pyridinyl, 1-methyl-1H-pyrrolo[3,2-b]pyridinyl, 1-methyl-2-oxo-1,4-dihydro-2H-pyrido[2,3-d][1,3]oxazinyl, 4-methyl-3,4-dihydro-2H-pyrido[3,2-b][1,4]oxazinyl, 1,3,3-trimethyl-2-oxo-2,3-dihydro-1H-pyrrolo[2,3-b]pyridinyl and 1-ethyl-2-oxo-1,4-dihydro-2H-pyrido[3,2-d][1,3]oxazinyl each of these heterocycle radicals being unsubstituted or substituted by one to two radicals selected from the group consisting of halo; halo-lower alkyl; hydroxyl; amino; mono or disubstituted amino; cyclic amino; substituted cyclic amino; amino-lower alkyl; alkylamino-lower alkyl; dialkylamino-loweralkyl; cycloalkylaminoalkyl; dicycloalkylaminoalkyl; alkylcycloalkylaminoalkyl; lower alkoxy; cycloalkoxy; lower-alkoxyalkyl; hydroxy-lower alkyl; hydroxy lower cycloalkyl; hydroxy lower alkoxy; alkoxy lower alkoxy; lower alkyl; cyano; cyano-lower alkyl; cyano lower cycloalkyl; amidino; N-hydroxyamidino; amidino-lower alkyl; N-hydroxyamidino-lower alkyl; nitro; carboxylic acid; substituted sulfonyl; sulfonamide; alkylsulfonylamino; alkylsulfonylalkylamino; acylamino; acyl alkyl amino; alkylcarbonylaminoalkyl; alkylaminocarbonylalkyl; alkylcarbonyl-N-alkylamino; [1,3]dioxolo; substituted [1,3]dioxolo; alkoxy carbonyl; carbamoyl; substituted carbamoyl; 1H-tetrazolyl; pyrazol; imidazole; triazole; azetidinyl; pyrrolidinyl; piperazinyl; methylpiperazinyl; ethylpiperazinyl; triazolonyl; methylimidazolyl or morpholino.
    • A further embodiment of the present invention includes compounds of formula (I) or pharmaceutically acceptable salts, solvates or hydrates thereof, wherein:
    • X is O or S;
    • Y is CH or N;
    • R1 is unsubstituted pyrazolyl or pyrazolyl substituted with one, two or three substituents, at least one of which is in the alpha-position, said substituents being independently selected from lower alkyl; halo; halo lower alkyl, hydroxy lower alkyl, alkoxy lower alkyl, carbamoyl lower alkyl, hydroxycarbonyl lower alkyl, dialkylaminocarbonyl lower alkyl, cycloaminocarbonyl lower alkyl, morpholinecarbonylalkyl, piperazinecarbonyl lower alkyl or alkyl-substituted piperazinecarbonyl lower alkyl; or
    • R1 is unsubstituted isoxazolyl or isoxazolyl substituted with one or two unsubstituted lower alkyl substituents;
    • R2 is hydrogen, lower alkyl or lower alkenyl;
    • R3 is selected from phenyl; hydroxyphenyl; methoxyphenyl; 3,4-dimethoxyphenyl; ethoxyphenyl; 3,4-diethoxyphenyl; iso-propoxyphenyl; methoxy ethoxy-phenyl; 3-methoxy-4-(2-methoxy ethoxy)-phenyl; fluoro-(iso-propoxy)-phenyl; 3-methoxy-4-hydroxy phenyl; fluoro-hydroxy-phenyl; hydroxy-fluoroalkyl-phenyl; 2,2-difluoro-benzo[1,3]dioxolo; benzene sulfonamide; N,N-dimethylbenzenesulfonamide; 3-(pyrrolidine-1-sulfonyl)-phenyl; N-(phen-3-yl)-methanesulfonamide; N-methyl-N-phen-3-yl-methanesulfonamide; 3-methanesulfonylphenyl; 3- or 4-benzamide; 3- or 4-N-methyl-benzamide; 3- or 4-N,N-dimethyl-benzamide; pyrazol-phenyl; imidazol-phenyl; pyridyl; alkylpyridyl; alkoxypyridyl; cycloalkoxypyridyl; (haloalkoxy)pyridyl; cycloalkylalkoxypyridyl; alkoxyalkylpyridyl; alkoxyalkoxypyridyl; (alkyl)(alkoxyalkoxy)pyridyl; benzyloxyalkoxypyridyl; hydroxyalkylpyridyl; hydroxycycloalkylpyridyl; hydroxyfluoroalkylpyridyl; aminoalkylpyridyl; alkyl-sulfonyl pyridyl; hydroxyalkoxypyridyl; alkoxycarbonylpyridyl; aminopyridyl; alkylaminopyridyl; dialkylaminopyridyl; cycloalkylaminopyridyl; (N-alkyl-N-cycloalkylamino)pyridyl; (alkyl)(amino)pyridyl; (halo)(amino)pyridyl; (halo)(alkylamino)pyridyl; (halo)(dialkylamino)pyridyl; (halo)(hydroxyalkyl)pyridyl; (alkoxy)(alkyl)pyridyl; (alkoxy)(alkoxy)pyridyl; (alkoxy)(alkoxyalkyl)pyridyl; (alkoxy)(deuteroalkoxy-alkyl)pyridyl; (alkoxy)(hydroxyalkyl)pyridyl; (haloalkoxy)(alkyl)pyridyl; (haloalkoxy)(hydroxyalkyl)pyridyl; (alkoxyalkoxy)(hydroxyalkyl)pyridyl; (alkyl)(alkylamino)pyridyl; (alkyl)(di-alkylamino)pyridyl; cycloaminopyridyl; cyclic ether-substituted amino-pyridyl; hydroxy-cycloaminopyridyl; loweralkoxy-cycloaminopyridyl; hydroxyalkylaminopyridyl; (alkyl)(hydrone)pyridyl; (hydroxyalkyl)(alkylamino)pyridyl; (hydroxyalkyl)(amino)pyridyl; (alkoxyalkyl)(alkylamino)pyridyl; (alkoxyalkyl)(amino)pyridyl; amino-haloloweralkyl-pyridyl; alkylamino-haloalkyl-pyridyl; haloalkyl-deuteroloweralkylamino-pyridyl; haloalkylpyridinyl; cyanoalkylpyridinyl; cyanocycloalkylpyridinyl; halopyridyl; halo-alkoxy-pyridyl; carbamoylpyridyl; alkyl-substituted carbamoylpyridyl; piperazinylpyridyl; N-alkylpiperazinylpyridyl; alkylsulfonamidopyridyl; dialkylsulfonamidopyridyl; (alkylsulfonamido)(alkyl)pyridyl; (alkylsulfonamido)(halo)pyridyl; (alkylsulfonamidoalkyl)pyridyl; dialkylsulfonamido(alkyl)pyridyl; 3H-tetrazol-5-yl pyridyl; alkylcarbonylaminoalkylpyridyl; (halo)(alkylcarbonylamino)pyridyl; (alkoxy)(alkylcarbonylamino)pyridyl; (alkoxy)(alkylcarbonyl-N-alkylamino)pyridyl; (alkoxy)(nitro)pyridyl; (alkoxy)(cyano)pyridyl; (alkoxy)(amino)pyridyl; (alkoxy)(alkylamino)pyridyl; (alkoxyalkyl)(alkylamino)pyridyl; (alkoxy)(alkylaminocarbonyl)pyridyl; (alkoxyalkyl)(alkylamino)pyridyl; (amino)(alkylaminocarbonyl)pyridyl; (amino)(alkoxyalkylaminocarbonyl)pyridyl; (alkylamino)(alkylaminocarbonyl)pyridyl; (alkoxy)(aminocarbonyl)pyridyl; (alkoxy)(hydroxycarbonyl)pyridyl; morpholinylpyridinyl; (1H-pyrazolyl)-pyridinyl; loweralkyl substituted (1H-imidazol-1-yl)-pyridinyl; pyrimidinyl; di-loweralkylaminopyrimidinyl; alkoxypyrimidinyl; di-alkoxypyrimidinyl; (alkylamino)(alkoxy)pyrimidinyl; cycloaminopyrimidinyl; aminopyrimidinyl; alkylaminopyrimidinyl; dialkylaminopyrimidinyl; 1H-pyrrolo[2,3-b]pyridinyl; 1-methyl-1H-pyrrolo[2,3-b]pyridinyl; pyrazinyl; pyrazolyl; hydroxyalkylpyrazolyl; 1-[2-(tetrahydro-pyran-2-yloxy)-ethyl]-1H-pyrazolyl; quinolinyl; 2-oxo-2,3-dihydro-1H-indol-5-yl; 1-methyl-2,3-dihydro-1H-indol-5-yl; 1H-imidazo[4,5-b]pyridin-2(3H)-one-6-yl; 3H-imidazo[4,5-b]pyridin-6-yl; (3-methyl)-3H-imidazo[4,5-b]pyridin-6-yl; (2-methyl)-(3-methyl)-3H-imidazo[4,5-b]pyridin-6-yl; (2-methoxy)-(3-methyl)-3H-imidazo[4,5-b]pyridin-6-yl; (2-dimethylamino)-(3-methyl)-3H-imidazo[4,5-b]pyridin-6-yl; 3H-[1,2,3]triazolo[4,5-b]pyridin-6-yl; (3-methyl)-3H-[1,2,3]triazolo[4,5-b]pyridin-6-yl; H-pyrrolo[3,2-b]pyridin-6-yl; 1-methyl-1H-pyrrolo[3,2-b]pyridin-6-yl; 2-oxo-1,4-dihydro-2H-pyrido[2,3-d][1,3]oxazin-6-yl; 1-methyl-2-oxo-1,4-dihydro-2H-pyrido[2,3-d][1,3]oxazin-6-yl; 3,4-dihydro-2H-pyrido[3,2-b][1,4]oxazin-7-yl; 4-methyl-3,4-dihydro-2H-pyrido[3,2-b][1,4]oxazin-7-yl; 1,3,3-trimethyl-2-oxo-2,3-dihydro-1H-pyrrolo[2,3-b]pyridin-5-yl; 2-oxo-1,4-dihydro-2H-pyrido[3,2-d][1,3]oxazin-7-yl; 1-ethyl-2-oxo-1,4-dihydro-2H-pyrido[3,2-d][1,3]oxazin-7-yl.


An embodiment of the present invention includes compounds of formula (I) or pharmaceutically acceptable salts, solvates or hydrates thereof, wherein:

    • X is O or S;
    • Y is CH or N;
    • R1 is unsubstituted pyrazolyl or pyrazolyl substituted with one, two or three substituents, at least one of which is in the alpha-position, said substituents being independently selected from lower alkyl; halo; halo lower alkyl, hydroxy lower alkyl, alkoxy lower alkyl, carbamoyl lower alkyl, hydroxycarbonyl lower alkyl, dialkylaminocarbonyl lower alkyl, cycloaminocarbonyl lower alkyl, morpholinecarbonylalkyl or piperazinecarbonyl lower alkyl;
    • R2 is hydrogen or lower alkyl;
    • R3 is unsubstituted phenyl, or phenyl substituted with one or two groups independently selected from the group consisting of halo; halo-lower alkyl; hydroxyl; amino; mono or disubstituted amino; cyclic amino; amino-lower alkyl; lower alkoxy; hydroxy-lower alkyl; hydroxy lower alkoxy; lower alkyl; cyano; cyano-lower alkyl; amidino; N-hydroxyamidino; amidino-lower alkyl; or N-hydroxyamidino-lower alkyl; sulfonyl; alkyl-substituted sulfonyl; sulfonamide; pyrrolidinesulfonyl; [1,3]dioxolo; halo-substituted [1,3]dioxolo; alkoxy carbonyl; carbamoyl; substituted carbamoyl; heterocycle; heterocyclyl lower alkyl; heteroaryl or heteroaryl lower alkyl; or
    • R3 is indolyl, 2,3-dihydro-1H-indol-5-yl, 1-methyl-2,3-dihydro-1H-indol-5-yl, 2-oxo-2,3-dihydro-1H-indol-5-yl, pyridyl, pyrimidinyl, 1H-pyrrolo[2,3-b]pyridin-5-yl, 1-methyl-1H-pyrrolo[2,3-b]pyridin-5-yl, pyrazolyl, pyrazol-4-yl, pyrazinyl, quinolyl, quinol-3-yl, 1H-imidazo[4,5-b]pyridin-2(3H)-one-6-yl, 3H-imidazo[4,5-b]pyridin-6-yl, 3H-[1,2,3]triazolo[4,5-b]pyridin-6-yl each independently being unsubstituted or substituted by one or two radicals independently selected from the group consisting of halo; halo-lower alkyl; hydroxyl; amino; mono or disubstituted amino; cyclic amino; amino-lower alkyl; lower alkoxy; lower alkoxy lower alkyl; hydroxy-lower alkyl; hydroxy lower alkoxy; lower alkyl; cyano; cyano-lower alkyl; amidino; N-hydroxyamidino; amidino-lower alkyl; or N-hydroxyamidino-lower alkyl; sulfonyl; alkyl-substituted sulfonyl; sulfonamide; pyrrolidine-1-sulfonyl; [1,3]dioxolo; halo substituted [1,3]dioxolo; alkoxy carbonyl; carbamoyl; aminocarbonylalkyl; N-mono-substituted aminocarbonylalkyl; N-di-substituted aminocarbonylalkyl; 3H-tetrazolyl, pyrazol, heterocyclyl lower alkyl, heteroaryl or heteroaryl lower alkyl.


A further embodiment of the present invention includes compounds of formula (I) or pharmaceutically acceptable salts, solvates or hydrates thereof, wherein:

    • X is O or S;
    • Y is CH or N;
    • R1 is unsubstituted pyrazolyl or pyrazolyl substituted with one, two or three substituents, at least one of which is in the alpha-position, said substituents being independently selected from lower alkyl; halo; halo lower alkyl, hydroxy lower alkyl, alkoxy lower alkyl, carbamoyl lower alkyl, hydroxycarbonyl lower alkyl, dialkylaminocarbonyl lower alkyl, cycloaminocarbonyl lower alkyl, morpholinecarbonylalkyl or piperazinecarbonyl lower alkyl;
    • R2 is hydrogen or lower alkyl;
    • R3 is selected from phenyl; hydroxyphenyl; methoxyphenyl; 3,4-dimethoxyphenyl; ethoxyphenyl; 3,4-diethoxyphenyl; methoxy ethoxy-phenyl; 3-methoxy-4-(2-methoxy ethoxy)-phenyl; 3-methoxy-4-hydroxy phenyl; fluoro-hydroxy-phenyl; hydroxy-fluoroalkyl-phenyl; 2,2-difluoro-benzo[1,3]dioxolo; benzene sulfonamide; 3-(pyrrolidine-1-sulfonyl)-phenyl; N-(phen-3-yl)-methanesulfonamide; N-methyl-N-phen-3-yl-methanesulfonamide; 3-methanesulfonylphenyl; 3- or 4-benzamide; 3- or 4-N-methyl-benzamide; 3- or 4-N,N-dimethyl-benzamide; pyrazol-phenyl; imidazol-phenyl; pyridyl; alkylpyridyl; alkoxypyridyl; cycloalkylalkoxypyridyl; alkoxyalkylpyridyl; alkoxyalkoxypyridyl, benzyloxyalkoxypyridyl, hydroxyalkylpyridyl; alkyl-sulfonyl pyridyl; hydroxyalkoxypyridyl; alkoxycarbonylpyridyl; aminopyridyl; alkylaminopyridyl; dialkylaminopyridyl; (alkyl)(amino)pyridyl; (alkoxy)(alkyl)pyridyl; (alkoxy)(alkoxy)pyridyl; (alkyl)(alkylamino)pyridyl; (alkyl)(di-alkylamino)pyridyl; cycloaminopyridyl; hydroxyalkylaminopyridyl; amino-haloloweralkyl-pyridyl; haloalkylpyridinyl; halopyridyl; halo-alkoxy-pyridyl; carbamoylpyridyl; alkyl-substituted carbamoylpyridyl; piperazinylpyridyl; N-alkylpiperazinylpyridyl; alkylsulfonamidopyridyl; dialkylsulfonamidopyridyl; (alkylsulfonamido)(alkyl)pyridyl; dialkylsulfonamido(alkyl)pyridyl; 3H-tetrazol-5-yl pyridyl; (alkoxy)(alkylcarbonylamino)pyridyl; (alkoxy)(alkylcarbonyl-N-alkylamino)pyridyl; (alkoxy)(nitro)pyridyl; (alkoxy)(cyano)pyridyl; (alkoxy)(amino)pyridyl; (alkoxy)(alkylamino)pyridyl; (alkoxy)(alkylaminocarbonyl)pyridyl; (alkoxy)(hydroxycarbonyl)pyridyl; pyrimidinyl; di-loweralkylaminopyrimidinyl; alkoxypyrimidinyl; 1H-pyrrolo[2,3-b]pyridinyl; 1-methyl-1H-pyrrolo[2,3-b]pyridinyl; pyrazinyl; pyrazolyl; hydroxyalkylpyrazolyl; 1-[2-(tetrahydro-pyran-2-yloxy)-ethyl]-1H-pyrazolyl; quinolinyl; 2-oxo-2,3-dihydro-1H-indol-5-yl; 1-methyl-2,3-dihydro-1H-indol-5-yl; 1H-imidazo[4,5-b]pyridin-2(3H)-one-6-yl; 3H-imidazo[4,5-b]pyridin-6-yl; (3-methyl)-3H-imidazo[4,5-b]pyridin-6-yl; (2-methyl)-(3-methyl)-3H-imidazo[4,5-b]pyridin-6-yl; (2-methoxy)-(3-methyl)-3H-imidazo[4,5-b]pyridin-6-yl; (2-dimethylamino)-(3-methyl)-3H-imidazo[4,5-b]pyridin-6-yl; 3H-[1,2,3]triazolo[4,5-b]pyridin-6-yl; (3-methyl)-3H-[1,2,3]triazolo[4,5-b]pyridin-6-yl.


Most preferred is a compound of the formula (I), or a pharmaceutically acceptable salt, solvate or hydrate thereof, as exemplified hereinbelow under “Examples”.


The present invention is further directed to a method of treating a protein kinase dependent disease comprising administering a compound of formula (I), where the disease to be treated is a proliferative disease, preferably a benign or especially malignant tumor, more preferably carcinoma of the brain, kidney, liver, adrenal gland, bladder, breast, stomach, gastric tumors, ovaries, colon, rectum, prostate, pancreas, lung, vagina or thyroid, sarcoma, glioblastomas, multiple myeloma or gastrointestinal cancer, especially colon carcinoma or colorectal adenoma or a tumor of the neck and head, an epidermal hyperproliferation, psoriasis, prostate hyperplasia, a neoplasia, a neoplasia of epithelial character, lymphomas, a mammary carcinoma or a leukemia, and including proliferative diseases such as tumor diseases, leukaemias and myeloproliferative disorders such as polycythemia vera, essential thrombocythemia, and myelofibrosis with myeloid metaplasia, basal cell carcinoma, squamous cell carcinoma and actinic keratosis and other benign hyperproliferative skin disorders caused by inflammation such as psoriasis or as a result of dysregulation of fibroblasts such as skin fibrosis, scleroderma or keloids.


Other diseases include Cowden syndrome, Lhermitte-Dudos disease and Bannayan-Zonana syndrome or diseases in which the PI3K/PKB pathway is aberrantly activated.


Most preferred is the use in accordance with the present invention of a compound of the formula (I), or a pharmaceutically acceptable salt, solvate or hydrate thereof, as exemplified hereinbelow under “Examples”.


The compounds of formula (I) that inhibit the protein or lipid kinase activities mentioned, especially mTOR Ser/Thr kinase activity and/or class I PI3 kinases activity, may therefore be useful in the treatment of protein or lipid kinase dependant diseases, especially diseases depending on class I and/or class IV PI3 kinases, for example, PI3Kalpha, PI3Kbeta, PI3Kdelta, PI3Kgamma and/or mTOR, or one or more of the individual kinase members thereof, including other PI3-kinases such as DNA-PK, ATM, ATR, hSMG-1 and Vps34 or any combination of two or more of the mentioned kinases.


Protein or lipid kinase dependent diseases are especially proliferative diseases, a benign or especially malignant tumor, a carcinoma of the brain, kidney, liver, adrenal gland, bladder, breast, stomach (especially gastric tumors), ovaries, colon, rectum, prostate, pancreas, lung, vagina, thyroid, sarcoma, glioblastomas, multiple myeloma or gastrointestinal cancer, especially colon carcinoma or colorectal adenoma, or a tumor of the neck and head, other diseases such as Cowden syndrome, Lhermitte-Duclos disease and Bannayan-Zonana syndrome, or diseases in which the PI3K/PKB pathway is aberrantly activated, an epidermal hyperproliferation, especially psoriasis, prostate hyperplasia, a neoplasia, especially of epithelial character, preferably mammary carcinoma or squamous cell carcinoma, or a leukemia. The compounds desirably are able to bring about the regression of tumors and to prevent the formation of tumor metastases and the growth of (also micro) metastases. In addition, they may be used in epidermal hyperproliferation, e.g., psoriasis; in prostate hyperplasia; in the treatment of neoplasias, especially of epithelial character, e.g., mammary carcinoma; in leukemias; and in basal cell carcinoma, squamous cell carcinoma and actinic keratosis. It may also be possible to use the compounds of formula (I) in the treatment of diseases of the immune system insofar as several or, especially, individual lipid kinases and/or (further) serine/threonine protein kinases are involved.


The compounds of the formula (I) can be prepared according to the following methods:


A compound of formula (I) is converted into a compound of formula (I) by known in the art chemical reactions such as protecting group deprotection, e.g. tert-butyloxycarbonyl (boc) group deprotection with TFA, neat or in presence of a solvent such as a polyhalogeneated alkane, e.g. dichloromethane, at a temperature between 0° C. to 40° C.; functional group substitution e.g. alkylation of a hydroxyl group to form an alkoxy group by treatment with a strong based such as metal hydride, e.g. sodium hydride, in an aprotic solvent, e.g. THF or dimethylformamide, followed by addition of an akylhalide, e.g. methyliodide, at a temperature between −20° C. and 40° C.; or functional group modification e.g. conversion of a carbonyl to a thiocarbonyl by treatment with Lawesson's reagent in a cyclyether solvent, e.g. dioxane at a temperature between 60° C. and 120° C. or at reflux.


A compound of formula (I) wherein Y═CH is prepared by reacting a compound of the formula (II)




embedded image



wherein

    • Hal refers to halogen preferably bromine; and
    • X, R1, R2, R4, R5 and R6 are as defined herein above;


      A: with a boronic acid of the formula III

      R3—B(OH)2  (III)
    • or a boronate ester such as of formula IIIa




embedded image



wherein R3 is as defined for a compound of the formula (I), in the presence of a base and a catalyst in a suitable solvent; to provide a compound of formula (I)


or,


B: with a bis(diborane), such as bis(pinacolato)-diborane, in the presence of a base and a catalyst in a suitable solvent, to provide an intermediate of formula IIA:




embedded image



followed by reaction of the compound according to formula (IIa) with a compound according to formula (IIIb):

R3-Hal  (IIIb)

wherein Hal refers to halogen preferably bromine, in the presence of a base and a catalyst in a suitable solvent; to provide a compound of formula (I);


where the above starting compounds II, IIa, III, IIIa and IIIb may also be present with functional groups in protected form if necessary and/or in the form of salts, provided a salt-forming group is present and the reaction in salt form is possible;


any protecting groups in a protected derivative of a compound of the formula I are optionally removed; and


if desired, transforming an obtainable compound of formula (I) into a different compound of formula (I), or a N-oxide thereof, transforming a salt of an obtainable compound of formula (I) into the free compound or a different salt, or an obtainable free compound of formula (I) into a salt; and/or separating an obtainable mixture of isomers of compounds of formula (I) into the individual isomers.


In the following, more detailed description of the preferred process conditions, X, R1, R2, R3, R4, R5 and R6 have the meanings given herein for compounds of the formula (I), if not indicated otherwise.


Conversion of R2 from H to a substituent different from H as defined above for R2 can be achieved by treating compound of formula (I) or (II) in presence of a strong base in a suitable solvent and subsequent adjunction of a halogenated reagent Hal-R2 wherein Hal refers to halogen preferably iodine or bromine, e.g. methyliodide.


A compound of formula (II) is prepared by reacting a compound of formula (IV)




embedded image



with phosgene or trichloromethyl chloroformate in a suitable solvent in presence of a base wherein

    • R1, R4, R5 and R6 are as mentioned for a compound of the formula (I).


A compound of the formula (IV) is prepared by reduction of a compound of the formula (V)




embedded image



wherein the substituents and symbols are defined as for compounds of the formula (I) in the presence of an appropriate catalyst, e.g., a skeleton based catalyst, such as Raney-Ni with hydrogen in an appropriate solvent, e.g., an alcohol and or a cycloalkylether, such as methanol and/or tetrahydrofurane; at preferred temperatures e.g. between 0° C. and 50° C., e.g., at RT.


A compound of formula (V) is preferably prepared by reacting a compound of the formula (VI)




embedded image



wherein

    • Q is halo, especially chloro; and
    • the other moieties and symbols have the meanings indicated for compounds of the formula (I) with a compound of the formula (VII)

      R1—NH2  (VII),
    • wherein R1 is as defined for a compound of the formula (I), in the presence of a base such as a tertiaryamine, e.g. 1,2,2,6,6-pentamethylpiperidine, in an appropriate solvent; preferably a polar aprotic solvent such as dimethylacetamide, at preferred temperatures between 20° C. and 120° C. temperature of the reaction mixture, e.g., between 20° C. and 70° C.


A compound of the formula (VI) can be prepared by reacting a compound of the formula (VIII)




embedded image



wherein the moieties and symbols have the meanings indicated for a compound of the formula (I), with an inorganic acid halogenide, especially POCl3 (preferably without solvent) at elevated temperatures, e.g., between 100° C. and 150° C. or under reflux.


A compound of the formula (VIII) is known in the art, can be synthesized according to methods known in the art and/or is commercially-available. For example, it can be synthesized by reacting a compound of the formula (IX)




embedded image



wherein the moieties and symbols have the meanings indicated for a compound of the formula (I) (x is preferably zero), with nitric acid (aqueous) at a preferred temperature between 50° C. and 100° C., e.g., at 85° C.


A compound of the formula (VIII), can alternatively be synthesized by reacting a compound of the formula (X)




embedded image



wherein the moieties and symbols have the meanings indicated for a compound of the formula (I), with an anhydride of a carbonic acid, especially acetic anhydride, preferably in the presence of an alkali metal salt of a carboxylic acid, e.g., potassium acetate, at a preferred temperature between 50° C. and 150° C., e.g., at ca. 100-140° C.


A compound of the formula (X) can be obtained, e.g., by converting a compound of the formula (XI)




embedded image



to the corresponding compound of the formula (X) by reacting nitromethane in the presence of an alkali metal hydroxide, especially sodium hydroxide, at preferred temperatures between approximately 0° C. and 60° C., e.g., between 0° C. and RT; then pouring the product under cooling to approximately 0° C. into concentrated HCl and adding the compound of the formula (XI) and further concentrated HCl, subsequently allowing for further reaction at preferred temperatures between 0° C. and RT to result in the corresponding compound of formula (X).


A compound of formula (I) wherein Y=N is prepared in two steps by saponification of the ester group by treatment with a base such as an alkali metal hydroxide, e.g. lithium hydroxide in a solvent such as wet cycloaklylether, e.g. dioxane/water, at a temperature between 20° C. and 100° C., preferably between 30° C. and 60° C., a compound of the formula (XII)




embedded image



wherein

    • R1, R3, R4, R5 and R6 are as defined herein above and R is unsubstituted or substituted lower alkyl, e.g. ethyl;


The freed intermediate obtained after neutralization of the reaction mixture with an acid, such as a mineral acid, e.g. hydrochloric acid, and evaporation to dryness is converted by a Cursius rearrangement to compound of formula (I) via in situ formation of the acylazide intermediate by treatment with diphenylphosporylazide in an aprotic solvent, such as polar aprotic and/or polar protic, e.g. toluene/N-methylpyrolidinone, in presence of a base, such as a tertiaryamine, e.g. triethylamine, at temperature between 60° C. and 120° C., e.g. between 80° C. and 110° C.; the isocyanato intermediate spontaneously cyclized to form compound of formula (I) in the reaction conditions.


A compound of formula (XII) is preferably prepared by reacting a compound of the formula (XIII)




embedded image



wherein

    • Q is halo, especially chloro; and
    • the other moieties have the meanings indicated for compounds of the formula (I), and R is unsubstituted or substituted lower alkyl, e.g. ethyl, with a compound of the formula (VII)

      R1—NH2  (VII),

      wherein R1 is as defined for a compound of the formula (I), in the presence of a base such as a tertiaryamine, e.g. 1,2,2,6,6-pentamethylpiperidine, in an appropriate solvent; preferably a polar aprotic solvent such as dimethylacetamide, at preferred temperatures between 20° C. and 120° C. temperature of the reaction mixture, e.g., between 20° C. and 70° C.


A compound of formula (XIII) is preferably prepared by reacting a compound of the formula (XIV)




embedded image



wherein the moieties have the meanings indicated for a compound of the formula (I) and R is unsubstituted or substituted lower alkyl, e.g. ethyl, with an inorganic acid halogenide, especially POCl3 (preferably without solvent) at elevated temperatures, e.g., between 100° C. and 150° C. or under reflux.


A compound of formula (XIV) is preferably prepared by reacting a compound of the formula (XV)




embedded image



wherein the moieties have the meanings indicated for a compound of the formula (I) with a compound of formula (XVI)




embedded image



R and R′ being selected independently from unsubstituted or substituted alkyl, e.g. being both ethyl; in a solvent and pressure condition, e.g. xylene in a seal tube, allowing reaction at a temperature between 150° C. and 300° C., e.g. between 220° C. and 250° C.


A compound of formula (XV) is known in the art and can be prepared by reduction of a compound of the formula (XVII)




embedded image



wherein the moieties have the meanings indicated for a compound of the formula (I) with a compound of formula (XVI) in the presence of an appropriate catalyst, e.g., a skeleton based catalyst, such as Raney-Ni with hydrogen in an appropriate solvent, e.g., an alcohol and or a cycloalkylether, such as methanol and/or tetrahydrofurane; at preferred temperatures e.g. between 0° C. and 50° C., e.g., at RT.


A compound of formula (XVII) is known in the art and can be prepared by reacting a compound of formula (XVIII)




embedded image



with a boronic acid of the formula III

R3—B(OH)2  (III)

    • or a boronate ester such as of formula IIIa




embedded image



wherein R3 is as defined for a compound of the formula (I), in the presence of a base and a catalyst in a suitable solvent.


Other starting materials are either known in the art, can be prepared according to methods that are known in the art, e.g., in analogy to the methods described hereinabove or in the examples, and/or are commercially-available.


The present invention relates also to novel starting materials and/or intermediates and to processes for their preparation. The starting materials used and the reaction conditions selected are preferably those that result in the compounds described as being preferred.


Other starting materials are either known in the art, can be prepared according to methods that are known in the art, e.g., in analogy to the methods described hereinabove or in the examples, and/or are commercially-available.


The present invention relates also to novel starting materials and/or intermediates and to processes for their preparation. The starting materials used and the reaction conditions selected are preferably those that result in the compounds described as being preferred.


Salts of compounds of formula (I) having at least one salt-forming group may be prepared in a manner known per se. For example, salts of compounds of formula (I) having acid groups may be formed, e.g., by treating the compounds with metal compounds, such as alkali metal salts of suitable organic carboxylic acids, e.g., the sodium salt of 2-ethylhexanoic acid; with organic alkali metal or alkaline earth metal compounds, such as the corresponding hydroxides, carbonates or hydrogen carbonates, such as sodium or potassium hydroxide, carbonate or hydrogen carbonate; with corresponding calcium compounds or with ammonia or a suitable organic amine, stoichiometric amounts or only a small excess of the salt-forming agent preferably being used. Acid addition salts of compounds of formula (I) are obtained in customary manner, e.g., by treating the compounds with an acid or a suitable anion exchange reagent. Internal salts of compounds of formula (I) containing acid and basic salt-forming groups, e.g., a free carboxy group and a free amino group, may be formed, e.g., by the neutralization of salts, such as acid addition salts, to the isoelectric point, e.g., with weak bases, or by treatment with ion exchangers.


Salts can be converted in customary manner into the free compounds; metal and ammonium salts can be converted, e.g., by treatment with suitable acids; and acid addition salts, e.g., by treatment with a suitable basic agent.


Mixtures of isomers obtainable according to the invention can be separated in a manner known per se into the individual isomers; diastereoisomers can be separated, e.g., by partitioning between polyphasic solvent mixtures, recrystallization and/or chromatographic separation, e.g., over silica gel or by, e.g., medium pressure liquid chromatography over a reversed phase column; and racemates can be separated, e.g., by the formation of salts with optically pure salt-forming reagents and separation of the mixture of diastereoisomers so obtainable, e.g., by means of fractional crystallization, or by chromatography over optically active column materials.


Intermediates and final products can be worked up and/or purified according to standard methods, e.g., using chromatographic methods, distribution methods, re-crystallization and the like.


Additional Process Steps


In the additional process steps, carried out as desired, functional groups of the starting compounds which should not take part in the reaction may be present in unprotected form or may be protected, e.g., by one or more protecting groups. The protecting groups are then wholly or partly removed according to one of the known methods.


Protecting groups, and the manner in which they are introduced and removed are described, e.g., Protective Groups in Organic Chemistry, Plenum Press, London, N.Y. (1973); Methoden der organischen Chemie, Houben-Weyl, 4th Edition, Vol. 15/1, Georg-Thieme-Verlag, Stuttgart (1974); and Theodora W. Greene, Protective Groups in Organic Synthesis, John Wiley & Sons, NY (1981). A characteristic of protecting groups is that they can be removed readily, i.e., without the occurrence of undesired secondary reactions, e.g., by solvolysis, reduction, photolysis or alternatively under physiological conditions.


The end products of formula (I) may however also contain substituents that can also be used as protecting groups in starting materials for the preparation of other end products of formula (I). Thus, within the scope of this text, only a readily removable group that is not a constituent of the particular desired end product of formula (I) is designated a “protecting group”, unless the context indicates otherwise.


General Process Conditions


The following applies in general to all processes mentioned hereinbefore and hereinafter, while reaction conditions specifically mentioned above or below are preferred:


All the above-mentioned process steps can be carried out under reaction conditions that are known per se, preferably those mentioned specifically, in the absence or, customarily, in the presence of solvents or diluents, preferably solvents or diluents that are inert towards the reagents used and dissolve them, in the absence or presence of catalysts, condensation or neutralizing agents, e.g., ion exchangers, such as cation exchangers, e.g., in the H+ form; depending on the nature of the reaction and/or of the reactants at reduced, normal or elevated temperature, e.g., in a temperature range of from about −100° C. to about 190° C.; preferably from approximately −80° C. to approximately 150° C., e.g., at from −80° C. to −60° C. at RT, at from −20° C. to 40° C. or at reflux temperature; under atmospheric pressure or in a closed vessel, where appropriate under pressure and/or in an inert atmosphere, e.g., under an argon or nitrogen atmosphere.


At all stages of the reactions, mixtures of isomers that are formed can be separated into the individual isomers, e.g., diastereoisomers or enantiomers; or into any desired mixtures of isomers, e.g., racemates or mixtures of diastereoisomers, e.g., analogously to the methods described under “additional process steps”.


The solvents from which those solvents that are suitable for any particular reaction may be selected include those mentioned specifically or, e.g., water; esters, such as lower alkyl-lower alkanoates, e.g., ethyl acetate; ethers, such as aliphatic ethers, e.g., diethyl ether; or cyclic ethers, e.g., tetrahydrofuran or dioxane; liquid aromatic hydrocarbons, such as benzene or toluene; alcohols, such as methanol, ethanol or 1- or 2-propanol; nitriles, such as acetonitrile; halogenated hydrocarbons, such as methylene chloride or chloroform; acid amides, such as dimethylformamide or dimethyl acetamide; bases, such as heterocyclic nitrogen bases, e.g., pyridine or N-methylpyrrolidin-2-one; carboxylic acid anhydrides, such as lower alkanoic acid anhydrides, e.g., acetic anhydride; cyclic, linear or branched hydrocarbons, such as cyclohexane, hexane or isopentane; or mixtures of those solvents, e.g., aqueous solutions, unless otherwise indicated in the description of the processes. Such solvent mixtures may also be used in working up, e.g., by chromatography or partitioning.


The compounds, including their salts, may also be obtained in the form of hydrates, or their crystals may, e.g., include the solvent used for crystallization. Different crystalline forms may be present.


The invention relates also to those forms of the process in which a compound obtainable as intermediate at any stage of the process is used as starting material and the remaining process steps are carried out, or in which a starting material is formed under the reaction conditions or is used in the form of a derivative, e.g., in protected form or in the form of a salt, or a compound obtainable by the process according to the invention is produced under the process conditions and processed further in situ. In the process of the present invention those starting materials are preferably used which result in new compounds of formula (I) described at the beginning as being especially valuable. Special preference is given to reaction conditions that are analogous to those mentioned in the examples.


Pharmaceutical Compositions


The invention relates also to pharmaceutical compositions comprising a compound of formula (I), to their use in the therapeutic (in a broader aspect of the invention also prophylactic) treatment or a method of treatment of a lipid or protein kinase dependent disease, especially the preferred diseases mentioned above, to the compounds for said use and to the preparation of pharmaceutical preparations, especially for said uses.


The present invention also relates to pro-drugs of a compound of formula (I) that convert in vivo to the compound of formula (I) as such. Any reference to a compound of formula (I) is therefore to be understood as referring also to the corresponding pro-drugs of the compound of formula (I), as appropriate and expedient. The pharmacologically acceptable compounds of the present invention may be used, e.g., for the preparation of pharmaceutical compositions that comprise an effective amount of a compound of the formula (I), or a pharmaceutically acceptable salt thereof, as active ingredient together or in admixture with a significant amount of one or more inorganic or organic, solid or liquid, pharmaceutically acceptable carriers.


The invention relates also to a pharmaceutical composition that is suitable for administration to a warm-blooded animal, especially a human (or to cells or cell lines derived from a warm-blooded animal, especially a human, e.g., lymphocytes), for the treatment or, in a broader aspect of the invention, prevention of (=prophylaxis against) a disease that responds to inhibition of protein kinase activity, comprising an amount of a compound of formula (I) or a pharmaceutically acceptable salt thereof, which is effective for said inhibition, especially the in, together with at least one pharmaceutically acceptable carrier.


The pharmaceutical compositions according to the invention are those for enteral, such as nasal; rectal or oral; parenteral, such as intramuscular or intravenous; or topical, such as dermal administration to warm-blooded animals (especially a human), that comprise an effective dose of the pharmacologically active ingredient, alone or together with a significant amount of a pharmaceutically acceptable carrier. The dose of the active ingredient depends on the species of warm-blooded animal, the body weight, the age and the individual condition, individual pharmacokinetic data, the disease to be treated and the mode of administration.


The invention relates also to a method of treatment for a disease that responds to inhibition of a lipid or protein kinase, which comprises administering an (against the mentioned disease) prophylactically or especially therapeutically effective amount of a compound of formula (I) according to the invention, especially to a warm-blooded animal, e.g., a human, that, on account of one of the mentioned diseases, requires such treatment.


The dose of a compound of the formula (I) or a pharmaceutically acceptable salt thereof to be administered to warm-blooded animals, e.g., humans of approximately 70 kg body weight, is preferably from approximately 3 mg to approximately 10 g, more preferably from approximately 10 mg to approximately 1.5 g, most preferably from about 100 mg to about 1000 mg/person/day, divided preferably into 1-3 single doses which may, e.g., be of the same size. Usually, children receive half of the adult dose.


The pharmaceutical compositions comprise from approximately 1% to approximately 95%, preferably from approximately 20% to approximately 90%, active ingredient. Pharmaceutical compositions according to the invention may be, e.g., in unit dose form, such as in the form of ampoules, vials, suppositories, dragées, tablets or capsules.


The pharmaceutical compositions of the present invention are prepared in a manner known per se, e.g., by means of conventional dissolving, lyophilizing, mixing, granulating or confectioning processes.


Solutions of the active ingredient, and also suspensions, and especially isotonic aqueous solutions or suspensions, are preferably used, it being possible, e.g., in the case of lyophilized compositions that comprise the active ingredient alone or together with a carrier, e.g., mannitol, for such solutions or suspensions to be produced prior to use. The pharmaceutical compositions may be sterilized and/or may comprise excipients, e.g., preservatives, stabilizers, wetting and/or emulsifying agents, solubilizers, salts for regulating the osmotic pressure and/or buffers; and are prepared in a manner known per se, e.g., by means of conventional dissolving or lyophilizing processes. The said solutions or suspensions may comprise viscosity-increasing substances, such as sodium carboxymethylcellulose, carboxymethylcellulose, dextran, polyvinylpyrrolidone or gelatin.


Suspensions in oil comprise as the oil component the vegetable, synthetic or semi-synthetic oils customary for injection purposes. There may be mentioned as such especially liquid fatty acid esters that contain as the acid component a long-chained fatty acid having from 8-22 carbon atoms, especially from 12-22 carbon atoms, e.g., lauric acid, tridecylic acid, myristic acid, pentadecylic acid, palmitic acid, margaric acid, stearic acid, arachidic acid, behenic acid or corresponding unsaturated acids, e.g., oleic acid, elaidic acid, erucic acid, brasidic acid or linoleic acid, if desired with the addition of antioxidants, e.g., vitamin E, β-carotene or 3,5-di-tert-butyl-4-hydroxytoluene. The alcohol component of those fatty acid esters has a maximum of 6 carbon atoms and is a mono- or poly-hydroxy, e.g., a mono-, di- or tri-hydroxy; alcohol, e.g., methanol, ethanol, propanol, butanol or pentanol; or the isomers thereof, but especially glycol and glycerol. The following examples of fatty acid esters are therefore to be mentioned: ethyl oleate, isopropyl myristate, isopropyl palmitate, “Labrafil M 2375” (polyoxyethylene glycerol trioleate, Gattefossé, Paris), “Miglyol 812” (triglyceride of saturated fatty acids with a chain length of C8-C12, Hüls A G, Germany), but especially vegetable oils, such as cottonseed oil, almond oil, olive oil, castor oil, sesame oil, soybean oil and more especially groundnut oil.


The injection compositions are prepared in customary manner under sterile conditions; the same applies also to introducing the compositions into ampoules or vials and sealing the containers.


Pharmaceutical compositions for oral administration can be obtained by combining the active ingredient with solid carriers, if desired granulating a resulting mixture, and processing the mixture, if desired or necessary, after the addition of appropriate excipients, into tablets, dragée cores or capsules. It is also possible for them to be incorporated into plastics carriers that allow the active ingredients to diffuse or be released in measured amounts.


Suitable carriers are especially fillers, such as sugars, e.g., lactose, saccharose, mannitol or sorbitol; cellulose preparations and/or calcium phosphates, e.g., tricalcium phosphate or calcium hydrogen phosphate; and binders, such as starch pastes using, e.g., corn, wheat, rice or potato starch, gelatin, tragacanth, methylcellulose, hydroxypropylmethylcellulose, sodium carboxymethylcellulose and/or polyvinylpyrrolidone; and/or, if desired, disintegrators, such as the above-mentioned starches; and/or carboxymethyl starch, crosslinked polyvinylpyrrolidone, agar, alginic acid or a salt thereof, such as sodium alginate. Excipients are especially flow conditioners and lubricants, e.g., silicic acid, talc, stearic acid or salts thereof, such as magnesium or calcium stearate; and/or polyethylene glycol. Dragée cores are provided with suitable, optionally enteric, coatings, there being used, inter alia, concentrated sugar solutions which may comprise gum arabic, talc, polyvinylpyrrolidone, polyethylene glycol and/or titanium dioxide; or coating solutions in suitable organic solvents, or, for the preparation of enteric coatings, solutions of suitable cellulose preparations, such as ethylcellulose phthalate or hydroxypropylmethylcellulose phthalate. Capsules are dry-filled capsules made of gelatin and soft sealed capsules made of gelatin and a plasticizer, such as glycerol or sorbitol. The dry-filled capsules may comprise the active ingredient in the form of granules, e.g., with fillers, such as lactose; binders, such as starches; and/or glidants, such as talc or magnesium stearate; and if desired with stabilizers. In soft capsules the active ingredient is preferably dissolved or suspended in suitable oily excipients, such as fatty oils, paraffin oil or liquid polyethylene glycols, it being possible also for stabilizers and/or antibacterial agents to be added. Dyes or pigments may be added to the tablets or dragée coatings or the capsule casings, e.g., for identification purposes or to indicate different doses of active ingredient.


Pharmaceutical compositions for topical administration can be obtained by combining the active ingredient with a liquid carrier (e.g. an aqueous liquid carrier) to dissolve or disperse the active, together with further optional formulating ingredients such as solvents/solubilisers, gelling agents, oils, stabilisers, buffers and preservatives to provide for example a solution, lotion, cream, gel or ointment. The pharmaceutical compositions for topical administration may be provided, for example, for dermal application. The pharmaceutical compositions for topical administration may comprise from approximately 0.1% to approximately 2% of active ingredient, the active ingredient being especially a compound of formula (I), in particular, a compound described in the individual examples herein.


Compounds of the invention display particularly high solubilities in organic solvents. The compounds of the invention are thus particularly useful for topical administration, e.g. to a mammal such as a human, e.g. to the skin of said mammal. The compounds are thus useful for formulation into compositions suitable for topical administration. Compounds displaying high solubility thus provide an advantage for topical administration over compounds having a lower solubility.


The solubility of certain compounds was determined in the organic solvents PEG400, propyleneglycol and ethanol. The results are provided in the following table, showing high solubilities of the specified compounds, demonstrating that those compounds are particularly suitable for formulation into compositions for topical administration.

















Example
Example
Example




4.1
58.1
84.1
Example 191.1



Solubility
Solubility
Solubility
Solubility


Excipient
[mg/mL]
[mg/mL]
[mg/mL]
[mg/mL]



















PEG400
>20
>26
>19
>23


Propyleneglycol
>20
>24
>20
>19


Ethanol abs.
4.11
>22
>21
>24










Combinations


A compound of the formula (I) may also be used to advantage in combination with each other or in combination with other therapeutic agents, especially other antiproliferative agents. Such antiproliferative agents include, but are not limited to, aromatase inhibitors; antiestrogens; topoisomerase I inhibitors; topoisomerase II inhibitors; microtubule active agents; alkylating agents; histone deacetylase inhibitors; compounds, which induce cell differentiation processes; cyclooxygenase inhibitors; MMP inhibitors; mTOR inhibitors; antineoplastic antimetabolites; platin compounds; compounds targeting/decreasing a protein or lipid kinase activity and further anti-angiogenic compounds; compounds which target, decrease or inhibit the activity of a protein or lipid phosphatase; gonadorelin agonists; anti-androgens; methionine aminopeptidase inhibitors; bisphosphonates; biological response modifiers; antiproliferative antibodies; heparanase inhibitors; inhibitors of Ras oncogenic isoforms; telomerase inhibitors; proteasome inhibitors; agents used in the treatment of hematologic malignancies; compounds which target, decrease or inhibit the activity of Flt-3; Hsp90 inhibitors; temozolomide (TEMODAL®); and leucovorin.


The term “aromatase inhibitor”, as used herein, relates to a compound which inhibits the estrogen production, i.e., the conversion of the substrates androstenedione and testosterone to estrone and estradiol, respectively. The term includes, but is not limited to, steroids, especially atamestane, exemestane and formestane; and, in particular, non-steroids, especially aminoglutethimide, roglethimide, pyridoglutethimide, trilostane, testolactone, ketokonazole, vorozole, fadrozole, anastrozole and letrozole. Exemestane can be administered, e.g., in the form as it is marketed, e.g., under the trademark AROMASIN. Formestane can be administered, e.g., in the form as it is marketed, e.g., under the trademark LENTARON. Fadrozole can be administered, e.g., in the form as it is marketed, e.g., under the trademark AFEMA. Anastrozole can be administered, e.g., in the form as it is marketed, e.g., under the trademark ARIMIDEX. Letrozole can be administered, e.g., in the form as it is marketed, e.g., under the trademark FEMARA or FEMAR. Aminoglutethimide can be administered, e.g., in the form as it is marketed, e.g., under the trademark ORIMETEN. A combination of the invention comprising a chemotherapeutic agent which is an aromatase inhibitor is particularly useful for the treatment of hormone receptor positive tumors, e.g., breast tumors.


The term “anti-estrogen”, as used herein, relates to a compound which antagonizes the effect of estrogens at the estrogen receptor level. The term includes, but is not limited to, tamoxifen, fulvestrant, raloxifene and raloxifene hydrochloride. Tamoxifen can be administered, e.g., in the form as it is marketed, e.g., under the trademark NOLVADEX. Raloxifene hydrochloride can be administered, e.g., in the form as it is marketed, e.g., under the trademark EVISTA. Fulvestrant can be formulated as disclosed in U.S. Pat. No. 4,659,516 or it can be administered, e.g., in the form as it is marketed, e.g., under the trademark FASLODEX. A combination of the invention comprising a chemotherapeutic agent which is an antiestrogen is particularly useful for the treatment of estrogen receptor positive tumors, e.g., breast tumors.


The term “anti-androgen”, as used herein, relates to any substance which is capable of inhibiting the biological effects of androgenic hormones and includes, but is not limited to, bicalutamide (CASODEX), which can be formulated, e.g., as disclosed in U.S. Pat. No. 4,636,505.


The term “gonadorelin agonist”, as used herein, includes, but is not limited to, abarelix, goserelin and goserelin acetate. Goserelin is disclosed in U.S. Pat. No. 4,100,274 and can be administered, e.g., in the form as it is marketed, e.g., under the trademark ZOLADEX. Abarelix can be formulated, e.g., as disclosed in U.S. Pat. No. 5,843,901.


The term “topoisomerase I inhibitor”, as used herein, includes, but is not limited to, topotecan, gimatecan, irinotecan, camptothecian and its analogues, 9-nitrocamptothecin and the macromolecular camptothecin conjugate PNU-166148 (compound A1 in WO 99/17804). Irinotecan can be administered, e.g., in the form as it is marketed, e.g., under the trademark CAMPTOSAR. Topotecan can be administered, e.g., in the form as it is marketed, e.g., under the trademark HYCAMTIN.


The term “topoisomerase II inhibitor”, as used herein, includes, but is not limited to, the anthracyclines, such as doxorubicin, including liposomal formulation, e.g., CAELYX; daunorubicin; epirubicin; idarubicin; nemorubicin; the anthraquinones mitoxantrone and losoxantrone; and the podophillotoxines etoposide and teniposide. Etoposide can be administered, e.g., in the form as it is marketed, e.g., under the trademark ETOPOPHOS. Teniposide can be administered, e.g., in the form as it is marketed, e.g., under the trademark VM 26-BRISTOL. Doxorubicin can be administered, e.g., in the form as it is marketed, e.g., under the trademark ADRIBLASTIN or ADRIAMYCIN. Epirubicin can be administered, e.g., in the form as it is marketed, e.g., under the trademark FARMORUBICIN. Idarubicin can be administered, e.g., in the form as it is marketed, e.g., under the trademark ZAVEDOS. Mitoxantrone can be administered, e.g., in the form as it is marketed, e.g., under the trademark NOVANTRON.


The term “microtubule active agent” relates to microtubule stabilizing, microtubule destabilizing agents and microtublin polymerization inhibitors including, but not limited to, taxanes, e.g., paclitaxel and docetaxel; vinca alkaloids, e.g., vinblastine, especially vinblastine sulfate; vincristine, especially vincristine sulfate and vinorelbine; discodermolides; cochicine; and epothilones and derivatives thereof, e.g., epothilone B or D or derivatives thereof. Paclitaxel may be administered, e.g., in the form as it is marketed, e.g., TAXOL. Docetaxel can be administered, e.g., in the form as it is marketed, e.g., under the trademark TAXOTERE. Vinblastine sulfate can be administered, e.g., in the form as it is marketed, e.g., under the trademark VINBLASTIN R.P. Vincristine sulfate can be administered, e.g., in the form as it is marketed, e.g., under the trademark FARMISTIN. Discodermolide can be obtained, e.g., as disclosed in U.S. Pat. No. 5,010,099. Also included are epothilone derivatives which are disclosed in WO 98/10121, U.S. Pat. No. 6,194,181, WO 98/25929, WO 98/08849, WO 99/43653, WO 98/22461 and WO 00/31247. Especially preferred are epothilone A and/or B.


The term “alkylating agent”, as used herein, includes, but is not limited to, cyclophosphamide, ifosfamide, melphalan or nitrosourea (BCNU or Gliadel). Cyclophosphamide can be administered, e.g., in the form as it is marketed, e.g., under the trademark CYCLOSTIN. Ifosfamide can be administered, e.g., in the form as it is marketed, e.g., under the trademark HOLOXAN.


The term “histone deacetylase inhibitors” or “HDAC inhibitors” relates to compounds which inhibit the histone deacetylase and which possess antiproliferative activity. This includes compounds disclosed in WO 02/22577, especially N-hydroxy-3-[4-[[(2-hydroxyethyl)[2-(1H-indol-3-yl)ethyl]-amino]methyl]phenyl]-2E-2-propenamide, N-hydroxy-3-[4-[[[2-(2-methyl-1H-indol-3-yl)-ethyl]-amino]methyl]phenyl]-2E-2-propenamide and pharmaceutically acceptable salts thereof. It further especially includes suberoylanilide hydroxamic acid (SAHA).


The term “antineoplastic antimetabolite” includes, but is not limited to, 5-fluorouracil or 5-FU; capecitabine; gemcitabine; DNA demethylating agents, such as 5-azacytidine and decitabine; methotrexate and edatrexate; and folic acid antagonists, such as pemetrexed. Capecitabine can be administered, e.g., in the form as it is marketed, e.g., under the trademark XELODA. Gemcitabine can be administered, e.g., in the form as it is marketed, e.g., under the trademark GEMZAR. Also included is the monoclonal antibody trastuzumab which can be administered, e.g., in the form as it is marketed, e.g., under the trademark HERCEPTIN.


The term “platin compound”, as used herein, includes, but is not limited to, carboplatin, cis-platin, cisplatinum and oxaliplatin. Carboplatin can be administered, e.g., in the form as it is marketed, e.g., under the trademark CARBOPLAT. Oxaliplatin can be administered, e.g., in the form as it is marketed, e.g., under the trademark ELOXATIN.


The term “compounds targeting/decreasing a protein or lipid kinase activity; or a protein or lipid phosphatase activity; or further anti-angiogenic compounds”, as used herein, includes, but is not limited to, protein tyrosine kinase and/or serine and/or threonine kinase inhibitors or lipid kinase inhibitors, e.g.,

    • a) compounds targeting, decreasing or inhibiting the activity of the platelet-derived growth factor-receptors (PDGFR), such as compounds which target, decrease or inhibit the activity of PDGFR, especially compounds which inhibit the PDGF receptor, e.g., a N-phenyl-2-pyrimidine-amine derivative, e.g., imatinib, SU101, SU6668 and GFB-111;
    • b) compounds targeting, decreasing or inhibiting the activity of the fibroblast growth factor-receptors (FGFR);
    • c) compounds targeting, decreasing or inhibiting the activity of the insulin-like growth factor receptor I (IGF-IR), such as compounds which target, decrease or inhibit the activity of IGF-IR, especially compounds which inhibit the IGF-IR receptor, such as those compounds disclosed in WO 02/092599;
    • d) compounds targeting, decreasing or inhibiting the activity of the Trk receptor tyrosine kinase family;
    • e) compounds targeting, decreasing or inhibiting the activity of the Axl receptor tyrosine kinase family;
    • f) compounds targeting, decreasing or inhibiting the activity of the c-Met receptor;
    • g) compounds targeting, decreasing or inhibiting the activity of the Kit/SCFR receptor tyrosine kinase;
    • h) compounds targeting, decreasing or inhibiting the activity of the C-kit receptor tyrosine kinases—(part of the PDGFR family), such as compounds which target, decrease or inhibit the activity of the c-Kit receptor tyrosine kinase family, especially compounds which inhibit the c-Kit receptor, e.g., imatinib;
    • i) compounds targeting, decreasing or inhibiting the activity of members of the c-Abl family and their gene-fusion products, e.g., BCR-Abl kinase, such as compounds which target decrease or inhibit the activity of c-Abl family members and their gene fusion products, e.g., a N-phenyl-2-pyrimidine-amine derivative, e.g., imatinib, PD180970, AG957, NSC 680410 or PD173955 from ParkeDavis;
    • j) compounds targeting, decreasing or inhibiting the activity of members of the protein kinase C (PKC) and Raf family of serine/threonine kinases, members of the MEK, SRC, JAK, FAK, PDK and Ras/MAPK family members, or PI(3) kinase family, or of the PI(3)-kinase-related kinase family, and/or members of the cyclin-dependent kinase family (CDK) and are especially those staurosporine derivatives disclosed in U.S. Pat. No. 5,093,330, e.g., midostaurin; examples of further compounds include, e.g., UCN-01; safingol; BAY 43-9006; Bryostatin 1; Perifosine; Ilmofosine; RO 318220 and RO 320432; GO 6976; Isis 3521; LY333531/LY379196; isochinoline compounds, such as those disclosed in WO 00/09495; FTIs; PD184352; or QAN697 (a P13K inhibitor);
    • k) compounds targeting, decreasing or inhibiting the activity of protein-tyrosine kinase inhibitors, such as compounds which target, decrease or inhibit the activity of protein-tyrosine kinase inhibitors include imatinib mesylate (GLEEVEC) or tyrphostin. A tyrphostin is preferably a low molecular weight (Mr<1500) compound, or a pharmaceutically acceptable salt thereof, especially a compound selected from the benzylidenemalonitrile class or the S-arylbenzenemalonirile or bisubstrate quinoline class of compounds, more especially any compound selected from the group consisting of Tyrphostin A23/RG-50810, AG 99, Tyrphostin AG 213, Tyrphostin AG 1748, Tyrphostin AG 490, Tyrphostin B44, Tyrphostin B44 (+) enantiomer, Tyrphostin AG 555, AG 494, Tyrphostin AG 556, AG957 and adaphostin (4-{[(2,5-dihydroxyphenyl)methyl]amino}-benzoic acid adamantyl ester, NSC 680410, adaphostin; and
    • l) compounds targeting, decreasing or inhibiting the activity of the epidermal growth factor family of receptor tyrosine kinases (EGFR, ErbB2, ErbB3, ErbB4 as homo- or hetero-dimers), such as compounds which target, decrease or inhibit the activity of the epidermal growth factor receptor family are especially compounds, proteins or antibodies which inhibit members of the EGF receptor tyrosine kinase family, e.g., EGF receptor, ErbB2, ErbB3 and ErbB4 or bind to EGF or EGF related ligands, and are in particular those compounds, proteins or monoclonal antibodies generically and specifically disclosed in WO 97/02266, e.g., the compound of Example 39, or in EP 0 564 409; WO 99/03854; EP 0520722; EP 0 566 226; EP 0 787 722; EP 0 837 063; U.S. Pat. No. 5,747,498; WO 98/10767; WO 97130034; WO 97/49688; WO 97/38983 and, especially, WO 96/30347, e.g., compound known as CP 358774; WO 96/33980, e.g., compound ZD 1839; and WO 95/03283, e.g., compound ZM105180, e.g., trastuzumab (HERCEPTIN), cetuximab, Iressa, Tarceva, OSI-774, CI-1033, EKB-569, GW-2016, E1.1, E2.4, E2.5, E6.2, E6.4, E2.11, E6.3 or E7.6.3; and 7H-pyrrolo-[2,3-d]pyrimidine derivatives which are disclosed in WO 03/013541.


Further anti-angiogenic compounds include compounds having another mechanism for their activity, e.g., unrelated to protein or lipid kinase inhibition, e.g., thalidomide (THALOMID) and TNP-470.


Compounds which target, decrease or inhibit the activity of a protein or lipid phosphatase are, e.g., inhibitors of phosphatase 1, phosphatase 2A, PTEN or CDC25, e.g., okadaic acid or a derivative thereof.


Compounds which induce cell differentiation processes are e.g. retinoic acid, α- γ- or δ-tocopherol or α- γ- or δ-tocotrienol.


The term cyclooxygenase inhibitor, as used herein, includes, but is not limited to, e.g., Cox-2 inhibitors, 5-alkyl substituted 2-arylaminophenylacetic acid and derivatives, such as celecoxib (CELEBREX), rofecoxib (VIOXX), etoricoxib, valdecoxib or a 5-alkyl-2-arylaminophenylacetic acid, e.g., 5-methyl-2-(2′-chloro-6′-fluoroanilino)phenyl acetic acid or lumiracoxib.


The term “bisphosphonates”, as used herein, includes, but is not limited to, etridonic, clodronic, tiludronic, pamidronic, alendronic, ibandronic, risedronic and zoledronic acid. “Etridonic acid” can be administered, e.g., in the form as it is marketed, e.g., under the trademark DIDRONEL. “Clodronic acid” can be administered, e.g., in the form as it is marketed, e.g., under the trademark BONEFOS. “Tiludronic acid” can be administered, e.g., in the form as it is marketed, e.g., under the trademark SKELID. “Pamidronic acid” can be administered, e.g., in the form as it is marketed, e.g., under the trademark AREDIA™. “Alendronic acid” can be administered, e.g., in the form as it is marketed, e.g., under the trademark FOSAMAX. “Ibandronic acid” can be administered, e.g., in the form as it is marketed, e.g., under the trademark BONDRANAT. “Risedronic acid” can be administered, e.g., in the form as it is marketed, e.g., under the trademark ACTONEL. “Zoledronic acid” can be administered, e.g., in the form as it is marketed, e.g., under the trademark ZOMETA.


The term “mTOR inhibitors” relates to compounds which inhibit the mammalian target of rapamycin (mTOR) and which possess antiproliferative activity, such as sirolimus (Rapamune®), everolimus (Certican™), CCI-779 and ABT578.


The term “heparanase inhibitor”, as used herein, refers to compounds which target, decrease or inhibit heparin sulphate degradation. The term includes, but is not limited to, PI-88.


The term “biological response modifier”, as used herein, refers to a lymphokine or interferons, e.g., interferon γ.


The term “inhibitor of Ras oncogenic isoforms”, e.g., H-Ras, K-Ras or N-Ras, as used herein, refers to compounds which target, decrease or inhibit the oncogenic activity of Ras, e.g., a “farnesyl transferase inhibitor”, e.g., L-744832, DK8G557 or R115777 (Zarnestra).


The term “telomerase inhibitor”, as used herein, refers to compounds which target, decrease or inhibit the activity of telomerase. Compounds which target, decrease or inhibit the activity of telomerase are especially compounds which inhibit the telomerase receptor, e.g., telomestatin.


The term “methionine aminopeptidase inhibitor”, as used herein, refers to compounds which target, decrease or inhibit the activity of methionine aminopeptidase. Compounds which target, decrease or inhibit the activity of methionine aminopeptidase are, e.g., bengamide or a derivative thereof.


The term “proteasome inhibitor”, as used herein, refers to compounds which target, decrease or inhibit the activity of the proteasome. Compounds which target, decrease or inhibit the activity of the proteasome include, e.g., PS-341 and MLN 341.


The term “matrix metalloproteinase inhibitor” or “MMP inhibitor”, as used herein, includes, but is not limited to, collagen peptidomimetic and nonpeptidomimetic inhibitors, tetracycline derivatives, e.g., hydroxamate peptidomimetic inhibitor batimastat and its orally bioavailable analogue marimastat (BB-2516), prinomastat (AG3340), metastat (NSC 683551) BMS-279251, BAY 12-9566, TAA211, MMI270B or AAJ996.


The term “agents used in the treatment of hematologic malignancies”, as used herein, includes, but is not limited to, FMS-like tyrosine kinase inhibitors, e.g., compounds targeting, decreasing or inhibiting the activity of FMS-like tyrosine kinase receptors (Flt-3R); interferon, 1-b-D-arabinofuransylcytosine (ara-c) and bisulfan; and ALK inhibitors, e.g., compounds which target, decrease or inhibit anaplastic lymphoma kinase.


Compounds which target, decrease or inhibit the activity of FMS-like tyrosine kinase receptors (Flt-3R) are especially compounds, proteins or antibodies which inhibit members of the Flt-3R receptor kinase family, e.g., PKC412, midostaurin, a staurosporine derivative, SU11248 and MLN518.


The term “HSP90 inhibitors”, as used herein, includes, but is not limited to, compounds targeting, decreasing or inhibiting the intrinsic ATPase activity of HSP90; degrading, targeting, decreasing or inhibiting the HSP90 client proteins via the ubiquitin proteasome pathway. Compounds targeting, decreasing or inhibiting the intrinsic ATPase activity of HSP90 are especially compounds, proteins or antibodies which inhibit the ATPase activity of HSP90, e.g., 17-allylamino,17-demethoxygeldanamycin (17AAG), a geldanamycin derivative, other geldanamycin related compounds, radicicol and HDAC inhibitors.


The term “antiproliferative antibodies”, as used herein, includes, but is not limited to, trastuzumab (Herceptin™), Trastuzumab-DM1, erlotinib (Tarceva™), bevacizumab (Avastin™), rituximab (Rituxan®), PRO64553 (anti-CD40) and 2C4 antibody. By antibodies is meant, e.g., intact monoclonal antibodies, polyclonal antibodies, multispecific antibodies formed from at least two intact antibodies, and antibodies fragments so long as they exhibit the desired biological activity.


For the treatment of acute myeloid leukemia (AML), compounds of formula (I) can be used in combination with standard leukemia therapies, especially in combination with therapies used for the treatment of AML. In particular, compounds of formula (I) can be administered in combination with, e.g., farnesyl transferase inhibitors and/or other drugs useful for the treatment of AML, such as Daunorubicin, Adriamycin, Ara-C, VP-16, Teniposide, Mitoxantrone, Idarubicin, Carboplatinum and PKC412.


The structure of the active agents identified by code nos., generic or trade names may be taken from the actual edition of the standard compendium “The Merck Index” or from databases, e.g., Patents International, e.g., IMS World Publications.


The above-mentioned compounds, which can be used in combination with a compound of the formula (I), can be prepared and administered as described in the art, such as in the documents cited above.


A compound of the formula (I) may also be used to advantage in combination with known therapeutic processes, e.g., the administration of hormones or especially radiation.


A compound of formula (I) may in particular be used as a radiosensitizer, especially for the treatment of tumors which exhibit poor sensitivity to radiotherapy.


By “combination”, there is meant either a fixed combination in one dosage unit form, or a kit of parts for the combined administration where a compound of the formula (I) and a combination partner may be administered independently at the same time or separately within time intervals that especially allow that the combination partners show a cooperative, e.g., synergistic, effect or any combination thereof. The terms “co-administration” or “combined administration” or the like as utilized herein are meant to encompass administration of the selected combination partner to a single subject in need thereof (e.g. a patient), and are intended to include treatment regimens in which the agents are not necessarily administered by the same route of administration or at the same time. The term “pharmaceutical combination” as used herein means a product that results from the mixing or combining of more than one active ingredient and includes both fixed and non-fixed combinations of the active ingredients. The term “fixed combination” means that the active ingredients, e.g. a compound of formula I and a combination partner, are both administered to a patient simultaneously in the form of a single entity or dosage. The term “non-fixed combination” means that the active ingredients, e.g. a compound of formula (I) and a combination partner, are both administered to a patient as separate entities either simultaneously, concurrently or sequentially with no specific time limits, wherein such administration provides therapeutically effective levels of the two compounds in the body of the patient. The latter also applies to cocktail therapy, e.g. the administration of three or more active ingredients.


The following examples are merely illustrative and not meant to limit the scope of the present claims in any manner.


EXAMPLES

The following examples serve to illustrate the invention without limiting the scope thereof:


Temperatures are measured in degrees Celsius. Unless otherwise indicated, the reactions take place at rt. The following HPLC/MS and MS methods are used in the preparation of the Intermediates and Examples:


HPLC Method:


Method A


HPLC linear gradient between A=H2O/TFA 1000:1 and B=acetonitrile/TFA 1000:1 Grad 1: 2-100% Bin 4.5 min and 1 min at 100% B; column: Chromolith Performance 100 mm×4.5 mm (Merck, Darmstadt, Germany); flow rate 2 ml/min. Detection at 215 nM.


LC-MS Method:


Method B


System: Agilent 1100 Series with Waters Micromass ZQ


Column: XBridge C18, 3×30 mm, 2.5 micron


Flow Rate: 1.4-2.4 mL/min


Eluent A: H2O, containing 5% acetonitrile and 0.8% HCOOH


Eluent B: acetonitrile, containing 0.6% HCOOH


Gradient: 0-2.4 min: 10% to 95% of B


In the following examples, the abbreviations given below are used:















DCM
dichloromethane


DIPEA
N,N-diisopropylethylamine


DMA
dimethylacetamide


DME
1,2-dimethoxyethane


DMF
N,N-dimethylformamide


DMSO
dimethyl sulfoxide


EtOAc
ethyl acetate


h
hour(s)


HPLC
high performance liquid chromatography


HV
high vacuum


Intermed.
intermediate


iPrMgCl
isopropylmagnesium chloride


iPrOH
isopropanol


LC-MS
liquid chromatography coupled with mass spectrometry


MeOH
methanol


ml
milliliter(s)


min
minute(s)


MS-ES
electrospray mass spectrometry


NMP
N-methyl-2-pyrrolidone


PdCl2(dppf)
[1,1′-bis(diphenylphosphino)ferrocene]dichloropalladium



(II)


PdCl2(PPh3)2
bis(triphenylphosphine)palladium (II) dichloride


Pd2(dba)3
tris(dibenzylideneacetone)dipalladium (0)


Prep.HPLC
preparative high performance liquid chromatography


qt
quintuplet


RM
reaction mixture


rt
room temperature


TEA
triethylamine


TFA
trifluoroacetic acid


THF
tedrahydrofurane


tR
retention time


TPTU
O-(1,2-dihydro-2-oxo-1-pyridyl)-N,N,N′-N′-



tetramethyluronium tetrafluoroborate









Intermediate A: 8-Bromo-1-(1,3-dimethyl-1H-pyrazol-4-yl)-3-methyl-1,3-dihydro-imidazo[4,5-c]quinolin-2-one



embedded image


NaOH (0.568 g, 14.19 mmol) and tetrabutylammonium bromide (0.229 g, 0.710 mmol) were added to a mixture of 8-bromo-1-(1,3-dimethyl-1H-pyrazol-4-yl)-1,3-dihydro-imidazo[4,5-c]quinolin-2-one (Stage A.1, 3.10 g, 7.100 mmol) in DCM (108 ml) and H2O (54 ml) and stirred at rt for 5 min. Then iodomethane (1.52 ml, 24.1 mmol) was added and the mixture was stirred for 14 h at rt. Iodomethane (0.4 ml, 6.35 mmol) was added and the RM was stirred at rt for 23.5 h. Then the RM was extracted with DCM (2×), washed with saturated aqueous NaHCO3 and brine, dried over Na2SO4, filtered and evaporated to dryness. The residue was dissolved in DCM and purified by flash chromatography (DCM/MeOH 0%-4.5%) to give the title compound as a brownish solid (HPLC: tR 2.37 min (Method A); M+H=374 MS-ES; 1H-NMR (d6-DMSO, 400 MHz) 9.00 (s, 1H), 8.08 (s, 1H), 7.91-7.99 (m, 1H), 7.64-7.71 (m, 1H), 7.41-7.47 (m, 1H), 3.90 (s, 3H), 3.55 (s, 3H), 1.94 (s, 3H))


Stage A.1: 8-Bromo-1-(1,3-dimethyl-1H-pyrazol-4-yl)-1,3-dihydro-imidazo[4,5-c]quinolin-2-one



embedded image


To a solution of 6-bromo-N*4*-(1,3-dimethyl-1H-pyrazol-4-yl)-quinoline-3,4-diamine (Stage A.2, 3.15 g, 8.15 mmol) and TEA (1.36 ml, 9.79 mmol) in DCM (65 ml) was added under argon, after cooling with an ice-bath, a solution of trichloromethyl chloroformate (1.08 ml, 8.97 mmol in DCM (65 ml). The mixture was stirred for 25 min at 0° C. Then the RM was quenched with sat. aqueous NaHCO3 (300 ml) and 10 M aqueous NaOH (4 ml) and well stirred. The phases were separated and extracted with EtOAc (3×). The combined organic layers were washed with brine (2×), dried over Na2SO4, filtered and evaporated to dryness to give the title compound as a brownish solid (HPLC tR 2.29 min (Method A); M+H=360; M−H=358 MS-ES)


Stage A.2 6-Bromo-N*4*-(1,3-dimethyl-1H-pyrazol-4-yl)-quinoline-3,4-diamine



embedded image


(6-Bromo-3-nitro-quinolin-4-yl)-(1,3-dimethyl-1H-pyrazol-4-yl)-amine (Stage A.3, 3.67 g 9.73 mmol) was shacked in MeOH/THF 1:1 (120 ml) under 1.1 bar H2 in presence of Raney nickel (1.50 g) as catalyst for 5 h at rt. The RM was filtered over celite, the catalyst was washed with MeOH/DCM and the solution was evaporated to dryness to give the title compound as a red solid (HPLC tR 2.44 min (Method A); M+H=334; M−H=332 MS-ES)


Stage A.3 (6-Bromo-3-nitro-quinolin-4-yl)-(1,3-dimethyl-1H-pyrazol-4-yl)-amine



embedded image


To a mixture of 6-bromo-4-chloro-3-nitro-quinoline (Stage A.4, 3.0 g, 20.43 mmol) and 4-amino-1,3-dimethylpyrazole.HCl (ChemCollect, Remscheid, Germany, 1.85 g, 12.53 mmol) in DMA (45 ml) was added 1,2,2,6,6-pentamethylpiperidine (6.67 ml, 36.5 mmol). The RM was stirred at 50° C. for 4.5 h. Then the RM was cooled down to rt and quenched with H2O. The suspension was filtered, the solid cake was washed with H2O and dried under vacuum, before being dissolved in EtOAc. The solution was washed with brine (2×), dried over Na2SO4, filtered and evaporated to dryness to give the title compound as an orange solid (HPLC tR 2.55 min (Method A); M+H=362; M−H=360 MS-ES)


Stage A.4 6-Bromo-4-chloro-3-nitro-quinoline



embedded image


6-Bromo-3-nitro-quinolin-4-ol (Fluorochem Ltd., Derbyshire, UK, 10 g, 37.2 mmol) was added to POCl3 (70 ml). The RM was stirred at 120° C. for 17 h. Then the RM was cooled with an ice-bath, before being slowly dropped onto ice-water. The precipitate was filtered and washed with cold water. The residue was dissolved in DCM, washed with brine, dried over Na2SO4, filtered and evaporated to give the title compound as a beige solid (HPLC tR 3.64 min (Method A))


The following intermediates were synthesized in a similar manner as described for intermediate A using as replacement for the 4-amino-1,3-dimethylpyrazole.HCl a different aminopyrrazole starting material:


5-Amino-1-ethylpyrazole (Aldrich, Buchs, Switzerland; B)


5-Amino-1,3-dimethylpyrazole (Aldrich, Buchs, Switzerland; C)


5-Amino-1-methyl-3-(trifluoromethyl)pyrazole (Art-Chem, Akos, Steinen, Germany; D)


5-Amino-1-methylpyrazole (Combi-Blocks, San Diego, USA; E)


4-Amino-1-ethyl-3-methylpyrazole.HCl (Art-Chem, Akos, Steinen, Germany; F)


4-Amino-1-isopropyl-3-methylpyrazole.HCl (Art-Chem, Akos, Steinen, Germany; G)


4-Amino-1,3,5-trimethylpyrazole (ABCR, Karlsruhe, Germany; H)


5-Amino-1,4-dimethylpyrazole (ChemBridge, San Diego, USA; I)


4-Amino-1,5-dimethylpyrazole.2HCl (Art-Chem, Akos, Steinen, Germany; J)



















MS-ES
HPLC


Intermed.
structure
Name of the intermediate
(M + H)
tR (min)







B


embedded image


8-Bromo-1-(2-ethyl-2H-pyrazol-3-yl)- 3-methyl-1,3-dihydro-imidazo[4,5- c]quinolin-2-one
372, 374
2.66





C


embedded image


8-Bromo-1-(2,5-dimethyl-2H-pyrazol- 3-yl)-3-methyl-1,3-dihydro-imidazo [4,5-c]quinolin-2-one
372, 374
2.65





D


embedded image


8-Bromo-3-methyl-1-(2-methyl-5-tri- fluoromethyl-2H-pyrazol-3-yl)-1,3-di- hydro-imidazo[4,5-c]quinolin-2-one
426, 428
3.22





E


embedded image


8-Bromo-3-methyl-1-(2-methyl-2H- pyrazol-3-yl)-1,3-dihydro-imidazo[4,5- c]quinolin-2-one
358, 360
2.54





F


embedded image


8-Bromo-1-(1-ethyl-3-methyl-1H-pyra- zol-4-yl)-3-methyl-1,3-dihydro- imidazo[4,5-c]quinolin-2-one
386, 388
2.54





G


embedded image


8-Bromo-1-(1-isopropyl-3-methyl-1H- pyrazol-4-yl)-3-methyl-1,3-dihydro- imidazo[4,5-c]quinolin-2-one
400, 402
2.70





H


embedded image


8-Bromo-3-methyl-1-(1,3,5-trimethyl- 1H-pyrazol-4-yl)-1,3-dihydro- imidazo[4,5-c]quinolin-2-one
386, 388
2.44





I


embedded image


8-Bromo-1-(2,4-dimethyl-2H-pyrazol- 3-yl)-3-methyl-1,3-dihydro-imidazo [4,5-c]quinolin-2-one
372, 374
2.65





J


embedded image


8-Bromo-1-(1,5-dimethyl-1H-pyrazol- 4-yl)-3-methyl-1,3-dihydro-imidazo [4,5-c]quinolin-2-one
372, 374
2.39





K


embedded image


8-Bromo-1-(3-chloro-1-methyl-1H- pyrazol-4-yl)-3-methyl-1,3-dihydro- imidazo[4,5-c]quinolin-2-one
392, 394 BrCl pattern
2.55





L


embedded image


2-[4-(8-Bromo-3-methyl-2-oxo-2,3- dihydro-imidazo[4,5-c]quinolin-1-yl)-3- methyl-pyrazol-1-yl]-N,N-dimethyl- acetamide
443, 445
2.39





M


embedded image


8-Bromo-3-methyl-1-[3-methyl-1-(2- morpholin-4-yl-2-oxo-ethyl)-1H- pyrazol-4-yl]-1,3-dihydro-imidazo[4,5- c]quinolin-2-one
475, 477
2.52





N


embedded image


8-Bromo-1-[1-(2-methoxy-ethyl)-3,5- dimethyl-1H-pyrazol-4-yl]-3-methyl- 1,3-dihydro-imidazo[4,5-c]quinolin-2- one
430, 432
2.51





O


embedded image


2-[4-(8-Bromo-3-methyl-2-oxo-2,3- dihydro-imidazo[4,5-c]quinolin-1-yl)- 3,5-dimethyl-pyrazol-1-yl]-N,N- dimethyl-acetamide
457, 459
2.36





P


embedded image


2-[4-(8-Bromo-3-methyl-2-oxo-2,3- dihydro-imidazo[4,5-c]quinolin-1-yl)-3- methyl-pyrazol-1-yl]-N-ethyl-N-methyl- acetamide
457, 459
2.46









Stage K.1 3-Chloro-1-methyl-1H-pyrazol-4-ylamine



embedded image


3-Chloro-1-methyl-4-nitro-1H-pyrazole (Stage K.2, 1.0 g 6.19 mmol) was shacked in MeOH/THF 1:1 (62 ml) under 1.1 bar H2 in presence of Raney nickel (0.35 g) as catalyst for 24 h at rt. The RM was filtered over Celite, the catalyst was washed several times with MeOH/THF and the filtrate was evaporated to dryness to give the title compound as a blue oil (HPLC tR 0.89 min (Method A); M+H=132 MS-ES)


Stage K.2 3-Chloro-1-methyl-4-nitro-1H-pyrazole



embedded image


To a solution of 3-chloro-1-methylpyrazole (Maybridge, Basel, Switzerland, 953 mg, 8.18 mmol) in concentrated sulfuric acid (1.4 ml), cooled with an ice-bath, was added over 30 min fuming nitric acid (1.19 mL, 28.6 mmol). The reaction mixture was stirred at rt for 2 h before being poured on ice/water and extracted with EtOAc (2×). The organic layers were washed with saturated aqueous NaHCO3 (2×) and brine, dried over Na2SO4, filtered, evaporated and dried over vacuum to give the title compound as a white solid (HPLC tR 2.24 min (Method A); M+H=162 MS-ES)


Stage L.1 2-(4-Amino-3-methyl-pyrazol-1-yl)-N,N-dimethyl-acetamide



embedded image


The title compound was synthesized in a similar manner as described for stage K.1 using N,N-dimethyl-2-(3-methyl-4-nitro-pyrazol-1-yl)-acetamide (stage L.2) to give the title compound as an oil (HPLC tR 1.03 min (Method A); M+H=183 MS-ES).


Stage L.2 N,N-Dimethyl-2-(3-methyl-4-nitro-pyrazol-1-yl)-acetamide



embedded image


To a solution of 3-methyl-4-nitropyrazole (Apollo, Cheshire, UK, 500 mg, 3.93 mmol) in DMF (10 ml) was added 55% NaH in oil (198 mg, 4.54 mmol) and the reaction mixture was stirred for 30 min at rt. Then to the reaction mixture was added a solution of 2-bromo-N,N-dimethylacetamide (stage L.3, 720 mg, 4.34 mmol) in DMF (3 ml). The reaction mixture was stirred for 1 h at it then quenched with saturated aqueous NaHCO3 and extracted with EtOAc (2×). The combined organic layers were washed with water (2×), brine, dried over Na2SO4, filtered and evaporated. The crude product was purified by Prep. HPLC (H2O (0.1% TFA)/CH3CN 97:2 to 75:25; reverse phase silica gel). The fractions containing product were collected together, basified with NaHCO3 and concentrated before being extracted with EtOAc (3×). The combined organic layers were washed with brine, dried over Na2SO4, filtered and evaporated to give the title compound as a white solid (HPLC tR 2.06 min (Method A); M+H=213 MS-ES).


Stage L.3 2-Bromo-N,N-dimethyl-acetamide



embedded image


To a solution of bromoacetylbromide (Aldrich, Buchs, Switzerland, 4.56 g, 22.6 mmol) in dichloromethane (90 ml) were added sequentially a 2 M solution of dimethylamine in THF (Aldrich, Buchs, Switzerland, 14 ml, 28 mmol) and triethylamine (3.8 ml, 27.3 mmol). The reaction mixture was stirred for 1 h at it then diluted with dichloromethane and washed with 2 M aqueous HCl, sat. aqueous NaHCO3 and brine, dried over Na2SO4, filtered and evaporated to give the title compound as a brownish oil (HPLC tR 1.64 min (Method A); M+H=166, 168 MS-ES).


Stage M.1 2-(4-Amino-3-methyl-pyrazol-1-yl)-1-morpholin-4-yl-ethanone



embedded image


The title compound was synthesized in a similar manner as described for Stage L.1-2 using 2-bromo-1-morpholin-4-yl-ethanone (ChemBridge, San Diego, USA) to give the title compound as a pink solid (HPLC tR 1.05 min (Method A); M+H=225 MS-ES).


Stage N.1 1-(2-Methoxy-ethyl)-3,5-dimethyl-1H-pyrazol-4-ylamine



embedded image


The title compound was synthesized in a similar manner as described for Stage K.1 using 1-(2-methoxy-ethyl)-3,5-dimethyl-4-nitro-1H-pyrazole (Stage N.2) to give the title compound as an oil (HPLC tR 1.15 min (Method A); M+H=170 MS-ES).


Stage N.2 1-(2-Methoxy-ethyl)-3,5-dimethyl-4-nitro-1H-pyrazole



embedded image


To a solution of 3,5-dimethyl-4-nitropyrazole (Fluorochem, Derbyshire, UK, 989 mg, 7.01 mmol) in DMF (40 ml) was added in two portions 55% NaH in oil (420 mg, 9.63 mmol). The reaction mixture was stirred for 30 min at rt then 2-bromoethyl methyl ether (Aldrich, Buchs, Switzerland, 1.17 g, 8.42 mmol) was added and the reaction mixture stirred for 2 h at rt. The reaction mixture was quenched with water and extracted with EtOAc. The organic layer was washed with water (2×) and brine (2×), dried over Na2SO4, filtered and evaporated. The crude product was purified by Prep. HPLC (H2O (0.1% TFA)/CH3CN 95:5 to 50:50; reverse phase silica gel). The fractions containing product were collected together, basified with NaHCO3 and concentrated before being extracted with EtOAc (3×). The combined organic layers were washed with brine, dried over Na2SO4, filtered and evaporated to give the title compound as a white solid (HPLC tR 2.57 min (Method A); M+H=200 MS-ES)


Stage O.1 2-(4-Amino-3,5-dimethyl-pyrazol-1-yl)-N,N-dimethyl-acetamide



embedded image


The title compound was synthesized in a similar manner as described for stage L.1-3 using 3,5-dimethyl-4-nitropyrazole (Fluorochem, Derbyshire, UK) to give the title compound as an oil (HPLC tR 1.13 min (Method A); M+H=197 MS-ES).


Stage P.1 2-(4-Amino-3-methyl-pyrazol-1-yl)-N-ethyl-N-methyl-acetamide



embedded image


The title compound was synthesized in a similar manner as described for Stage K1 using 2-bromo-1-morpholin-4-yl-ethanone (ChemBridge, San Diego, USA) to give the title compound as a pink solid (HPLC tR 1.05 min (Method A); M+H=225 MS-ES).


Stage P.2 N-Ethyl-N-methyl-2-(3-methyl-4-nitro-pyrazol-1-yl)-acetamide



embedded image


A mixture of 3-Methyl-4-nitro-pyrazol-1-yl-acetic acid methylester (ChemCollect, Remscheid, Germany, 1.0 g, 5.02 mmol) in dioxane (40 ml) and 1 M aqueous LiOH (10 ml, 10 mmol) was stirred for 1 h at 50° C. Were added 2 M aqueous HCl (5 ml, 10 mmol) and the solution was evaporated to dryness. The dried residue, TPTU (2.98 g, 10.04 mmol) and DIPEA (2.63 ml, 15.06 mmol) in DMA (30 ml) was stirred under argon at it for 5 min. Then N-ethylmethylamine (Aldrich, Buchs, Switzerland, 1.78 ml, 20.08 mmol) was added and the RM was stirred at it for 20 h. The RM was diluted with EtOAc and washed with saturated aqueous NaHCO3 (2×) and with brine. The aqueous layers were extracted with dichloromethane (3×) and the combined organic layers were dried over Na2SO4, filtered and evaporated. The residue was taken in DMA and purified by Prep. HPLC (H2O (0.1% TFA)/CH3CN 97:3 to 75:25). The fractions containing products were collected together and concentrated. The solution was basified with NaHCO3 and extracted with dichloromethane (2×). The organic layers were washed with brine, dried over Na2SO4, filtered and evaporated to dryness to give the title compound as a light yellow oil. (HPLC: tR 2.25 min (Method A); M+H=227, M−H=225 MS-ES)


Intermediate Q: 8-Bromo-1-(3,5-dimethyl-isoxazol-4-yl)-3-methyl-1,3-dihydro-imidazo[4,5-c]quinolin-2-one



embedded image


The intermediate Q was synthesized in a similar manner as described for intermediate A and stage A1 to A3 using as replacement for the (6-bromo-3-nitro-quinolin-4-yl)-(1,3-dimethyl-1H-pyrazol-4-yl)-amine the (6-bromo-3-nitro-quinolin-4-yl)-(3,5-dimethyl-isoxazol-4-yl)-amine (stage Q1). (HPLC: tR 2.58 min (Method A); M+H=373, 375 MS-ES)


Stage Q1: (6-Bromo-3-nitro-quinolin-4-yl)-(3,5-dimethyl-isoxazol-4-yl)-amine



embedded image


A mixture of 6-bromo-4-chloro-3-nitro-quinoline (Stage A.4, 1.1 g, 3.83 mmol) and 3,5-dimethyl-4-aminoisoxazol (Aldrich, Buchs, Switzerland, 472 mg, 4.21 mmol) in acetic acid (10 ml) was stirred at it for 4 h. Then the RM was quenched with H2O (40 ml). The suspension was filtered, the solid cake was washed with H2O (2×) and dried under vacuum, before being dissolved in EtOAc. The solution was washed with saturated aqueous NaHCO3, dried over Na2SO4, filtered and evaporated to dryness to give the title compound as an orange solid (HPLC tR 2.96 min (Method A); M+H=363, 365; M−H=361, 363 MS-ES).


Example 1.1
8-(3,4-Dimethoxy-phenyl)-1-(1,5-dimethyl-1H-pyrazol-4-yl)-3-methyl-1,3-dihydro-imidazo[4,5-c]quinolin-2-one



embedded image


A mixture of 8-bromo-1-(1,5-dimethyl-1H-pyrazol-4-yl)-3-methyl-1,3-dihydro-imidazo[4,5-c]quinolin-2-one (Intermediate J, 50 mg, 0.132 mmol), 3,4-dimethoxyphenylboronic acid (Aldrich, Buchs, Switzerland, 29 mg, 0.156 mmol) and PdCl2(PPh3)2 (6 mg, 0.0085 mmol) in DMF (1.2 ml) and 1 M aqueous K2CO3 (0.329 ml) was stirred under argon at 105° C. for 1.5 h. Then the RM was cooled to rt, diluted with MeOH/DMA+3 drops TFA and purified directly by Prep. HPLC (H2O (0.1% TFA)/CH3CN 95:5 to 55:45). The fractions containing product were collected together and basified with NaHCO3 (0.3 g), before being concentrated. The resulting suspension was filtered and the cake was washed with water, before being dried under high vacuum to give the title compound as an off-white solid. (HPLC: tR 2.66 min (Method A); M+H=430 MS-ES; 1H-NMR (d6-DMSO, 400 MHz) 8.92 (s, 1H), 8.08-8.01 (m, 1H), 7.95-7.88 (m, 1H), 7.76 (s, 1H), 7.60-7.55 (m, 1H), 7.13-7.08 (m, 1H), 7.05-7.00 (m, 1H), 6.99-6.94 (m, 1H), 3.88-382 (m, 6H), 3.78 (s, 3H), 3.56 (s, 3H), 2.11 (s, 3H))


The following examples were synthesized in a similar manner as described for Example 1.1 using as replacement for intermediate J a different intermediate.






















HPLC






MS-ES
tR


Example
Intermed.
structure
Name of the example
(M + H)
(min)




















1.2
B


embedded image


8-(3,4-Dimethoxy- phenyl)-1-(2-ethyl- 2H-pyrazol-3-yl)-3- methyl-1,3-dihydro- imidazo[4,5- c]quinolin-2-one
430
2.76





1.3
E


embedded image


8-(3,4-Dimethoxy- phenyl)-3-methyl-1- (2-methyl-2H-pyrazol- 3-yl)-1,3-dihydro- imidazo[4,5- c]quinolin-2-one
416
2.68





1.4
C


embedded image


8-(3,4-Dimethoxy- phenyl)-1-(2,5-di- methyl-2H-pyrazol-3-yl)- 3-methyl-1,3- dihydro-imidazo[4,5- c]quinolin-2-one
430
2.79





1.5
G


embedded image


8-(3,4-Dimethoxy- phenyl)-1-(1-iso- propyl-3-methyl-1H- pyrazol-4-yl)-3- methyl-1,3-dihydro- imidazo[4,5-c] quinolin-2-one
458
2.82





1.6
F


embedded image


8-(3,4-Dimethoxy- phenyl)-1-(1-ethyl- 3-methyl-1H-pyrazol- 4-yl)-3-methyl- 1,3-dihydro- imidazo[4,5-c]quinolin- 2-one
444
2.72





1.7
I


embedded image


8-(3,4-Dimethoxy- phenyl)-1-(2,4-di- methyl-2H-pyrazol-3-yl)- 3-methyl-1,3- dihydro-imidazo[4,5- c]quinolin-2-one
430
2.77





1.8
A


embedded image


8-(3,4-Dimethoxy- phenyl)-1-(1,3-di- methyl-1H-pyrazol-4-yl)- 3-methyl-1,3- dihydro-imidazo[4,5- c]quinolin-2-one
430
2.65





1.9
H


embedded image


8-(3,4-Dimethoxy- phenyl)-3-methyl-1- (1,3,5-trimethyl-1H- pyrazol-4-yl)- 1,3-dihydro- imidazo[4,5-c]quinolin- 2-one
444
2.69





1.10
K


embedded image


1-(3-Chloro-1-methyl- 1H-pyrazol-4-yl)-8- (3,4-dimethoxy- phenyl)-3-methyl-1,3- dihydro-imidazo[4,5- c]quinolin-2-one
450
2.73









Example 2.1
1-(2,4-Dimethyl-2H-pyrazol-3-yl)-8-(6-methoxy-pyridin-3-yl)-3-methyl-1,3-dihydro-imidazo[4,5-c]quinolin-2-one



embedded image


The title compound was synthesized in a similar manner as described for Example 1.1 using 8-bromo-1-(2,4-dimethyl-2H-pyrazol-3-yl)-3-methyl-1,3-dihydro-imidazo[4,5-c]quinolin-2-one (Intermediate I, 40 mg, 0.106 mmol) and 2-methoxy-5-pyridineboronic acid (Aldrich, Buchs, Switzerland, 20 mg, 0.131 mmol) to give the title compound as a white solid. (HPLC: tR 2.69 min (Method A); M+H=401 MS-ES; 1H-NMR (d6-DMSO, 400 MHz) 9.03 (s, 1H), 8.27-8.21 (m, 1H), 8.16-8.09 (m, 1H), 7.96-7.89 (m, 1H), 7.84-7.77 (m, 1H), 7.65 (s, 1H), 7.00-6.88 (m, 2H), 3.88 (s, 3H), 3.61 (s, 6H), 1.82 (s, 3H))


The following examples were synthesized in a similar manner as described for Example 1.1 using 2-methoxy-5-pyridineboronic acid and the specified intermediate.





















MS-ES
HPLC


Example
Intermed.
structure
Name of the example
(M + H)
tR (min)







2.2
E


embedded image


8-(6-Methoxy-pyridin- 3-yl)-3-methyl- 1-(2-methyl-2H- pyrazol-3-yl)-1,3- dihydro-imidazo[4,5- c]quinolin-2-one
387
2.60





2.3
C


embedded image


1-(2,5-Dimethyl-2H- pyrazol-3-yl)-8- (6-methoxy-pyridin-3- yl)-3-methyl-1,3- dihydro-imidazo[4,5- c]quinolin-2-one
401
2.72





2.4
H


embedded image


8-(6-Methoxy-pyridin- 3-yl)-3-methyl- 1-(1,3,5-trimethyl-1H- pyrazol-4-yl)-1,3- dihydro-imidazo[4,5- c]quinolin-2-one
415
2.61





2.5
A


embedded image


1-(1,3-Dimethyl-1H- pyrazol-4-yl)-8- (6-methoxy-pyridin-3- yl)-3-methyl-1,3- dihydro-imidazo[4,5- c]quinolin-2-one
401
2.55





2.6
B


embedded image


1-(2-Ethyl-2H-pyrazol- 3-yl)-8-(6-methoxy- pyridin-3-yl)-3-methyl- 1,3-dihydro- imidazo[4,5-c]quinolin- 2-one
401
2.69





2.7
F


embedded image


1-(1-Ethyl-3-methyl- 1H-pyrazol-4-yl)-8-(6- methoxy-pyridin-3-yl)- 3-methyl-1,3-dihydro- imidazo[4,5-c]quino- lin-2-one
415
2.66





2.8
G


embedded image


1-(1-Isopropyl-3- methyl-1H-pyrazol- 4-yl)-8-(6-methoxy- pyridin-3-yl)-3- methyl-1,3-dihydro- imidazo[4,5-c] quinolin-2-one
429
2.78





2.9
J


embedded image


1-(1,5-Dimethyl-1H- pyrazol-4-yl)-8- (6-methoxy-pyridin-3- yl)-3-methyl-1,3- dihydro-imidazo[4,5- c]quinolin-2-one
401
2.56









Example 3.1
1-(1,3-Dimethyl-1H-pyrazol-4-yl)-8-(6-ethoxy-pyridin-3-yl)-3-methyl-1,3-dihydro-imidazo[4,5-c]quinolin-2-one



embedded image


The title compound was synthesized in a similar manner as described for Example 1.1 using 8-bromo-1-(1,3-dimethyl-1H-pyrazol-4-yl)-3-methyl-1,3-dihydro-imidazo[4,5-c]quinolin-2-one (Intermediate A, 60 mg, 0.161 mmol) and 6-ethoxypyridine-3-boronic acid (ABCR, Karlsruhe, Germany, 36 mg, 0.211 mmol) to give the title compound as a white solid. (HPLC: tR 2.69 min (Method A); M+H=415 MS-ES; 1H-NMR (d6-DMSO, 400 MHz) 8.96 (s, 1H), 8.32-8.24 (m, 1H), 8.15-8.05 (m, 2H), 7.92-7.85 (m, 1H), 7.79-7.72 (m, 1H), 7.47 (s, 1H), 6.94-6.87 (m, 1H), 4.32 (q, 2H), 3.90 (s, 3H), 3.57 (s, 3H), 1.95 (s, 3H), 1.32 (t, 3H))


The following examples were synthesized in a similar manner as described for Example 1.1 using 6-ethoxypyridine-3-boronic acid and the specified intermediate.






















HPLC






MS-ES
tR


Example
Intermed.
structure
Name of the example
(M + H)
(min)




















3.2
D


embedded image


8-(6-Ethoxy-pyridin- 3-yl)-3-methyl- 1-(2-methyl-5- trifluoromethyl-2H- pyrazol-3-yl)-1,3- dihydro-imidazo[4,5- c]quinolin-2-one
469
3.31





3.3
H


embedded image


8-(6-Ethoxy-pyridin- 3-yl)-3-methyl- 1-(1,3,5-trimethyl-1H- pyrazol-4-yl)- 1,3-dihydro- imidazo[4,5- c]quinolin-2-one
429
2.73





3.4
B


embedded image


8-(6-Ethoxy-pyridin- 3-yl)-1-(2-ethyl-2H- pyrazol-3-yl)-3- methyl-1,3-dihydro- imidazo[4,5- c]quinolin-2-one
415
2.58





3.5
F


embedded image


8-(6-Ethoxy-pyridin- 3-yl)-1-(1-ethyl-3- methyl-1H-pyrazol-4- yl)-3-methyl-1,3- dihydro-imidazo[4,5- c]quinolin-2-one
429
2.80





3.6
J


embedded image


1-(1,5-Dimethyl-1H- pyrazol-4-yl)-8- (6-ethoxy-pyridin-3- yl)-3-methyl-1,3- dihydro-imidazo[4,5- c]quinolin-2-one
415
2.68





3.7
G


embedded image


8-(6-Ethoxy-pyridin- 3-yl)-1-(1-isopropyl- 3-methyl-1H-pyrazol- 4-yl)-3- methyl-1,3-dihydro- imidazo[4,5-c] quinolin-2-one
443
2.94





3.8
K


embedded image


1-(3-Chloro-1- methyl-1H-pyrazol-4- yl)-8-(6-ethoxy- pyridin-3-yl)-3- methyl-1,3-dihydro- imidazo[4,5- c]quinolin-2-one
435
2.81





3.9
L


embedded image


2-{4-[8-(6-Ethoxy- pyridin-3-yl)-3- methyl-2-oxo-2,3- dihydro-imidazo[4,5- c]quinolin-1-yl]-3- methyl-pyrazol-1-yl}- N,N-dimethyl- acetamide
486
2.68





3.10
M


embedded image


8-(6-Ethoxy-pyridin- 3-yl)-3-methyl-1-[3- methyl-1-(2- morpholin-4-yl-2-oxo- ethyl)-1H-pyrazol-4- yl]-1,3-dihydro- imidazo[4,5- c]quinolin-2-one
528
2.66





3.11
N


embedded image


8-(6-Ethoxy-pyridin- 3-yl)-1-[1-(2- methoxy-ethyl)-3,5- dimethyl-1H-pyrazol- 4-yl]-3-methyl-1,3- dihydro-imidazo[4,5- c]quinolin-2-one
473
2.76





3.12
O


embedded image


2-{4-[8-(6-Ethoxy- pyridin-3-yl)-3- methyl-2-oxo-2,3- dihydro-imidazo[4,5- c]quinolin-1-yl]-3,5- dimethyl-pyrazol-1- yl}-N,N-dimethyl- acetamide
500
2.62









Example 4.1
8-(6-Dimethylamino-pyridin-3-yl)-1-(1-isopropyl-3-methyl-1H-pyrazol-4-yl)-3-methyl-1,3-dihydro-imidazo[4,5-c]quinolin-2-one



embedded image


The title compound was synthesized in a similar manner as described for Example 1.1 using 8-bromo-1-(1-isopropyl-3-methyl-1H-pyrazol-4-yl)-3-methyl-1,3-dihydro-imidazo[4,5-c]quinolin-2-one (Intermediate G, 50 mg, 0.125 mmol) and 2-(dimethylamino)pyridine-5-boronic acid hydrate (Fluorochem Ltd., Derbyshire, United Kingdom, 31 mg, 0.163 mmol) to give the title compound as a yellow solid. (HPLC: tR 2.31 min (Method A); M+H=442 MS-ES; 1H-NMR (d6-DMSO, 400 MHz) 8.90 (s, 1H), 8.27-8.18 (m, 2H), 8.07-7.99 (m, 1H), 7.90-7.82 (m, 1H), 7.62-7.55 (m, 1H), 7.41 (s, 1H), 6.70-6.61 (m, 1H), 4.62-4.49 (m, 1H), 3.56 (s, 3H), 3.04 (s, 6H), 1.96 (s, 3H), 1.49 (s, 6H))


The following examples were synthesized in a similar manner as described for Example 1.1 using 2-(dimethylamino)pyridine-5-boronic acid hydrate and the specified intermediate.






















HPLC






MS-ES
tR


Example
Intermed.
structure
Name of the example
(M + H)
(min)







4.2
F


embedded image


8-(6-Dimethylamino- pyridin-3-yl)-1- (1-ethyl-3-methyl-1H- pyrazol-4-yl)- 3-methyl-1,3-dihydro- imidazo[4,5-c] quinolin-2-one
428
2.25





4.3
H


embedded image


8-(6-Dimethylamino- pyridin-3-yl)-3- methyl-1-(1,3,5- trimethyl-1H-pyrazol- 4-yl)-1,3-dihydro- imidazo[4,5-c] quinolin-2-one
428
2.25





4.4
J


embedded image


8-(6-Dimethylamino- pyridin-3-yl)-1- (1,5-dimethyl-1H- pyrazol-4-yl)-3- methyl-1,3-dihydro- imidazo[4,5-c]quino- lin-2-one
414
2.21





4.5
A


embedded image


8-(6-Dimethylamino- pyridin-3-yl)-1- (1,3-dimethyl-1H- pyrazol-4-yl)-3- methyl-1,3-dihydro- imidazo[4,5-c]quino- lin-2-one
414
2.19





4.6
C


embedded image


8-(6-Dimethylamino- pyridin-3-yl)-1- (2,5-dimethyl-2H- pyrazol-3-yl)-3- methyl-1,3-dihydro- imidazo[4,5-c]quino- lin-2-one
414
2.31





4.7
E


embedded image


8-(6-Dimethylamino- pyridin-3-yl)-3- methyl-1-(2-methyl- 2H-pyrazol-3-yl)- 1,3-dihydro- imidazo[4,5-c]quinolin- 2-one
400
2.23





4.8
B


embedded image


8-(6-Dimethylamino- pyridin-3-yl)-1- (2-ethyl-2H-pyrazol-3- yl)-3-methyl- 1,3-dihydro- imidazo[4,5- c]quinolin-2-one
414
2.28





4.9
K


embedded image


1-(3-Chloro-1-methyl- 1H-pyrazol-4-yl)-8-(6- dimethylamino- pyridin-3-yl)-3-methyl- 1,3-dihydro- imidazo[4,5- c]quinolin-2-one
434
2.24









Example 5.1
8-(6-Azetidin-1-yl-pyridin-3-yl)-1-(1,3-dimethyl-1H-pyrazol-4-yl)-3-methyl-1,3-dihydro-imidazo[4,5-c]quinolin-2-one



embedded image


The title compound was synthesized in a similar manner as described for Example 1.1 using 8-bromo-1-(1,3-dimethyl-1H-pyrazol-4-yl)-3-methyl-1,3-dihydro-imidazo[4,5-c]quinolin-2-one (Intermediate A, 40 mg, 0.107 mmol) and 2-azetidin-1-yl-5-(4,4,5,5-tetramethyl-[1,3,2]dioxaborolan-2-yl)-pyridine (Stage 5.1.1, 39 mg, 0.150 mmol) to give the title compound as a white solid. (HPLC: tR 2.24 min (Method A); M+H=426 MS-ES; 1H-NMR (d6-DMSO, 400 MHz) 8.91 (s, 1H), 8.25-8.18 (m, 1H), 8.14-8.09 (m, 1H), 8.06-8.02 (m, 1H), 7.89-7.81 (m, 1H), 7.62-7.53 (m, 1H), 7.42 (s, 1H), 6.48-6.42 (m, 1H), 4.01-3.93 (m, 4H), 3.91 (s, 3H), 3.56 (s, 3H), 2.36-2.28 (m, 2H), 1.96 (s, 3H))


Stage 5.1.1 2-Azetidin-1-yl-5-(4,4,5,5-tetramethyl-[1,3,2]dioxaborolan-2-yl)-pyridine



embedded image


A mixture of 2-azetidin-1-yl-5-bromo-pyridine (Stage 5.1.2, 55 mg, 0.259 mmol), bis(pinacolato)-diborane (74 mg, 0.285 mmol), potassium acetate (76 mg, 0.778 mmol) and PdCl2(dppf) (9 mg, 0.012 mmol) in dioxane (1.2 ml) was stirred in a closed vial flushed with argon at 90° C. for 2 h. Then the RM was diluted with EtOAc and washed with brine (2×). The organic layer was dried over Na2SO4, filtered and evaporated to dryness to give the title compound as a crude brownish sticky solid. (HPLC: tR 1.79 min (Method A); M+H=261 MS-ES).


Stage 5.1.2 2-Azetidin-1-yl-5-bromo-pyridine



embedded image


A mixture of 5-bromo-2-chloropyridine (Sigma-Aldrich, Buchs, Switzerland, 196 mg, 1.018 mmol), azetidine (Sigma-Aldrich, Buchs, Switzerland, 0.213 ml, 3.06 mmol) and pyridine (0.124 ml, 1.528 mmol) in DMA (2.5 ml) was heated under microwave irradiation at 150° C. for 10 min and 170° C. for 10 min. The reaction was not completed. Again azetidine (0.106 ml) was added and the RM was heated under microwave irradiation at 170° C. for 1 h. Then the RM was quenched with saturated aqueous NaHCO3 (50 ml) and extracted with EtOAc (2×). The combined organic layers were washed with brine (2×), dried over Na2SO4, filtered and evaporated to dryness to give the title compound as an off-white solid. (HPLC: tR 1.97 min (Method A); M+H=213, 215 (Br-pattern) MS-ES. 1H-NMR (d6-DMSO, 400 MHz) 8.12 (s, 1H), 7.70-7.60 (m, 1H), 6.37-6.29 (m, 1H), 3.96-3.86 (m, 4H), 2.34-2.24 (m, 2H))


The following example was synthesized in a similar manner as described for Example 1.1 using 2-azetidin-1-yl-5-(4,4,5,5-tetramethyl-[1,3,2]dioxaborolan-2-yl)-pyridine (Stage 5.1.1) and the specified intermediate.






















HPLC






MS-ES
tR


Example
Intermed.
structure
Name of the example
(M + H)
(min)







5.2
G


embedded image


8-(6-Azetidin-1-yl- pyridin-3-yl)-1-(1- isopropyl-3-methyl- 1H-pyrazol-4-yl)-3- methyl-1,3-dihydro- imidazo[4,5- c]quinolin-2-one
454
2.35









Example 6.1
8-(2-Dimethylamino-pyrimidin-5-yl)-1-(1-isopropyl-3-methyl-1H-pyrazol-4-yl)-3-methyl-1,3-dihydro-imidazo[4,5-c]quinolin-2-one



embedded image


The title compound was synthesized in a similar manner as described for Example 1.1 using 8-bromo-1-(1-isopropyl-3-methyl-1H-pyrazol-4-yl)-3-methyl-1,3-dihydro-imidazo[4,5-c]quinolin-2-one (Intermediate G, 50 mg, 0.125 mmol) and 2-dimethylamino-pyrimidine-5-boronic acid pinacol ester (Frontier Scientific, Logan, USA, 38 mg, 0.153 mmol) to give the title compound as a white solid. (HPLC: tR 2.68 min (Method A); M+H=443 MS-ES; 1H-NMR (d6-DMSO, 400 MHz) 8.93 (s, 1H), 8.46 (s, 2H), 8.20 (s, 1H), 8.09-8.02 (m, 1H), 7.91-7.84 (m, 1H), 7.38 (s, 1H), 4.60-4.51 (m, 1H), 3.56 (s, 3H), 3.13 (s, 6H), 1.97 (s, 3H), 1.49-1.44 (m, 6H))


The following examples were synthesized in a similar manner as described for Example 1.1 using 2-dimethylamino-pyrimidine-5-boronic acid pinacol ester and the specified intermediate.






















HPLC






MS-ES
tR


Example
Intermed.
structure
Name of the example
(M + H)
(min)







6.2
A


embedded image


8-(2-Dimethylamino- pyrimidin-5-yl)- 1-(1,3-dimethyl-1H- pyrazol-4-yl)-3- methyl-1,3-dihydro- imidazo[4,5-c] quinolin-2-one
415
2.46





6.3
K


embedded image


1-(3-Chloro-1-methyl- 1H-pyrazol-4-yl)-8-(2- dimethylamino- pyrimidin-5-yl)-3- methyl-1,3-dihydro- imidazo[4,5-c]quinolin- 2-one
435
2.56





6.4
F


embedded image


8-(2-Dimethylamino- pyrimidin-5-yl)-1-(1- ethyl-3-methyl-1H- pyrazol-4-yl)-3-methyl- 1,3-dihydro- imidazo[4,5-c]quinolin- 2-one
429
2.48









Example 7.1
1-(2,5-Dimethyl-2H-pyrazol-3-yl)-3-methyl-8-(6-methyl-pyridin-3-yl)-1,3-dihydro-imidazo[4,5-c]quinolin-2-one



embedded image


The title compound was synthesized in a similar manner as described for Example 1.1 using 8-bromo-1-(2,5-dimethyl-2H-pyrazol-3-yl)-3-methyl-1,3-dihydro-imidazo[4,5-c]quinolin-2-one (Intermediate C, 50 mg, 0.135 mmol) and 2-methylpyridine-5-boronic acid (Frontier Scientific, Logan, USA, 28 mg, 0.181 mmol) to give the title compound as a red solid. (HPLC: tR 2.20 min (Method A); M+H=385 MS-ES; 1H-NMR (d6-DMSO, 400 MHz) 9.02 (s, 1H), 8.62-8.52 (m, 1H), 8.17-8.08 (m, 1H), 8.00-7.91 (m, 1H), 7.81-7.73 (m, 1H), 7.39-7.32 (m, 1H), 7.13 (s, 1H), 6.52 (s, 1H), 3.62 (s, 3H), 3.51 (s, 3H), 2.55-2.45 (3H), 2.29 (s, 3H))


The following example was synthesized in a similar manner as described for Example 1.1 using 2-methylpyridine-5-boronic acid and the specified intermediate.






















HPLC






MS-ES
tR


Example
Intermed.
structure
Name of the example
(M + H)
(min)







7.2
A


embedded image


1-(1,3-Dimethyl-1H- pyrazol-4-yl)-3- methyl-8-(6-methyl- pyridin-3-yl)-1,3- dihydro-imidazo[4,5- c]quinolin-2- one
385
2.05









Example 8.1
3-Methyl-1-(2-methyl-2H-pyrazol-3-yl)-8-(6-trifluoromethyl-pyridin-3-yl)-1,3-dihydro-imidazo[4,5-c]quinolin-2-one



embedded image


The title compound was synthesized in a similar manner as described for Example 1.1 using 8-bromo-3-methyl-1-(2-methyl-2H-pyrazol-3-yl)-1,3-dihydro-imidazo[4,5-c]quinolin-2-one (Intermediate E, 58 mg, 0.163 mmol) and 2-trifluoromethylpyridine-5-boronic acid (Frontier Scientific, Logan, USA, 40.5 mg, 0.212 mmol) to give the title compound as a red solid. (HPLC: tR 2.87 min (Method A); M+H=425 MS-ES; 1H-NMR (d6-DMSO, 400 MHz) 9.08 (s, 1H), 8.82 (d, 1H), 8.27-8.16 (m, 2H), 8.10-7.98 (m, 2H), 7.82 (d, 1H), 7.18-7.16 (m, 1H), 6.72 (s, 1H), 3.72 (s, 3H), 3.63 (s, 3H))


The following example was synthesized in a similar manner as described for Example 1.1 using 2-trifluoromethylpyridine-5-boronic acid and the specified intermediate.






















HPLC






MS-ES
tR


Example
Intermed.
structure
Name of the example
(M + H)
(min)







8.2
C


embedded image


1-(2,5-Dimethyl-2H- pyrazol-3-yl)-3- methyl-8-(6- trifluoromethyl-pyridin- 3-yl)-1,3-dihydro- imidazo[4,5-c] quinolin-2-one
439
2.94









Example 9
1-(2,5-Dimethyl-2H-pyrazol-3-yl)-8-(2-fluoro-pyridin-3-yl)-3-methyl-1,3-dihydro-imidazo[4,5-c]quinolin-2-one



embedded image


The title compound was synthesized in a similar manner as described for Example 1.1 using 8-bromo-1-(2,5-dimethyl-2H-pyrazol-3-yl)-3-methyl-1,3-dihydro-imidazo[4,5-c]quinolin-2-one (Intermediate C, 50 mg, 0.135 mmol) and 2-fluoropyridine-3-boronic acid (Aldrich, Buchs, Switzerland, 25 mg, 0.179 mmol) to give the title compound as a red solid. (HPLC: tR 2.57 min (Method A); M+H=389 MS-ES; 1H-NMR (d6-DMSO, 400 MHz) 9.07 (s, 1H), 8.27-8.22 (m, 1H), 8.18-8.13 (m, 1H), 8.06-7.99 (m, 1H), 7.89-7.83 (m, 1H), 7.51-7.45 (m, 1H), 7.24-7.20 (m, 1H), 6.45 (s, 1H), 3.60 (s, 3H), 3.55 (s, 3H), 2.24 (s, 3H))


Example 10.1
3-Methyl-8-pyridin-3-yl-1-(1,3,5-trimethyl-1H-pyrazol-4-yl)-1,3-dihydro-imidazo[4,5-c]quinolin-2-one



embedded image


The title compound was synthesized in a similar manner as described for Example 1.1 using 8-bromo-3-methyl-1-(1,3,5-trimethyl-1H-pyrazol-4-yl)-1,3-dihydro-imidazo[4,5-c]quinolin-2-one (Intermediate H, 39 mg, 0.100 mmol) and 3-pyridineboronic acid (Aldrich, Buchs, Switzerland, 15 mg, 0.122 mmol) to give the title compound as an off-white foam. (HPLC: tR 2.08 min (Method A); M+H=385 MS-ES; 1H-NMR (d6-DMSO, 400 MHz) 9.00 (s, 1H), 8.70-8.64 (m, 1H), 8.60-8.55 (m, 1H), 8.16-8.10 (m, 1H), 7.99-7.92 (m, 1H), 7.90-7.84 (m, 1H), 7.54-7.47 (m, 2H), 3.82 (s, 3H), 3.60 (s, 3H), 2.09 (s, 3H), 1.92 (s, 3H))


The following example was synthesized in a similar manner as described for Example 1.1 using 3-pyridineboronic acid and the specified intermediate.






















HPLC






MS-ES
tR


Example
Intermed.
structure
Name of the example
(M + H)
(min)







10.2
A


embedded image


1-(1,3-Dimethyl-1H- pyrazol-4-yl)-3- methyl-8-pyridin-3-yl- 1,3-dihydro- imidazo[4,5-c]quinolin- 2-one
371
2.01









Example 11
8-(2-Fluoro-pyridin-4-yl)-3-methyl-1-(2-methyl-2H-pyrazol-3-yl)-1,3-dihydro-imidazo[4,5-c]quinolin-2-one



embedded image


The title compound was synthesized in a similar manner as described for Example 1.1 using 8-bromo-3-methyl-1-(2-methyl-2H-pyrazol-3-yl)-1,3-dihydro-imidazo[4,5-c]quinolin-2-one (Intermediate E, 65 mg, 0.181 mmol) and 2-fluoropyridine-4-boronic acid (Frontier Scientific, Logan, USA, 33 mg, 0.236 mmol) to give the title compound as a pink solid. (HPLC: tR 2.55 min (Method A); M+H=375 MS-ES; 1H-NMR (d6-DMSO, 400 MHz) 9.08 (s, 1H), 8.35-8.26 (m, 1H), 8.22-8.13 (m, 1H), 8.10-8.01 (m, 1H), 7.84-7.76 (m, 1H), 7.43-7.35 (m, 1H), 7.29-7.23 (m, 1H), 7.23-7.16 (m, 1H), 6.73 (s, 1H), 3.68 (s, 3H), 3.60 (s, 3H))


Example 12
1-(1,3-Dimethyl-1H-pyrazol-4-yl)-8-(5-methoxy-pyridin-3-yl)-3-methyl-1,3-dihydro-imidazo[4,5-c]quinolin-2-one



embedded image


The title compound was synthesized in a similar manner as described for Example 1.1 using 8-bromo-1-(1,3-dimethyl-1H-pyrazol-4-yl)-3-methyl-1,3-dihydro-imidazo[4,5-c]quinolin-2-one (Intermediate A, 40 mg, 0.105 mmol) and 3-methoxypyridine-5-boronic acid pinacol ester (Aldrich, Buchs, Switzerland, 30 mg, 0.125 mmol) to give the title compound as an off-white solid. (HPLC: tR 2.17 min (Method A); M+H=401 MS-ES; 1H-NMR (d6-DMSO, 400 MHz) 8.98 (s, 1H), 8.39-8.26 (m, 2H), 8.21-8.07 (m, 2H), 8.04-7.96 (m, 1H), 7.66-7.56 (m, 1H), 7.45-7.36 (m, 1H), 3.91 (s, 6H), 3.60 (s, 3H), 1.97 (s, 3H))


Example 13
1-(1,3-Dimethyl-1H-pyrazol-4-yl)-8-(5-fluoro-6-methoxy-pyridin-3-yl)-3-methyl-1,3-dihydro-imidazo[4,5-c]quinolin-2-one



embedded image


The title compound was synthesized in a similar manner as described for Example 1.1 using 8-bromo-1-(1,3-dimethyl-1H-pyrazol-4-yl)-3-methyl-1,3-dihydro-imidazo[4,5-c]quinolin-2-one (Intermediate A, 40 mg, 0.105 mmol) and 3-fluoro-2-methoxypyridine-5-boronic acid (Apollo Scientific, Cheshire, United Kingdom, 21 mg, 0.123 mmol) to give the title compound as a pink solid. (HPLC: tR 2.70 min (Method A); M+H=419 MS-ES; 1H-NMR (d6-DMSO, 400 MHz) 8.97 (s, 1H), 8.18-8.05 (m, 3H), 7.96-7.89 (m, 1H), 7.81-7.74 (m, 1H), 7.49 (s, 1H), 3.99 (s, 3H), 3.92 (s, 3H), 3.59 (s, 3H), 1.98 (s, 3H))


Example 14
5-[1-(1,3-Dimethyl-1H-pyrazol-4-yl)-3-methyl-2-oxo-2,3-dihydro-1H-imidazo[4,5-c]quinolin-8-yl]-pyridine-2-carboxylic acid amide



embedded image


The title compound was synthesized in a similar manner as described for Example 1.1 using 8-bromo-1-(1,3-dimethyl-1H-pyrazol-4-yl)-3-methyl-1,3-dihydro-imidazo[4,5-c]quinolin-2-one (Intermediate A, 40 mg, 0.105 mmol) and 5-(4,4,5,5-tetramethyl-[1,3,2]dioxaborolan-2-yl)-pyridine-2-carboxylic acid amide (Stage 14.1.1, 106 mg, 0.427 mmol) to give the title compound as a lightly yellow solid. (HPLC: tR 2.28 min (Method A); M+H=414 MS-ES; 1H-NMR (d6-DMSO, 400 MHz) 9.01 (s, 1H), 8.73-8.67 (m, 1H), 8.22-8.04 (m, 5H), 8.03-7.98 (m, 1H), 7.71-7.61 (m, 2H), 3.92 (s, 3H), 3.59 (s, 3H), 1.97 (s, 3H))


Stage 14.1.1 5-(4,4,5,5-Tetramethyl-[1,3,2]dioxaborolan-2-yl)-pyridine-2-carboxylic acid amide



embedded image


The title compound was synthesized in a similar manner as described for Stage 5.1.1 using 5-bromo-pyridine-2-carboxylic acid amide (Combi-Blocks, San Diego, USA, 360 mg, 1.791 mmol) to give the title compound as a brownish sticky solid. (HPLC: tR 2.27 min (Method A); M+H=249 MS-ES.


Example 15.1
5-[1-(1,3-Dimethyl-1H-pyrazol-4-yl)-3-methyl-2-oxo-2,3-dihydro-1H-imidazo[4,5-c]quinolin-8-yl]-pyridine-2-carboxylic acid methylamide



embedded image


The title compound was synthesized in a similar manner as described for Example 1.1 using 8-bromo-1-(1,3-dimethyl-1H-pyrazol-4-yl)-3-methyl-1,3-dihydro-imidazo[4,5-c]quinolin-2-one (Intermediate A, 40 mg, 0.105 mmol) and 5-(4,4,5,5-tetramethyl-[1,3,2]dioxaborolan-2-yl)-pyridine-2-carboxylic acid methylamide (Stage 15.1.1, 42 mg, 0.160 mmol) to give the title compound as a lightly yellow solid. (HPLC: tR 2.39 min (Method A); M+H=428 MS-ES; 1H-NMR (d6-DMSO, 400 MHz) 9.01 (s, 1H), 8.87-8.80 (m, 1H), 8.71-8.67 (m, 1H), 8.18-8.07 (m, 4H), 8.04-7.98 (m, 1H), 7.65 (s, 1H), 3.92 (s, 3H), 3.58 (s, 3H), 2.83 (s, 3H), 1.97 (s, 3H))


Stage 15.1.1 5-(4,4,5,5-Tetramethyl-[1,3,2]dioxaborolan-2-yl)-pyridine-2-carboxylic acid methylamide



embedded image


The title compound was synthesized in a similar manner as described for Stage 5.1.1 using 5-bromo-pyridine-2-carboxylic acid methylamide (Combi-Blocks, San Diego, USA, 240 mg, 1.116 mmol) to give the title compound as a brownish sticky solid. (HPLC: tR 2.46 min (Method A); M+H=263 MS-ES.


The following examples were synthesized in a similar manner as described for Example 1.1 using 5-(4,4,5,5-tetramethyl-[1,3,2]dioxaborolan-2-yl)-pyridine-2-carboxylic acid methylamide and the specified intermediate.






















HPLC






MS-ES
tR


Example
Intermed.
structure
Name of the example
(M + H)
(min)







15.2
H


embedded image


5-[3-Methyl-2-oxo-1- (1,3,5-trimethyl- 1H-pyrazol-4-yl)- 2,3-dihydro-1H- imidazo[4,5- c]quinolin-8-yl]- pyridine- 2-carboxylic acid methylamide
442
2.45





15.3
G


embedded image


5-[1-(1-Isopropyl-3- methyl-1H-pyra- zol-4-yl)-3-methyl-2- oxo-2,3-dihydro- 1H-imidazo[4,5- c]quinolin-8-yl]-pyri- dine-2-carboxylic acid methylamide
456
2.56









Example 16.1
1-(1-Ethyl-3-methyl-1H-pyrazol-4-yl)-8-(6-hydroxymethyl-pyridin-3-yl)-3-methyl-1,3-dihydro-imidazo[4,5-c]quinolin-2-one



embedded image


The title compound was synthesized in a similar manner as described for Example 1.1 using 8-bromo-1-(1-ethyl-3-methyl-1H-pyrazol-4-yl)-3-methyl-1,3-dihydro-imidazo[4,5-c]quinolin-2-one (Intermediate F, 80 mg, 0.207 mmol) and 6-(hydroxymethyl)pyridine-3-boronic acid (Combi-Blocks, San Diego, USA, 39 mg, 0.254 mmol) to give the title compound as a white solid. (HPLC: tR 2.04 min (Method A); M+H=415 MS-ES; 1H-NMR (d6-DMSO, 400 MHz) 8.98 (s, 1H), 8.61-8.56 (m, 1H), 8.21-8.17 (m, 1H), 8.15-8.09 (m, 1H), 7.97-7.93 (m, 1H), 7.90-7.85 (m, 1H), 7.57-7.49 (m, 2H), 5.47 (t, 1H), 4.61-4.55 (m, 2H), 4.23-4.14 (m, 2H), 3.57 (s, 3H), 1.95 (s, 3H), 1.43 (t, 3H))


The following examples were synthesized in a similar manner as described for Example 1.1 using 6-(hydroxymethyl)pyridine-3-boronic acid and the specified intermediate.






















HPLC






MS-ES
tR


Example
Intermed.
structure
Name of the example
(M + H)
(min)







16.2
A


embedded image


1-(1,3-Dimethyl-1H- pyrazol-4-yl)-8- (6-hydroxymethyl- pyridin-3-yl)-3- methyl-1,3-dihydro- imidazo[4,5-c]quino- lin-2-one
401
1.99





16.3
G


embedded image


8-(6-Hydroxymethyl- pyridin-3-yl)-1- (1-isopropyl-3-methyl- 1H-pyrazol-4- yl)-3-methyl-1,3- dihydro-imidazo[4,5- c]quinolin-2-one
429
2.11





16.4
H


embedded image


8-(6-Hydroxymethyl- pyridin-3-yl)-3- methyl-1-(1,3,5- trimethyl-1H-pyrazol- 4-yl)-1,3-dihydro- imidazo[4,5-c] quinolin-2-one
415
2.04





16.5
K


embedded image


1-(3-Chloro-1-methyl- 1H-pyrazol-4-yl)-8-(6- hydroxymethyl- pyridin-3-yl)-3-methyl- 1,3-dihydro- imidazo[4,5-c]quinolin- 2-one
421
2.06









Example 17.1
1-(1-Ethyl-3-methyl-1H-pyrazol-4-yl)-8-(2-methoxy-pyrimidin-5-yl)-3-methyl-1,3-dihydro-imidazo[4,5-c]quinolin-2-one



embedded image


The title compound was synthesized in a similar manner as described for Example 1.1 using 8-bromo-1-(1-ethyl-3-methyl-1H-pyrazol-4-yl)-3-methyl-1,3-dihydro-imidazo[4,5-c]quinolin-2-one (Intermediate F, 49 mg, 0.126 mmol) and 2-methoxy-5-pyrimidineboronic acid (ABCR, Karlsruhe, Germany, 25 mg, 0.162 mmol) to give the title compound as a white solid. (HPLC: tR 2.47 min (Method A); M+H=416 MS-ES; 1H-NMR (d6-DMSO, 400 MHz) 8.98 (s, 1H), 8.76-8.68 (m, 2H), 8.23-8.16 (m, 1H), 8.16-8.09 (m, 1H), 7.99-7.93 (m, 1H), 7.52-7.45 (m, 1H), 4.19 (q, 2H), 3.96 (s, 3H), 3.59 (s, 3H), 1.97 (s, 3H), 1.42 (t, 3H))


The following examples were synthesized in a similar manner as described for Example 1.1 using 2-methoxy-5-pyrimidineboronic acid and the specified intermediate.






















HPLC


Ex-
Inter-


MS-ES
tR


ample
med.
structure
Name of the example
(M + H)
(min)




















17.2
A


embedded image


1-(1,3-Dimethyl-1H- pyrazol-4-yl)-8- (2-methoxy-pyrimidin- 5-yl)-3-methyl- 1,3-dihydro- imidazo[4,5-c]quinolin- 2-one
402
2.38





17.3
K


embedded image


1-(3-Chloro-1-methyl- 1H-pyrazol-4-yl)-8-(2- methoxy-pyrimidin-5- yl)-3-methyl-1,3- dihydro-imidazo[4,5- c]quinolin-2-one
422
2.49









Example 18
1-(1,3-Dimethyl-1H-pyrazol-4-yl)-8-[6-(2-methoxy-ethoxy)-pyridin-3-yl]-3-methyl-1,3-dihydro-imidazo[4,5-c]quinolin-2-one



embedded image


The title compound was synthesized in a similar manner as described for Example 1.1 using 8-bromo-1-(1,3-dimethyl-1H-pyrazol-4-yl)-3-methyl-1,3-dihydro-imidazo[4,5-c]quinolin-2-one (Intermediate A, 40 mg, 0.105 mmol) and 2-(2-methoxy-ethoxy)-5-(4,4,5,5-tetramethyl-[1,3,2]dioxaborolan-2-yl)-pyridine (Stage 18.1.1, 38 mg, 0.137 mmol) to give the title compound as an off-white foam. (HPLC: tR 2.58 min (Method A); M+H=445 MS-ES; 1H-NMR (d6-DMSO, 400 MHz) 8.96 (s, 1H), 8.32-8.25 (m, 1H), 8.16-8.04 (m, 2H), 7.93-7.86 (m, 1H), 7.81-7.74 (m, 1H), 7.51-7.45 (m, 1H), 6.99-6.92 (m, 1H), 4.45-4.38 (m, 2H), 3.92 (s, 3H), 3.70-3.64 (m, 2H), 3.57 (s, 3H), 3.31 (s, 3H), 1.96 (s, 3H))


Stage 18.1.1 2-(2-Methoxy-ethoxy)-5-(4,4,5,5-tetramethyl-[1,3,2]dioxaborolan-2-yl)-pyridine



embedded image


The title compound was synthesized in a similar manner as described for Stage 5.1.1 using 5-bromo-2-(2-methoxy-ethoxy)-pyridine (Stage 18.1.2, 251 mg, 1.082 mmol) to give the title compound as a brownish oil. (HPLC: tR 1.88 min (Method A); M+H=280 MS-ES)


Stage 18.1.2 5-Bromo-2-(2-methoxy-ethoxy)-pyridine



embedded image


A mixture of NaH 55% (133 mg, 3.06 mmol) in DME (3 ml) was cooled to 0° C., then 2-methoxyethanol (Aldrich, Buchs, Switzerland, 0.362 ml, 4.58 mmol) was added. The solution was stirred at rt for 15 min. After that 5-bromo-2-chloropyridine (Aldrich, Buchs, Switzerland, 294 mg, 1.528 mmol) was added and the RM was heated by microwaves at 150° C. for 10 min. Then the RM was quenched with saturated aqueous NaHCO3 (50 ml) and extracted with EtOAc (2×). The combined organic layers were washed with brine (2×), dried over Na2SO4, filtered and evaporated. The residue was absorbed on silica gel and purified by MPLC (hexane/EtOAc 0 to 30%). The fractions containing product were evaporated together to give the title compound as a colorless oil. (LC-MS: tR 1.20 min (Method B); M+H=232, 234 (Br-pattern) MS-ES. 1H-NMR (d6-DMSO, 400 MHz) 8.28.8.21 (m, 1H), 7.91-7.84 (m, 1H), 6.86-6.79 (m, 1H), 4.31 (t, 2H), 3.62 (t, 2H), 3.26 (s, 3H))


Example 19
8-[6-(2-Benzyloxy-ethoxy)-pyridin-3-yl]-1-(1,3-dimethyl-1H-pyrazol-4-yl)-3-methyl-1,3-dihydro-imidazo[4,5-c]quinolin-2-one



embedded image


The title compound was synthesized in a similar manner as described for Example 1.1 using 8-bromo-1-(1,3-dimethyl-1H-pyrazol-4-yl)-3-methyl-1,3-dihydro-imidazo[4,5-c]quinolin-2-one (Intermediate A, 50 mg, 0.132 mmol) and 2-(2-benzyloxy-ethoxy)-5-(4,4,5,5-tetramethyl-[1,3,2]dioxaborolan-2-yl)-pyridine (Stage 19.1.1, 65 mg, 0.184 mmol) to give the title compound as a white solid. (HPLC: tR 3.12 min (Method A); M+H=521 MS-ES; 1H-NMR (d6-DMSO, 400 MHz) 8.95 (s, 1H), 8.33-8.24 (m, 1H), 8.16-8.05 (m, 2H), 7.93-7.86 (m, 1H), 7.81-7.75 (m, 1H), 7.51-7.45 (m, 1H), 7.40-7.22 (m, 5H), 7.01-6.93 (m, 1H), 4.55 (s, 2H), 4.47 (t, 2H), 3.92 (s, 3H), 3.78 (t, 2H), 3.57 (s, 3H), 1.97 (s, 3H))


Stage 19.1.1 2-(2-Benzyloxy-ethoxy)-5-(4,4,5,5-tetramethyl-[1,3,2]dioxaborolan-2-yl)-pyridine



embedded image


The title compound was synthesized in a similar manner as described for Stages 18.1.1 and 18.1.2 using 2-benzyloxyethanol (Aldrich, Buchs, Switzerland) to give the title compound as a brownish oil. (HPLC: tR 2.59 min (Method A); M+H=356 MS-ES)


Example 20
8-[6-(3-Benzyloxy-propoxy)-pyridin-3-yl]-1-(1,3-dimethyl-1H-pyrazol-4-yl)-3-methyl-1,3-dihydro-imidazo[4,5-c]quinolin-2-one



embedded image


The title compound was synthesized in a similar manner as described for Example 1.1 using 8-bromo-1-(1,3-dimethyl-1H-pyrazol-4-yl)-3-methyl-1,3-dihydro-imidazo[4,5-c]quinolin-2-one (Intermediate A, 50 mg, 0.132 mmol) and 2-(3-benzyloxy-propoxy)-5-(4,4,5,5-tetramethyl-[1,3,2]dioxaborolan-2-yl)-pyridine (Stage 20.1.1, 68 mg, 0.184 mmol) to give the title compound as an off-white solid. (HPLC: tR 3.22 min (Method A); M+H=535 MS-ES; 1H-NMR (d6-DMSO, 400 MHz) 8.95 (s, 1H), 8.31-8.26 (m, 1H), 8.15-8.05 (m, 2H), 7.93-7.86 (m, 1H), 7.79-7.73 (m, 1H), 7.50-7.45 (m, 1H), 7.35-7.22 (m, 5H), 6.93-6.87 (m, 1H), 4.55 (s, 2H), 4.36 (t, 2H), 3.91 (s, 3H), 3.60-3.55 (m, 5H), 2.05-1.97 (m, 2H), 1.95 (s, 3H))


Stage 20.1.1 2-(3-Benzyloxy-propoxy)-5-(4,4,5,5-tetramethyl-[1,3,2]dioxaborolan-2-yl)-pyridine



embedded image


The title compound was synthesized in a similar manner as described for Stages 18.1.1 and 18.1.2 using 3-benzyloxypropanol (Aldrich, Buchs, Switzerland) to give the title compound as a brownish oil. (HPLC: tR 2.66 min (Method A); M+H=370 MS-ES)


Example 21.1
8-[6-(2-Hydroxy-ethylamino)-pyridin-3-yl]-3-methyl-1-(2-methyl-2H-pyrazol-3-yl)-1,3-dihydro-imidazo[4,5-c]quinolin-2-one



embedded image


The title compound was synthesized in a similar manner as described for Example 1.1 using 8-bromo-3-methyl-1-(2-methyl-2H-pyrazol-3-yl)-1,3-dihydro-imidazo[4,5-c]quinolin-2-one (Intermediate E, 65 mg, 0.181 mmol) and 2-[5-(4,4,5,5-tetramethyl-[1,3,2]dioxaborolan-2-yl)-pyridin-2-ylamino]-ethanol (stage 21.1.1, 82 mg, 0.218 mmol) to give the title compound as an off-white foam. (HPLC: tR 2.08 min (Method A); M+H=416 MS-ES; 1H-NMR (d6-DMSO, 400 MHz) 8.96 (s, 1H), 8.12-8.02 (m, 2H), 7.80-7.75 (m, 2H), 7.51-7.44 (m, 1H), 6.95-6.89 (m, 1H), 6.85-6.73 (br, 1H), 6.69 (s, 1H), 6.60-6.53 (m, 1H), 3.66 (s, 3H), 3.58 (s, 3H), 3.54-3.49 (m, 2H), 3.37-3.31 (m, 2H))


Stage 21.1.1 2-[5-(4,4,5,5-Tetramethyl-[1,3,2]dioxaborolan-2-yl)-pyridin-2-ylamino]-ethanol



embedded image


The title compound was synthesized in a similar manner as described for Stages 5.1.1 using 2-(5-Bromo-pyridin-2-ylamino)-ethanol (stage 21.1.2) to give the title compound as a white solid trifluoroacetate salt. (M+H=379 MS-ES)


Stage 21.1.2 2-(5-Bromo-pyridin-2-ylamino)-ethanol



embedded image


A mixture of 5-bromo-2-chloropyridine (Aldrich, Buchs, Switzerland, 1 g, 5.2 mmol) and 2-hydroxyethylamine (1.59 g, 26 mmol) in 3 ml DMA was heated by microwaves at 170° C. for 1 h. Then the RM was quenched with saturated aqueous NaHCO3 (50 ml) and extracted with EtOAc. The organic layers were washed with saturated aqueous NaHCO3 (4×), dried over Na2SO4, filtered and evaporated. The residue was purified by flash chromatography (DCM/MeOH 0 to 5%). The fractions containing product were evaporated together to give the title compound as an off-white solid. (HPLC: tR 1.66 min (Method A); M+H=217, 219 (Br-pattern) MS-ES)


The following example was synthesized in a similar manner as described for Example 1.1 using 2-[5-(4,4,5,5-tetramethyl-[1,3,2]dioxaborolan-2-yl)-pyridin-2-ylamino]-ethanol and the specified intermediate.






















HPLC






MS-ES
tR


Example
Intermed.
structure
Name of the example
(M + H)
(min)




















21.2
A


embedded image


1-(1,3-Dimethyl-1H- pyrazol-4-yl)-8- [6-(2-hydroxy- ethylamino)-pyridin-3- yl]-3-methyl-1,3- dihydro-imidazo[4,5- c]quinolin-2-one
430
2.04









Example 22
1-(1,3-Dimethyl-1H-pyrazol-4-yl)-8-(5-methanesulfonyl-pyridin-3-yl)-3-methyl-1,3-dihydro-imidazo[4,5-c]quinolin-2-one



embedded image


The title compound was synthesized in a similar manner as described for Example 1.1 using 8-bromo-1-(1,3-dimethyl-1H-pyrazol-4-yl)-3-methyl-1,3-dihydro-imidazo[4,5-c]quinolin-2-one (Intermediate A, 40 mg, 0.105 mmol) and 5-(methylsulfonyl)pyridine-3-boronic acid (Combi-Blocks, San Diego, USA, 25 mg, 0.125 mmol) to give the title compound as a white solid. (HPLC: tR 2.30 min (Method A); M+H=449 MS-ES; 1H-NMR (d6-DMSO, 400 MHz) 9.09-9.01 (m, 3H), 8.32-8.27 (m, 1H), 8.21-8.14 (m, 2H), 8.11-8.06 (m, 1H), 7.67-7.62 (m, 1H), 3.92 (s, 3H), 3.59 (s, 3H), 3.40 (s, 3H), 1.94 (s, 3H))


Example 23.1
8-(6-Amino-pyridin-3-yl)-1-(1,3-dimethyl-1H-pyrazol-4-yl)-3-methyl-1,3-dihydro-imidazo[4,5-c]quinolin-2-one



embedded image


The title compound was synthesized in a similar manner as described for Example 1.1 using 8-bromo-1-(1,3-dimethyl-1H-pyrazol-4-yl)-3-methyl-1,3-dihydro-imidazo[4,5-c]quinolin-2-one (Intermediate A, 40 mg, 0.105 mmol) and 2-aminopyridine-5-boronic acid pinacol ester (Aldrich, Buchs, Switzerland, 26 mg, 0.125 mmol) to give the title compound as a white solid. (HPLC: tR 2.02 min (Method A); M+H=386 MS-ES; 1H-NMR (d6-DMSO, 400 MHz) 8.90 (s, 1H), 8.16-8.10 (m, 1H), 8.07-7.98 (m, 2H), 7.86-7.78 (m, 1H), 7.54-7.46 (m, 1H), 7.42-7.36 (m, 1H), 6.54-6.46 (m, 1H), 6.20 (s, br, 2H), 3.91 (s, 3H), 3.56 (s, 3H), 1.95 (s, 3H))


The following example was synthesized in a similar manner as described for Example 1.1 using 2-aminopyridine-5-boronic acid pinacol ester and the specified intermediate.






















HPLC






MS-ES
tR


Example
Intermed.
structure
Name of the example
(M + H)
(min)




















23.2
G


embedded image


8-(6-Amino-pyridin-3- yl)-1-(1-isopropyl-3- methyl-1H-pyrazol-4- yl)-3-methyl-1,3- dihydro-imidazo[4,5- c]quinolin-2-one
414
2.10









Example 24
1-(1,3-Dimethyl-1H-pyrazol-4-yl)-3-methyl-8-(5-methyl-pyridin-3-yl)-1,3-dihydro-imidazo[4,5-c]quinolin-2-one



embedded image


The title compound was synthesized in a similar manner as described for Example 1.1 using 8-bromo-1-(1,3-dimethyl-1H-pyrazol-4-yl)-3-methyl-1,3-dihydro-imidazo[4,5-c]quinolin-2-one (Intermediate A, 40 mg, 0.105 mmol) and 5-methylpyridine-3-boronic acid (Combi-Blocks, San Diego, USA, 17 mg, 0.123 mmol) to give the title compound as an off-white solid. (HPLC: tR 2.07 min (Method A); M+H=385 MS-ES; 1H-NMR (d6-DMSO, 400 MHz) 8.98 (s, 1H), 8.54-8.48 (m, 1H), 8.45-8.39 (m, 1H), 8.19-8.08 (m, 2H), 7.99-7.92 (m, 1H), 7.71-7.66 (m, 1H), 7.58-7.53 (m, 1H), 3.92 (s, 3H), 3.59 (s, 3H), 2.37 (s, 3H), 1.95 (s, 3H))


Example 25.1
8-(6-Amino-5-trifluoromethyl-pyridin-3-yl)-1-(1,3-dimethyl-1H-pyrazol-4-yl)-3-methyl-1,3-dihydro-imidazo[4,5-c]quinolin-2-one



embedded image


The title compound was synthesized in a similar manner as described for Example 1.1 using 8-bromo-1-(1,3-dimethyl-1H-pyrazol-4-yl)-3-methyl-1,3-dihydro-imidazo[4,5-c]quinolin-2-one (Intermediate A, 40 mg, 0.105 mmol) and 2-amino-3-(trifluoromethyl)pyridine-5-boronic acid pinacol ester (stage 25.1.1, 37 mg, 0.128 mmol) to give the title compound as a pinkish solid. (HPLC: tR 2.40 min (Method A); M+H=454 MS-ES; 1H-NMR (d6-DMSO, 400 MHz) 8.93 (s, 1H), 8.43-8.36 (m, 1H), 8.16-8.11 (m, 1H), 8.09-8.02 (m, 1H), 7.97-7.90 (m, 1H), 7.76-7.70 (m, 1H), 7.45-7.39 (m, 1H), 6.76 (s, br, 2H), 3.88 (s, 3H), 3.56 (s, 3H), 1.95 (s, 3H))


Stage 25.1.1 5-(4,4,5,5-Tetramethyl-[1,3,2]dioxaborolan-2-yl)-3-trifluoromethyl-pyridin-2-ylamine



embedded image


The title compound was synthesized in a similar manner as described for stage 5.1.1 using 5-bromo-3-trifluoromethyl-pyridin-2-ylamine (Stage 25.1.2, 8.04 g, 31.7 mmol) to give the title compound as an off-white solid. (HPLC: tR 1.62 min (Method A); M+H=289 MS-ES)


Stage 25.1.2 5-Bromo-3-trifluoromethyl-pyridin-2-ylamine



embedded image


To a solution of 3-trifluoromethyl-pyridin-2-ylamine (Fluorochem Ltd., Derbyshire, United Kingdom, 5.37 g, 32.8 mmol) in 100 ml of dry CH3CN under argon were added N-bromosuccinimide (6.45 g, 36.2 mmol) in 4 equal portions over a period of 1 h at 0-5° C. The cooling bath was removed and stirring was continued for 3 h. The solvent was evaporated under vacuum, then the residue was dissolved in EtOAc and washed with water and brine. The organic layer was dried over Na2SO4 and evaporated to give the title compound as a orange oil. (M+H=239; 241).


The following example was synthesized in a similar manner as described for Example 1.1 using 5-(4,4,5,5-tetramethyl-[1,3,2]dioxaborolan-2-yl)-3-trifluoromethyl-pyridin-2-ylamine and the specified intermediate.






















HPLC






MS-ES
tR


Example
Intermed.
structure
Name of the example
(M + H)
(min)




















25.2
O


embedded image


2-{4-[8-(6-Amino-5- trifluoromethyl- pyridin-3-yl)-3- methyl-2-oxo-2,3- dihydro-imidazo[4,5- c]quinolin-1-yl]-3,5- dimethyl-pyrazol-1- yl}-N,N-dimethyl- acetamide
539
2.34





25.3
H


embedded image


8-(6-Amino-5- trifluoromethyl- pyridin-3-yl)-3- methyl-1-(1,3,5- trimethyl-1H-pyrazol- 4-yl)-1,3-dihydro- imidazo[4,5- c]quinolin-2-one
468
2.39





25.4
G


embedded image


8-(6-Amino-5- trifluoromethyl- pyridin-3-yl)-1-(1- isopropyl-3-methyl- 1H-pyrazol-4-yl)-3- methyl-1,3-dihydro- imidazo[4,5- c]quinolin-2-one
482
2.55





25.5
Q


embedded image


8-(6-Amino-5- trifluoromethyl- pyridin-3-yl)-1-(3,5- dimethyl-isoxazol-4- yl)-3-methyl-1,3- dihydro-imidazo[4,5- c]quinolin-2-one
455
2.52





25.6
C


embedded image


8-(6-Amino-5- trifluoromethyl- pyridin-3-yl)-1-(2,5- dimethyl-2H-pyrazol- 3-yl)-3-methyl-1,3- dihydro-imidazo[4,5- c]quinolin-2-one
454
2.54









Example 26
1-(1,3-Dimethyl-1H-pyrazol-4-yl)-3-methyl-8-pyrimidin-5-yl-1,3-dihydro-imidazo[4,5-c]quinolin-2-one



embedded image


The title compound was synthesized in a similar manner as described for Example 1.1 using 8-bromo-1-(1,3-dimethyl-1H-pyrazol-4-yl)-3-methyl-1,3-dihydro-imidazo[4,5-c]quinolin-2-one (Intermediate A, 40 mg, 0.105 mmol) and pyrimidine-5-boronic acid (Frontier Scientific, Logan, USA, 16 mg, 0.129 mmol) to give the title compound as a white solid. (HPLC: tR 2.24 min (Method A); M+H=372 MS-ES; 1H-NMR (d6-DMSO, 400 MHz) 9.20 (s, 1H), 9.02 (s, 1H), 8.93 (s, 2H), 8.20-8.12 (m, 2H), 8.06-7.99 (m, 1H), 7.62-7.56 (m, 1H), 3.90 (s, 3H), 3.58 (s, 3H), 1.97 (s, 3H))


Example 27.1
8-(3,4-Diethoxy-phenyl)-1-(1-ethyl-3-methyl-1H-pyrazol-4-yl)-3-methyl-1,3-dihydro-imidazo[4,5-c]quinolin-2-one



embedded image


The title compound was synthesized in a similar manner as described for Example 1.1 using 8-bromo-1-(1-ethyl-3-methyl-1H-pyrazol-4-yl)-3-methyl-1,3-dihydro-imidazo[4,5-c]quinolin-2-one (Intermediate F, 49 mg, 0.126 mmol) and 2-(3,4-diethoxy-phenyl)-4,4,5,5-tetramethyl-[1,3,2]dioxaborolane (stage 27.1.1, 47 mg, 0.161 mmol) to give the title compound as an off-white solid. (HPLC: tR 3.02 min (Method A); M+H=472 MS-ES; 1H-NMR (d6-DMSO, 400 MHz) 8.97 (s, 1H), 8.18 (s, 1H), 8.08-8.02 (m, 1H), 7.95-7.84 (m, 1H), 7.52-7.48 (m, 1H), 7.06-6.97 (m, 3H), 4.22-3.98 (m, 6H), 3.58 (s, 3H), 1.97 (s, 3H) 1.45-1.25 (m, 9H))


Stage 27.1.1 2-(3,4-Diethoxy-phenyl)-4,4,5,5-tetramethyl-[1,3,2]dioxaborolane



embedded image


The title compound was synthesized in a similar manner as described for Stage 5.1.1 using 4-Bromo-1,2-diethoxy-benzene (Stage 27.1.2, 500 mg, 2.04 mmol) to give the title compound as a colourless oil. (HPLC: tR 3.94 min (Method A); M+H=293 MS-ES).


Stage 27.1.2 4-Bromo-1,2-diethoxy-benzene



embedded image


A mixture of 4-bromocatechol (Aldrich, Buchs, Switzerland, 500 mg, 2.65 mmol), potassium carbonate (1.1 g, 7.94 mmol) and iodoethane (1.03 g, 6.61 mmol) in 10 ml DMF was stirred protected from the light for 17 h at rt. The reaction mixture was quenched with 50 ml saturated aqueous NaHCO3 and extracted with EtOAc (2×). The organic layers were washed with saturated aqueous NaHCO3 (4×) and brine, dried over Na2SO4, filtered and evaporated. The residue was purified by flash chromatography (petrol ether/diethyl ether 0% to 10%) to give the title compound as a colorless oil. (HPLC: tR 3.79 min (Method A)).


The following example was synthesized in a similar manner as described for Example 1.1 using 2-(3,4-diethoxy-phenyl)-4,4,5,5-tetramethyl-[1,3,2]dioxaborolane and the specified intermediate.






















HPLC






MS-ES
tR


Example
Intermed.
structure
Name of the example
(M + H)
(min)




















27.2
H


embedded image


8-(3,4-Diethoxy- phenyl)-3-methyl-1- (1,3,5-trimethyl-1H- pyrazol-4-yl)-1,3- dihydro-imidazo[4,5- c]quinolin-2-one
472
2.97









Example 28.1
8-(3-Ethoxy-4-methoxy-phenyl)-1-(1-ethyl-3-methyl-1H-pyrazol-4-yl)-3-methyl-1,3-dihydro-imidazo[4,5-c]quinolin-2-one



embedded image


The title compound was synthesized in a similar manner as described for Example 1.1 using 8-bromo-1-(1-ethyl-3-methyl-1H-pyrazol-4-yl)-3-methyl-1,3-dihydro-imidazo[4,5-c]quinolin-2-one (Intermediate F, 39 mg, 0.100 mmol) and 3-ethoxy-4-methoxyphenylboronic acid (Combi-Blocks, San Diego, USA, 25.5 mg, 0.130 mmol) to give the title compound as an off-white foam. (HPLC: tR 2.86 min (Method A); M+H=458 MS-ES; 1H-NMR (d6-DMSO, 400 MHz) 8.92 (s, 1H), 8.16 (s, 1H), 8.08-8.01 (m, 1H), 7.93-7.87 (m, 1H), 7.52-7.46 (m, 1H), 7.06-6.96 (m, 3H), 4.20-4.03 (m, 4H), 3.77 (s, 3H), 3.57 (s, 3H), 1.97 (s, 3H), 1.45-1.33 (m, 6H))


The following examples were synthesized in a similar manner as described for Example 1.1 using 3-ethoxy-4-methoxyphenylboronic acid and the specified intermediate.






















HPLC






MS-ES
tR


Example
Intermed.
structure
Name of the example
(M + H)
(min)




















28.2
H


embedded image


8-(3-Ethoxy-4- methoxy-phenyl)-3- methyl-1-(1,3,5- trimethyl-1H-pyrazol- 4- yl)-1,3-dihydro- imidazo[4,5-c]quino- lin-2-one
458
2.81





28.3
A


embedded image


1-(1,3-Dimethyl-1H- pyrazol-4-yl)-8- (3-ethoxy-4-methoxy- phenyl)-3-methyl-1,3- dihydro-imidazo[4,5- c]quinolin-2-one
444
2.76









Example 29.1
8-(4-Ethoxy-3-methoxy-phenyl)-1-(1-ethyl-3-methyl-1H-pyrazol-4-yl)-3-methyl-1,3-dihydro-imidazo[4,5-c]quinolin-2-one



embedded image


The title compound was synthesized in a similar manner as described for Example 1.1 using 8-bromo-1-(1-ethyl-3-methyl-1H-pyrazol-4-yl)-3-methyl-1,3-dihydro-imidazo[4,5-c]quinolin-2-one (Intermediate F, 39 mg, 0.100 mmol) and 2-(4-ethoxy-3-methoxy-phenyl)-4,4,5,5-tetramethyl-[1,3,2]dioxaborolane (Stage 29.1.1, 34 mg, 0.123 mmol) to give the title compound as a white solid. (HPLC: tR 2.88 min (Method A); M+H=458 MS-ES; 1H-NMR (d6-DMSO, 400 MHz) 8.92 (s, 1H), 8.16 (s, 1H), 8.07-8.02 (m, 1H), 7.94-7.88 (m, 1H), 7.51-7.47 (m, 1H), 7.06-6.96 (m, 3H), 4.20-4.12 (m, 2H), 4.06-3.98 (m, 2H), 3.85 (s, 3H), 3.57 (s, 3H), 1.97 (s, 3H), 1.42-1.29 (m, 6H))


Stage 29.1.1 2-(4-Ethoxy-3-methoxy-phenyl)-4,4,5,5-tetramethyl-[1,3,2]dioxaborolane



embedded image


To a mixture of 4-hydroxy-3-methoxyphenylboronic acid pinacol ester (Aldrich, Buchs, Switzerland, 200 mg, 0.800 mmol), triphenylphosphine (315 mg, 1.200 mmol) and ethanol (0.056 ml, 0.960 mmol) in THF (4 ml) under Argon was added dropwise diisopropyl azodicarboxylate (0.253 ml, 1.20 mmol). The RM was stirred at it for 17.5 h. Then the RM was diluted with EtOAc and the organic layer was washed with brine (2×), before being dried over Na2SO4, filtered and evaporated. The residue was absorbed on silica gel and purified by MPLC (hexane/EtOAc 0 to 30%). The fractions containing product were together evaporated to give the title compound as a white solid. (HPLC: tR 3.58 min (Method A); M+H=279 MS-ES)


The following examples were synthesized in a similar manner as described for Example 1.1 using 2-(4-ethoxy-3-methoxy-phenyl)-4,4,5,5-tetramethyl-[1,3,2]dioxaborolane and the specified intermediate.






















HPLC






MS-ES
tR


Example
Intermed.
structure
Name of the example
(M + H)
(min)




















29.2
H


embedded image


8-(4-Ethoxy-3- methoxy-phenyl)-3- methyl-1-(1,3,5- trimethyl-1H-pyrazol- 4-yl)-1,3-dihydro- midazo[4,5-c]quinolin- 2-one
458
2.85





29.3
A


embedded image


1-(1,3-Dimethyl-1H- pyrazol-4-yl)-8- (4-ethoxy-3-methoxy- phenyl)-3-methyl- 1,3-dihydro- imidazo[4,5-c]quinolin- 2-one
444
2.80









Example 30.1
1-(1,3-Dimethyl-1H-pyrazol-4-yl)-8-[3-methoxy-4-(2-methoxy-ethoxy)-phenyl]-3-methyl-1,3-dihydro-imidazo[4,5-c]quinolin-2-one



embedded image


The title compound was synthesized in a similar manner as described for Example 1.1 using 8-bromo-1-(1,3-dimethyl-1H-pyrazol-4-yl)-3-methyl-1,3-dihydro-imidazo[4,5-c]quinolin-2-one (Intermediate A, 39 mg, 0.105 mmol) and 2-[3-methoxy-4-(2-methoxy-ethoxy)-phenyl]-4,4,5,5-tetramethyl-[1,3,2]dioxaborolane (Stage 30.1.1, 39 mg, 0.126 mmol) to give the title compound as a white solid. (HPLC: tR 2.71 min (Method A); M+H=474 MS-ES; 1H-NMR (d6-DMSO, 400 MHz) 8.93 (s, 1H), 8.15-8.02 (m, 2H), 7.97-7.89 (m, 1H), 7.59-7.51 (m, 1H), 7.11-7.02 (m, 2H), 7.00-6.94 (m, 1H), 4.16-4.07 (m, 2H), 3.94-3.84 (m, 6H), 3.70-3.64 (m, 2H), 3.58 (s, 3H), 3.31 (s, 3H), 1.97 (s, 3H))


Stage 30.1.1 2-[3-Methoxy-4-(2-methoxy-ethoxy)-phenyl]-4,4,5,5-tetramethyl-[1,3,2]dioxaborolane



embedded image


The title compound was synthesized in a similar manner as described for stage 29.1.1 using 2-methoxyethanol (Aldrich, Buchs, Switzerland) to give the title compound as a colorless oil. (HPLC: tR 3.42 min (Method A); M+H=309 MS-ES)


The following example was synthesized in a similar manner as described for Example 1.1 using 2-[3-methoxy-4-(2-methoxy-ethoxy)-phenyl]-4,4,5,5-tetramethyl-[1,3,2]dioxaborolane and the specified intermediate.






















HPLC






MS-ES
tR


Example
Intermed.
structure
Name of the example
(M + H)
(min)




















30.2
F


embedded image


1-(1-Ethyl-3-methyl- 1H-pyrazol-4-yl)- 8-[3-methoxy-4-(2- methoxy-ethoxy)- phenyl]-3-methyl-1,3- dihydro-imidazo[4,5- c]quinolin-2-one
488
2.78









Example 31
8-(4-Hydroxy-3-methoxy-phenyl)-3-methyl-1-(1,3,5-trimethyl-1H-pyrazol-4-yl)-1,3-dihydro-imidazo[4,5-c]quinolin-2-one



embedded image


The title compound was synthesized in a similar manner as described for Example 1.1 using 8-bromo-3-methyl-1-(1,3,5-trimethyl-1H-pyrazol-4-yl)-1,3-dihydro-imidazo[4,5-c]quinolin-2-one (Intermediate H, 39 mg, 0.100 mmol) and 4-hydroxy-3-methoxyphenylboronic acid pinacol ester (Aldrich, Buchs, Switzerland, 30 mg, 0.120 mmol) to give the title compound as a lightly yellow foam. (HPLC: tR 2.50 min (Method A); M+H=430 MS-ES; 1H-NMR (d6-DMSO, 400 MHz) 9.23 (s, 1H), 8.93 (s, 1H), 8.06-7.99 (m, 1H), 7.92-7.85 (m, 1H), 7.51-7.46 (m, 1H), 7.03-6.96 (m, 1H), 6.94-6.89 (m, 1H), 6.87-6.81 (m, 1H), 3.85 (s, 3H), 3.79 (s, 3H), 3.58 (s, 3H), 2.08 (s, 3H), 1.94 (s, 3H))


Example 32.1
1-(1,3-Dimethyl-1H-pyrazol-4-yl)-8-(3-hydroxy-phenyl)-3-methyl-1,3-dihydro-imidazo[4,5-c]quinolin-2-one



embedded image


The title compound was synthesized in a similar manner as described for Example 1.1 using 8-bromo-1-(1,3-dimethyl-1H-pyrazol-4-yl)-3-methyl-1,3-dihydro-imidazo[4,5-c]quinolin-2-one (Intermediate A, 39 mg, 0.105 mmol) and 3-hydroxyphenylboronic acid (Aldrich, Buchs, Switzerland, 17 mg, 0.123 mmol) to give the title compound as a white solid. (HPLC: tR 2.46 min (Method A); M+H=386 MS-ES; 1H-NMR (d6-DMSO, 400 MHz) 9.58 (s, 1H), 8.95 (s, 1H), 8.20-8.11 (m, 1H), 8.10-8.01 (m, 1H), 7.88-7.77 (m, 1H), 7.57-7.47 (m, 1H), 7.31-7.20 (m, 1H), 6.93-6.83 (m, 2H), 6.82-6.73 (m, 1H), 3.95 (s, 3H), 3.58 (s, 3H), 1.95 (s, 3H))


The following example was synthesized in a similar manner as described for Example 1.1 using 3-hydroxyphenylboronic acid and the specified intermediate.






















HPLC






MS-ES
tR


Example
Intermed.
structure
Name of the example
(M + H)
(min)




















32.2
H


embedded image


8-(3-Hydroxy-phenyl)- 3-methyl-1-(1,3,5- trimethyl-1H-pyrazol- 4-yl)-1,3- dihydro-imidazo[4,5- c]quinolin-2-one
400
2.52









Example 33
1-(1,3-Dimethyl-1H-pyrazol-4-yl)-8-(3-fluoro-5-hydroxy-phenyl)-3-methyl-1,3-dihydro-imidazo[4,5-c]quinolin-2-one



embedded image


The title compound was synthesized in a similar manner as described for Example 1.1 using 8-bromo-1-(1,3-dimethyl-1H-pyrazol-4-yl)-3-methyl-1,3-dihydro-imidazo[4,5-c]quinolin-2-one (Intermediate A, 40 mg, 0.107 mmol) and 3-fluoro-5-hydroxyphenylboronic acid (Combi-Blocks, San Diego, USA, 21 mg, 0.132 mmol) to give the title compound as a white solid. (HPLC: tR 2.58 min (Method A); M+H=404 MS-ES; 1H-NMR (d6-DMSO, 400 MHz) 10.09 (s, 1H), 8.96 (s, 1H), 8.17 (s, 1H), 8.10-8.03 (m, 1H), 7.87-7.80 (m, 1H), 7.52-7.46 (m, 1H), 6.75-6.64 (m, 2H), 6.63-6.52 (m, 1H), 3.92 (s, 3H), 3.57 (s, 3H), 1.94 (s, 3H))


Example 34
1-(1,3-Dimethyl-1H-pyrazol-4-yl)-8-(3-hydroxy-5-trifluoromethyl-phenyl)-3-methyl-1,3-dihydro-imidazo[4,5-c]quinolin-2-one



embedded image


The title compound was synthesized in a similar manner as described for Example 1.1 using 8-bromo-1-(1,3-dimethyl-1H-pyrazol-4-yl)-3-methyl-1,3-dihydro-imidazo[4,5-c]quinolin-2-one (Intermediate A, 40 mg, 0.107 mmol) and 3-hydroxy-5-(trifluoromethyl)phenylboronic acid (Combi-Blocks, San Diego, USA, 27 mg, 0.132 mmol) to give the title compound as a white solid. (HPLC: tR 2.83 min (Method A); M+H=454 MS-ES; 1H-NMR (d6-DMSO, 400 MHz) 10.38 (s, br, 1H), 8.98 (s, 1H), 8.18 (s, 1H), 8.12-8.07 (m, 1H), 7.93-7.87 (m, 1H), 7.58-7.53 (m, 1H), 7.21-7.16 (m, 1H), 7.13-7.09 (m, 1H), 7.07-7.03 (m, 1H), 3.89 (s, 3H), 3.58 (s, 3H), 1.93 (s, 3H))


Example 35
8-(2,2-Difluoro-benzo[1,3]dioxol-4-yl)-1-(1,3-dimethyl-1H-pyrazol-4-yl)-3-methyl-1,3-dihydro-imidazo[4,5-c]quinolin-2-one



embedded image


The title compound was synthesized in a similar manner as described for Example 1.1 using 8-bromo-1-(1,3-dimethyl-1H-pyrazol-4-yl)-3-methyl-1,3-dihydro-imidazo[4,5-c]quinolin-2-one (Intermediate A, 40 mg, 0.107 mmol) and 2,2-difluorobenzo[1,3]dioxole-4-boronic acid (Apollo, Cheshire, United Kingdom, 26 mg, 0.130 mmol) to give the title compound as a white solid. (HPLC: tR 2.95 min (Method A); M+H=450 MS-ES; 1H-NMR (d6-DMSO, 400 MHz) 9.01 (s, 1H), 8.18-8.13 (m, 1H), 8.08 (s, 1H), 7.97-7.91 (m, 1H), 7.88-7.84 (m, 1H), 7.441-7.38 (m, 2H), 7.36-7.29 (m, 1H), 3.85 (s, 3H), 3.58 (s, 3H), 1.94 (s, 3H))


Example 36
1-(1,3-Dimethyl-1H-pyrazol-4-yl)-3-methyl-8-(1H-pyrrolo[2,3-b]pyridin-5-yl)-1,3-dihydro-imidazo[4,5-c]quinolin-2-one



embedded image


The title compound was synthesized in a similar manner as described for Example 1.1 using 8-bromo-1-(1,3-dimethyl-1H-pyrazol-4-yl)-3-methyl-1,3-dihydro-imidazo[4,5-c]quinolin-2-one (Intermediate A, 39 mg, 0.105 mmol) and 7-azaindole-5-boronic acid pinacol ester (ABCR, Karlsruhe, Germany, 31 mg, 0.127 mmol) to give the title compound as a white solid. (HPLC: tR 2.35 min (Method A); M+H=410 MS-ES; 1H-NMR (d6-DMSO, 400 MHz) 11.75 (s, br, 1H), 8.95 (s, 1H), 8.38-8.28 (m, 1H), 8.22-8.15 (m, 1H), 8.13-8.03 (m, 2H), 8.01-7.95 (m, 1H), 7.59-7.51 (m, 2H), 6.55-6.47 (m, 1H), 3.93 (s, 3H), 3.58 (s, 3H), 1.97 (s, 3H))


Example 37.1
1-(1,3-Dimethyl-1H-pyrazol-4-yl)-3-methyl-8-phenyl-1,3-dihydro-imidazo[4,5-c]quinolin-2-one



embedded image


The title compound was synthesized in a similar manner as described for Example 1.1 using 8-bromo-1-(1,3-dimethyl-1H-pyrazol-4-yl)-3-methyl-1,3-dihydro-imidazo[4,5-c]quinolin-2-one (Intermediate A, 40 mg, 0.107 mmol) and phenylboronic acid (Aldrich, Buchs, Switzerland, 16.5 mg, 0.135 mmol) to give the title compound as a white solid. (HPLC: tR 2.70 min (Method A); M+H=370 MS-ES; 1H-NMR (d6-DMSO, 400 MHz) 8.95 (s, 1H), 8.16 (s, 1H), 8.11-8.06 (m, 1H), 7.93-7.88 (m, 1H), 7.56-7.53 (m, 1H), 7.50-7.44 (m, 4H), 7.42-7.34 (m, 1H), 3.92 (s, 3H), 3.57 (s, 3H), 1.95 (s, 3H))


The following examples were synthesized in a similar manner as described for Example 1.1 using phenylboronic acid and the specified intermediate.






















HPLC






MS-ES
tR


Example
Intermed.
structure
Name of the example
(M + H)
(min)




















37.2
H


embedded image


3-Methyl-8-phenyl-1- (1,3,5-trimethyl- 1H-pyrazol-4-yl)-1,3- dihydro-imidazo [4,5-c]quinolin-2- one
384
2.73





37.3
L


embedded image


N,N-Dimethyl-2-[3- methyl-4-(3-methyl-2- oxo-8-phenyl-2,3- dihydro-imidazo[4,5- c]quinolin-1-yl)- pyrazol-1-yl]- acetamide
441
2.65





37.4
O


embedded image


2-[3,5-Dimethyl-4-(3- methyl-2-oxo-8- phenyl-2,3-dihydro- imidazo[4,5- c]quinolin-1-yl)- pyrazol-1-yl]-N,N- dimethyl-acetamide
455
2.68









Example 38
1-(1,3-Dimethyl-1H-pyrazol-4-yl)-3-methyl-8-quinolin-3-yl-1,3-dihydro-imidazo[4,5-c]quinolin-2-one



embedded image


The title compound was synthesized in a similar manner as described for Example 1.1 using 8-bromo-1-(1,3-dimethyl-1H-pyrazol-4-yl)-3-methyl-1,3-dihydro-imidazo[4,5-c]quinolin-2-one (Intermediate A, 39 mg, 0.105 mmol) and 3-quinolineboronic acid (Aldrich, Buchs, Switzerland, 22 mg, 0.127 mmol) to give the title compound as an off-white solid. (HPLC: tR 2.40 min (Method A); M+H=421 MS-ES; 1H-NMR (d6-DMSO, 400 MHz) 9.03-8.96 (m, 2H), 8.52 (s, 1H), 8.21-7.99 (m, 5H), 7.83-7.76 (m, 1H), 7.75-7.71 (m, 1H), 7.71-7.65 (m, 1H), 3.95 (s, 3H), 3.59 (s, 3H), 1.98 (s, 3H))


Example 39
3-[1-(1,3-Dimethyl-1H-pyrazol-4-yl)-3-methyl-2-oxo-2,3-dihydro-1H-imidazo[4,5-c]quinolin-8-yl]-N-methyl-benzenesulfonamide



embedded image


The title compound was synthesized in a similar manner as described for Example 1.1 using 8-bromo-1-(1,3-dimethyl-1H-pyrazol-4-yl)-3-methyl-1,3-dihydro-imidazo[4,5-c]quinolin-2-one (Intermediate A, 40 mg, 0.107 mmol) and methyl-3-boronobenzenesulfonamide (Combi-Blocks, San Diego, USA, 28 mg, 0.128 mmol) to give the title compound as a white solid. (HPLC: tR 2.47 min (Method A); M+H=463 MS-ES; 1H-NMR (d6-DMSO, 400 MHz) 9.00 (s, 1H), 8.18-8.11 (m, 2H), 7.97-7.91 (m, 1H), 7.83-7.70 (m, 4H), 7.66-7.60 (m, 1H), 7.53-7.47 (m, 1H), 3.93 (s, 3H), 3.58 (s, 3H), 2.44 (s, 3H), 1.95 (s, 3H))


Example 40
1-(1,3-Dimethyl-1H-pyrazol-4-yl)-8-(3-methanesulfonyl-phenyl)-3-methyl-1,3-dihydro-imidazo[4,5-c]quinolin-2-one



embedded image


The title compound was synthesized in a similar manner as described for Example 1.1 using 8-bromo-1-(1,3-dimethyl-1H-pyrazol-4-yl)-3-methyl-1,3-dihydro-imidazo[4,5-c]quinolin-2-one (Intermediate A, 40 mg, 0.107 mmol) and (3-methylsulfonylphenyl)boronic acid (Combi-Blocks, San Diego, USA, 26 mg, 0.127 mmol) to give the title compound as a white solid. (HPLC: tR 2.45 min (Method A); M+H=448 MS-ES; 1H-NMR (d6-DMSO, 400 MHz) 9.00 (s, 1H), 8.19-8.11 (m, 2H), 8.02-7.97 (m, 1H), 7.95-7.86 (m, 3H), 7.80-7.74 (m, 1H), 7.64-7.60 (m, 1H), 3.93 (s, 3H), 3.59 (s, 3H), 3.33-3.30 (3H), 1.94 (s, 3H))


Example 41
4-[1-(1,3-Dimethyl-1H-pyrazol-4-yl)-3-methyl-2-oxo-2,3-dihydro-1H-imidazo[4,5-c]quinolin-8-yl]-benzamide



embedded image


The title compound was synthesized in a similar manner as described for Example 1.1 using 8-bromo-1-(1,3-dimethyl-1H-pyrazol-4-yl)-3-methyl-1,3-dihydro-imidazo[4,5-c]quinolin-2-one (Intermediate A, 40 mg, 0.107 mmol) and (3-methylsulfonylphenyl)boronic acid (Aldrich, Buchs, Switzerland, 21 mg, 0.130 mmol) to give the title compound as a white solid. (HPLC: tR 2.31 min (Method A); M+H=413 MS-ES; 1H-NMR (d6-DMSO, 400 MHz) 8.98 (s, 1H), 8.19-8.15 (m, 1H), 8.14-8.08 (m, 1H), 8.07-8.01 (m, 1H), 7.99-7.93 (m, 3H), 7.61-7.52 (m, 3H), 7.47-7.39 (m, 1H), 3.94 (s, 3H), 3.58 (s, 3H), 1.95 (s, 3H))


Example 42
8-(6-Cyclopropylmethoxy-pyridin-3-yl)-1-(1,3-dimethyl-1H-pyrazol-4-yl)-3-methyl-1,3-dihydro-imidazo[4,5-c]quinolin-2-one



embedded image


The title compound was synthesized in a similar manner as described for Example 1.1 using 8-bromo-1-(1,3-dimethyl-1H-pyrazol-4-yl)-3-methyl-1,3-dihydro-imidazo[4,5-c]quinolin-2-one (Intermediate A, 40 mg, 0.107 mmol) and 6-(cyclopropylmethoxy)pyridine-3-boronic acid pinacol ester (ABCR, Karlsruhe, Germany, 36 mg, 0.131 mmol) to give the title compound as a white solid. (HPLC: tR 2.88 min (Method A); M+H=441 MS-ES; 1H-NMR (d6-DMSO, 400 MHz) 8.95 (s, 1H), 8.29-8.23 (m, 1H), 8.16-8.04 (m, 2H), 7.92-7.85 (m, 1H), 7.80-7.72 (m, 1H), 7.49-7.43 (m, 1H), 6.98-6.90 (m, 1H), 4.15-4.09 (m, 2H), 3.90 (s, 3H), 3.57 (s, 3H), 1.94 (s, 3H), 1.31-1.17 (m, 1H), 0.62-0.48 (m, 2H), 0.40-0.30 (m, 2H))


Example 43.1
4-[1-(1,3-Dimethyl-1H-pyrazol-4-yl)-3-methyl-2-oxo-2,3-dihydro-1H-imidazo[4,5-c]quinolin-8-yl]-N-methyl-benzamide



embedded image


The title compound was synthesized in a similar manner as described for Example 1.1 using 8-bromo-1-(1,3-dimethyl-1H-pyrazol-4-yl)-3-methyl-1,3-dihydro-imidazo[4,5-c]quinolin-2-one (Intermediate A, 48 mg, 0.129 mmol) and 4-(N-methylaminocarbonyl)phenylboronic acid (ABCR, Karlsruhe, Germany, 27 mg, 0.153 mmol) to give the title compound as a white solid. (HPLC: tR 2.40 min (Method A); M+H=427 MS-ES; 1H-NMR (d6-DMSO, 400 MHz) 8.97 (s, 1H), 8.54-8.48 (m, 1H), 8.19-8.15 (m, 1H), 8.13-8.07 (m, 1H), 7.98-7.89 (m, 3H), 7.61-7.53 (m, 3H), 3.94 (s, 3H), 3.57 (s, 3H), 2.79 (d, 3H), 1.95 (s, 3H))


The following example was synthesized in a similar manner as described for Example 1.1 using 4-(N-methylaminocarbonyl)phenylboronic acid and the specified intermediate.





















MS-ES
HPLC


Example
Intermed.
structure
Name of the example
(M + H)
tR (min)







43.2
K


embedded image


4-[1-(3-Chloro-1- methyl-1H-pyrazol-4- yl)-3-methyl-2-oxo- 2,3-dihydro-1H-imidazo [4,5-c]quinolin-8-yl]- N-methyl-benzamide
447
2.47









Example 44
1-(1,3-Dimethyl-1H-pyrazol-4-yl)-3-methyl-8-[3-(pyrrolidine-1-sulfonyl)-phenyl]-1,3-dihydro-imidazo[4,5-c]quinolin-2-one



embedded image


The title compound was synthesized in a similar manner as described for Example 1.1 using 8-bromo-1-(1,3-dimethyl-1H-pyrazol-4-yl)-3-methyl-1,3-dihydro-imidazo[4,5-c]quinolin-2-one (Intermediate A, 40 mg, 0.106 mmol) and 3-(pyrrolidinylsulfonyl)phenylboronic acid (Combi-Blocks, San Diego, USA, 33 mg, 0.129 mmol) to give the title compound as a white solid. (HPLC: tR 2.78 min (Method A); M+H=503 MS-ES; 1H-NMR (d6-DMSO, 400 MHz) 9.00 (s, 1H), 8.16-8.11 (m, 2H), 8.02-7.96 (m, 1H), 7.94-7.89 (m, 1H), 7.83-7.78 (m, 1H), 7.77-7.71 (m, 2H), 7.69-7.65 (m, 1H), 3.92 (s, 3H), 3.58 (s, 3H), 3.21-3.14 (m, 4H), 1.95 (s, 3H), 1.70-1.63 (m, 4H))


Example 45.1
8-(5-Amino-pyridin-3-yl)-1-(1,3-dimethyl-1H-pyrazol-4-yl)-3-methyl-1,3-dihydro-imidazo[4,5-c]quinolin-2-one



embedded image


The title compound was synthesized in a similar manner as described for Example 1.1 using 8-bromo-1-(1,3-dimethyl-1H-pyrazol-4-yl)-3-methyl-1,3-dihydro-imidazo[4,5-c]quinolin-2-one (Intermediate A, 40 mg, 0.106 mmol) and 3-aminopyridine-5-boronic acid pinacol ester (Apollo Scientific, Cheshire, United Kingdom, 29 mg, 0.132 mmol) to give the title compound as a white solid. (HPLC: tR 1.99 min (Method A); M+H=386 MS-ES; 1H-NMR (d6-DMSO, 400 MHz) 8.97 (s, 1H), 8.16-8.05 (m, 2H), 7.94-7.89 (m, 1H), 7.81-7.74 (m, 2H), 7.54-7.48 (m, 1H), 7.04-6.98 (m, 1H), 5.45 (s, br, 2H), 3.91 (s, 3H), 3.57 (s, 3H), 1.95 (s, 3H))


The following examples were synthesized in a similar manner as described for Example 1.1 using 3-aminopyridine-5-boronic acid pinacol ester and the specified intermediate.





















MS-ES
HPLC


Example
Intermed.
structure
Name of the example
(M + H)
tR (min)







45.2
F


embedded image


8-(5-Amino-pyridin-3- yl)-1-(1-ethyl-3- methyl-1H-pyrazol-4- yl)-3-methyl-1,3- dihydro-imidazo[4,5-c] quinolin-2-one
400
1.98





45.3
A


embedded image


8-(5-Amino-pyridin-3- yl)-1-(1-isopropyl-3- methyl-1H-pyrazol-4- yl)-3-methyl-1,3- dihydro-imidazo[4,5-c] quinolin-2-one
414
2.05









Example 46
3-[1-(1,3-Dimethyl-1H-pyrazol-4-yl)-3-methyl-2-oxo-2,3-dihydro-1H-imidazo[4,5-c]quinolin-8-yl]-benzamide



embedded image


The title compound was synthesized in a similar manner as described for Example 1.1 using 8-bromo-1-(1,3-dimethyl-1H-pyrazol-4-yl)-3-methyl-1,3-dihydro-imidazo[4,5-c]quinolin-2-one (Intermediate A, 40 mg, 0.106 mmol) and benzamide-3-boronic acid (ABCR, Karlsruhe, Germany, 21 mg, 0.129 mmol) to give the title compound as a white solid. (HPLC: tR 2.34 min (Method A); M+H=413 MS-ES; 1H-NMR (d6-DMSO, 400 MHz) 8.98 (s, 1H), 8.19-8.16 (m, 1H), 8.14-8.10 (m, 1H), 8.09-8.04 (m, 1H), 8.02-7.95 (m, 2H), 7.89-7.83 (m, 1H), 7.65-7.59 (m, 2H), 7.58-7.47 (m, 2H), 3.94 (s, 3H), 3.58 (s, 3H), 1.93 (s, 3H))


Example 47
N-{3-[1-(1,3-Dimethyl-1H-pyrazol-4-yl)-3-methyl-2-oxo-2,3-dihydro-1H-imidazo[4,5-c]quinolin-8-yl]-phenyl}-methanesulfonamide



embedded image


The title compound was synthesized in a similar manner as described for Example 1.1 using 8-bromo-1-(1,3-dimethyl-1H-pyrazol-4-yl)-3-methyl-1,3-dihydro-imidazo[4,5-c]quinolin-2-one (Intermediate A, 40 mg, 0.106 mmol) and 3-(Methanesulfonylamino)phenylboronic acid (ABCR, Karlsruhe, Germany, 28 mg, 0.126 mmol) to give the title compound as a white solid. (HPLC: tR 2.46 min (Method A); M+H=463 MS-ES; 1H-NMR (d6-DMSO, 400 MHz) 9.88 (s, 1H), 8.97 (s, 1H), 8.12-8.10 (m, 2H), 7.82-7.79 (m, 1H), 7.56-7.54 (m, 1H), 7.45-7.41 (m, 1H), 7.36-7.34 (m, 1H), 7.21-7.16 (m, 2H), 3.90 (s, 3H), 3.58 (s, 3H), 3.03 (s, 3H), 1.96 (s, 3H))


Example 48
4-[1-(1,3-Dimethyl-1H-pyrazol-4-yl)-3-methyl-2-oxo-2,3-dihydro-1H-imidazo[4,5-c]quinolin-8-yl]-N,N-dimethyl-benzamide



embedded image


The title compound was synthesized in a similar manner as described for Example 1.1 using 8-bromo-1-(1,3-dimethyl-1H-pyrazol-4-yl)-3-methyl-1,3-dihydro-imidazo[4,5-c]quinolin-2-one (Intermediate A, 40 mg, 0.106 mmol) and 4-(N,N-dimethylaminocarbonyl)phenylboronic acid (Combi-Blocks, San Diego, USA, 25 mg, 0.126 mmol) to give the title compound as a white solid. (HPLC: tR 2.51 min (Method A); M+H=441 MS-ES; 1H-NMR (d6-DMSO, 400 MHz) 8.97 (s, 1H), 8.17 (s, 1H), 8.12-8.10 (m, 1H), 7.96-7.93 (m, 1H), 7.59-7.58 (m, 1H), 7.55-7.50 (m, 4H), 3.93 (s, 3H), 3.58 (s, 3H), 2.99 (s, 3H), 2.94 (s, 3H), 1.95 (s, 3H))


Example 49
1-(1,3-Dimethyl-1H-pyrazol-4-yl)-3-methyl-8-(2-oxo-2,3-dihydro-1H-indol-5-yl)-1,3-dihydro-imidazo[4,5-c]quinolin-2-one



embedded image


The title compound was synthesized in a similar manner as described for Example 1.1 using 8-bromo-1-(1,3-dimethyl-1H-pyrazol-4-yl)-3-methyl-1,3-dihydro-imidazo[4,5-c]quinolin-2-one (Intermediate A, 40 mg, 0.106 mmol) and 5-(4,4,5,5-tetramethyl-[1,3,2]dioxaborolan-2-yl)-1,3-dihydro-indol-2-one (Combi-Blocks, San Diego, USA, 35 mg, 0.128 mmol) to give the title compound as an off-white solid. (HPLC: tR 2.40 min (Method A); M+H=425 MS-ES; 1H-NMR (d6-DMSO, 400 MHz) 10.52 (s, 1H), 8.92 (s, 1H), 8.17 (s, 1H), 8.05-8.03 (m, 1H), 7.86-7.83 (m, 1H), 7.46 (s, 1H), 7.33-7.29 (m, 2H), 6.90-6.88 (m, 1H), 3.94 (s, 3H), 3.57 (s, 3H), 3.54 (s, 2H), 1.93 (s, 3H))


Example 50
1-(1,3-Dimethyl-1H-pyrazol-4-yl)-3-methyl-8-(1-methyl-2,3-dihydro-1H-indol-5-yl)-1,3-dihydro-imidazo[4,5-c]quinolin-2-one



embedded image


The title compound was synthesized in a similar manner as described for Example 1.1 using 8-bromo-1-(1,3-dimethyl-1H-pyrazol-4-yl)-3-methyl-1,3-dihydro-imidazo[4,5-c]quinolin-2-one (Intermediate A, 40 mg, 0.106 mmol) and 1-methylindoline-5-boronic acid pinacol ester (Maybridge, Basel, Switzerland, 34 mg, 0.127 mmol) to give the title compound as a yellow solid. (HPLC: tR 2.52 min (Method A); M+H=425 MS-ES; 1H-NMR (d6-DMSO, 400 MHz) 8.87 (s, 1H), 8.16 (s, 1H), 8.00-7.97 (m, 1H), 7.83-7.81 (m, 1H), 7.41-7.40 (m, 1H), 7.20-7.17 (m, 1H), 7.14-7.13 (m, 1H), 6.57-6.55 (m, 1H), 3.94 (s, 3H), 3.56 (s, 3H), 3.33-3.29 (m, 2H), 2.92 (t, 2H), 2.73 (s, 3H), 1.94 (s, 3H))


Example 51.1
1-(1,3-Dimethyl-1H-pyrazol-4-yl)-3-methyl-8-(4-pyrazol-1-yl-phenyl)-1,3-dihydro-imidazo[4,5-c]quinolin-2-one



embedded image


The title compound was synthesized in a similar manner as described for Example 1.1 using 8-bromo-1-(1,3-dimethyl-1H-pyrazol-4-yl)-3-methyl-1,3-dihydro-imidazo[4,5-c]quinolin-2-one (Intermediate A, 40 mg, 0.106 mmol) and 4-(1H-pyrazol-1-yl)phenylboronic acid (Combi-Blocks, San Diego, USA, 24 mg, 0.126 mmol) to give the title compound as a white solid. (HPLC: tR 2.79 min (Method A); M+H=436 MS-ES; 1H-NMR (d6-DMSO, 400 MHz) 8.96 (s, 1H), 8.60-8.56 (m, 1H), 8.19-8.15 (m, 1H), 8.13-8.07 (m, 1H), 7.99-7.93 (m, 3H), 7.80-7.75 (m, 1H), 7.63-7.56 (m, 3H), 6.59-6.53 (m, 1H), 3.95 (s, 31-1), 3.57 (s, 3H), 1.97 (s, 3H))


The following examples were synthesized in a similar manner as described for Example 1.1 using 4-(1H-pyrazol-1-yl)phenylboronic acid and the specified intermediate.





















MS-ES
HPLC


Example
Intermed.
structure
Name of the example
(M + H)
tR (min)







51.2
L


embedded image


N,N-Dimethyl-2-{3- methyl-4-[3-methyl-2- oxo-8-(4-pyrazol-1-yl- pheny-2,3-dihydro- imidazo[4,5-c]quinolin- 1-yl]-pyrazol-1-yl}- acetamide
507
2.72





51.3
F


embedded image


1-(1-Ethyl-3-methyl- 1H-pyrazol-4-yl)-3- methyl-8-(4-pyrazol-1- yl-pheny-1,3-dihydro- imidazo[4,5-c]quinolin- 2-one
451
2.76





51.4
O


embedded image


2-{3,5-Dimethyl-4-[3- methyl-2-oxo-8-(4- pyrazol-1-yl-phenyl)- 2,3-dihydro-imidazo [4,5-c]quinolin-1-yl]- pyrazol-1-yl}-N,N- dimethyl-acetamide
521
2.76





51.5
N


embedded image


2-{3,5-Dimethyl-4-[3- methyl-2-oxo-8-(4- pyrazol-1-yl-phenyl)- 2,3-dihydro-imidazo [4,5-c]quinolin-1-yl]- pyrazol-1-yl}-N,N- dimethyl-acetamide
494
2.83





51.6
P


embedded image


N-Ethyl-N-methyl-2-{3- methyl-4-[3-methyl-2- oxo-8-(4-pyrazol-1-yl- phenyl)-2,3-dihydro- imidazo[4,5-c]quinolin- 1-yl]-pyrazol-1-yl}-acetamide
521
2.83









Example 52
1-(1,3-Dimethyl-1H-pyrazol-4-yl)-8-(2-ethoxy-pyrimidin-5-yl)-3-methyl-1,3-dihydro-imidazo[4,5-c]quinolin-2-one



embedded image


The title compound was synthesized in a similar manner as described for Example 1.1 using 8-bromo-1-(1,3-dimethyl-1H-pyrazol-4-yl)-3-methyl-1,3-dihydro-imidazo[4,5-c]quinolin-2-one (Intermediate A, 40 mg, 0.106 mmol) and 2-ethoxypyrimidine-5-boronic acid (Synthonix, Wake Forest, USA, 22 mg, 0.130 mmol) to give the title compound as a white solid. (HPLC: tR 2.51 min (Method A); M+H=416 MS-ES; 1H-NMR (d6-DMSO, 400 MHz) 8.98 (s, 1H), 8.73-8.67 (m, 2H), 8.16-8.09 (m, 2H), 7.98-7.91 (m, 1H), 7.51-7.46 (m, 1H), 4.39 (q, 2H), 3.89 (s, 3H), 3.57 (s, 3H), 1.96 (s, 3H), 1.35 (t, 3H))


Example 53.1
3-[1-(1,3-Dimethyl-1H-pyrazol-4-yl)-3-methyl-2-oxo-2,3-dihydro-1H-imidazo[4,5-c]quinolin-8-yl]-N,N-dimethyl-benzenesulfonamide



embedded image


The title compound was synthesized in a similar manner as described for Example 1.1 using 8-bromo-1-(1,3-dimethyl-1H-pyrazol-4-yl)-3-methyl-1,3-dihydro-imidazo[4,5-c]quinolin-2-one (Intermediate A, 40 mg, 0.106 mmol) and 3-(N,N-dimethylsulfonamide)phenylboronic acid (Combi-Blocks, San Diego, USA, 20 mg, 0.128 mmol) to give the title compound as a white solid. (HPLC: tR 2.66 min (Method A); M+H=477 MS-ES; 1H-NMR (d6-DMSO, 400 MHz) 8.97 (s, 1H), 8.17-8.09 (m, 2H), 8.01-7.90 (m, 2H), 7.80-7.72 (m, 2H), 7.71-7.64 (m, 2H), 3.91 (s, 3H), 3.58 (s, 3H), 2.66 (s, 6H), 1.96 (s, 3H))


The following example was synthesized in a similar manner as described for Example 1.1 using 3-(N,N-dimethylsulfonamide)phenylboronic acid and the specified intermediate.





















MS-ES
HPLC


Example
Intermed.
structure
Name of the example
(M + H)
tR (min)







53.2
H


embedded image


N,N-Dimethyl-3-[3- methyl-2-oxo-1-(1,3,5- trimethyl-1H-pyrazol- 4-yl)-2,3-dihydro-1H- imidazo[4,5-c] quinolin-8-yl]- benzenesulfonamide
491
2.70









Example 54.1
1-(1,3-Dimethyl-1H-pyrazol-4-yl)-8-(5-methoxymethyl-pyridin-3-yl)-3-methyl-1,3-dihydro-imidazo[4,5-c]quinolin-2-one



embedded image


The title compound was synthesized in a similar manner as described for Example 1.1 using 8-bromo-1-(1,3-dimethyl-1H-pyrazol-4-yl)-3-methyl-1,3-dihydro-imidazo[4,5-c]quinolin-2-one (Intermediate A, 40 mg, 0.107 mmol) and 5-(methoxymethyl)pyridine-3-boronic acid pinacol ester (PepTeck, Burlington, USA, 32 mg, 0.128 mmol) to give the title compound as a white solid. (HPLC: tR 2.08 min (Method A); M+H=415 MS-ES; 1H-NMR (d6-DMSO, 400 MHz) 9.01 (s, 1H), 8.70-8.67 (m, 1H), 8.56-8.54 (m, 1H), 8.19-8.13 (m, 2H), 8.02-7.98 (m, 1H), 7.82-7.80 (m, 1H), 7.62-7.59 (m, 1H), 4.53 (s, 2H), 3.94 (s, 3H), 3.60 (s, 3H), 3.37 (s, 3H), 1.97 (s, 3H))


The following example was synthesized in a similar manner as described for Example 1.1 using 5-(methoxymethyl)pyridine-3-boronic acid pinacol ester and the specified intermediate.





















MS-ES
HPLC


Example
Intermed.
structure
Name of the example
(M + H)
tR (min)







54.2
K


embedded image


1-(3-Chloro-1-methyl- 1H-pyrazol-4-yl)-8-(5- methoxymethyl- pyridin-3-yl)-3-methyl- 1,3-dihydro-imidazo [4,5-c]quinolin-2-one
435
2.25









Example 55
1-(1,3-Dimethyl-1H-pyrazol-4-yl)-3-methyl-8-(6-propoxy-pyridin-3-yl)-1,3-dihydro-imidazo[4,5-c]quinolin-2-one



embedded image


The title compound was synthesized in a similar manner as described for Example 1.1 using 8-bromo-1-(1,3-dimethyl-1H-pyrazol-4-yl)-3-methyl-1,3-dihydro-imidazo[4,5-c]quinolin-2-one (Intermediate A) and 2-propoxy-5-(4,4,5,5-tetramethyl-[1,3,2]dioxaborolan-2-yl)-pyridine (stage 55.1.1) to give the title compound as a white solid. (HPLC: tR 2.87 min (Method A); M+H=429 MS-ES; 1H-NMR (d6-DMSO, 400 MHz) 8.95 (s, 1H), 8.28 (s, 1H), 8.15-8.11 (m, 1H), 8.11-8.05 (m, 1H), 7.92-7.86 (m, 1H), 7.79-7.73 (m, 1H), 7.50-7.45 (m, 1H), 6.95-6.89 (m, 1H), 4.24 (t, 2H), 3.91 (s, 3H), 3.57 (s, 3H), 1.95 (s, 3H), 1.78-1.68 (m, 2H), 0.98 (t, 3H))


Stage 55.1.1 2-Propoxy-5-(4,4,5,5-tetramethyl-[1,3,2]dioxaborolan-2-yl)-pyridine



embedded image


The title compound was synthesized in a similar manner as described for Stage 5.1.1 using 5-bromo-2-propoxypyridine (Combi-Blocks, San Diego, USA) to give the title compound as a brown oil. (HPLC: tR 2.00 min (Method A); M+H=264 MS-ES).


Example 56.1
1-(1,3-Dimethyl-1H-pyrazol-4-yl)-8-(5-ethoxy-pyridin-3-yl)-3-methyl-1,3-dihydro-imidazo[4,5-c]quinolin-2-one



embedded image


The title compound was synthesized in a similar manner as described for Example 1.1 using 8-bromo-1-(1,3-dimethyl-1H-pyrazol-4-yl)-3-methyl-1,3-dihydro-imidazo[4,5-c]quinolin-2-one (Intermediate A) and 3-ethoxy-5-(4,4,5,5-tetramethyl-[1,3,2]dioxaborolan-2-yl)-pyridine (stage 56.1.1) to give the title compound as a white solid. (HPLC: tR 2.28 min (Method A); M+H=415 MS-ES; 1H-NMR (d6-DMSO, 400 MHz) 8.98 (s, 1H), 8.34-8.24 (m, 2H), 8.16-8.08 (m, 2H), 8.02-7.96 (m, 1H), 7.61-7.57 (m, 1H), 7.40-7.34 (m, 1H), 4.17 (q, 2H), 3.89 (s, 3H), 3.57 (s, 3H), 1.96 (s, 3H), 1.40 (t, 3H))


Stage 56.1.1 3-Ethoxy-5-(4,4,5,5-tetramethyl-[1,3,2]dioxaborolan-2-yl)-pyridine



embedded image


The title compound was synthesized in a similar manner as described for Stage 5.1.1 using 3-bromo-5-ethoxypyridine (SynChem, Des Plaines, USA) to give the title compound as a brown oil. (HPLC: tR 2.45 min (Method A); M+H=250 MS-ES).


The following examples were synthesized in a similar manner as described for Example 1.1 using 3-ethoxy-5-(4,4,5,5-tetramethyl-[1,3,2]dioxaborolan-2-yl)-pyridine and the specified intermediate.





















MS-ES
HPLC


Example
Intermed.
structure
Name of the example
(M + H)
tR (min)







56.2
L


embedded image


2-{4-[8-(5-Ethoxy- pyridin-3-yl)-3-methyl- 2-oxo-2,3-dihydro- imidazo[4,5-c]quinolin- 1-yl]-3-methyl-pyrazol- 1-yl}-N,N-dimethyl- acetamide
486
2.30





56.3
H


embedded image


8-(5-Ethoxy-pyridin-3- yl)-3-methyl-1-(1,3,5- trimethyl-1H-pyrazol-4- yl)-1,3-dihydro- imidazo[4,5-c]quinolin- 2-one
429
2.25





56.4
K


embedded image


1-(3-Chloro-1-methyl- 1H-pyrazol-4-yl)-8-(5- ethoxy-pyridin-3-yl)-3- methyl-1,3-dihydro- imidazo[4,5-c]quinolin- 2-one
435
2.40





56.5
I


embedded image


1-(2,4-Dimethyl-2H- pyrazol-3-yl)-8-(5- ethoxy-pyridin-3-yl)-3- methyl-1,3-dihydro- imidazo[4,5-c]quinolin- 2-one
415
2.36









Example 57
1-(1,3-Dimethyl-1H-pyrazol-4-yl)-8-(3-ethoxy-phenyl)-3-methyl-1,3-dihydro-imidazo[4,5-c]quinolin-2-one



embedded image


The title compound was synthesized in a similar manner as described for Example 1.1 using 8-bromo-1-(1,3-dimethyl-1H-pyrazol-4-yl)-3-methyl-1,3-dihydro-imidazo[4,5-c]quinolin-2-one (Intermediate A, 40 mg, 0.107 mmol) and 3-ethoxyphenylboronic acid (Aldrich, Buchs, Switzerland, 21.4 mg, 0.129 mmol) to give the title compound as a white solid. (HPLC: tR 2.84 min (Method A); M+H=414 MS-ES; 1H-NMR (d6-DMSO, 400 MHz) 8.96 (s, 1H), 8.16 (s, 1H), 8.09-8.06 (m, 1H), 7.94-7.91 (m, 1H), 7.57-7.59 (m, 1H), 7.39-7.35 (m, 1H), 7.12-6.92 (m, 3H), 4.09 (q, 2H), 3.92 (s, 3H), 3.58 (s, 3H), 1.96 (s, 3H), 1.37 (t, 3H))


Example 58.1
1-(1,3-Dimethyl-1H-pyrazol-4-yl)-8-(5-isopropoxy-pyridin-3-yl)-3-methyl-1,3-dihydro-imidazo[4,5-c]quinolin-2-one



embedded image


The title compound was synthesized in a similar manner as described for Example 1.1 using 8-bromo-1-(1,3-dimethyl-1H-pyrazol-4-yl)-3-methyl-1,3-dihydro-imidazo[4,5-c]quinolin-2-one (Intermediate A) and 3-isopropoxy-5-(4,4,5,5-tetramethyl-[1,3,2]dioxaborolan-2-yl)-pyridine (Stage 58.1.1) to give the title compound as a white solid. (HPLC: tR 2.30 min (Method A); M+H=429 MS-ES; 1H-NMR (d6-DMSO, 400 MHz) 8.99 (s, 1H), 8.33-8.28 (m, 1H), 8.28-8.23 (m, 1H), 8.16-8.08 (m, 2H), 8.02-7.96 (m, 1H), 7.61-7.55 (m, 1H), 7.38-7.33 (m, 1H), 4.84-4.73 (m, 1H), 3.89 (s, 3H), 3.58 (s, 3H), 1.96 (s, 3H), 1.33 (d, 6H))


Stage 58.1.1 3-Isopropoxy-5-(4,4,5,5-tetramethyl-[1,3,2]dioxaborolan-2-yl)-pyridine



embedded image


The title compound was synthesized in a similar manner as described for Stage 5.1.1 using 3-bromo-5-isopropoxypyridine (Stage 58.1.2) to give the title compound as a brown sticky solid. (HPLC: tR 2.12 min (Method A); M+H=264 MS-ES).


Stage 58.1.2 3-Bromo-5-isopropoxypyridine



embedded image


The title compound was synthesized in a similar manner as described for Stage 29.1.1 using 3-bromo-5-hydroxypyridine (Aldrich, Buchs, Switzerland) and isopropanol (Merck, Dietikon, Switzerland) to give the title compound as a colorless oil. (HPLC: tR 2.92 min (Method A); M+H=216, 218 MS-ES).


The following examples were synthesized in a similar manner as described for Example 1.1 using 3-isopropoxy-5-(4,4,5,5-tetramethyl-[1,3,2]dioxaborolan-2-yl)-pyridine (Stage 58.1.1) and the specified intermediate.





















MS-ES
HPLC


Example
Intermed.
structure
Name of the example
(M + H)
tR (min)







58.2
K


embedded image


1-(3-Chloro-1-methyl-1H- pyrazol-4-yl)-8-(5- isopropoxy-pyridin-3-yl)- 3-methyl-1,3-dihydro- imidazo[4,5-c]quinolin-2- one
449
2.51





58.3
I


embedded image


1-(2,4-Dimethyl-2H- pyrazol-3-yl)-8-(5- isopropoxy-pyridin-3-yl)- 3-methyl-1,3-dihydro- imidazo[4,5-c]quinolin-2- one
429
2.47





58.4
F


embedded image


1-(1-Ethyl-3-methyl-1H- pyrazol-4-yl)-8-(5- isopropoxy-pyridin-3-yl)- 3-methyl-1,3-dihydro- imidazo[4,5-c]quinolin-2- one
443
2.38





58.5
P


embedded image


N-Ethyl-2-{4-[8-(5- isopropoxy-pyridin-3-yl)- 3-methyl-2-oxo-2,3- dihydro-imidazo[4,5- c]quinolin-1-yl]-3-methyl- pyrazol-1-yl}-N-methyl- acetamide
514
2.41









Example 59.1
1-(1,3-Dimethyl-1H-pyrazol-4-yl)-8-[5-(2-methoxy-ethoxy)-pyridin-3-yl]-3-methyl-1,3-dihydro-imidazo[4,5-c]quinolin-2-one



embedded image


The title compound was synthesized in a similar manner as described for Example 1.1 using 8-bromo-1-(1,3-dimethyl-1H-pyrazol-4-yl)-3-methyl-1,3-dihydro-imidazo[4,5-c]quinolin-2-one (Intermediate A) and 3-(2-methoxy-ethoxy)-5-(4,4,5,5-tetramethyl-[1,3,2]dioxaborolan-2-yl)-pyridine (Stage 59.1.1) to give the title compound as a white solid. (HPLC: tR 2.17 min (Method A); M+H=445 MS-ES; 1H-NMR (d6-DMSO, 400 MHz) 8.99 (s, 1H), 8.35-8.27 (m, 2H), 8.18-8.08 (m, 2H), 8.04-7.97 (m, 1H), 7.61-7.56 (m, 1H), 7.44-7.38 (m, 1H), 4.25 (t, 2H), 3.89 (s, 3H), 3.71 (t, 2H), 3.57 (s, 3H), 3.31 (s, 3H), 1.96 (s, 3H))


Stage 59.1.1 3-(2-Methoxy-ethoxy)-5-(4,4,5,5-tetramethyl-[1,3,2]dioxaborolan-2-yl)-pyridine



embedded image


The title compound was synthesized in a similar manner as described for Stage 5.1.1 using 3-bromo-5-(2-methoxy-ethoxy)-pyridine (Stage 59.1.2) to give the title compound as a brown oil. (HPLC: tR 2.10 min (Method A)).


Stage 59.1.2 3-Bromo-5-(2-methoxy-ethoxy)-pyridine



embedded image


A mixture of 3-bromo-5-hydroxypyridine (Aldrich, Buchs, Switzerland, 611 mg, 3.51 mmol), potassium carbonate (971 mg, 7.02 mmol) and 2-bromoethyl methyl ether (537 mg, 3.86 mmol) in 30 ml DMF was stirred for 14 h at rt and for 2 h at 80° C. The reaction mixture was quenched with water and extracted with EtOAc (2×). The organic layers were washed with brine (3×), dried over Na2SO4, filtered and evaporated. The residue was purified by flash chromatography (dichloromethane/MeOH 0% to 3%) to give the title compound as an oil. (HPLC: tR 2.38 min (Method A); M+H=232, 234 MS-ES).


The following example was synthesized in a similar manner as described for Example 1.1 using 3-(2-methoxy-ethoxy)-5-(4,4,5,5-tetramethyl-[1,3,2]dioxaborolan-2-yl)-pyridine (Stage 59.1.1) and the specified intermediate.





















MS-ES
HPLC


Example
Intermed.
structure
Name of the example
(M + H)
tR (min)







59.2
H


embedded image


1-(3-Chloro-1-methyl- 1H-pyrazol-4-yl)-8-[5- (2-methoxy-ethoxy)- pyridin-3-yl]-3-methyl- 1,3-dihydro- imidazo[4,5- c]quinolin-2-one
465
2.33









Example 60.1
8-(5-Cyclobutoxy-pyridin-3-yl)-1-(1,3-dimethyl-1H-pyrazol-4-yl)-3-methyl-1,3-dihydro-imidazo[4,5-c]quinolin-2-one



embedded image


The title compound was synthesized in a similar manner as described for Example 1.1 using 8-bromo-1-(1,3-dimethyl-1H-pyrazol-4-yl)-3-methyl-1,3-dihydro-imidazo[4,5-c]quinolin-2-one (Intermediate A) and 3-cyclobutoxy-5-(4,4,5,5-tetramethyl-[1,3,2]dioxaborolan-2-yl)-pyridine (Stage 60.1.1) to give the title compound as a white solid. (HPLC: tR 2.43 min (Method A); M+H=441 MS-ES; 1H-NMR (d6-DMSO, 400 MHz) 9.00 (s, 1H), 8.32-8.30 (m, 1H), 8.24-8.20 (m, 1H), 8.15 (s, 1H), 8.14-8.10 (m, 1H), 8.00-7.95 (m, 1H), 7.58-7.56 (m, 1H), 7.26-7.24 (m, 1H), 4.84 (qt, 1H), 3.91 (s, 3H), 3.58 (s, 3H), 2.53-2.45 (m, 2H), 2.15-2.00 (m, 2H), 1.96 (s, 3H), 1.88-1.66 (m, 2H))


Stage 60.1.1 3-Cyclobutoxy-5-(4,4,5,5-tetramethyl-[1,3,2]dioxaborolan-2-yl)-pyridine



embedded image


The title compound was synthesized in a similar manner as described for Stage 58.1.1-2 using cyclobutanol (Aldrich, Buchs, Switzerland) to give the title compound as a brown oil. (HPLC: tR 2.25 min (Method A); M+H=276 MS-ES).


The following example was synthesized in a similar manner as described for Example 1.1 using 3-cyclobutoxy-5-(4,4,5,5-tetramethyl-[1,3,2]dioxaborolan-2-yl)-pyridine (Stage 60.1.1) and the specified intermediate.





















MS-ES
HPLC


Example
Intermed.
structure
Name of the example
(M + H)
tR (min)







60.2
O


embedded image


2-{4-[8-(5- Cyclobutoxy-pyridin- 3-yl)-3-methyl-2-oxo- 2,3-dihydro-imidazo[4,5- c]quinolin-1-yl]-3,5- dimethyl-pyrazol-1-yl}- N,N-dimethyl- acetamide
526
2.46









Example 61
8-(5-Cyclopropylmethoxy-pyridin-3-yl)-1-(1,3-dimethyl-1H-pyrazol-4-yl)-3-methyl-1,3-dihydro-imidazo[4,5-c]quinolin-2-one



embedded image


The title compound was synthesized in a similar manner as described for Example 1.1 using 8-bromo-1-(1,3-dimethyl-1H-pyrazol-4-yl)-3-methyl-1,3-dihydro-imidazo[4,5-c]quinolin-2-one (Intermediate A) and 3-cyclobutoxy-5-(4,4,5,5-tetramethyl-[1,3,2]dioxaborolan-2-yl)-pyridine (Stage 60.1.1) to give the title compound as a white solid. (HPLC: tR 2.39 min (Method A); M+H=441 MS-ES; 1H-NMR (d6-DMSO, 400 MHz) 8.99-8.98 (m, 1H), 8.32-8.27 (m, 2H), 8.15 (s, 1H), 8.13-8.09 (m, 1H), 8.02-7.97 (m, 1H), 7.59-7.57 (m, 1H), 7.37-7.35 (m, 1H), 4.02-3.92 (m, 2H), 3.90 (s, 3H), 3.58 (s, 3H), 1.96 (s, 3H), 1.32-1.23 (m, 1H), 0.65-0.59 (m, 2H), 0.41-0.36 (m, 2H))


Stage 61.1.1 3-Cyclopropylmethoxy-5-(4,4,5,5-tetramethyl-[1,3,2]dioxaborolan-2-yl)-pyridine



embedded image


The title compound was synthesized in a similar manner as described for Stage 58.1.1-2 using cyclopropylmethanol (Aldrich, Buchs, Switzerland) to give the title compound as a brown oil. (HPLC: tR 2.25 min (Method A); M+H=276 MS-ES).


Example 62
N-{5-[1-(1,3-Dimethyl-1H-pyrazol-4-yl)-3-methyl-2-oxo-2,3-dihydro-1H-imidazo[4,5-c]quinolin-8-yl]-2-methoxy-pyridin-3-yl}-N-methyl-acetamide



embedded image


The title compound was synthesized in a similar manner as described for Example 1.1 using 8-bromo-1-(1,3-dimethyl-1H-pyrazol-4-yl)-3-methyl-1,3-dihydro-imidazo[4,5-c]quinolin-2-one (Intermediate A) and N-[2-methoxy-5-(4,4,5,5-tetramethyl-[1,3,2]dioxaborolan-2-yl)-pyridin-3-yl]-N-methyl-acetamide (Stage 62.1.1) to give the title compound as a white solid. (HPLC: tR 2.52 min (Method A); M+H=472 MS-ES; 1H-NMR (d6-DMSO, 400 MHz) 8.97 (s, 1H), 8.40-8.31 (m, 1H), 8.18-8.06 (m, 2H), 8.03-7.90 (m, 1H), 7.86-7.71 (m, 1H), 7.55-7.43 (m, 1H), 3.97 (s, 3H), 3.88 (s, 3H), 3.57 (s, 3H), 3.07 (s, 3H), 1.94 (s, 3H), 1.74 (s, 3H))


Stage 62.1.1 N-[2-Methoxy-5-(4,4,5,5-tetramethyl-[1,3,2]dioxaborolan-2-yl)-pyridin-3-yl]-N-methyl-acetamide



embedded image


The title compound was synthesized in a similar manner as described for Stage 5.1.1 using N-(5-bromo-2-methoxy-pyridin-3-yl)-N-methyl-acetamide (Stage 62.1.2) to give the title compound as a brown solid. (HPLC: tR 1.99 min (Method A); M+H=307 MS-ES).


Stage 62.1.2 N-(5-Bromo-2-methoxy-pyridin-3-yl)-N-methyl-acetamide



embedded image


To N-(5-bromo-2-methoxy-pyridin-3-yl)-acetamide (Stage 62.1.3, 100 mg, 0.408 mmol) DMF (1 ml) was added NaH 55% in oil (19.6 mg, 0.45 mmol). The reaction mixture was stirred for 10 min at rt then was added MeI (0.031 ml, 0.49 mmol). The reaction mixture was stirred for 1 h at rt then quenched with brine and extracted with EtOAc (2×). The organic layers are washed with brine (3×), dried over Na2SO4, filtered and evaporated. The crude product was purified by Prep.HPLC. The fractions containing the product were collected together and basified with NaHCO3, before being concentrated and extracted with EtOAc (3×). The organic layers were dried over Na2SO4, filtered and evaporated to dryness to give the title compound as an off-white solid (HPLC: tR 2.75 min (Method A); M+H=259, 261 MS-ES).


Stage 62.1.3 N-(5-Bromo-2-methoxy-pyridin-3-yl)-acetamide



embedded image


A suspension of 5-bromo-2-methoxy-3-nitro-pyridine (Stage 63.1.4, 450 mg, 1.93 mmol) and tin dichloride (1.465 mg, 7.72 mmol) in EtOAc (30 ml) was refluxed for 3 h. The reaction mixture was evaporated to dryness and then quenched with cold 3 M aqueous NaOH (50 ml) and CH2Cl2 (50 ml) and stirred for 3 h at rt. The organic layer was separated and the aqueous layer was extracted with CH2Cl2. The combined organic layers were washed with 30 ml sat. aqueous NaHCO3, dried over Na2SO4, filtered and evaporated. The crude product was dry loaded on silica gel and purified by MPLC (CH2Cl2/MeOH 0% to 4%) to give after evaporation the title compound as an off-white solid (HPLC: tR 2.72 min (Method A); M+H=245, 247 MS-ES).


Stage 62.1.4 5-Bromo-2-methoxy-3-nitro-pyridine



embedded image


In a vial are introduced 1 ml of MeOH and 50.8 mg (2.21 mmol) of Na. After dissolution of the metal, the solution was added to a suspension of 5-bromo-2-chloro-3-nitropyridine (Matrix, Columbia, USA, 500 mg, 2.11 mmol) in MeOH (2 ml). The reaction mixture is stirred for 1 h at 0° C. and for 15 h at rt, then concentrated and quenched with water. The precipitate was filtered, washed with water (2×) and dried under vacuum to give the title compound as a pale yellow solid (HPLC: tR 3.06 min (Method A).


Example 63
N-{5-[1-(1,3-Dimethyl-1H-pyrazol-4-yl)-3-methyl-2-oxo-2,3-dihydro-1H-imidazo[4,5-c]quinolin-8-yl]-2-ethoxy-pyridin-3-yl}-N-methyl-acetamide



embedded image


The title compound was synthesized in a similar manner as described for Example 1.1 using 8-bromo-1-(1,3-dimethyl-1H-pyrazol-4-yl)-3-methyl-1,3-dihydro-imidazo[4,5-c]quinolin-2-one (Intermediate A) and N-[2-ethoxy-5-(4,4,5,5-tetramethyl-[1,3,2]dioxaborolan-2-yl)-pyridin-3-yl]-N-methyl-acetamide (Stage 63.1.1) to give the title compound as a white solid. (HPLC: tR 2.64 min (Method A); M+H=486 MS-ES; 1H-NMR (d6-DMSO, 400 MHz) 8.97 (s, 1H), 8.40-8.28 (m, 1H), 8.18-8.06 (m, 2H), 8.04-7.91 (m, 1H), 7.85-7.69 (m, 1H), 7.54-7.41 (m, 1H), 4.52-4.33 (m, 2H), 3.88 (s, 3H), 3.58 (s, 3H), 3.08 (s, 3H), 1.93 (s, 3H), 1.75 (s, 3H), 1.32 (t, 3H))


Stage 63.1.1 N-[2-Ethoxy-5-(4,4,5,5-tetramethyl-[1,3,2]dioxaborolan-2-yl)-pyridin-3-yl]-N-methyl-acetamide



embedded image


The title compound was synthesized in a similar manner as described for Stage 62.1.1-4 using ethanol as solvent and a sodium ethanolate solution to give the title compound as an off-white solid. (HPLC: tR 2.21min (Method A); M+H=3217 MS-ES).


Example 64
N-{5-[1-(1,3-Dimethyl-1H-pyrazol-4-yl)-3-methyl-2-oxo-2,3-dihydro-1H-imidazo[4,5-c]quinolin-8-yl]-2-methoxy-pyridin-3-yl}-acetamide



embedded image


The title compound was synthesized in a similar manner as described for Example 1.1 using 8-bromo-1-(1,3-dimethyl-1H-pyrazol-4-yl)-3-methyl-1,3-dihydro-imidazo[4,5-c]quinolin-2-one (Intermediate A) and N-[2-methoxy-5-(4,4,5,5-tetramethyl-[1,3,2]dioxaborolan-2-yl)-pyridin-3-yl]-acetamide (Stage 64.1.1) to give the title compound as a white solid. (HPLC: tR 2.51 min (Method A); M+H=458 MS-ES; 1H-NMR (d6-DMSO, 400 MHz) 9.52 (s, br, 1H), 8.96 (s, 1H), 8.50-8.41 (m, 1H), 8.15-8.09 (m, 2H), 8.06-8.02 (m, 1H), 7.88-7.83 (m, 1H), 7.55-7.49 (m, 1H), 3.97 (s, 3H), 3.91 (s, 3H), 3.57 (s, 3H), 2.14 (s, 3H), 1.93 (s, 3H))


Stage 64.1.1
N-[2-Methoxy-5-(4,4,5,5-tetramethyl-[1,3,2]dioxaborolan-2-yl)-pyridin-3-yl]-acetamide



embedded image


The title compound was synthesized in a similar manner as described for Stage 5.1.1 using N-(5-bromo-2-methoxy-pyridin-3-yl)-acetamide (Stage 62.1.3) to give the title compound as a beige solid. (HPLC: tR 1.84 min (Method A); M+H=293 MS-ES).


Example 65
N-{5-[1-(1,3-Dimethyl-1H-pyrazol-4-yl)-3-methyl-2-oxo-2,3-dihydro-1H-imidazo[4,5-c]quinolin-8-yl]-2-ethoxy-pyridin-3-yl}-acetamide



embedded image


The title compound was synthesized in a similar manner as described for Example 1.1 using 8-bromo-1-(1,3-dimethyl-1H-pyrazol-4-yl)-3-methyl-1,3-dihydro-imidazo[4,5-c]quinolin-2-one (Intermediate A) and N-[2-ethoxy-5-(4,4,5,5-tetramethyl-[1,3,2]dioxaborolan-2-yl)-pyridin-3-yl]-acetamide (synthesized in a similar manner as Stage 64.1.1, (HPLC: tR 1.84 min (Method A); M+H=293 MS-ES)) to give the title compound as a white solid. (HPLC: tR 2.64 min (Method A); M+H=472 MS-ES; 1H-NMR (d6-DMSO, 400 MHz) 9.37 (s, 1H), 8.96 (s, 1H), 8.45-8.43 (m, 1H), 8.12-8.08 (m, 2H), 8.01-8.00 (m, 1H), 7.85-7.82 (m, 1H), 7.52-7.50 (m, 1H), 4.44 (q, 2H), 3.91 (s, 3H), 3.57 (s, 3H), 2.15 (s, 31-1), 1.92 (s, 3H), 1.37 (t, 3H))


Example 66
1-(1,3-Dimethyl-1H-pyrazol-4-yl)-8-(6-methoxy-5-nitro-pyridin-3-yl)-3-methyl-1,3-dihydro-imidazo[4,5-c]quinolin-2-one



embedded image


The title compound was synthesized in a similar manner as described for Example 1.1 using 8-bromo-1-(1,3-dimethyl-1H-pyrazol-4-yl)-3-methyl-1,3-dihydro-imidazo[4,5-c]quinolin-2-one (Intermediate A) and 2-methoxy-3-nitro-5-(4,4,5,5-tetramethyl-[1,3,2]dioxaborolan-2-yl)-pyridine (Stage 66.1.1) to give the title compound as a white solid. (HPLC: tR 2.62 min (Method A); M+H=446 MS-ES; 1H-NMR (d6-DMSO, 400 MHz) 9.00 (s, 1H), 8.72-8.66 (m, 1H), 8.46-8.39 (m, 1H), 8.18-8.10 (m, 2H), 8.05-7.96 (m, 1H), 7.58-7.53 (m, 1H), 4.07 (s, 3H), 3.91 (s, 3H), 3.59 (s, 3H), 1.94 (s, 3H))


Stage 66.1.1 2-Methoxy-3-nitro-5-(4,4,5,5-tetramethyl-[1,3,2]dioxaborolan-2-yl)-pyridine



embedded image


The title compound was synthesized in a similar manner as described for Stage 5.1.1 using 5-bromo-2-methoxy-3-nitro-pyridine (Stage 62.1.4) to give the title compound as a brown solid. (HPLC: tR 2.22 min (Method A); M+H=281 MS-ES).


Example 67
8-(1,3-Dimethyl-2-oxo-2,3-dihydro-1H-imidazo[4,5-b]pyridin-6-yl)-1-(1,3-dimethyl-1H-pyrazol-4-yl)-3-methyl-1,3-dihydro-imidazo[4,5-c]quinolin-2-one



embedded image


The title compound was synthesized in a similar manner as described for Example 1.1 using 8-bromo-1-(1,3-dimethyl-1H-pyrazol-4-yl)-3-methyl-1,3-dihydro-imidazo[4,5-c]quinolin-2-one (Intermediate A) and 1,3-dimethyl-6-(4,4,5,5-tetramethyl-[1,3,2]dioxaborolan-2-yl)-1,3-dihydro-imidazo[4,5-b]pyridin-2-one (Stage 67.1.1) to give the title compound as a white solid. (HPLC: tR 2.39 min (Method A); M+H=455 MS-ES; 1H-NMR (d6-DMSO, 400 MHz) 8.97 (s, 1H), 8.16-8.07 (m, 3H), 7.99-7.94 (m, 111, 7.58-7.53 (m, 2H), 3.91 (s, 3H), 3.57 (s, 3H), 3.41 (s, 3H), 3.35 (s, 3H), 1.97 (s, 3H))


Stage 67.1.1 1,3-Dimethyl-6-(4,4,5,5-tetramethyl-[1,3,2]dioxaborolan-2-yl)-1,3-dihydro-imidazo[4,5-b]pyridin-2-one



embedded image


The title compound was synthesized in a similar manner as described for Stage 5.1.1 using 5-bromo-2-methoxy-3-nitro-pyridine (Stage 67.1.2) to give the title compound as an off-white solid. (HPLC: tR 1.93 min (Method A); M+H=290 MS-ES).


Stage 67.1.2 6-Bromo-1,3-dimethyl-1,3-dihydro-imidazo[4,5-b]pyridin-2-one



embedded image


The title compound was synthesized in a similar manner as described for Intermediate A using 5-bromo-2-methoxy-3-nitro-pyridine (Stage 67.1.3) to give the title compound as a violet solid. (HPLC: tR 2.63 min (Method A); M+H=242, 244 MS-ES).


Stage 67.1.3 6-Bromo-3-methyl-1,3-dihydro-imidazo[4,5-b]pyridin-2-one



embedded image


The title compound was synthesized in a similar manner as described for Stage A.1 using 5-bromo-N*2*-methyl-pyridine-2,3-diamine (Stage 67.1.4) to give the title compound as a gray solid. (HPLC: tR 2.37 min (Method A); M+H=228, 230 MS-ES).


Stage 67.1.4 5-Bromo-N*2*-methyl-pyridine-2,3-diamine



embedded image


A suspension of (5-bromo-3-nitro-pyridin-2-yl)-methyl-amine (Stage 67.1.5, 4.58 g, 19.75 mmol) and tin dichloride dihydrate (Acros, Basel, Switzerland, 13.38 g, 59.3 mmol) in 200 ml of THF was heated at 70° C. for 220 min. The solvent was removed by evaporation and the residue taken in CH2Cl2 (100 ml) and 5 M aqueous NaOH (50 ml) and stirred until all the solid was dissolved. The organic layer was separated and the aqueous layer was extracted with CH2Cl2. The combined organic layers were washed with brine, dried over Na2SO4, filtered and evaporated to give the title compound as a brown solid. (HPLC: tR 1.69 min (Method A); M+H=202, 204 MS-ES).


Stage 67.1.5 (5-Bromo-3-nitro-pyridin-2-yl)-methyl-amine



embedded image


To a solution of 5-bromo-2-chloro-3-nitropyridine (Matrix, Columbia, USA, 9.8 g, 41.3 mmol) in 250 ml THF was added 8 M methylamine in EtOH (Aldrich, Buchs, Switzerland, 12.9 ml, 103 mmol). The reaction mixture was stirred 1 h at rt then was quenched with 300 ml water. The precipite was filtered and the filtrate concentrated before being filtered again. The yellow solids were combined and dried to give the title compound as a yellow solid (HPLC: tR 3.13 min (Method A)).


Example 68
1-(1,3-Dimethyl-1H-pyrazol-4-yl)-8-(1-ethyl-3-methyl-2-oxo-2,3-dihydro-1H-imidazo[4,5-b]pyridin-6-yl)-3-methyl-1,3-dihydro-imidazo[4,5-c]quinolin-2-one



embedded image


The title compound was synthesized in a similar manner as described for Example 1.1 using 8-bromo-1-(1,3-dimethyl-1H-pyrazol-4-yl)-3-methyl-1,3-dihydro-imidazo[4,5-c]quinolin-2-one (Intermediate A) and 1-ethyl-3-methyl-6-(4,4,5,5-tetramethyl-[1,3,2]dioxaborolan-2-yl)-1,3-dihydro-imidazo[4,5-b]pyridin-2-one (Stage 68.1.1) to give the title compound as a white solid. (HPLC: tR 2.47 min (Method A); M+H=469 MS-ES; 1H-NMR (d6-DMSO, 400 MHz) 8.97 (s, 1H), 8.14-8.08 (m, 3H), 8.01-7.94 (m, 1H), 7.62-7.58 (m, 1H), 7.58-7.54 (m, 1H), 3.94 (q, 2H), 3.89 (s, 3H), 3.57 (s, 3H), 3.37 (s, 3H), 1.97 (s, 3H), 1.28 (t, 3H))


Stage 68.1.1 1-Ethyl-3-methyl-6-(4,4,5,5-tetramethyl-[1,3,2]dioxaborolan-2-yl)-1,3-dihydro-imidazo[4,5-b]pyridin-2-one



embedded image


The title compound was synthesized in a similar manner as described for Stage 67.1.1-2 using ethyliodide (Aldrich, Buchs, Switzerland) to give the title compound as a white solid. (HPLC: tR 1.98 min (Method A); M+H=304 MS-ES).


Example 69
1-(1,3-Dimethyl-1H-pyrazol-4-yl)-8-[1-(2-methoxy-ethyl)-3-methyl-2-oxo-2,3-dihydro-1H-imidazo[4,5-b]pyridin-6-yl]-3-methyl-1,3-dihydro-imidazo[4,5-c]quinolin-2-one



embedded image


The title compound was synthesized in a similar manner as described for Example 1.1 using 8-bromo-1-(1,3-dimethyl-1H-pyrazol-4-yl)-3-methyl-1,3-dihydro-imidazo[4,5-c]quinolin-2-one (Intermediate A) and 1-(2-methoxy-ethyl)-3-methyl-6-(4,4,5,5-tetramethyl-[1,3,2]dioxaborolan-2-yl)-1,3-dihydro-imidazo[4,5-b]pyridin-2-one (Stage 69.1.1) to give the title compound as a white solid. (HPLC: tR 2.46 min (Method A); M+H=499 MS-ES; 1H-NMR (d6-DMSO, 400 MHz) 8.97 (s, 1H), 8.15-8.05 (m, 3H), 7.97-7.91 (m, 1H), 7.64-7.60 (m, 1H), 7.57-7.53 (m, 1H), 4.11-4.03 (m, 2H), 3.90 (s, 31-1), 3.67-3.62 (m, 2H), 3.57 (s, 3H), 3.36 (s, 3H), 3.23 (s, 3H), 1.98 (s, 3H))


Stage 69.1.1 1-(2-Methoxy-ethyl)-3-methyl-6-(4,4,5,5-tetramethyl-[1,3,2]dioxaborolan-2-yl)-1,3-dihydro-imidazo[4,5-b]pyridin-2-one



embedded image


The title compound was synthesized in a similar manner as described for Stage 67.1.1-2 using 2-bromoethyl methyl ether (Aldrich, Buchs, Switzerland) to give the title compound as a brown solid. (HPLC: tR 2.03 min (Method A); M+H=334 MS-ES).


Example 70
8-(2-Dimethylamino-3-methyl-3H-imidazo[4,5-b]pyridin-6-yl)-1-(1,3-dimethyl-1H-pyrazol-4-yl)-3-methyl-1,3-dihydro-imidazo[4,5-c]quinolin-2-one



embedded image


The title compound was synthesized in a similar manner as described for Example 1.1 using 8-bromo-1-(1,3-dimethyl-1H-pyrazol-4-yl)-3-methyl-1,3-dihydro-imidazo[4,5-c]quinolin-2-one (Intermediate A) and dimethyl-[3-methyl-6-(4,4,5,5-tetramethyl-[1,3,2]dioxaborolan-2-yl)-3H-imidazo[4,5-b]pyridin-2-yl]-amine (Stage 70.1.1) to give the title compound as a white solid. (HPLC: tR 2.21 min (Method A); M+H=468 MS-ES; 1H-NMR (d6-DMSO, 400 MHz) 8.95 (s, 1H), 8.17-8.06 (m, 3H), 7.96-7.90 (m, 1H), 7.72-7.67 (m, 1H), 7.56-7.52 (m, 1H), 3.91 (s, 3H), 3.71 (s, 3H), 3.57 (s, 3H), 3.06 (s, 6H), 1.97 (s, 3H))


Stage 70.1.1 Dimethyl-[3-methyl-6-(4,4,5,5-tetramethyl-[1,3,2]dioxaborolan-2-yl)-3H-imidazo[4,5-b]pyridin-2-yl]-amine



embedded image


The title compound was synthesized in a similar manner as described for Stage 5.1.1 using (6-bromo-3-methyl-3H-imidazo[4,5-b]pyridin-2-yl)-dimethyl-amine (Stage 70.1.2) to give the title compound as a brown oil. (HPLC: tR 1.76 min (Method A); M+H=303 MS-ES).


Stage 70.1.2 (6-Bromo-3-methyl-3H-imidazo[4,5-b]pyridin-2-yl)-dimethyl-amine



embedded image


A solution of 5-bromo-N*2*-methyl-pyridine-2,3-diamine (Stage 67.1.4, 2.09 g, 10.34 mmol) and dichloromethylene-dimethyliminium chloride (Aldrich, Buchs, Switzerland, 5.04 g, 31.0 mmol) in NMP (60 ml) was stirred for 17 h at rt. The reaction mixture was quenched with saturated aqueous NaHCO3 and EtOAc. The aqueous layer was extracted with EtOAc and the combined organic layers washed with saturated aqueous NaHCO3 and with brine, then dried over Na2SO4, filtered and evaporated. The crude product was dry loaded on silica gel and purified by MPLC (DCM/MeOH 0%-5%) to give the title compound as a red solid. (HPLC: tR 2.13 min (Method A); M+H=255, 257 MS-ES).


Example 71
1-(1,3-Dimethyl-1H-pyrazol-4-yl)-8-(2-methoxy-3-methyl-3H-imidazo[4,5-b]pyridin-6-yl)-3-methyl-1,3-dihydro-imidazo[4,5-c]quinolin-2-one



embedded image


The title compound was synthesized in a similar manner as described for Example 1.1 using 8-bromo-1-(1,3-dimethyl-1H-pyrazol-4-yl)-3-methyl-1,3-dihydro-imidazo[4,5-c]quinolin-2-one (Intermediate A) and 2-methoxy-3-methyl-6-(4,4,5,5-tetramethyl-[1,3,2]dioxaborolan-2-yl)-3H-imidazo[4,5-b]pyridine (Stage 71.1.1) to give the title compound as a white solid. (HPLC: tR 2.62 min (Method A); M+H=455 MS-ES; 1H-NMR (d6-DMSO, 400 MHz) 8.97 (s, 1H), 8.24-8.20 (m, 1H), 8.17-8.13 (m, 1H), 8.13-8.08 (m, 1H), 7.97-7.92 (m, 1H), 7.87-7.83 (m, 1H), 7.55-7.53 (m, 1H), 4.16 (s, 3H), 3.91 (s, 3H), 3.57 (s, 6H), 1.97 (s, 3H))


Stage 71.1.1 2-Methoxy-3-methyl-6-(4,4,5,5-tetramethyl-[1,3,2]dioxaborolan-2-yl)-3H-imidazo[4,5-b]pyridine



embedded image


The title compound was synthesized in a similar manner as described for Stage 5.1.1 using 6-bromo-2-methoxy-3-methyl-3H-imidazo[4,5-b]pyridine (Stage 71.1.2) to give the title compound as a yellow solid. (HPLC: tR 1.94 min (Method A); M+H=290 MS-ES).


Stage 71.1.2 6-Bromo-2-methoxy-3-methyl-3H-imidazo[4,5-b]pyridine



embedded image


A solution of 5-bromo-N*2*-methyl-pyridine-2,3-diamine (Stage 67.1.4, 960 mg, 4.75 mmol) and tetramethylorthocarbonate (Aldrich, Buchs, Switzerland, 2 ml, 14.7 mmol) and acetic acid (0.273 ml, 4.75 mmol) was stirred for 90 min at 100° C. The reaction mixture was diluted with EtOAc and washed with saturated aqueous NaHCO3 and brine. The aqueous layer was extracted with EtOAc and the combined organic layers washed with saturated aqueous NaHCO3 and with brine, then dried over Na2SO4, filtered and evaporated. The crude product was dry loaded on silica gel and purified by MPLC (DCM/MeOH 0%-4%) to give the title compound as a green solid. (HPLC: tR 2.83 min (Method A); M+H=242, 244 MS-ES).


Example 72
1-(1,3-Dimethyl-1H-pyrazol-4-yl)-3-methyl-8-(3-methyl-3H-[1,2,3]triazolo[4,5-b]pyridin-6-yl)-1,3-dihydro-imidazo[4,5-c]quinolin-2-one



embedded image


The title compound was synthesized in a similar manner as described for Example 1.1 using 8-bromo-1-(1,3-dimethyl-1H-pyrazol-4-yl)-3-methyl-1,3-dihydro-imidazo[4,5-c]quinolin-2-one (Intermediate A) and 2-methoxy-3-methyl-6-(4,4,5,5-tetramethyl[1,3,2]dioxaborolan-2-yl)-3H-imidazo[4,5-b]pyridine (Stage 72.1.1) to give the title compound as a white solid. (HPLC: tR 2.43 min (Method A); M+H=426 MS-ES; 1H-NMR (d6-DMSO, 400 MHz) 9.01 (s, 1H), 8.86-8.81 (m, 1H), 8.65-8.61 (m, 1H), 8.21-8.13 (m, 2H), 8.10-8.04 (m, 1H), 7.63-7.59 (m, 1H), 4.33 (s, 3H), 3.92 (s, 3H), 3.58 (s, 3H), 1.96 (s, 3H))


Stage 72.1.1 3-Methyl-6-(4,4,5,5-tetramethyl-[1,3,2]dioxaborolan-2-yl)-3H-[1,2,3]triazolo[4,5-b]pyridine



embedded image


The title compound was synthesized in a similar manner as described for Stage 5.1.1 using 6-bromo-3-methyl-3H-[1,2,3]triazolo[4,5-b]pyridine (Stage 72.1.2) to give the title compound as a yellow solid. (HPLC: tR 1.85 min (Method A); M+H=261 MS-ES).


Stage 72.1.2 6-Bromo-3-methyl-3H-[1,2,3]triazolo[4,5-b]pyridine



embedded image


To a solution of 5-bromo-N*2*-methyl-pyridine-2,3-diamine (Stage 67.1.4, 1.2 g, 5.94 mmol) in 2 M aqueous HCl (70 ml) cooled with an ice-bath was added a solution of sodium nitrite (Fluka, Buchs, Switzerland, 492 mg, 7.13 mmol) in water (10 ml). The reaction mixture was stirred at 0° C. for 1 h and at rt for 75 min then basified with 2 M aqueous NaOH (75 ml) and extracted with EtOAc. The organic layer was washed with brine, dried over Na2SO4, filtered and evaporated. The crude product was dry loaded on silica gel and purified by MPLC (heptane/EtOAc 0%-30%) to give the title compound as a blue solid. (HPLC: tR 2.46 min (Method A); M+H=213, 215 MS-ES).


Example 73
8-(2,3-Dimethyl-3H-imidazo[4,5-b]pyridin-6-yl)-1-(1,3-dimethyl-1H-pyrazol-4-yl)-3-methyl-1,3-dihydro-imidazo[4,5-c]quinolin-2-one



embedded image


The title compound was synthesized in a similar manner as described for Example 1.1 using 8-bromo-1-(1,3-dimethyl-1H-pyrazol-4-yl)-3-methyl-1,3-dihydro-imidazo[4,5-c]quinolin-2-one (Intermediate A) and 3-methyl-6-(4,4,5,5-tetramethyl-[1,3,2]dioxaborolan-2-yl)-3H-imidazo[4,5-b]pyridine (stage 73.1.1) to give the title compound as an off-white solid. (HPLC: tR 2.20 min (Method A); M+H=439 MS-ES; 1H-NMR (d6-DMSO, 400 MHz) 8.98 (s, 1H), 8.41-8.38 (m, 1H), 8.18-8.15 (m, 1H), 8.13-8.09 (m, 1H), 8.02-7.96 (m, 2H), 7.58-7.54 (m, 1H), 3.92 (s, 3H), 3.77 (s, 3H), 3.58 (s, 3H), 2.59 (s, 3H), 1.97 (s, 3H))


Stage 73.1.1 2,3-Dimethyl-6-(4,4,5,5-tetramethyl-[1,3,2]dioxaborolan-2-yl)-3H-imidazo[4,5-b]pyridine



embedded image


The title compound was synthesized in a similar manner as described for stage 5.1.1 using 6-bromo-2,3-dimethyl-3H-imidazo[4,5-b]pyridine (stage 73.1.2) to give the title compound as a green solid. (HPLC: tR 1.51 min (Method A); M+H=274 MS-ES).


Stage 73.1.2 6-Bromo-2,3-dimethyl-3H-imidazo[4,5-b]pyridine



embedded image


A solution of 5-bromo-N*2*-methyl-pyridine-2,3-diamine (Stage 67.1.4, 960 mg, 4.75 mmol) in triethylorthoacetate (Aldrich, Buchs, Switzerland, 25 ml) was stirred for 38.5 h at 140° C. The reaction mixture was evaporated to dryness. The residue was dissolved in EtOAc and washed with saturated aqueous NaHCO3. The aqueous layer was extracted with EtOAc and the combined organic layers washed with brine, dried over Na2SO4, filtered and evaporated. The crude product was dry loaded on silica gel and purified by MPLC (DCM/MeOH 0%-4%) to give the title compound as a brown solid. (HPLC: tR 1.95 min (Method A); M+H=226, 228 MS-ES).


Example 74
1-(1,3-Dimethyl-1H-pyrazol-4-yl)-3-methyl-8-(3-methyl-3H-imidazo[4,5-b]pyridin-6-yl)-1,3-dihydro-imidazo[4,5-c]quinolin-2-one



embedded image


The title compound was synthesized in a similar manner as described for Example 1.1 using 8-bromo-1-(1,3-dimethyl-1H-pyrazol-4-yl)-3-methyl-1,3-dihydro-imidazo[4,5-c]quinolin-2-one (Intermediate A) and 3-methyl-6-(4,4,5,5-tetramethyl-[1,3,2]dioxaborolan-2-yl)-3H-imidazo[4,5-b]pyridine (Stage 74.1.1) to give the title compound as a white solid. (HPLC: tR 2.26 min (Method A); M+H=425 MS-ES; 1H-NMR (d6-DMSO, 400 MHz) 8.97 (s, 1H), 8.52-8.46 (m, 2H), 8.20-8.08 (m, 3H), 8.05-7.98 (m, 1H), 7.60-7.55 (m, 1H), 3.93 (s, 3H), 3.86 (s, 3H), 3.58 (s, 3H), 1.97 (s, 3H))


Stage 74.1.1 3-Methyl-6-(4,4,5,5-tetramethyl-[1,3,2]dioxaborolan-2-yl)-3H-imidazo[4,5-b]pyridine



embedded image


The title compound was synthesized in a similar manner as described for Stage 73.1.1-2 using triethylorthoformate (Aldrich, Buchs, Switzerland) to give the title compound as a brown solid. (HPLC: tR 1.39 min (Method A); M+H=260 MS-ES).


Example 75
N-{5-[1-(1,3-Dimethyl-1H-pyrazol-4-yl)-3-methyl-2-oxo-2,3-dihydro-1H-imidazo[4,5-c]quinolin-8-yl]-2-methyl-pyridin-3-yl}-N-methyl-methanesulfonamide



embedded image


The title compound was synthesized in a similar manner as described for Example 1.1 using 8-bromo-1-(1,3-dimethyl-1H-pyrazol-4-yl)-3-methyl-1,3-dihydro-imidazo[4,5-c]quinolin-2-one (Intermediate A) and N-methyl-N-[2-methyl-5-(4,4,5,5-tetramethyl-[1,3,2]dioxaborolan-2-yl)-pyridin-3-yl]-methanesulfonamide (Stage 75.1.1) to give the title compound as a white solid. (HPLC: tR 2.19 min (Method A); M+H=492 MS-ES; 1H-NMR (d6-DMSO, 400 MHz) 8.99 (s, 1H), 8.55-8.51 (m, 1H), 8.16-8.10 (m, 2H), 8.03-7.97 (m, 1H), 7.95-7.91 (m, 1H), 7.60-7.56 (m, 1H), 3.89 (s, 3H), 3.58 (s, 3H), 3.23 (s, 3H), 3.16 (s, 3H), 2.53 (s, 3H), 1.96 (s, 3H))


Stage 75.1.1 N-Methyl-N-[2-methyl-5-(4,4,5,5-tetramethyl-[1,3,2]dioxaborolan-2-yl)-pyridin-3-yl]-methanesulfonamide



embedded image


The title compound was synthesized in a similar manner as described for Stage 5.1.1 using 6-bromo-2,3-dimethyl-3H-imidazo[4,5-b]pyridine (Stage 75.1.2) to give the title compound as a brown oil. (HPLC: tR 2.15 min (Method A); M+H=327 MS-ES).


Stage 75.1.2 N-(5-Bromo-2-methyl-pyridin-3-yl)-N-methyl-methanesulfonamide



embedded image


The title compound was synthesized in a similar manner as described for Stage 62.1.2 using N-(5-bromo-2-methyl-pyridin-3-yl)-methanesulfonamide (Stage 75.1.2) to give the title compound as a brownish solid. (HPLC: tR 2.28 min (Method A); M+H=279, 281 MS-ES).


Stage 75.1.3 N-(5-Bromo-2-methyl-pyridin-3-yl)-methanesulfonamide



embedded image


To a solution of 5-bromo-2-methyl-pyridin-3-ylamine (Stage 75.1.4, 573 mg, 3.06 mmol) in pyridine (6 ml) was added dropwise methanesulfonyl chloride (Aldrich, Buchs, Switzerland, 0.286 ml, 3.68 mmol). The reaction mixture was stirred for 18 h at rt then are added methanesulfonyl chloride (0.03 ml, 0.39 mmol). The reaction mixture was stirred 4 h at rt before being evaporated to dryness. The residue was dissolved in EtOAc and washed with saturated aqueous NaHCO3 and brine, dried over Na2SO4, filtered and evaporated. The crude product was dry loaded on silica gel and purified by MPLC (DCM/MeOH 0%-5%) to give the title compound as a pinkish solid. (HPLC: tR 2.05 min (Method A); M+H=265, 267 MS-ES).


Stage 75.1.4 5-Bromo-2-methyl-pyridin-3-ylamine



embedded image


To a solution of 5-bromo-2-methyl-3-nitro-pyridine (stage 75.1.5, 765 mg, 3.53 mmol) in acetic acid (7 ml) and water (1.75 ml) was added in three portions iron powder (591 mg, 10.6 mmol). The reaction mixture was stirred for 2.5 h at rt then quenched with 20 ml of 10 M aqueous NaOH, 20 g ice and 20 ml EtOAc before being filtered over Celite. The solid was washed with EtOAc and the filtrate was extracted with EtOAc. The combined organic layers were washed with brine, dried over Na2SO4, filtered and evaporated to give the title compound as a gray solid. (HPLC: tR 1.52 min (Method A); M+H=187, 189 MS-ES).


Stage 75.1.5 5-Bromo-2-methyl-3-nitro-pyridine



embedded image


To a suspension of NaH 55% in oil (300 mg, 6.87 mmol) in 6 ml DMF was added dropwise diethyl malonate (Aldrich, Buchs, Switzerland, 1.0 g, 6.24 mmol). The reaction mixture was stirred for 20 min at rt before adding 5-bromo-2-chloro-3-nitropyridine (Matrix, Columbia, USA, 1.19 g, 5.0 mmol). The reaction mixture was stirred for 30 min at rt and for 1 h at 40° C. The reaction mixture was quenched with 10% aqueous NH4Cl and extracted with EtOAc (2×). The combined organic layers were washed with brine (4×), dried over Na2SO4, filtered and evaporated. The residue was stirred in concentrated HCl (20 ml) for 13 h at 100° C. After cooling, the reaction mixture was basified with 10 M aqueous NaOH and extracted with EtOAc (2×). The organic layers were washed with brine, dried over Na2SO4, filtered and evaporated. The residue was dry loaded on silica gel and purified by MPLC (heptane/EtOAc 0% to 15%) to give the title compound as a yellow solid. (HPLC: tR 2.84 (Method A).


Example 76
N-{5-[1-(1,3-Dimethyl-1H-pyrazol-4-yl)-3-methyl-2-oxo-2,3-dihydro-1H-imidazo[4,5-c]quinolin-8-yl]-2-methyl-pyridin-3-yl}-methanesulfonamide



embedded image


The title compound was synthesized in a similar manner as described for Example 1.1 using 8-bromo-1-(1,3-dimethyl-1H-pyrazol-4-yl)-3-methyl-1,3-dihydro-imidazo[4,5-c]quinolin-2-one (Intermediate A) and N-[2-methyl-5-(4,4,5,5-tetramethyl-[1,3,2]dioxaborolan-2-yl)-pyridin-3-yl]-methanesulfonamide (Stage 76.1.1) to give the title compound as a white solid. (HPLC: tR 2.06 min (Method A); M+H=478 MS-ES; 1H-NMR (d6-DMSO, 400 MHz) 9.51-9.47 (m, 1H), 8.98 (s, 1H), 8.46-8.42 (m, 1H), 8.15-8.09 (m, 2H), 7.94-7.88 (m, 1H), 7.72-7.68 (m, 1H), 7.60-7.56 (m, 1H), 3.90 (s, 3H), 3.57 (s, 3H), 3.09 (s, 3H), 3.54 (s, 3H), 1.95 (s, 3H))


Stage 76.1.1 N-[2-Methyl-5-(4,4,5,5-tetramethyl-[1,3,2]dioxaborolan-2-yl)-pyridin-3-yl]-methanesulfonamide



embedded image


The title compound was synthesized in a similar manner as described for Stage 5.1.1 using N-(5-bromo-2-methyl-pyridin-3-yl)-methanesulfonamide (Stage 75.1.2) to give the title compound as a brown oil. (HPLC: tR 1.96 min (Method A); M+H=313 MS-ES).


Example 77
1-(1,3-Dimethyl-1H-pyrazol-4-yl)-8-[4-(1H-imidazol-2-yl)-phenyl]-3-methyl-1,3-dihydro-imidazo[4,5-c]quinolin-2-one



embedded image


The title compound was synthesized in a similar manner as described for Example 1.1 using 8-bromo-1-(1,3-dimethyl-1H-pyrazol-4-yl)-3-methyl-1,3-dihydro-imidazo[4,5-c]quinolin-2-one (Intermediate A) and N-[2-methyl-5-(4,4,5,5-tetramethyl-[1,3,2]dioxaborolan-2-yl)-pyridin-3-yl]-methanesulfonamide (Stage 77.1.1) to give the title compound as a white solid. (HPLC: tR 2.15 min (Method A); M+H=436 MS-ES; 1H-NMR (d6-DMSO, 400 MHz) 12.58 (s, br, 1H), 8.96 (s, 1H), 8.20-8.15 (m, 1H), 8.14-8.07 (m, 1H), 8.05-7.94 (m, 3H), 7.63-7.53 (m, 3H), 7.31-7.07 (m, br, 2H), 3.95 (s, 3H), 3.57 (s, 3H), 1.97 (s, 3H))


Stage 77.1.1
2-[4-(4,4,5,5-Tetramethyl-[1,3,2]dioxaborolan-2-yl)-phenyl]-1H-imidazole



embedded image


The title compound was synthesized in a similar manner as described for Stage 5.1.1 using 2-(4-bromo-phenyl)-1H-imidazole (Chem-Impex, Cogliate, Italy) to give the title compound as a brown oil. (HPLC: tR 1.67 min (Method A); M+H=271 MS-ES).


Example 78
1-(1,3-Dimethyl-1H-pyrazol-4-yl)-3-methyl-8-[6-(2-methyl-imidazol-1-yl)-pyridin-3-yl]-1,3-dihydro-imidazo[4,5-c]quinolin-2-one



embedded image


The title compound was synthesized in a similar manner as described for Example 1.1 using 8-bromo-1-(1,3-dimethyl-1H-pyrazol-4-yl)-3-methyl-1,3-dihydro-imidazo[4,5-c]quinolin-2-one (Intermediate A) and 2-(2-methyl-imidazol-1-yl)-5-(4,4,5,5-tetramethyl-[1,3,2]dioxaborolan-2-yl)-pyridine (Stage 78.1.1) to give the title compound as a white solid. (HPLC: tR 2.10 min (Method A); M+H=451 MS-ES; 1H-NMR (d6-DMSO, 400 MHz) 9.01 (s, 1H), 8.68-8.66 (m, 1H), 8.18-8.13 (m, 2H), 8.09-8.00 (m, 2H), 7.78-7.74 (m, 1H), 7.63-7.59 (m, 2H), 6.94-6.93 (m, 1H), 3.93 (s, 3H), 3.59 (s, 3H), 2.54 (s, 3H), 1.96 (s, 3H))


Stage 78.1.1. 2-(2-Methyl-imidazol-1-yl)-5-(4,4,5,5-tetramethyl-[1,3,2]dioxaborolan-2-yl)-pyridine



embedded image


The title compound was synthesized in a similar manner as described for Stage 5.1.1 using 5-bromo-2-(2-methyl-imidazol-1-yl)-pyridine (Stage 78.1.2) to give the title compound as a brown solid. (HPLC: tR 1.57 min (Method A); M+H=286 MS-ES).


Stage 78.1.2. 5-Bromo-2-(2-methyl-imidazol-1-yl)-pyridine



embedded image


A mixture of 5-bromo-2-chloro-pyridine (Aldrich, Buchs, Switzerland, 392 mg, 2.04 mmol), 2-methyl-1H-imidazole (Aldrich, Buchs, Switzerland, 251 mg, 3.06 mmol) and cesium carbonate (1.33 g, 4.08 mmol) in DMA (10 ml) was heated by microwave irradiation for 20 min at 100° C. and 2.5 h at 150° C. The reaction mixture was quenched with diluted brine (200 ml) and cooled. The precipitate was filtered, washed with water and dried to give the title compound as off-white solid. (HPLC: tR 2.03 min (Method A); M+H=238, 240 MS-ES).


Example 79
1-(1,3-Dimethyl-1H-pyrazol-4-yl)-3-methyl-8-(6-pyrazol-1-yl-pyridin-3-yl)-1,3-dihydro-imidazo[4,5-c]quinolin-2-one



embedded image


The title compound was synthesized in a similar manner as described for Example 1.1 using 8-bromo-1-(1,3-dimethyl-1H-pyrazol-4-yl)-3-methyl-1,3-dihydro-imidazo[4,5-c]quinolin-2-one (Intermediate A) and 2-pyrazol-1-yl-5-(4,4,5,5-tetramethyl-[1,3,2]dioxaborolan-2-yl)-pyridine (Stage 79.1.1) to give the title compound as a white solid. (HPLC: tR 2.64 min (Method A); M+H=437 MS-ES; 1H-NMR (d6-DMSO, 400 MHz) 9.00 (s, 1H), 8.68-8.66 (m, 1H), 8.59-8.57 (m, 1H), 8.16-8.12 (m, 2H), 8.10-7.98 (m, 3H), 7.87-7.85 (m, 1H), 7.60-7.58 (m, 1H), 6.62-6.59 (m, 1H), 3.93 (s, 3H), 3.58 (s, 3H), 1.97 (s, 3H))


Stage 79.1.1. 2-Pyrazol-1-yl-5-(4,4,5,5-tetramethyl-[1,3,2]dioxaborolan-2-yl)-pyridine



embedded image


The title compound was synthesized in a similar manner as described for Stage 5.1.1 using 5-bromo-2-pyrazol-1-yl-pyridine (Combi-Blocks, San Diego, USA) to give the title compound as a brown solid. (HPLC: tR 2.19 min (Method A); M+H=272 MS-ES).


Example 80.1
1-(1,3-Dimethyl-1H-pyrazol-4-yl)-3-methyl-8-(2-methylamino-pyrimidin-5-yl)-1,3-dihydro-imidazo[4,5-c]quinolin-2-one



embedded image


The title compound was synthesized in a similar manner as described for Example 1.1 using 8-bromo-1-(1,3-dimethyl-1H-pyrazol-4-yl)-3-methyl-1,3-dihydro-imidazo[4,5-c]quinolin-2-one (Intermediate A) and methyl-[5-(4,4,5,5-tetramethyl-[1,3,2]dioxaborolan-2-yl)-pyrimidin-2-yl]-amine (Stage 80.1.1) to give the title compound as a white solid. (HPLC: tR 2.18 min (Method A); M+H=401 MS-ES; 1H-NMR (d6-DMSO, 400 MHz) 8.93 (s, 1H), 8.49-8.34 (s, br, 2H), 8.13-8.11 (m, 1H), 8.07-8.04 (m, 1H), 7.89-7.85 (m, 1H), 7.42-7.37 (m, 2H), 3.90 (s, 3H), 3.57 (s, 3H), 2.84 (d, 3H), 1.96 (s, 3H))


Stage 80.1.1. Methyl-[5-(4,4,5,5-tetramethyl-[1,3,2]dioxaborolan-2-yl)-pyrimidin-2-yl]amine



embedded image


The title compound was synthesized in a similar manner as described for Stage 5.1.1 using (5-bromo-pyrimidin-2-yl)-methyl-amine (Combi-Blocks, San Diego, USA) to give the title compound as a beige solid. (HPLC: tR 1.20 min (Method A); M+H=236 MS-ES).


The following example was synthesized in a similar manner as described for Example 1.1 using methyl-[5-(4,4,5,5-tetramethyl-[1,3,2]dioxaborolan-2-yl)-pyrimidin-2-yl]-amine (Stage 80.1.1) and the specified intermediate.





















MS-ES
HPLC


Example
Intermed.
structure
Name of the example
(M + H)
tR (min)







80.2
H


embedded image


3-Methyl-8-(2- methylamino- pyrimidin-5-yl)-1- (1,3,5-trimethyl-1H- pyrazol-4-yl)-1,3- dihydro-imidazo[4,5- c]quinolin-2-one
415
2.27









Example 81.1
8-(2-Amino-pyrimidin-5-yl)-1-(1,3-dimethyl-1H-pyrazol-4-yl)-3-methyl-1,3-dihydro-imidazo[4,5-c]quinolin-2-one



embedded image


The title compound was synthesized in a similar manner as described for Example 1.1 using 8-bromo-1-(1,3-dimethyl-1H-pyrazol-4-yl)-3-methyl-1,3-dihydro-imidazo[4,5-c]quinolin-2-one (Intermediate A) and 5-(4,4,5,5-tetramethyl-[1,3,2]dioxaborolan-2-yl)-pyrimidin-2-ylamine (Combi-Blocks, San Diego, USA) to give the title compound as a white solid. (HPLC: tR 2.04 min (Method A); M+H=387 MS-ES; 1H-NMR (d6-DMSO, 400 MHz) 8.93 (s, 1H), 8.37 (s, 2H), 8.14-8.12 (m, 1H), 8.07-8.03 (m, 1H), 7.90-7.86 (m, 1H), 7.41-7.38 (m, 1H), 6.93 (s, br, 2H), 3.91 (s, 3H), 3.57 (s, 3H), 1.95 (s, 3H))


The following example was synthesized in a similar manner as described for Example 1.1 using 5-(4,4,5,5-tetramethyl-[1,3,2]dioxaborolan-2-yl)-pyrimidin-2-ylamine and the specified intermediate.





















MS-ES
HPLC


Example
Intermed.
structure
Name of the example
(M + H)
tR (min)







81.2
H


embedded image


8-(2-Amino-pyrimidin- 5-yl)-3-methyl-1- (1,3,5-trimethyl-1H- pyrazol-4-yl)-1,3- dihydro-imidazo[4,5- c]quinolin-2-one
401
2.13









Example 82
1-(1,3-Dimethyl-1H-pyrazol-4-yl)-8-(3-isopropoxy-phenyl)-3-methyl-1,3-dihydro-imidazo[4,5-c]quinolin-2-one



embedded image


The title compound was synthesized in a similar manner as described for Example 1.1 using 8-bromo-1-(1,3-dimethyl-1H-pyrazol-4-yl)-3-methyl-1,3-dihydro-imidazo[4,5-c]quinolin-2-one (Intermediate A) and 3-isopropoxyphenylboronic acid (Aldrich, Buchs, Switzerland) to give the title compound as a white solid. (HPLC: tR 2.95 min (Method A); M+H=428 MS-ES; 1H-NMR (d6-DMSO, 400 MHz) 8.96 (s, 1H), 8.19-8.16 (m, 1H), 8.09-8.05 (m, 1H), 7.94-7.89 (m, 1H), 7.57-7.54 (m, 1H), 7.39-7.33 (m, 1H), 7.10-7.06 (m, 1H), 6.94-9-6.90 (m, 2H), 4.68 (hp, 1H), 3.92 (s, 3H), 3.57 (s, 3H), 1.95 (s, 3H), 1.30 (t, 6H))


Example 83
1-(1,3-Dimethyl-1H-pyrazol-4-yl)-8-(2-fluoro-3-isopropoxy-phenyl)-3-methyl-1,3-dihydro-imidazo[4,5-c]quinolin-2-one



embedded image


The title compound was synthesized in a similar manner as described for Example 1.1 using 8-bromo-1-(1,3-dimethyl-1H-pyrazol-4-yl)-3-methyl-1,3-dihydro-imidazo[4,5-c]quinolin-2-one (Intermediate A) and 2-fluoro-3-isopropoxyphenylboronic acid (Combi-Blocks, San Diego, USA) to give the title compound as a white solid. (HPLC: tR 2.91 min (Method A); M+H=446 MS-ES; 1H-NMR (d6-DMSO, 400 MHz) 8.99 (s, 1H), 8.11-8.07 (m, 2H), 7.77-7.73 (m, 1H), 7.56-7.54 (m, 1H), 7.22-7.15 (m, 2H), 6.99-6.92 (m, 1H), 4.64 (hp, 1H), 3.87 (s, 3H), 3.58 (s, 3H), 1.94 (s, 3H), 1.33-1.28 (m, 6H))


Example 84.1
1-(1,3-Dimethyl-1H-pyrazol-4-yl)-8-(5-isopropoxy-6-methyl-pyridin-3-yl)-3-methyl-1,3-dihydro-imidazo[4,5-c]quinolin-2-one



embedded image


The title compound was synthesized in a similar manner as described for Example 1.1 using 8-bromo-1-(1,3-dimethyl-1H-pyrazol-4-yl)-3-methyl-1,3-dihydro-imidazo[4,5-c]quinolin-2-one (Intermediate A) and 3-isopropoxy-2-methyl-5-(4,4,5,5-tetramethyl-[1,3,2]dioxaborolan-2-yl)-pyridine (Stage 84.1.1) to give the title compound as a white solid. (HPLC: tR 2.31 min (Method A); M+H=443 MS-ES; 1H-NMR (d6-DMSO, 400 MHz) 8.98 (s, 1H), 8.17-8.16 (m, 1H), 8.13-8.09 (m, 2H), 8.00-7.96 (m, 1H), 7.59-7.57 (m, 1H), 7.31-7.29 (m, 1H), 4.74 (hp, 1H), 3.89 (s, 3H), 3.58 (s, 3H), 2.36 (s, 3H), 1.97 (s, 3H), 1.35 (t, 6H))


Stage 84.1.1. 3-Isopropoxy-2-methyl-5-(4,4,5,5-tetramethyl-[1,3,2]dioxaborolan-2-yl)-pyridine



embedded image


The title compound was synthesized in a similar manner as described for Stage 5.1.1 using 5-bromo-3-isopropoxy-2-methyl-pyridine (Stage 84.1.2) to give the title compound as a brown oil. (HPLC: tR 2.21 min (Method A); M+H=278 MS-ES).


Stage 84.1.2. 5-Bromo-3-isopropoxy-2-methyl-pyridine



embedded image


To a solution of 5-bromo-2-methyl-pyridin-3-ylamine (Stage 75.1.4, 400 mg, 2.13 mmol) in isopropanol (33 ml) were added 4 M HCl in dioxane (0.535 ml, 2.13 mmol) and isoamyl nitrite (1.25 g, 10.7 mmol). The reaction mixture was heated at 80° C. for 2.5 h, before being evaporated to dryness. The residue was dissolved in EtOAc and washed with saturated aqueous NaHCO3. The aqueous layer was extracted with EtOAc and the combined organic layers were dried over Na2SO4, filtered and evaporated. The residue was dry loaded on silica gel and purified by MPLC (heptane/EtOAc 0% to 30%) to give the title compound as an orange oil (HPLC: tR 2.47 min (Method A); M+H=230, 232 MS-ES).


The following example was synthesized in a similar manner as described for Example 1.1 using 3-isopropoxy-2-methyl-5-(4,4,5,5-tetramethyl-[1,3,2]dioxaborolan-2-yl)-pyridine (Stage 84.1.1) and the specified intermediate.





















MS-ES
HPLC


Example
Intermed.
structure
Name of the example
(M + H)
tR (min)







84.2
F


embedded image


1-(1-Ethyl-3-methyl-1H- pyrazol-4-yl)-8-(5- isopropoxy-6-methyl- pyridin-3-yl)-3-methyl-1,3- dihydro-imidazo[4,5- c]quinolin-2-one
457
2.38









Example 85.1
1-(1,3-Dimethyl-1H-pyrazol-4-yl)-8-(5-ethoxy-6-methyl-pyridin-3-yl)-3-methyl-1,3-dihydro-imidazo[4,5-c]quinolin-2-one



embedded image


The title compound was synthesized in a similar manner as described for Example 1.1 using 8-bromo-1-(1,3-dimethyl-1H-pyrazol-4-yl)-3-methyl-1,3-dihydro-imidazo[4,5-c]quinolin-2-one (Intermediate A) and 3-ethoxy-2-methyl-5-(4,4,5,5-tetramethyl-[1,3,2]dioxaborolan-2-yl)-pyridine (Stage 85.1.1) to give the title compound as a white solid. (HPLC: tR 2.22 min (Method A); M+H=429 MS-ES; 1H-NMR (d6-DMSO, 400 MHz) 8.98 (s, 1H), 8.19-8.17 (m, 1H), 8.13-8.09 (m, 2H), 8.02-7.98 (m, 1H), 7.61-7.59 (m, 1H), 7.30-7.28 (m, 1H), 4.20-4.12 (m, 2H), 3.89 (s, 3H), 3.58 (s, 3H), 2.39 (s, 3H), 1.97 (s, 3H), 1.43 (t, 3H))


Stage 85.1.1. 3-Ethoxy-2-methyl-5-(4,4,5,5-tetramethyl-[1,3,2]dioxaborolan-2-yl)-pyridine



embedded image


The title compound was synthesized in a similar manner are described for Stage 84.1.1-2 using ethanol instead of isopropanol. (HPLC: tR 2.03 min (Method A); M+H=264 MS-ES)


The following examples were synthesized in a similar manner as described for Example 1.1 using 3-ethoxy-2-methyl-5-(4,4,5,5-tetramethyl-[1,3,2]dioxaborolan-2-yl)-pyridine (Stage 85.1.1) and the specified intermediate.





















MS-ES
HPLC


Example
Intermed.
structure
Name of the example
(M + H)
tR (min)







85.2
N


embedded image


8-(5-Ethoxy-6-methyl- pyridin-3-yl)-1-[1-(2- methoxy-ethyl)-3,5- dimethyl-1H-pyrazol-4-yl]- 3-methyl-1,3-dihydro- imidazo[4,5-c]quinolin-2- one
487
2.33





85.3
O


embedded image


2-{4-[8-(5-Ethoxy-6- methyl-pyridin-3-yl)-3- methyl-2-oxo-2,3-dihydro- imidazo[4,5-c]quinolin-1- yl]-3,5-dimethyl-pyrazol-1- yl}-N,N-dimethyl- acetamide
514
2.30









Example 86.1
1-(3-Chloro-1-methyl-1H-pyrazol-4-yl)-8-[5-(2-methoxy-ethoxy)-6-methyl-pyridin-3-yl]-3-methyl-1,3-dihydro-imidazo[4,5-c]quinolin-2-one



embedded image


The title compound was synthesized in a similar manner as described for Example 1.1 using 8-bromo-1-(1,3-dimethyl-1H-pyrazol-4-yl)-3-methyl-1,3-dihydro-imidazo[4,5-c]quinolin-2-one (Intermediate A) and 3-(2-methoxy-ethoxy)-2-methyl-5-(4,4,5,5-tetramethyl-[1,3,2]dioxaborolan-2-yl)-pyridine (Stage 86.1.1) to give the title compound as a white solid. (HPLC: tR 2.33 min (Method A); M+H=479 MS-ES; 1H-NMR (d6-DMSO, 400 MHz) 9.01 (s, 1H), 8.38 (s, 1H), 8.22-8.20 (m, 1H), 8.15-8.12 (m, 1H), 8.03-8.00 (m, 1H), 7.58-7.57 (m, 1H), 7.39-7.37 (m, 1H), 4.30-4.19 (m, 2H), 3.97 (s, 3H), 3.76 (t, 2H), 3.60 (s, 3H), 3.36 (s, 3H), 2.40 (s, 3H))


Stage 86.1.1. 3-(2-Methoxy-ethoxy)-2-methyl-5-(4,4,5,5-tetramethyl-[1,3,2]dioxaborolan-2-yl)-pyridine



embedded image


The title compound was synthesized in a similar manner are described for Stage 84.1.1-2 using 2-methoxyethanol instead of isopropanol. (HPLC: tR 2.05 min (Method A); M+H=294 MS-ES)


The following example was synthesized in a similar manner as described for Example 1.1 using 3-(2-methoxy-ethoxy)-2-methyl-5-(4,4,5,5-tetramethyl-[1,3,2]dioxaborolan-2-yl)-pyridine (Stage 86.1.1) and the specified intermediate.





















MS-ES
HPLC


Example
Intermed.
structure
Name of the example
(M + H)
tR (min)







86.2
A


embedded image


1-(1,3-Dimethyl-1H- pyrazol-4-yl)-8-[5-(2- methoxy-ethoxy)-6- methyl-pyridin-3-yl]-3- methyl-1,3-dihydro- imidazo[4,5- c]quinolin-2-one
459
2.15









Example 87.1
1-(1,3-Dimethyl-1H-pyrazol-4-yl)-8-(5-ethylamino-6-methyl-pyridin-3-yl)-3-methyl-1,3-dihydro-imidazo[4,5-c]quinolin-2-one



embedded image


The title compound was synthesized in a similar manner as described for Example 1.1 using 8-bromo-1-(1,3-dimethyl-1H-pyrazol-4-yl)-3-methyl-1,3-dihydro-imidazo[4,5-c]quinolin-2-one (Intermediate A) and ethyl-[2-methyl-5-(4,4,5,5-tetramethyl-[1,3,2]dioxaborolan-2-yl)-pyridin-3-yl]-amine (Stage 87.1.1) to give the title compound as a white solid. (HPLC: tR 2.18 min (Method A); M+H=428 MS-ES; 1H-NMR (d6-DMSO, 400 MHz) 8.96 (s, 1H), 8.11-8.07 (m, 2H), 7.95-7.91 (m, 1H), 7.88-7.86 (m, 1H), 7.61-7.59 (m, 1H), 6.78-6.76 (m, 1H), 5.23 (t, 1H), 3.88 (s, 3H), 3.58 (s, 3H), 3.21-3.14 (m, 2H), 2.33 (s, 3H), 1.97 (s, 3H), 1.25 (t, 3H))


Stage 87.1.1. Ethyl-[2-methyl-5-(4,4,5,5-tetramethyl-[1,3,2]dioxaborolan-2-yl)-pyridin-3-yl]-amine



embedded image


The title compound was synthesized in a similar manner as described for Stage 5.1.1 using (5-bromo-2-methyl-pyridin-3-yl)-ethyl-amine (Stage 87.1.2) to give the title compound as a brown oil. (HPLC: tR 1.85 min (Method A); M+H=263 MS-ES).


Stage 87.1.2. (5-Bromo-2-methyl-pyridin-3-yl)-ethyl-amine



embedded image


A solution of 5-bromo-2-methyl-pyridin-3-ylamine (Stage 75.1.4, 300 mg, 1.604 mmol), acetaldehyde (Fluka, Buchs, Switzerland, 71 mg, 1.6 mmol) in dichloromethane (30 ml) was stirred for 1.5 h at rt in presence of acetic acid (0.3 ml, 5.24 mmol). Was added sodium triacetoxyborohydride (850 mg, 4.01 mmol) and the reaction mixture was stirred 4 h at rt, then was added acetaldehyde (45 mg, 1.02 mmol) twice at 1.5 h interval and the reaction was stirred at rt for 15 h before being quenched with aqueous saturated NaHCO3 and extracted with dichloromethane (2×). The combined organic layers were dried over Na2SO4, filtered and evaporated to dryness. (HPLC: tR 2.08 min (Method A); M+H=215, 217 MS-ES).


The following examples were synthesized in a similar manner as described for Example 1.1 using ethyl-[2-methyl-5-(4,4,5,5-tetramethyl-[1,3,2]dioxaborolan-2-yl)-pyridin-3-yl]-amine (Stage 87.1.1) and the specified intermediate.





















MS-ES
HPLC


Example
Intermed.
structure
Name of the example
(M + H)
tR (min)







87.2
K


embedded image


1-(3-Chloro-1-methyl- 1H-pyrazol-4-yl)-8-(5- ethylamino-6-methyl- pyridin-3-yl)-3-methyl- 1,3-dihydro- imidazo[4,5- c]quinolin-2-one
448
2.35





87.3
F


embedded image


8-(5-Ethylamino-6- methyl-pyridin-3-yl)-1- (1-ethyl-3-methyl-1H- pyrazol-4-yl)-3- methyl-1,3-dihydro- imidazo[4,5- c]quinolin-2-one
442
2.22





87.4
N


embedded image


8-(5-Ethylamino-6- methyl-pyridin-3-yl)-1- [1-(2-methoxy-ethyl)- 3,5-dimethyl-1H- pyrazol-4-yl]-3- methyl-1,3-dihydro- imidazo[4,5- c]quinolin-2-one
486
2.26





87.5
O


embedded image


2-{4-[8-(5-Ethylamino- 6-methyl-pyridin-3-yl)- 3-methyl-2-oxo-2,3- dihydro-imidazo[4,5- c]quinolin-1-yl]-3,5- dimethyl-pyrazol-1-yl}- N,N-dimethyl- acetamide
513
2.25









Example 88.1
8-(5-Amino-6-methyl-pyridin-3-yl)-1-(3-chloro-1-methyl-1H-pyrazol-4-yl)-3-methyl-1,3-dihydro-imidazo[4,5-c]quinolin-2-one



embedded image


The title compound was synthesized in a similar manner as described for Example 1.1 using 8-bromo-1-(3-chloro-1-methyl-1H-pyrazol-4-yl)-3-methyl-1,3-dihydro-imidazo[4,5-c]quinolin-2-one Intermediate K) and 2-methyl-5-(4,4,5,5-tetramethyl-[1,3,2]dioxaborolan-2-yl)-pyridin-3-ylamine (Stage 88.1.1) to give the title compound as a white solid. (HPLC: tR 2.14 min (Method A); M+H=420 MS-ES; 1H-NMR (d6-DMSO, 400 MHz) 8.99 (s, 1H), 8.38 (s, 1H), 8.13-8.10 (m, 1H), 7.80-7.77 (m, 1H), 7.75-7.73 (m, 1H), 7.48-7.47 (m, 1H), 7.08-7.06 (m, 1H), 5.21-5.16 (m, br, 2H), 3.99 (s, 3H), 3.59 (s, 3H), 2.30 (s, 3H))


Stage 88.1.1. 2-Methyl-5-(4,4,5,5-tetramethyl-[1,3,2]dioxaborolan-2-yl)-pyridin-3-ylamine



embedded image


The title compound was synthesized in a similar manner as described for stage 5.1.1 using 5-bromo-2-methyl-pyridin-3-ylamine (Stage 75.1.4) to give the title compound as a brown oil. (HPLC: tR 1.30 min (Method A); M+H=235 MS-ES).


The following example was synthesized in a similar manner as described for Example 1.1 using 3-(2-methoxy-ethoxy)-2-methyl-5-(4,4,5,5-tetramethyl-[1,3,2]dioxaborolan-2-yl)-pyridine (stage 86.1.1) and the specified intermediate.





















MS-ES
HPLC


Example
Intermed.
structure
Name of the example
(M + H)
tR (min)







88.2
A


embedded image


8-(5-Amino-6-methyl- pyridin-3-yl)-1-(1,3- dimethyl-1H-pyrazol- 4-yl)-3-methyl-1,3- dihydro-imidazo[4,5- c]quinolin-2-one
400
2.01









Example 89
8-(5-Amino-6-methoxy-pyridin-3-yl)-1-(3-chloro-1-methyl-1H-pyrazol-4-yl)-3-methyl-1,3-dihydro-imidazo[4,5-c]quinolin-2-one



embedded image


The title compound was synthesized in a similar manner as described for Example 1.1 using 8-bromo-1-(3-chloro-1-methyl-1H-pyrazol-4-yl)-3-methyl-1,3-dihydro-imidazo[4,5-c]quinolin-2-one (Intermediate K) and 2-methoxy-5-(4,4,5,5-tetramethyl-[1,3,2]dioxaborolan-2-yl)-pyridin-3-ylamine (Stage 89.1.1) to give the title compound as an off-white solid. (HPLC: tR 2.45 min (Method A); M+H=436 MS-ES; 1H-NMR (d6-DMSO, 400 MHz) 8.97 (s, 1H), 8.38 (s, 1H), 8.11-8.07 (m, 1H), 7.80-7.75 (m, 1H), 7.48-7.42 (m, 2H), 7.03-7.00 (m, 1H), 5.15-5.07 (s, br, 2H), 4.00 (s, 3H), 3.90 (s, 3H), 3.59 (s, 3H))


Stage 89.1.1. 2-Methoxy-5-(4,4,5,5-tetramethyl-[1,3,2]dioxaborolan-2-yl)-pyridin-3-ylamine



embedded image


The title compound was synthesized in a similar manner as described for Stage 5.1.1 using 5-bromo-2-methoxy-pyridin-3-ylamine (Stage 89.1.2) to give the title compound as a brown oil. (HPLC: tR 1.10 min (Method A); M+H=251 MS-ES).


Stage 89.1.2. 5-Bromo-2-methoxy-pyridin-3-ylamine



embedded image


The title compound was synthesized in a similar manner as described for Stage 67.1.4 using 5-Bromo-2-methoxy-3-nitro-pyridine (Stage 62.1.4) to give the title compound as an off-white solid. (HPLC: tR 2.51 min (Method A); M+H=203, 205 MS-ES).


Example 90.1
1-(3-Chloro-1-methyl-1H-pyrazol-4-yl)-8-(5-ethylamino-6-methoxy-pyridin-3-yl)-3-methyl-1,3-dihydro-imidazo[4,5-c]quinolin-2-one



embedded image


The title compound was synthesized in a similar manner as described for Example 1.1 using 8-bromo-1-(3-chloro-1-methyl-1H-pyrazol-4-yl)-3-methyl-1,3-dihydro-imidazo[4,5-c]quinolin-2-one (Intermediate K) and ethyl-[2-methoxy-5-(4,4,5,5-tetramethyl-[1,3,2]dioxaborolan-2-yl)-pyridin-3-yl]-amine (stage 90.1.1, 0.138 mmol) to give the title compound as a white solid. (HPLC: tR 2.45 min (Method A); M+H=415 MS-ES; 1H-NMR (d6-DMSO, 400 MHz) 8.99 (s, 1H), 8.24-8.16 (m, 2H), 8.14-8.07 (m, 1H), 8.02-7.94 (m, 1H), 7.66-7.59 (m, 1H), 7.09-7.02 (m, 1H), 6.87-6.80 (m, 1H), 4.32 (q, 2H), 3.94 (s, 3H), 3.57 (s, 3H), 1.96 (s, 3H), 1.34 (t, 3H))


Stage 90.1.1. Ethyl-[2-methoxy-5-(4,4,5,5-tetramethyl-[1,3,2]dioxaborolan-2-yl)-pyridin-3-yl]-amine



embedded image


The title compound was synthesized in a similar manner as described for Stage 87.1.1-2 using 5-bromo-2-methoxy-pyridin-3-ylamine (Stage 89.1.2) to give the title compound as a brown oil. (HPLC: tR 1.75 min (Method A); M+H=279 MS-ES)


The following example was synthesized in a similar manner as described for Example 1.1 using ethyl-[2-methoxy-5-(4,4,5,5-tetramethyl-[1,3,2]dioxaborolan-2-yl)-pyridin-3-yl]-amine (Stage 90.1.1) and the specified intermediate.






















HPLC






MS-ES
tR


Example
Intermed.
structure
Name of the example
(M + H)
(min)




















90.2
N


embedded image


8-(5-Ethylamino-6- methoxy-pyridin-3-yl)- 1-[1-(2-methoxy- ethyl)-3,5-dimethyl- 1H-pyrazol-4-yl]-3- methyl-1,3-dihydro- imidazo[4,5-c] quinolin-2-one
502
2.74









Example 91
1-(1,3-Dimethyl-1H-pyrazol-4-yl)-8-(2-ethoxy-pyridin-4-yl)-3-methyl-1,3-dihydro-imidazo[4,5-c]quinolin-2-one



embedded image


The title compound was synthesized in a similar manner as described for Example 1.1 using 8-bromo-1-(1,3-dimethyl-1H-pyrazol-4-yl)-3-methyl-1,3-dihydro-imidazo[4,5-c]quinolin-2-one (Intermediate A, 40 mg, 0.107 mmol) and 2-ethoxy-4-pyridinylboronic acid (Combi-Blocks, San Diego, USA, 22.4 mg, 0.134 mmol) to give the title compound as a white solid. (HPLC: tR 2.45 min (Method A); M+H=415 MS-ES; 1H-NMR (d6-DMSO, 400 MHz) 8.99 (s, 1H), 8.24-8.16 (m, 2H), 8.14-8.07 (m, 1H), 8.02-7.94 (m, 1H), 7.66-7.59 (m, 1H), 7.09-7.02 (m, 1H), 6.87-6.80 (m, 1H), 4.32 (q, 2H), 3.94 (s, 3H), 3.57 (s, 3H), 1.96 (s, 3H), 1.34 (t, 3H))


Example 92
1-(1,3-Dimethyl-1H-pyrazol-4-yl)-8-(2-isopropoxy-pyridin-4-yl)-3-methyl-1,3-dihydro-imidazo[4,5-c]quinolin-2-one



embedded image


The title compound was synthesized in a similar manner as described for Example 1.1 using 8-bromo-1-(1,3-dimethyl-1H-pyrazol-4-yl)-3-methyl-1,3-dihydro-imidazo[4,5-c]quinolin-2-one (Intermediate A) and 2-Isopropoxy-4-(4,4,5,5-tetramethyl-[1,3,2]dioxaborolan-2-yl)-pyridine (Stage 92.1.1) to give the title compound as a white solid. (HPLC: tR 2.56 min (Method A); M+H=429 MS-ES; 1H-NMR (d6-DMSO, 400 MHz) 9.00 (s, 1H), 8.23-8.19 (m, 2H), 8.14-8.09 (m, 1H), 8.00-7.96 (m, 1H), 7.64-7.62 (m, 1H), 7.05-7.02 (m, 1H), 6.80-6.78 (m, 1H), 5.28 (hp, 2H), 3.96 (s, 3H), 3.59 (s, 3H), 1.94 (s, 311, 1.34-1.29 (m, 6H))


Stage 92.1.1. 2-Isopropoxy-4-(4,4,5,5-tetramethyl-[1,3,2]dioxaborolan-2-yl)-pyridine



embedded image


The title compound was synthesized in a similar manner as described for Stage 5.1.1 using 4-bromo-2-isopropoxy-pyridine (Stage 92.1.2) to give the title compound as a brown oil. (HPLC: tR 2.36 min (Method A); M+H=264 MS-ES)


Stage 92.1.2. 4-Bromo-2-isopropoxy-pyridine



embedded image


To isopropanol (12 ml) under Ar was added 55% sodium hydride in oil (343 mg, 7.86 mmol) in two portions. After 30 min stirring at rt was added 4-bromo-2-chloropyridine (Aldrich, Buchs, Switzerland, 1.01 g, 5.24 mmol) and the reaction mixture was heated with microwave irradiation to 150° C. for 30 min. The reaction mixture was concentrated, quenched with saturated aqueous NaHCO3 and extracted with EtOAc. The organic layer was washed with brine, dried over Na2SO4, filtered and evaporated. The crude product was purified by MPLC (heptane/EtOAc 0% to 20%) to give the title compound as an oil. (HPLC: tR 3.58 min (Method A); M+H=216, 218 MS-ES)


Example 93
1-(1,3-Dimethyl-1H-pyrazol-4-yl)-8-(5-isopropoxy-6-methoxy-pyridin-3-yl)-3-methyl-1,3-dihydro-imidazo[4,5-c]quinolin-2-one



embedded image


The title compound was synthesized in a similar manner as described for Example 1.1 using 8-bromo-1-(1,3-dimethyl-1H-pyrazol-4-yl)-3-methyl-1,3-dihydro-imidazo[4,5-c]quinolin-2-one (Intermediate A) and 3-isopropoxy-2-methoxy-5-(4,4,5,5-tetramethyl-[1,3,2]dioxaborolan-2-yl)-pyridine (Stage 93.1.1) to give the title compound as a white solid. (HPLC: tR 2.73 min (Method A); M+H=459 MS-ES; 1H-NMR (d6-DMSO, 400 MHz) 8.96 (s, 1H), 8.11-8.07 (m, 2H), 7.97-7.93 (m, 1H), 7.92-7.90 (m, 1H), 7.53-7.51 (m, 1H), 7.23-7.21 (m, 1H), 4.70 (hp, 2H), 3.89 (s, 3H), 3.89 (s, 3H), 3.58 (s, 3H), 1.98 (s, 3H), 1.36-1.30 (m, 6H))


Stage 93.1.1. 3-Isopropoxy-2-methoxy-5-(4,4,5,5-tetramethyl-[1,3,2]dioxaborolan-2-yl)-pyridine



embedded image


The title compound was synthesized in a similar manner as described for Stage 5.1.1 using 5- or 6-bromo-3-isopropoxy-2-methoxy-pyridine mixture (Stage 93.1.2) to give the title compound as an orange oil after silica gel flash chromatography purification (CH2Cl2/iPrOH 0% to 3.5%). (HPLC: tR 2.24 min (Method A); M+H=294 MS-ES)


Stage 93.1.2. 5- or 6-Bromo-3-isopropoxy-2-methoxy-pyridine



embedded image


To a solution at 10° C. of 3-Isopropoxy-2-methoxy-pyridine (Stage 93.1.3, 865 mg, 5.17 mmol) and potassium acetate (635 mg, 6.47 mmol) in acetic acid (4 ml) was added over 1.5 h a solution of bromine (1.1 g, 6.88 mmol) in acetic acid (2 ml). The reaction was stirred for 1 h at rt an then basified with 20% aqueous NaOH and extracted with EtOAc (2×). The organic layers were washed with saturated aqueous NaHCO3, dried over Na2SO4, filtered and evaporated. The crude product is purified by flash chromatography (hexane/EtOAc 40:1 to 15:1) to give the title compounds as an oil (1:2). (HPLC: tR 3.55 min (Method A); M+H=246, 248 MS-ES)


Stage 93.1.3. 3-Isopropoxy-2-methoxy-pyridine



embedded image


To a solution of methanolate obtained by dissolving sodium (534 mg, 23.25 mmol) in MeOH (8 ml) was added a solution of 2-chloro-3-isopropoxy-pyridine (Stage 93.1.4, 1.14 g, 6.64 mmol) in MeOH (2 ml). The reaction mixture was heated at 150° C. by microwave irradiation for 25 min then concentrated and quenched with EtOAc and brine. The organic layer was dried over Na2SO4, filtered and evaporated to give the title compound as an oil (HPLC: tR 2.66 min (Method A); M+H=264 MS-ES)


Stage 93.1.4. 2-Chloro-3-isopropoxy-pyridine



embedded image


The title compound was synthesized in a similar manner as described for Stage 29.1.1 using 2-chloro-3-hydroxypyridine (Aldrich, Buchs, Switzerland). The crude product obtained was bulb-to-bulb distilled (160° C., ˜0.1 mmbar) and then purified by MPLC (heptane/EtOAc 0% to 35%) to give the title compound as an oil. (HPLC: tR 2.97 min (Method A); M+H=172 MS-ES)


Example 94
1-(1,3-Dimethyl-1H-pyrazol-4-yl)-8-(5-ethoxy-6-methoxy-pyridin-3-yl)-3-methyl-1,3-dihydro-imidazo[4,5-c]quinolin-2-one



embedded image


The title compound was synthesized in a similar manner as described for Example 1.1 using 8-bromo-1-(1,3-dimethyl-1H-pyrazol-4-yl)-3-methyl-1,3-dihydro-imidazo[4,5-c]quinolin-2-one (Intermediate A) and 3-ethoxy-2-methoxy-5-(4,4,5,5-tetramethyl-[1,3,2]dioxaborolan-2-yl)-pyridine (Stage 92.1.1) to give the title compound as a white solid. (HPLC: tR 2.63 min (Method A); M+H=445 MS-ES; 1H-NMR (d6-DMSO, 400 MHz) 8.96 (s, 1H), 8.11-8.07 (m, 2H), 7.98-7.94 (m, 1H), 7.92-7.90 (m, 1H), 7.54-7.53 (m, 1H), 7.22-7.21 (m, 1H), 4.16-4.09 (m, 2H), 3.90 (s, 3H), 3.89 (s, 3H), 3.58 (s, 3H), 1.97 (s, 3H), 1.41 (t, 3H))


Stage 94.1.1. 3-Ethoxy-2-methoxy-5-(4,4,5,5-tetramethyl-[1,3,2]dioxaborolan-2-yl)-pyridine



embedded image


The title compound was synthesized in a similar manner as described for Stage 93.1.1-4 using isopropanol as replacement for ethanol to give the title compound as a brown oil. (HPLC: tR 2.09 min (Method A))


Example 95
8-(5-Diethylamino-pyridin-3-yl)-1-(1,3-dimethyl-1H-pyrazol-4-yl)-3-methyl-1,3-dihydro-imidazo[4,5-c]quinolin-2-one



embedded image


The title compound was synthesized in a similar manner as described for Example 1.1 using 8-bromo-1-(1,3-dimethyl-1H-pyrazol-4-yl)-3-methyl-1,3-dihydro-imidazo[4,5-c]quinolin-2-one (Intermediate A) and diethyl-[5-(4,4,5,5-tetramethyl-[1,3,2]dioxaborolan-2-yl)-pyridin-3-yl]-amine (Stage 95.1.1) to give the title compound as a white solid. (HPLC: tR 2.31 min (Method A); M+H=442 MS-ES; 1H-NMR (d6-DMSO, 400 MHz) 8.98 (s, 1H), 8.13-8.09 (m, 2H), 8.07-8.05 (m, 1H), 7.96-7.91 (m, 2H), 7.60-7.58 (m, 1H), 6.95-6.92 (m, 1H), 3.87 (s, 3H), 3.58 (s, 3H), 3.46-3.39 (m, 4H), 1.97 (s, 3H), 1.13 (t, 6H))


Stage 95.1.1. Diethyl-[5-(4,4,5,5-tetramethyl-[1,3,2]dioxaborolan-2-yl)-pyridin-3-yl]-amine



embedded image


The title compound was synthesized in a similar manner as described for Stage 5.1.1 using (5-bromo-pyridin-3-yl)-diethyl-amine (Stage 95.1.2) to give the title compound as a brown oil. (HPLC: tR 2.14 min (Method A); M+H=277 MS-ES)


Stage 91.1.2. (5-Bromo-pyridin-3-yl)-diethyl-amine



embedded image


A solution of 3-amino-5-bromopyridine (Aldrich, Buchs, Switzerland, 400 mg, 2.31 mmol), acetic acid (0.4 ml, 6.99 mmol) and acetaldehyde (Fluka, Buchs, Switzerland, 153 mg, 3.47 mmol) in dichloromethane was stirred for 1.5 h at rt then was added sodium triacetoxyborohydride (980 mg, 4.62 mmol). The reaction mixture was stirred 17.5 h at rt then were added at 1.5 h interval acetaldehyde (153 mg, 3.47 mmol) and sodium tracetoxyborohydride (490 mg, 2.31 mmol). The RM was stirred 7 h at rt then were added at 1.5 h interval acetaldehyde (77 mg, 1.75 mmol) and sodium tracetoxyborohydride (490 mg, 2.31 mmol). After 15 h stirring at rt, the reaction mixture was diluted with dichloromethane and quenched with saturated aqueous NaHCO3. The aqueous layer was extracted with dichloromethane and the combined organic layers were dried over Na2SO4, filtered and evaporated. The crude product was purified by flash chromatography (DCM/iPrOH 1% to 3.5%) to give the title compound as a yellowish oil. (HPLC: tR 2.31 min (Method A); M+H=229, 231 MS-ES)


Example 96
1-(1,3-Dimethyl-1H-pyrazol-4-yl)-3-methyl-8-[6-(4-methyl-piperazin-1-yl)-pyridin-3-yl]-1,3-dihydro-imidazo[4,5-c]quinolin-2-one



embedded image


The title compound was synthesized in a similar manner as described for Example 1.1 using 8-bromo-1-(1,3-dimethyl-1H-pyrazol-4-yl)-3-methyl-1,3-dihydro-imidazo[4,5-c]quinolin-2-one (Intermediate A, 40 mg, 0.107 mmol) and 2-(4-methylpiperazine-1-yl)pyridine-5-boronic acid pinacol ester (Combi-Blocks, San Diego, USA, 40 mg, 0.132 mmol) to give the title compound as a white solid. (HPLC: tR 2.04 min (Method A); M+H=469 MS-ES; 1H-NMR (d6-DMSO, 400 MHz) 8.91 (s, 1H), 8.30-8.24 (m, 1H), 8.14-8.10 (m, 1H), 8.07-8.01 (m, 1H), 7.90-7.83 (m, 1H), 7.62-7.56 (m, 1H), 7.45-7.41 (m, 1H), 6.97-6.90 (m, 1H), 3.92 (s, 3H), 3.55 (s, 7H), 2.41-2.35 (m, 4H), 2.21 (s, 3H), 1.95 (s, 3H))


Example 97
1-(1,3-Dimethyl-1H-pyrazol-4-yl)-3-methyl-8-(6-pyrrolidin-1-yl-pyridin-3-yl)-1,3-dihydro-imidazo[4,5-c]quinolin-2-one



embedded image


The title compound was synthesized in a similar manner as described for Example 1.1 using 8-bromo-1-(1,3-dimethyl-1H-pyrazol-4-yl)-3-methyl-1,3-dihydro-imidazo[4,5-c]quinolin-2-one (Intermediate A) and 2-pyrrolidin-1-ylpyridine-5-boronic acid pinacol ester (Boron Molecular, Research Triangle Park, USA) to give the title compound as a white solid. (HPLC: tR 2.23 min (Method A); M+H=440 MS-ES; 1H-NMR (d6-DMSO, 400 MHz) 8.90 (s, 1H), 8.25-8.23 (m, 1H), 8.13-8.11 (m, 1H), 8.05-8.01 (m, 1H), 7.87-7.83 (m, 1H), 7.58-7.53 (m, 1H), 7.42-7-40 (m, 1H), 6.56-6.52 (m, 1H), 3.92 (s, 3H), 3.56 (s, 3H), 3.44-3.38 (m, 4H), 1.97-1.92 (m, 7H))


Example 98.1
1-(1,3-Dimethyl-1H-pyrazol-4-yl)-8-[6-(ethyl-methyl-amino)-pyridin-3-yl]-3-methyl-1,3-dihydro-imidazo[4,5-c]quinolin-2-one



embedded image


The title compound was synthesized in a similar manner as described for Example 1.1 using 8-bromo-1-(1,3-dimethyl-1H-pyrazol-4-yl)-3-methyl-1,3-dihydro-imidazo[4,5-c]quinolin-2-one (Intermediate A) and ethyl-methyl-[5-(4,4,5,5-tetramethyl-[1,3,2]dioxaborolan-2-yl)-pyridin-2-yl]-amine (stage 98.1.1) to give the title compound as a white solid. (HPLC: tR 2.18 min (Method A); M+H=428 MS-ES; 1H-NMR (d6-DMSO, 400 MHz) 8.90 (s, 1H), 8.26-8.24 (m, 1H), 8.14-8.12 (m, 1H), 8.04-8.01 (m, 1H), 7.88-7.84 (m, 1H), 7.57-7.52 (m, 1H), 7.43-7-40 (m, 1H), 6.73-6.69 (m, 1H), 3.93 (s, 3H), 3.62-3.53 (m, 51-1), 3.01 (s, 3H), 1.96 (s, 3H), 1.07 (t, 3H))


Stage 98.1.1. Ethyl-methyl-[5-(4,4,5,5-tetramethyl-[1,3,2]dioxaborolan-2-yl)-pyridin-2-yl]-amine



embedded image


The title compound was synthesized in a similar manner as described for Stage 5.1.1-2 using methylethylamine (Aldrich, Buchs, Switzerland) to give the title compound as a brown solid. (HPLC: tR 1.77 min (Method A); M+H=263 MS-ES)


The following examples were synthesized in a similar manner as described for Example 1.1 using ethyl-methyl-[5-(4,4,5,5-tetramethyl-[1,3,2]dioxaborolan-2-yl)-pyridin-2-yl]-amine (Stage 98.1.1) and the specified intermediate.






















HPLC






MS-ES
tR


Example
Intermed.
structure
Name of the example
(M + H)
(min)




















98.2
G


embedded image


8-[6-(Ethyl-methyl- amino)-pyridin-3-yl]-1- (1-isopropyl-3-methyl- 1H-pyrazol-4-yl]-3- methyl-1,3-dihydro- imidazo[4,5-c] quinolin-2-one
456
2.31


98.3
F


embedded image


8-[6-(Ethyl-methyl- amino)-pyridin-3-yl]-1- (1-ethyl-3-methyl-1H- pyrazol-4-yl]-3- methyl-1,3-dihydro- imidazo[4,5-c] quinolin-2-one
442
2.25









Example 99
1-(1,3-Dimethyl-1H-pyrazol-4-yl)-3-methyl-8-(1H-pyrrolo[3,2-b]pyridin-6-yl)-1,3-dihydro-imidazo[4,5-c]quinolin-2-one



embedded image


The title compound was synthesized in a similar manner as described for Example 1.1 using 8-bromo-1-(1,3-dimethyl-1H-pyrazol-4-yl)-3-methyl-1,3-dihydro-imidazo[4,5-c]quinolin-2-one (Intermediate A) and 6-(4,4,5,5-tetramethyl-[1,3,2]dioxaborolan-2-yl)-1H-pyrrolo[3,2-b]pyridine (PepTech, Burlington, USA) to give the title compound as a white solid. (HPLC: tR 2.03 min (Method A); M+H=410 MS-ES; 1H-NMR (d6-DMSO, 400 MHz) 11.52 (s, 1H), 8.96 (s, 1H), 8.43-8.41 (m, 1H), 8.18-8.16 (m, 1H), 8.13-8.10 (m, 1H), 8.00-7.95 (m, 1H), 7.83-7.81 (m, 1H), 7.72-7.69 (m, 1H), 7.60-7.58 (m, 1H), 6.60-6.58 (m, 1H), 3.94 (s, 3H), 3.58 (s, 3H), 1.97 (s, 3H))


Example 100
5-[1-(1,3-Dimethyl-1H-pyrazol-4-yl)-3-methyl-2-oxo-2,3-dihydro-1H-imidazo[4,5-c]quinolin-8-yl]-pyridine-2-carboxylic acid methyl ester



embedded image


A mixture of 8-bromo-1-(1,3-dimethyl-1H-pyrazol-4-yl)-3-methyl-1,3-dihydro-imidazo[4,5-c]quinolin-2-one (Intermediate A, 39 mg, 0.105 mmol), 2-methylcarboxypyridine-5-boronic acid pinacol ester (Aalen Chemical, Nanjing, China, 49 mg, 0.186 mmol), potassium fluoride (22 mg, 0.379 mmol), Pd2(dba)3 (7.7 mg, 0.0085 mmol) and tri-t-butylphosphonium tetrafluoroborate (4.9 mg, 0.017 mmol) in dioxane (0.6 ml) was stirred under argon in a sealed microwave tube at rt for 20 h. The reaction was not completed. Therefore, again Pd2(dba)3 (7.7 mg, 0.0085 mmol) and tri-t-butylphosphonium tetrafluoroborate (4.9 mg, 0.017 mmol) and 2-methylcarboxypyridine-5-boronic acid pinacol ester (Combi-Blocks, San Diego, USA, 15 mg, 0.186 mmol) were added, the mixture was flushed with argon and stirred at it for further 23 h. The RM was diluted with EtOAc. The organic layer was washed with brine, dried over Na2SO4, filtered and evaporated. The residue was dissolved in MeOH and purified directly by Prep.HPLC (H2O (0.1% TFA)/CH3CN 95:5 to 60:30). The fractions containing products were collected together and basified with NaHCO3 (0.3 g), before being concentrated. The resulting suspension was filtered and the cake was washed with water, before being dried under high vacuum to give the title compound as a white solid. (HPLC: tR 2.45 min (Method A); M+H=429 MS-ES; 1H-NMR (d6-DMSO, 400 MHz) 8.99 (s, 1H), 8.83-8.78 (m, 1H), 8.20-8.12 (m, 3H), 8.11-8.06 (m, 1H), 8.05-7.98 (m, 1H), 7.69-7.62 (m, 1H), 3.92 (s, 3H), 3.90 (s, 3H), 3.58 (s, 3H), 1.96 (s, 3H))


Example 101
{4-[8-(6-Methoxy-pyridin-3-yl)-3-methyl-2-oxo-2,3-dihydro-imidazo[4,5-c]quinolin-1-yl]-3-methyl-pyrazol-1-yl}-acetic acid



embedded image


A mixture of [4-(8-bromo-3-methyl-2-oxo-2,3-dihydro-imidazo[4,5-c]quinolin-1-yl)-3-methyl-pyrazol-1-yl]-acetic acid (Stage 101.1.1b, 161 mg, 0.387 mmol), 2-methoxypyridine-5-boronic acid (Aldrich, Buchs, Switzerland, 77 mg, 0.503 mmol), and PdCl2(PPh3)2 (17 mg, 0.024 mmol) in DMF (4.0 ml) and 1 M aqueous K2CO3 (1.16 ml) was stirred under argon at 105° C. for 1.25 h. The RM was cooled to rt. The mixture was diluted with MeOH+3 drops TFA and purified directly by Prep.HPLC (H2O (0.1% TFA)/CH3CN 95:5 to 65:35). The fractions containing products were collected together concentrated, before being lyophilized to give the title compound as a TFA-salt and white powder. (HPLC: tR 2.38 min (Method A); M+H=446 MS-ES; 1H-NMR (d6-DMSO, 400 MHz) 9.22 (s, 1H), 8.46 (s, 1H), 8.23-8.14 (m, 3H), 7.87-7.79 (m, 1H), 7.74-7.68 (m, 1H), 6.94-6.88 (m, 1H), 5.15-4.98 (m, 2H), 3.89 (s, 3H), 3.60 (s, 3H), 1.97 (s, 3H))


Stage 101.1.1b [4-(8-Bromo-3-methyl-2-oxo-2,3-dihydro-imidazo[4,5-c]quinolin-1-yl)-3-methyl-pyrazol-1-yl]-acetic acid



embedded image


To a mixture of [4-(8-bromo-2-oxo-2,3-dihydro-imidazo[4,5-c]quinolin-1-yl)-3-methyl-pyrazol-1-yl]-acetic acid (Stage 101.1.2, 422 mg, 1.050 mmol) in DMF (6 ml) cooled to 0° C. was added NaH 55% (92 mg, 2 mmol). The cooling bath was removed and the RM was stirred for 45 min at rt. Then iodomethane (0.132 ml, 2 mmol) was added and the RM was stirred for 1 h. The reaction was not completed. Therefore again NaH 55% (50 mg, 1.2 mmol) was added and stirred for 15 min and after that iodomethane (0.070 ml, 1.2 mmol) was added and stirred at rt for one further hour. Then the RM was quenched with saturated aqueous NaHCO3 and extracted with EtOAc (2×) in the organic layer was found the ester side product: [4-(8-Bromo-3-methyl-2-oxo-2,3-dihydro-imidazo[4,5-c]quinolin-1-yl)-3-methyl-pyrazol-1-yl]-acetic acid methyl ester (Stage 101.1.1a).


The aqueous layer was adjusted with 4 M aqueous HCl to pH 5. The mixture was then extracted with n-butanol (2×). The combined organic layer was evaporated. The residue was diluted with DCM/MeOH. The mixture was filtered over celite, and the filtrate was evaporated to give the title compound as a orange sticky solid. (HPLC: tR 2.21 min (Method A); M+H=416, 418 Br-Pattern MS-ES)


Stage 101.1.2 [4-(8-Bromo-2-oxo-2,3-dihydro-imidazo[4,5-c]quinolin-1-yl)-3-methyl-pyrazol-1-yl]-acetic acid



embedded image


To a mixture of [4-(8-bromo-2-oxo-2,3-dihydro-imidazo[4,5-c]quinolin-1-yl)-3-methyl-pyrazol-1-yl]-acetic acid methyl ester (Stage 101.1.3, 3.22 g, 7.73 mmol) and tetrabutylammonium (250 mg, 0.773 mmol) in CH2Cl2 (150 ml) was added 1 M aqueous NaOH (80 ml). The reaction mixture was energetically stirred for 4 h 30 at rt. The organic layer was separted and the aqueous layer washed with CH2Cl2 (2×), adjusted to pH 4 with concentrated aqueous HCl and extracted with n-butanol (5×). The combined organic layers were washed with brine adjusted to pH 4 with HCl and evaporated to dryness. The residue was dry loaded on Isolute, washed with water/1-propanol 3% and eluted with acetonitrile/1-propanol 3% on reverse phase silica gel plug. To acetonitrile filtrate was added water and solution was concentrated. The formed precipitate was filtered, washed with water and dried to give the title compound as a yellow solid. (HPLC: tR 2.08 min (Method A); M+H=402, 404 Br-Pattern MS-ES)


Stage 101.1.3 [4-(8-Bromo-2-oxo-2,3-dihydro-imidazo[4,5-c]quinolin-1-yl)-3-methyl-pyrazol-1-yl]-acetic acid methyl ester



embedded image


The title compound was synthesized in a similar manner as described in Stage A.1-3 using (4-amino-3-methyl-pyrazol-1-yl)-acetic acid methyl ester (Stage 101.1.4) to give the title compound as green solid. (HPLC: tR 2.35 min (Method A))


Stage 101.1.4 (4-Amino-3-methyl-pyrazol-1-yl)-acetic acid methyl ester



embedded image


The title compound was synthesized in a similar manner as described in Stage A.2 starting from 3-Methyl-4-nitro-pyrazol-1-yl-acetic acid methylester (ChemCollect, Remscheid, Germany) to give the title compound as a pinkish oil. (HPLC: tR 0.96 min (Method A); M+H=170 MS-ES)


Example 102
2-{4-[8-(6-Methoxy-pyridin-3-yl)-3-methyl-2-oxo-2,3-dihydro-imidazo[4,5-c]quinolin-1-yl]-3-methyl-pyrazol-1-yl}-N,N-dimethyl-acetamide



embedded image


A mixture of {4-[8-(6-Methoxy-pyridin-3-yl)-3-methyl-2-oxo-2,3-dihydro-imidazo[4,5-c]quinolin-1-yl]-3-methyl-pyrazol-1-yl}-acetic acid TFA salt (Example 101, 60 mg, 0.107 mmol), TPTU (128 mg, 0.430 mmol) and DIPEA (0.094 ml, 0.537 mmol) in DMA (1.5 ml) was stirred under argon at rt for 20 min. Then dimethtylamine in THF 2 M (Aldrich, Buchs, Switzerland, 0.242 ml, 0.483 mmol) was added and the RM was stirred at rt for 3 h. The RM was directly purified by Prep.HPLC (H2O (0.1% TFA)/CH3CN 95:5 to 50:50). The fractions containing products were collected together and basified with NaHCO3 (0.3 g), before being concentrated. The resulting layer was extracted with EtOAc, washed with brine, dried over Na2SO4, filtered and evaporated to dryness to give the title compound as a white solid. (HPLC: tR 2.57 min (Method A); M+H=472 MS-ES; 1H-NMR (d6-DMSO, 400 MHz) 8.95 (s, 1H), 8.50-8.43 (m, 1H), 8.14-8.04 (m, 2H), 8.01-7.96 (m, 1H), 7.95-7.90 (m, 1H), 7-77-7.71 (m, 1H), 6.87-6.81 (m, 1H), 5.25-5.09 (m, 2H), 3.86 (s, 3H), 3.56 (s, 3H), 3.05 (s, 3H), 2.88 (s, 3H), 1.93 (s, 3H))


Example 103.1
1-[1-(2-Hydroxy-ethyl)-3-methyl-1H-pyrazol-4-yl]-8-(6-methoxy-pyridin-3-yl)-3-methyl-1,3-dihydro-imidazo[4,5-c]quinolin-2-one



embedded image


The title compound was synthesized in a similar manner as described for Example 1.1 using 8-bromo-1-[1-(2-hydroxy-ethyl)-3-methyl-1H-pyrazol-4-yl]-3-methyl-1,3-dihydro-imidazo[4,5-c]quinolin-2-one (Stage 103.1.1, 37.4 mg, 0.093 mmol) and 2-methoxypyridine-5-boronic acid (Aldrich, Buchs, Switzerland, 20 mg, 0.131 mmol) to give the title compound as a white solid. (HPLC: tR 2.42 min (Method A); M+H=431 MS-ES; 1H-NMR (d6-DMSO, 400 MHz) 8.95 (s, 1H), 8.35 (s, 1H), 8.13 (s, 1H), 8.10-8.05 (m, 1H), 7.95-7.88 (m, 1H), 7.81-7.75 (m, 1H), 7.51-7.46 (m, 1H), 6.93-6.86 (m, 1H), 5.00-4.94 (m, 1H), 4.24-4.17 (m, 2H), 3.88 (s, 3H), 3.86-3.74 (m, 2H), 3.57 (s, 3H), 1.94 (s, 3H))


Stage 103.1.1 8-Bromo-1-[1-(2-hydroxy-ethyl)-3-methyl-1H-pyrazol-4-yl]-3-methyl-1,3-dihydro-imidazo[4,5-c]quinolin-2-one



embedded image


A mixture of [4-(8-bromo-3-methyl-2-oxo-2,3-dihydro-imidazo[4,5-c]quinolin-1-yl)-3-methyl-pyrazol-1-yl]-acetic acid methyl ester (Stage 101.1.1a, 60 mg, 0.139 mmol) and MeOH (0.021 ml, 0.519 mmol) in THF (1.5 ml) was cooled to 0° C. Then NaBH4 (14 mg, 0.370 mmol) was added and the RM was heated to 50° C. for 30 min. After that, the RM was quenched with saturated aqueous NaHCO3 (20 ml) and extracted with EtOAc (2×). The combined organic layers were washed with brine, dried over Na2SO4, filtered and evaporated to dryness to give the title compound as a lightly yellow solid. (HPLC: tR 2.23 min (Method A); M+H=402, 404 Br-Pattern MS-ES)


Alternatively, the title compound was synthesized in a similar manner as described for intermediate A starting from 2-(4-amino-3-methyl-pyrazol-1-yl)-ethanol (Stage 103.1.2).


The following example was synthesized in a similar manner as described for Example 1.1 using 6-ethoxypyridine-3-boronic acid (ABCR, Karlsruhe, Germany) and 8-bromo-1-[1-(2-hydroxy-ethyl)-3-methyl-1H-pyrazol-4-yl]-3-methyl-1,3-dihydro-imidazo[4,5-c]quinolin-2-one (Stage 103.1.1).




















HPLC





MS-ES
tR


Example
structure
Name of the example
(M + H)
(min)



















103.2


embedded image


8-(6-Ethoxy-pyridin-3- yl)-1-[1-(2-hydroxy- ethyl)-3-methyl-1H- pyrazol-4-yl]-3- methyl-1,3-dihydro- imidazo[4,5-c] quinolin-2-one
445
2.47









Stage 103.1.2 2-(4-Amino-3-methyl-pyrazol-1-yl)-ethanol



embedded image


To solution of 3-methyl-4-nitropyrazol-1-yl-acetic acid methylester (ChemCollect, Remscheid, Germany, 297 mg, 1.491 mmol) in THF (12 ml) cooled with an ice-bath was added a 1 M solution of lithium aluminium hydride in THF (1.5 ml, 1.5 mmol). The reaction mixture was stirred 1 h at rt then was added more of the reducing reagent (0.75 ml, 0.75 mmol), stirring 2 h at rt, (1.5 ml, 1.5 mmol), stirring 45 min, (2 ml, 2 mmol) and the reaction mixture was stirred 17 h at rt before being quenched with water and taken in EtOAc. The suspension was filtered and the solid washed with EtOAc. The filtrate was dried over Na2SO4, filtered and evaporated to give crude brown solid. (HPLC: tR 0.85 min (Method A); M+H=142 MS-ES)


Example 104
1-(1-Ethyl-3-methyl-1H-pyrazol-4-yl)-8-(6-methoxymethyl-pyridin-3-yl)-3-methyl-1,3-dihydro-imidazo[4,5-c]quinolin-2-one



embedded image


To a mixture of 1-(1-ethyl-3-methyl-1H-pyrazol-4-yl)-8-(6-hydroxymethyl-pyridin-3-yl)-3-methyl-1,3-dihydro-imidazo[4,5-c]quinolin-2-one (Example 16.1, 28 mg, 0.068 mmol) in DMF (1 ml) was added NaH 55% (4 mg, 0.092 mmol) and the mixture was stirred for 20 min. Then iodomethane (0.006 ml, 0.096 mmol) was added and the RM was stirred again at rt for 30 min. After that, the RM was quenched with saturated aqueous NaHCO3 (20 ml) and extracted with EtOAc (2×). The combined organic layers were washed with brine, dried over Na2SO4, filtered and evaporated. The residue was dissolved in DMA and purified directly by Prep.HPLC (H2O (0.1% TFA)/CH3CN 95:5 to 65:35). The fractions containing products were collected together and basified with NaHCO3 (0.3 g), before being concentrated. The resulting suspension was filtered and the cake was washed with water, before being dried under high vacuum to give the title compound as a white solid. (HPLC: tR 2.30 min (Method A); M+H=429 MS-ES; 1H-NMR (d6-DMSO, 400 MHz) 8.98 (s, 1H), 8.63 (s, 1H), 8.20 (s, 1H), 8.15-8.10 (m, 1H), 7.98-7.93 (m, 1H), 7.92-7.87 (m, 1H), 7.58-7.53 (m, 1H), 7.49-7.44 (m, 1H), 4.54-4.50 (m, 2H), 4.23-4.15 (m, 2H), 3.58 (s, 3H), 3.37 (s, 3H), 1.95 (s, 3H), 1.32 (t, 3H))


Example 105
1-(1-Isopropyl-3-methyl-1H-pyrazol-4-yl)-8-(6-methoxymethyl-pyridin-3-yl)-3-methyl-1,3-dihydro-imidazo[4,5-c]quinolin-2-one



embedded image


The title compound was synthesized in a similar manner as described for Example 104 using 8-(6-hydroxymethyl-pyridin-3-yl)-1-(1-isopropyl-3-methyl-1H-pyrazol-4-yl)-3-methyl-1,3-dihydro-imidazo[4,5-c]quinolin-2-one (Example 16.3, 26 mg, 0.061 mmol) to give the title compound as an off-white solid. (HPLC: tR 2.39 min (Method A); M+H=443 MS-ES; 1H-NMR (d6-DMSO, 400 MHz) 8.98 (s, 1H), 8.68-8.59 (m, 1H), 8.27-8.20 (m, 1H), 8.17-8.09 (m, 1H), 7.99-7.85 (m, 2H), 7.59-7.51 (m, 1H), 7.49-7.41 (m, 1H), 4.60-4.49 (m, 3H), 3.59 (s, 3H), 3.38 (s, 3H), 1.98 (s, 3H), 1.47 (s, 6H))


Example 106
1-(1,3-Dimethyl-1H-pyrazol-4-yl)-8-[1-(2-hydroxy-ethyl)-1H-pyrazol-4-yl]-3-methyl-1,3-dihydro-imidazo[4,5-c]quinolin-2-one



embedded image


To a mixture of 1-(1,3-dimethyl-1H-pyrazol-4-yl)-3-methyl-8-{1-[2-(tetrahydro-pyran-2-yloxy)-ethyl]-1H-pyrazol-4-yl}-1,3-dihydro-imidazo[4,5-c]quinolin-2-one (Stage 106.1.1, 95 mg, 0.195 mmol) in MeOH (2 ml) was added dioxane 4 M (0.248 ml, 0.993 mmol) and the RM was stirred at rt for 45 min. Then the RM was evaporated, before being quenched with saturated aqueous NaHCO3 (20 ml) and extracted with DCM (2×). The combined organic layers were washed with brine, dried over Na2SO4, filtered and evaporated. The residue was diluted with MeOH+2 drops TFA and purified directly by Prep.HPLC (H2O (0.1% TFA)/CH3CN 95:5 to 65:35). The fractions containing product were collected together and basified with NaHCO3 (0.3 g), before being concentrated. The resulting layer was extracted with DCM, washed with brine, dried over Na2SO4, filtered and evaporated to dryness to give the title compound as a white solid. (HPLC: tR 2.24 min (Method A); M+H=404 MS-ES; 1H-NMR (d6-DMSO, 400 MHz) 8.87 (s, 1H), 8.14-8.08 (m, 1H), 8.01-7.92 (m, 2H), 7.82-7.75 (m, 1H), 7.52-7.47 (m, 1H), 7.39-7.35 (m, 1H), 4.96-4.89 (m, 1H), 4.17-4.11 (m, 2H), 3.96 (s, 3H), 3.77-3.69 (m, 2H), 3.55 (s, 3H), 1.94 (s, 3H))


Stage 106.1.1 1-(1,3-Dimethyl-1H-pyrazol-4-yl)-3-methyl-8-{1-[2-(tetrahydro-pyran-2-yloxy)-ethyl]-1H-pyrazol-4-yl}-1,3-dihydro-imidazo[4,5-c]quinolin-2-one



embedded image


The title compound was synthesized in a similar manner as described for Example 1.1 using 8-bromo-1-(1,3-dimethyl-1H-pyrazol-4-yl)-3-methyl-1,3-dihydro-imidazo[4,5-c]quinolin-2-one (Intermediate A, 80 mg, 0.215 mmol) and 1-[2-(tetrahydro-pyran-2-yloxy)-ethyl]-4-(4,4,5,5-tetramethyl-[1,3,2]dioxaborolan-2-yl)-1H-pyrazole (Stage 106.1.2, 91 mg, 0.279 mmol) to give the title compound as red sticky oil. Used for next step without further purification. (HPLC: tR 2.66 min (Method A); M+H=488 MS-ES)


Stage 106.1.2 1-[2-(Tetrahydro-pyran-2-yloxy)-ethyl]-4-(4,4,5,5-tetramethyl-[1,3,2]dioxaborolan-2-yl)-1H-pyrazole



embedded image


To a solution of 4-iodo-1-[2-(tetrahydro-pyran-2-yloxy)-ethyl]-1H-pyrazole (Stage 106.1.3, 8.50 g, 26.4 mmol) in THF at 0° C. under argon was added dropwise iPrMgCl 2 M in THF (26.4 ml, 52.8 mmol). The RM was stirred at 0° C. for 1 h. Then 2-methoxy-4,4,5,5-tetramethyl-1,3,2-dioxaborolane (Aldrich, Buchs, Switzerland, 6.25 g, 52.8 mmol) was added at 0° C. and the solution was stirred again and allowed to warm to rt for 1 h. After that, the RM was quenched with saturated aqueous NH4Cl (140 ml) and extracted with EtOAc (3×). The combined organic layers were washed with saturated aqueous NH4Cl, dried over Na2SO4, filtered and evaporated. The residue was purified by flash chromatography (hexane/EtOAc 5% to 45%). The fractions containing product were combined and evaporated to dryness to give the title compound as a colorless oil. (HPLC: tR 3.23 min (Method A); M+H=323 MS-ES)


Stage 106.1.3 4-Iodo-1[2-(tetrahydro-pyran-2-yloxy)-ethyl]-1H-pyrazole



embedded image


To a mixture of 4-iodopyrazole (Aldrich, Buchs, Switzerland, 10 g, 51.6 mmol) and Cs2CO3 (20.16 g 61.9 mmol) was added 2-(2-bromoethoxy)tetrahydro-2H-pyran (Aldrich, Buchs, Switzerland, 9.74 ml, 61.9 mmol). The RM was stirred at 70° C. for 17 h. Then the RM was quenched with water (100 ml) and extracted with EtOAc (3×). The combined organic layers were washed with brine, dried over Na2SO4, filtered and evaporated. The residue was absorbed on silica gel and purified by flash chromatography (hexane/EtOAc 0% to 30%). The fractions containing product were combined and evaporated to dryness to give the title compound as a colorless oil. (HPLC: tR 3.12 min (Method A); M+H=323 MS-ES)


Example 107
1-(1,3-Dimethyl-1H-pyrazol-4-yl)-8-[6-(2-hydroxy-ethoxy)-pyridin-3-yl]-3-methyl-1,3-dihydro-imidazo[4,5-c]quinolin-2-one



embedded image


To a mixture of 1-(1,3-Dimethyl-1H-pyrazol-4-yl)-8-[6-(2-hydroxy-ethylamino)-pyridin-3-yl]-3-methyl-1,3-dihydro-imidazo[4,5-c]quinolin-2-one (Example 19, 40 mg, 0.077 mmol) in MeOH/THF=1:1 (4 ml) was added under nitrogen Pd/C 10% (20 mg, 0.026 mmol). The RM was shacked under H2 at rt for 22 h. The reaction was not completed, again Pd/C catalyst (20 mg) was added and the mixture was stirred under H2 at rt for 22 h. This procedure was repeated for a third time. Then the suspension was filtered over celite and washed with MeOH. The filtrate was evaporated. The residue was dissolved in MeOH and purified directly by Prep.HPLC (H2O (0.1% TFA)/CH3CN 95:5 to 65:35). The fractions containing product were collected together and basified with NaHCO3 (0.3 g), before being concentrated. The resulting suspension was filtered and the cake was washed with water, before being dried under high vacuum to give the title compound as a white solid. (HPLC: tR 2.32 min (Method A); M+H=431 MS-ES; 1H-NMR (d6-DMSO, 400 MHz) 8.97 (s, 1H), 8.30-8.26 (m, 1H), 8.17-8.06 (m, 2H), 7.93-7.86 (m, 1H), 7.81-7.75 (m, 1H), 7.50-7.46 (m, 1H), 6.97-6.91 (m, 1H), 4.80-4.86 (m, 1H), 4.34-4.28 (m, 2H), 3.92 (s, 31-1), 3.75-3.69 (m, 2H), 3.58 (s, 3H), 1.95 (s, 3H))


Example 108
1-(1,3-Dimethyl-1H-pyrazol-4-yl)-8-[6-(3-hydroxy-propoxy)-pyridin-3-yl]-3-methyl-1,3-dihydro-imidazo[4,5-c]quinolin-2-one



embedded image


The title compound was synthesized in a similar manner as described for Example 107 using 1-(1,3-dimethyl-1H-pyrazol-4-yl)-8-[6-(2-hydroxy-ethylamino)-pyridin-3-yl]-3-methyl-1,3-dihydro-imidazo[4,5-c]quinolin-2-one (Example 20, 42 mg, 0.078 mmol) to give the title compound as a white solid. (HPLC: tR 2.42 min (Method A); M+H=445 MS-ES; 1H-NMR (d6-DMSO, 400 MHz) 8.95 (s, 1H), 8.33-8.25 (m, 1H), 8.18-8.05 (m, 2H), 7.93-7.86 (m, 1H), 7.80-7.73 (m, 1H), 7.51-7.45 (m, 1H), 6.97-6.89 (m, 1H), 4.57-4.50 (m, 1H), 4.41-4.31 (m, 2H), 3.93 (s, 3H), 3.61-3.52 (m, 5H), 1.97 (s, 31-1), 1.91-1.82 (m, 2H))


Example 109
1-(1,3-Dimethyl-1H-pyrazol-4-yl)-8-(6-methoxy-pyridin-3-yl)-1,3-dihydro-imidazo[4,5-c]quinolin-2-one



embedded image


A mixture of 8-bromo-1-(1,3-dimethyl-1H-pyrazol-4-yl)-3-methyl-1,3-dihydro-imidazo[4,5-c]quinolin-2-one (Stage A.1, 49 mg, 0.137 mmol), 2-methoxypyridine-5-boronic acid (Sigma-Aldrich, Buchs, Switzerland, 26 mg, 0.170 mmol), and PdCl2(PPh3)2 (6 mg, 0.0085 mmol) in DMF (1.2 ml) and 1 M aqueous K2CO3 (0.343 ml) was stirred under argon at 105° C. for 1.5 h. The RM was cooled toll. The mixture was diluted with MeOH+3 drops TFA and purified directly by Prep.HPLC (H2O (0.1% TFA)/CH3CN 95:5 to 60:40). The fractions containing products were collected together and basified with NaHCO3 (0.3 g), before being concentrated. The resulting suspension was filtered and the cake was washed with water, before being dried under high vacuum to give the title compound as a white solid. (HPLC: tR 2.46 min (Method A); M+H=387 MS-ES; 1H-NMR (d6-DMSO, 400 MHz) 11.66 (s, br, 1H), 8.72 (s, 1H), 8.33-8.26 (m, 1H), 8.16-8.10 (m, 1H), 8.09-8.01 (m, 1H), 7.91-7.84 (m, 1H), 7.81-7.74 (m, 1H), 7.51-7.43 (m, 1H), 6.98-6.91 (m, 1H), 3.90 (s, 3H), 3.87 (s, 3H), 1.95 (s, 3H))


Example 110
1-(1,3-Dimethyl-1H-pyrazol-4-yl)-8-(6-ethoxy-pyridin-3-yl)-1,3-dihydro-imidazo[4,5-c]quinolin-2-one



embedded image


The title compound was synthesized in a similar manner as described for Example 109 using 2-ethoxypyridine-5-boronic acid (ABCR, Karlsruhe, Germany, 29 mg, 0.170 mmol) to give the title compound as a white solid. (HPLC: tR 2.59 min (Method A); M+H=401 MS-ES; 1H-NMR (d6-DMSO, 400 MHz) 11.67 (s, br, 1H), 8.71 (s, 1H), 8.30-8.25 (m, 1H), 8.15-8.11 (m, 1H), 8.07-8.02 (m, 1H), 7.90-7.84 (m, 1H), 7.79-7.73 (m, 1H), 7.49-7.44 (m, 1H), 6.95-6.88 (m, 1H), 4.33 (q, 2H), 3.89 (s, 3H), 1.95 (s, 3H), 1.33 (t, 3H))


Example 111
8-(3,4-Dimethoxy-phenyl)-1-(1,3-dimethyl-1H-pyrazol-4-yl)-1,3-dihydro-imidazo[4,5-c]quinolin-2-one



embedded image


The title compound was synthesized in a similar manner as described for Example 109 using (3,4-dimethoxyphenyl)boronic acid (Aldrich, Buchs, Switzerland, 31 mg, 0.167 mmol) to give the title compound as a white solid. (HPLC: tR 2.57 min (Method A); M+H=416 MS-ES; 1H-NMR (d6-DMSO, 400 MHz) 11.67 (s, br, 1H), 8.68 (s, 1H), 8.14-8.09 (m, 1H), 8.05-7.98 (m, 1H), 7.94-7.87 (m, 1H), 7.56-7.51 (m, 1H), 7.12-7.07 (m, 1H), 7.07-7.00 (m, 1H), 6.97-6.92 (m, 1H), 3.88 (s, 3H), 3.83 (s, 3H), 3.78 (s, 3H), 1.97 (s, 3H))


Example 112
5-[1-(1-Isopropyl-3-methyl-1H-pyrazol-4-yl)-3-methyl-2-oxo-2,3-dihydro-1H-imidazo[4,5-c]quinolin-8-yl]-pyridine-2-carboxylic acid amide



embedded image


A mixture of 1-(1-isopropyl-3-methyl-1H-pyrazol-4-yl)-3-methyl-8-(4,4,5,5-tetramethyl-[1,3,2]dioxaborolan-2-yl)-1,3-dihydro-imidazo[4,5-c]quinolin-2-one (Stage 112.1.1, 34 mg, 0.075 mmol), 5-bromo-pyridine-2-carboxylic acid amide (Combi-Blocks, San Diego, USA, 20 mg, 0.099 mmol), and PdCl2(PPh3)2 (3.5 mg, 0.005 mmol) in DMF (0.9 ml) and 1 M aqueous K2CO3 (0.187 ml) was stirred under argon at 105° C. for 2.5 h. The RM was cooled to rt. The mixture was diluted with MeOH+3 drops TFA and purified directly by Prep.HPLC (H2O (0.1% TFA)/CH3CN 97:3 to 55:45). The fractions containing product were collected together and basified with NaHCO3 (0.3 g), before being concentrated. The resulting layer was extracted with DCM, washed with brine, dried over Na2SO4, filtered and evaporated to dryness to give the title compound as a white solid. (HPLC: tR 2.44 min (Method A); M+H=442 MS-ES; 1H-NMR (d6-DMSO, 400 MHz) 9.00 (s, 1H), 8.75-8.69 (m, 1H), 8.24-8.19 (m, 1H), 8.18-8.07 (m, 2H), 8.07-7.98 (m, 3H), 7.75-7.67 (m, 1H), 7.61-7.56 (m, 1H), 4.61-4.48 (m, 1H), 3.58 (s, 3H), 1.97 (s, 3H), 1.45 (s, 3H), 1.43 (s, 3H))


Stage 112.1.1 1-(1-Isopropyl-3-methyl-1H-pyrazol-4-yl)-3-methyl-8-(4,4,5,5-tetramethyl-[1,3,2]dioxaborolan-2-yl)-1,3-dihydro-imidazo[4,5-c]quinolin-2-one



embedded image


A mixture of 8-bromo-1-(1-isopropyl-3-methyl-1H-pyrazol-4-yl)-3-methyl-1,3-dihydro-imidazo[4,5-c]quinolin-2-one (Intermediate G, 100 mg, 0.250 mmol), bis(pinacolato)-diborane (Aldrich, Buchs, Switzerland, 78 mg, 0.3 mmol), potassium acetate (74 mg, 0.754 mmol) and PdCl2(dppf) (8 mg, 0.011 mmol) in dioxane (1.1 ml) and DMSO (0.02 ml) was stirred in a closed microwave vial flushed with argon at 90° C. for 7.5 h. Then the RM was diluted with EtOAc and washed with brine (2×). The organic layer was dried over Na2SO4, filtered and evaporated to dryness. The residue was dissolved in DCM and purified by flash chromatography (DCM/MeOH 0% to 4%). The fractions containing product were evaporated together to give the title compound as an off-white solid. (HPLC: tR 2.16 min (Method A); M+H=448 MS-ES)


Example 113
1-(1-Isopropyl-3-methyl-1H-pyrazol-4-yl)-3-methyl-8-pyridin-2-yl-1,3-dihydro-imidazo[4,5-c]quinolin-2-one



embedded image


The title compound was synthesized in a similar manner as described in Example 112 using 2-bromopyridine (Aldrich, Buchs, Switzerland, 0.009 ml, 0.093 mmol) to give the title compound as a white solid. (HPLC: tR 2.49 min (Method A); M+H=399 MS-ES; 1H-NMR (d6-DMSO, 400 MHz) 8.98 (s, 1H), 8.61-8.56 (m, 1H), 8.28-8.23 (m, 1H), 8.23-8.19 (m, 1H), 8.13-8.06 (m, 2H), 7.88-7.81 (m, 1H), 7.69-7.63 (m, 1H), 7.38-7.31 (m, 1H), 4.63-4.52 (m, 1H), 3.58 (s, 3H), 1.95 (s, 3H), 1.51 (d, 6H))


Example 114
1-(1,3-Dimethyl-1H-pyrazol-4-yl)-3-methyl-8-pyridin-2-yl-1,3-dihydro-imidazo[4,5-c]quinolin-2-one



embedded image


The title compound was synthesized in a similar manner as described in Example 112 using 1-(1,3-dimethyl-1H-pyrazol-4-yl)-3-methyl-8-(4,4,5,5-tetramethyl-[1,3,2]dioxaborolan-2-yl)-1,3-dihydro-imidazo[4,5-c]quinolin-2-one (Stage 114.1.1, 34.5 mg, 0.082 mmol) and 2-bromopyridine (Aldrich, Buchs, Switzerland, 0.011 ml, 0.114 mmol) to give the title compound as a white solid. (HPLC: tR 2.25 min (Method A); M+H=371 MS-ES; 1H-NMR (d6-DMSO, 400 MHz) 8.98 (s, 1H), 8.67-8.61 (m, 1H), 8.30-8.24 (m, 1H), 8.17-8.06 (m, 3H), 7.94-7.86 (m, 1H), 7.67-7.61 (m, 1H), 7.39-7.32 (m, 1H), 3.95 (s, 3H), 3.57 (s, 3H), 1.95 (s, 3H))


Stage 114.1.1 1-(1,3-Dimethyl-1H-pyrazol-4-yl)-3-methyl-8-(4,4,5,5-tetramethyl-[1,3,2]dioxaborolan-2-yl)-1,3-dihydro-imidazo[4,5-c]quinolin-2-one



embedded image


The title compound was synthesized in a similar manner as described in stage 112.1.1 using 8-bromo-1-(1,3-dimethyl-1H-pyrazol-4-yl)-3-methyl-1,3-dihydro-imidazo[4,5-c]quinolin-2-one (Intermediate A, 200 mg, 0.532 mmol) to give the title compound as an off-white solid. (HPLC: tR 2.00 min (Method A); M+H=420 MS-ES)


Example 115
1-(1,3-Dimethyl-1H-pyrazol-4-yl)-3-methyl-8-pyrazin-2-yl-1,3-dihydro-imidazo[4,5-c]quinolin-2-one



embedded image


The title compound was synthesized in a similar manner as described in Example 112 using 1-(1,3-dimethyl-1H-pyrazol-4-yl)-3-methyl-8-(4,4,5,5-tetramethyl-[1,3,2]dioxaborolan-2-yl)-1,3-dihydro-imidazo[4,5-c]quinolin-2-one (Stage 114.1.1, 33.5 mg, 0.080 mmol) and 2-bromopyrazine (Synchem, Huddersfield, UK, 17.2 mg, 0.108 mmol) to give the title compound as a white solid. (HPLC: tR 2.34 min (Method A); M+H=372 MS-ES; 1H-NMR (d6-DMSO, 400 MHz) 9.01 (s, 1H), 8.98 (s, 1H), 8.72-8.70 (m, 1H), 8.62-8.60 (m, 1H), 8.32-8.28 (m, 1H), 8.16-8.13 (m, 3H), 3.94 (s, 3H), 3.59 (s, 3H), 1.95 (s, 3H))


Example 116
1-(1,3-Dimethyl-1H-pyrazol-4-yl)-3-methyl-8-(1-methyl-1H-pyrrolo[2,3-b]pyridin-5-yl)-1,3-dihydro-imidazo[4,5-c]quinolin-2-one



embedded image


A mixture of a new batch of 1-(1,3-dimethyl-1H-pyrazol-4-yl)-3-methyl-8-(1H-pyrrolo[2,3-b]pyridin-5-yl)-1,3-dihydro-imidazo[4,5-c]quinolin-2-one (Example 36, 45.4 mg, 0.111 mmol) in 1.5 ml anhydrous DMF was treated with 55% NaH in oil (6.0 mg, 0.138 mmol). The reaction mixture was stirred for 20 min at rt, then was added iodomethane (0.009 ml, 138 mmol). The reaction mixture was stirred for 1.5 h at rt. The RM was diluted with MeOH+3 drops TFA and purified directly by Prep.HPLC (H2O (0.1% TFA)/CH3CN 95:5 to 60:40). The fractions containing products were collected together and basified with NaHCO3 (0.3 g), before being concentrated. The resulting suspension was filtered and the cake was washed with water, before being dried under high vacuum to give the title compound as a white solid. (HPLC: tR 2.62 min (Method A); M+H=424 MS-ES; 1H-NMR (d6-DMSO, 400 MHz) 8.96 (s, 1H), 8.38-8.36 (m, 1H), 8.18-8.16 (m, 1H), 8.13-8.09 (m, 1H), 8.06-8.04 (m, 1H), 7.99-7.95 (m, 1H), 7.60-7.58 (m, 1H), 7.57-7.55 (m, 1H), 6.54-6.51 (m, 1H), 3.93 (s, 3H), 3.85 (s, 3H), 3.58 (s, 3H), 1.97 (s, 3H))


Example 117
N-{3-[1-(1,3-Dimethyl-1H-pyrazol-4-yl)-3-methyl-2-oxo-2,3-dihydro-1H-imidazo[4,5-c]quinolin-8-yl]-phenyl}-N-methyl-methanesulfonamide



embedded image


The title compound was synthesized in a similar manner as described for Stage 62.1.2 using N-{3-[1-(1,3-dimethyl-1H-pyrazol-4-yl)-3-methyl-2-oxo-2,3-dihydro-1H-imidazo[4,5-c]quinolin-8-yl]-phenyl}-methanesulfonamide (Example 47) to give the title compound as a white solid. (HPLC: tR 2.59 min (Method A); M+H=477 MS-ES; 1H-NMR (d6-DMSO, 400 MHz) 8.97 (s, 1H), 8.16-8.07 (m, 2H), 7.95-7.90 (m, 1H), 7.60-7.56 (m, 1H), 7.54-7.48 (m, 1H), 7.47-7.40 (m, 3H), 3.90 (s, 3H), 3.57 (s, 31-1), 3.29 (s, 3H), 2.99 (s, 3H), 1.95 (s, 3H))


Example 118.1
1-(1-Isopropyl-3-methyl-1H-pyrazol-4-yl)-3-methyl-8-(6-methylamino-pyridin-3-yl)-1,3-dihydro-imidazo[4,5-c]quinolin-2-one



embedded image


The title compound was synthesized in a similar manner as described for Example 1.1 using 8-bromo-1-(1-isopropyl-3-methyl-1H-pyrazol-4-yl)-3-methyl-1,3-dihydro-imidazo[4,5-c]quinolin-2-one (Intermediate G, 58.8 mg, 0.147 mmol) and 6-(N-boc-methylamino)pyridine-3-boronic acid pinacol ester (Alfa Aesar, Heysham, UK, 58.8 mg, 0.176 mmol) to give crude boc-protected title compound that is treated for 25 min at rt with trifluoroacetic acid (1.5 ml) and then purified by prep. HPLC to give the title compound as a light yellow solid. (HPLC: tR 2.21 min (Method A); M+H=428 MS-ES; 1H-NMR (d6-DMSO, 400 MHz) 8.90 (s, 1H), 8.23-8.14 (m, 2H), 8.05-7.98 (m, 1H), 7.87-7.79 (m, 1H), 7.48-7.37 (m, 2H), 6.78-6.70 (m, 1H), 6.49-6.42 (m, 1H), 4.61-4.50 (m, 1H), 3.56 (s, 3H), 2.77 (d, 3H), 1.95 (d, 3H), 1.51-1.45 (m, 6H))


The following examples were synthesized in a similar manner as described for Example 118 using the specified intermediate.






















HPLC






MS-ES
tR


Example
Intermed.
structure
Name of the example
(M + H)
(min)




















118.2
A


embedded image


1-(1,3-Dimethyl-1H- pyrazol-4-yl)-3- methyl-8-(6- methylamino-pyridin- 3-yl)-1,3-dihydro- imidazo[4,5-c] quinolin-2-one
400
2.09





118.3
L


embedded image


N,N-Dimethyl-2-{3- methyl-4-[3-methyl-8- (6-methylamino- pyridin-3-yl)-2-oxo- 2,3-dihydro- imidazo[4,5-c] quinolin-1-yl]- pyrazol-1-yl}- acetamide
471
2.09





118.4
F


embedded image


1-(1-Ethyl-3-methyl- 1H-pyrazol-4-yl)-3- methyl-8-(6- methylamino-pyridin- 3-yl)-1,3-dihydro- imidazo[4,5-c] quinolin-2-one
414
2.07





118.5
K


embedded image


1-(3-Chloro-1-methyl- 1H-pyrazol-4-yl)-3- methyl-8-(6- methylamino-pyridin- 3-yl)-1,3-dihydro- imidazo[4,5-c] quinolin-2-one
420
2.18









Example 119
1-(3-Chloro-1-methyl-1H-pyrazol-4-yl)-3-methyl-8-(5-methyl-6-methylamino-pyridin-3-yl)-1,3-dihydro-imidazo[4,5-c]quinolin-2-one



embedded image


The title compound was synthesized in a similar manner as described for Example 1.1 using 8-bromo-1-(3-chloro-1-methyl-1H-pyrazol-4-yl)-3-methyl-1,3-dihydro-imidazo[4,5-c]quinolin-2-one (Intermediate K) and 6-(N-boc-methylamino)-5-methylpyridine-3-boronic acid pinacol ester (Combi-Blocks, San Diego, USA, 58.8 mg, 0.176 mmol) to give crude boc-protected title compound that was treated for 30 min at rt with trifluoroacetic acid (0.5 ml) and then purified by prep. HPLC to give the title compound as an off-white foam. (HPLC: tR 2.24 min (Method A); M+H=434 MS-ES; 1H-NMR (d6-DMSO, 400 MHz) 8.92 (s, 1H), 8.40 (s, 1H), 8.14-8.12 (m, 1H), 8.05-8.03 (m, 1H), 7.90-7.85 (m, 1H), 7.38-7.37 (m, 2H), 6.28-6.20 (br, 1H), 4.01 (s, 3H), 3.58 (s, 3H), 2.88 (m, 3H), 2.11 (s, 3H))


Example 120
N-{5-[1-(1,3-Dimethyl-1H-pyrazol-4-yl)-3-methyl-2-oxo-2,3-dihydro-1H-imidazo[4,5-c]quinolin-8-yl]-pyridin-3-yl}-methanesulfonamide



embedded image


The title compound was synthesized in a similar manner as described for Stage 75.1.3 using 8-(5-amino-pyridin-3-yl)-1-(1,3-dimethyl-1H-pyrazol-4-yl)-3-methyl-1,3-dihydro-imidazo[4,5-c]quinolin-2-one (Example 45, 72 mg, 0.187 mmol) to give the title compound as a white solid. (HPLC: tR 2.19 min (Method A); M+H=464 MS-ES; 1H-NMR (d6-DMSO, 400 MHz) 10.20-10.15 (m, 1H), 9.00 (s, 1H), 8.43-8.37 (m, 2H), 8.19-8.09 (m, 2H), 7.92-7.84 (m, 1H), 7.72-7.66 (m, 1H), 7.61-7.56 (m, 1H), 3.88 (s, 3H), 3.58 (s, 3H), 3.11 (s, 3H), 1.96 (s, 3H))


Example 121
N-{5-[1-(1,3-Dimethyl-1H-pyrazol-4-yl)-3-methyl-2-oxo-2,3-dihydro-1H-imidazo[4,5-c]quinolin-8-yl]-pyridin-3-yl}-N-methyl-methanesulfonamide



embedded image


The title compound was synthesized in a similar manner as described for stage 62.1.2 using N-{5-[1-(1,3-dimethyl-1H-pyrazol-4-yl)-3-methyl-2-oxo-2,3-dihydro-1H-imidazo[4,5-c]quinolin-8-yl]-pyridin-3-yl}-methanesulfonamide (Example 120) to give the title compound as an off-white solid. (HPLC: tR 2.28 min (Method A); M+H=478 MS-ES; 1H-NMR (d6-DMSO, 400 MHz) 9.00 (s, 1H), 8.64-8.58 (m, 2H), 8.17-8.12 (m, 2H), 8.03-7.97 (m, 1H), 7.92-7.88 (m, 1H), 7.63-7.59 (m, 1H), 3.88 (s, 3H), 3.58 (s, 3H), 3.35 (s, 3H), 3.07 (s, 3H), 1.96 (s, 3H))


Example 122
1-(1,3-Dimethyl-1H-pyrazol-4-yl)-8-(5-ethylamino-pyridin-3-yl)-3-methyl-1,3-dihydro-imidazo[4,5-c]quinolin-2-one



embedded image


A solution of 8-(5-amino-pyridin-3-yl)-1-(1,3-dimethyl-1H-pyrazol-4-yl)-3-methyl-1,3-dihydro-imidazo[4,5-c]quinolin-2-one (Example 45, 38 mg, 0.099 mmol), acetaldehyde (Fluka, Buchs, Switzerland, 4.8 mg, 0.108 mmol) in DCM (2 ml) was stirred for 1.5 h at rt in presence of acetic acid (0.02 ml, 3.54 mmol). Was added sodium triacetoxyborohydride (52.2 mg, 0.246 mmol) and the RM was stirred 1.5 h at rt, before being quenched with aqueous saturated NaHCO3 and extracted with DCM (2×). The combined organic layers were dried over Na2SO4, filtered and evaporated to dryness. The residue was purified by Prep.HPLC (H2O (0.1% TFA)/CH3CN 95:5 to 60:40). The fractions containing products were collected together and basified with NaHCO3 (0.3 g), before being concentrated, saturated with NaCl and extracted with EtOAc (3×). The combined organic layers were dried over Na2SO4, filtered and evaporated to give the title compound as an off-white solid. (HPLC: tR 2.13 min (Method A); M+H=414 MS-ES; 1H-NMR (d6-DMSO, 400 MHz) 8.97 (s, 1H), 8.13-8.08 (m, 2H), 7.97-7.95 (m, 1H), 7.92-7.88 (m, 2H), 7.60-7.58 (m, 1H), 6.88-6.85 (m, 1H), 6.01 (t, 1H), 3.89 (s, 3H), 3.58 (s, 3H), 3.15-3.06 (m, 2H), 1.95 (s, 3H), 1.21 (t, 3H))


Example 123
1-(1,3-Dimethyl-1H-pyrazol-4-yl)-3-methyl-8-[6-(2H-tetrazol-5-yl)-pyridin-3-yl]-1,3-dihydro-imidazo[4,5-c]quinolin-2-one



embedded image


A mixture of 5-[1-(1,3-dimethyl-1H-pyrazol-4-yl)-3-methyl-2-oxo-2,3-dihydro-1H-imidazo[4,5-c]quinolin-8-yl]-pyridine-2-carbonitrile (stage 123.1.1, 41.1 mg, 0.104 mmol), sodium azide (10 mg, 0.154 mmol) and ammonium chloride (18 mg, 0.337 mmol) in DMF (0.3 ml) was sealed and heated at 120° C. for 80 min. The reaction mixture was quenched with aqueous NaHCO3 and washed with EtOAc (2×). The aqueous layer was adjusted to pH 5 with 1 M aqueous HCl and extracted with dichloromethane (3×). The combined organic layers were dried over Na2SO4, filtered and evaporated. The crude product was purified by Prep.HPLC (H2O (0.1% TFA)/CH3CN 95:5 to 65:35). The fractions containing products were collected together and lyophilized to give the title compound as a white lyophilizate TFA salt. (HPLC: tR 2.34 min (Method A); M+H=439 MS-ES; 1H-NMR (d6-DMSO, 400 MHz) 9.18 (s, 1H), 8.90-8.85 (m, 1H), 8.37-8.32 (m, 1H), 8.26-8.15 (m, 4H), 7.75-7.70 (m, 1H), 3.94 (s, 3H), 3.61 (s, 3H), 2.00 (s, 3H))


Stage 123.1.1 5-[1-(1,3-Dimethyl-1H-pyrazol-4-yl)-3-methyl-2-oxo-2,3-dihydro-1H-imidazo[4,5-c]quinolin-8-yl]-pyridine-2-carbonitrile



embedded image


The title compound was synthesized in a similar manner as described for Example 1.1 using 8-bromo-1-(1,3-dimethyl-1H-pyrazol-4-yl)-3-methyl-1,3-dihydro-imidazo[4,5-c]quinolin-2-one (Intermediate A) and 2-cyanopyridine-5-boronic acid pinacol ester (Frontier Scientific, Logan, USA) to give the title compound as a brown solid. (HPLC: tR 2.42 min (Method A); M+H=396 MS-ES)


Example 124
5-[1-(1,3-Dimethyl-1H-pyrazol-4-yl)-3-methyl-2-oxo-2,3-dihydro-1H-imidazo[4,5-c]quinolin-8-yl]-2-methoxy-nicotinic acid



embedded image


The title compound was synthesized in a similar manner as described for Example 1.1 using 8-bromo-1-(1,3-dimethyl-1H-pyrazol-4-yl)-3-methyl-1,3-dihydro-imidazo[4,5-c]quinolin-2-one (Intermediate A) and 2-methoxy-3-(carbomethoxy)pyridine-5-boronic acid pinacol ester (Combi-Blocks, San Diego, USA) to give the title compound as a white lyophilizate TFA salt. (HPLC: tR 2.31 min (Method A); M+H=445 MS-ES; 1H-NMR (d6-DMSO, 400 MHz) 9.21 (s, br, 1H), 8.62-8.56 (m, 1H), 8.23-8.16 (m, 3H), 8.11-8.07 (m, 1H), 7.62-7.57 (m, 1H), 3.96 (s, 3H), 3.93 (s, 3H), 3.59 (s, 3H), 1.94 (s, 3H))


Example 125.1
5-[1-(1,3-Dimethyl-1H-pyrazol-4-yl)-3-methyl-2-oxo-2,3-dihydro-1H-imidazo[4,5-c]quinolin-8-yl]-2-methoxy-N-methyl-nicotinamide



embedded image


To a cooled with an ice-bath suspension of 5-[1-(1,3-dimethyl-1H-pyrazol-4-yl)-3-methyl-2-oxo-2,3-dihydro-1H-imidazo[4,5-c]quinolin-8-yl]-2-methoxy-nicotinic acid TFA salt (Example 124, 60 mg, 0.089 mmol) in dichloromethane (1.5 ml) containing DMF (0.005 ml) was added oxallyl chloride (0.038 ml, 0.449 mmol). The reaction mixture was stirred for 1 h at rt then cooled with an ice-bath and quenched with 8 M methylamine in ethanol (2.5 ml, 20 mmol). After 5 min stirring, the reaction mixture was evaporated to dryness and the residue purified by Prep.HPLC (H2O (0.1% TFA)/CH3CN 95:5 to 65:35). The fractions containing products were collected together, basified with NaHCO3, concentrated and the formed precipitate was filtered, washed with water and dried to give the title compound as white solid. (HPLC: tR 2.45 min (Method A); M+H=458 MS-ES; 1H-NMR (d6-DMSO, 400 MHz) 8.97 (s, 1H), 8.52-8.46 (m, 1H), 8.35-8.27 (m, 1H), 8.19-8.07 (m, 3H), 7.99-7.93 (m, 1H), 7.56-7.51 (m, 1H), 4.00 (s, 3H), 3.95 (s, 3H), 3.57 (s, 3H), 2.83 (d, 3H), 1.94 (s, 3H))


The following example was synthesized in a similar manner as described for Example 125.1 using ammonia.




















HPLC





MS-ES
tR


Example
structure
Name of the example
(M + H)
(min)



















125.2


embedded image


5-[1-(1,3-Dimethyl-1H- pyrazol-4-yl)-3- methyl-2-oxo-2,3- dihydro-1H- imidazo[4,5-c] quinolin-8-yl]-2- methoxy-nicotinamide
444
2.35









Example 126
1-(1,3-Dimethyl-1H-pyrazol-4-yl)-3-methyl-8-(6-piperazin-1-yl-pyridin-3-yl)-1,3-dihydro-imidazo[4,5-c]quinolin-2-one



embedded image


The title compound was synthesized in a similar manner as described for Example 118.1 using 8-bromo-1-(1,3-dimethyl-1H-pyrazol-4-yl)-3-methyl-1,3-dihydro-imidazo[4,5-c]quinolin-2-one (Intermediate A) and 2-(4-boc-piperazine)pyridine-5-boronic acid pinacol ester (Combi-Blocks, San Diego, USA) to give the title compound as a white solid. (HPLC: tR 1.97 min (Method A); M+H=455 MS-ES; 1H-NMR (d6-DMSO, 400 MHz) 8.91 (s, 1H), 8.30-8.25 (m, 1H), 8.14-8.11 (m, 1H), 8.07-8.01 (m, 1H), 7.90-7.84 (m, 1H), 7.62-7.56 (m, 1H), 7.46-7.41 (m, 1H), 6.95-6.89 (m, 1H), 3.92 (s, 3H), 3.57 (s, 3H), 3.53-3.46 (m, 4H), 2.86-2.76 (m, 4H), 1.95 (s, 3H))


Example 127
8-(5-Amino-6-methoxy-pyridin-3-yl)-1-(1,3-dimethyl-1H-pyrazol-4-yl)-3-methyl-1,3-dihydro-imidazo[4,5-c]quinolin-2-one



embedded image


A solution of 1-(1,3-dimethyl-1H-pyrazol-4-yl)-8-(6-methoxy-5-nitro-pyridin-3-yl)-3-methyl-1,3-dihydro-imidazo[4,5-c]quinolin-2-one (Example 66, 50 mg, 0.112 mmol) in 5 ml THF and 5 ml MeOH was stirred in presence of palladium 10% on charcoal under 1.1 bar of hydrogen for 5 h at rt. The reaction mixture was filtered over Celite and the catalyst was washed with MeOH/THF. The filtrate was evaporated and the crude product was purified by Prep.HPLC (H2O (0.1% TFA)/CH3CN 95:5 to 50:50). The fractions containing products were collected together, basified with NaHCO3, concentrated and extracted with EtOAc (3×). The combined organic layers were dried over Na2SO4, filtered and evaporated to give the title compound as a light yellow solid. (HPLC: tR 2.29 min (Method A); M+H=416 MS-ES; 1H-NMR (d6-DMSO, 400 MHz) 8.94 (s, 1H), 8.12-8.10 (m, 1H), 8.08-8.05 (m, 1H), 7.76-7.72 (m, 1H), 7.47-7.45 (m, 1H), 7.43-7.41 (m, 1H), 7.00-6.97 (m, 11-1), 5.11 (s, br, 2H), 3.92 (s, 3H), 3.89 (s, 3H), 3.57 (s, 3H), 1.94 (s, 3H))


Example 128.1
1-(1,3-Dimethyl-1H-pyrazol-4-yl)-3-methyl-8-pyridin-3-yl-1,3-dihydro-imidazo[4,5-c]quinoline-2-thione



embedded image


A mixture of a new batch of 1-(1,3-dimethyl-1H-pyrazol-4-yl)-3-methyl-8-pyridin-3-yl-1,3-dihydro-imidazo[4,5-c]quinolin-2-one (Example 10.2, 8 mg, 0.219 mmol) and Lawesson's reagent (98 mg, 0.242 mmol) in dioxane (1 ml) was stirred in a seal vial for 28 h at 100° C. The reaction mixture was quenched with saturated aqueous NaHCO3 and extracted with DCM (2×). The combined organic layers were washed with brine, dried over Na2SO4, filtered and evaporated to dryness. The residue was taken in NMP and purified by Prep.HPLC (H2O (0.1% TFA)/CH3CN 95:5 to 65:35). The fractions containing products were collected together and basified with NaHCO3 (0.3 g), before being concentrated. The resulting suspension was filtered and the cake was washed with water, before being dried under high vacuum to give the title compound as a white solid. (HPLC: tR 2.32 min (Method A); M+H=387 MS-ES; 1H-NMR (d6-DMSO, 400 MHz) 9.21 (s, 1H), 8.72-8.68 (m, 1H), 8.62-8.58 (m, 1H), 8.23-8.16 (m, 2H), 8.08-8.04 (m, 1H), 7.93-7.88 (m, 1H), 7.56-7.48 (m, 2H), 3.97-3.93 (m, 6H), 1.92 (s, 3H))


The following example was synthesized in a similar manner as described for Example 128.1 using Example 1.8 as starting material.




















HPLC





MS-ES
tR


Example
structure
Name of the example
(M + H)
(min)



















128.2


embedded image


8-(3,4-Dimethoxy- phenyl)-1-(1,3- dimethyl-1H-pyrazol- 4-yl)-3-methyl-1,3- dihydro-imidazo[4,5-c] quinoline-2-thione
446
2.85









Example 129
1-(1,3-Dimethyl-1H-pyrazol-4-yl)-3-methyl-8-(1-methyl-1H-pyrrolo[3,2-b]pyridin-6-yl)-1,3-dihydro-imidazo[4,5-c]quinolin-2-one



embedded image


The title compound was synthesized in a similar manner as described for Example 116 using 1-(1,3-dimethyl-1H-pyrazol-4-yl)-3-methyl-8-(1H-pyrrolo[3,2-b]pyridin-6-yl)-1,3-dihydro-imidazo[4,5-c]quinolin-2-one (Example 99) to give the title compound as an off-white solid. (HPLC: tR 2.11 min (Method A); M+H=424 MS-ES; 1H-NMR (d6-DMSO, 400 MHz) 8.97 (s, 1H), 8.47-8.45 (m, 1H), 8.18-8.16 (m, 1H), 8.15-8.11 (m, 1H), 8.08-8.04 (m, 1H), 8.00-7.98 (m, 1H), 7.71-7.69 (m, 1H), 7.65-7.63 (m, 1H), 6.59-6.57 (m, 1H), 3.92 (s, 3H), 3.89 (s, 3H), 3.59 (s, 3H), 1.97 (s, 3H))


Example 130
1-(1,3-Dimethyl-1H-pyrazol-4-yl)-8-[2-(isopropyl-methyl-amino)-pyridin-4-yl]-3-methyl-1,3-dihydro-imidazo[4,5-c]quinolin-2-one



embedded image


The title compound was synthesized in a similar manner as described for Example 1.1 using 8-bromo-1-(1,3-dimethyl-1H-pyrazol-4-yl)-3-methyl-1,3-dihydro-imidazo[4,5-c]quinolin-2-one (Intermediate A) and isopropyl-methyl-[4-(4,4,5,5-tetramethyl-[1,3,2]dioxaborolan-2-yl)-pyridin-2-yl]-amine (Stage 130.1.1) to give the title compound as a white solid. (HPLC: tR 2.24 min (Method A); M+H=442 MS-ES; 1H-NMR (d6-DMSO, 400 MHz) 8.98 (s, 1H), 8.14-8.08 (m, 3H), 7.97-7.93 (m, 1H), 7.69-7.66 (m, 1H), 6.69-6.66 (m, 1H), 6.56-6.53 (m, 1H), 4.90 (hp, 1H), 3.89 (s, 3H), 3.58 (s, 3H), 2.85 (s, 3H), 1.96 (s, 3H), 1.17-1.11 (m, 6H))


Stage 130.1.1 Isopropyl-methyl-[4-(4,4,5,5-tetramethyl-[1,3,2]dioxaborolan-2-yl)-pyridin-2-yl]-amine



embedded image


The title compound was synthesized in a similar manner as described for stage 5.1.1-2 using 4-bromo-2-chloropyridine (Aldrich, Buchs, Switzerland) and N-methylisopropylamine (Aldrich, Buchs, Switzerland) to give the title compound as a brown oil. (HPLC: tR 2.06 min (Method A); M+H=277 MS-ES).


Example 131
8-(6-Ethoxy-pyridin-3-yl)-1-[1-(2-methoxy-ethyl)-3-methyl-1H-pyrazol-4-yl]-3-methyl-1,3-dihydro-imidazo[4,5-c]quinolin-2-one



embedded image


The title compound was synthesized in a similar manner as described for Example 104 using 8-(6-ethoxy-pyridin-3-yl)-1-[1-(2-hydroxy-ethyl)-3-methyl-1H-pyrazol-4-yl]-3-methyl-1,3-dihydro-imidazo[4,5-c]quinolin-2-one (Example 103.2) to give the title compound as an off-white solid. (HPLC: tR 2.70 min (Method A); M+H=459 MS-ES; 1H-NMR (d6-DMSO, 400 MHz) 8.96 (s, 1H), 8.28-8.26 (m, 1H), 8.12-8.06 (m, 2H), 7.91-7.87 (m, 1H), 7.81-7.78 (m, 1H), 7.49-7.47 (m, 1H), 6.90-6.87 (m, 1H), 4.37-4.29 (m, 4H), 3.71 (q, 2H), 3.58 (s, 3H), 3.12 (s, 3H), 1.97 (s, 3H), 1.33 (t, 3H))


Example 132
5-[1-(1,3-Dimethyl-1H-pyrazol-4-yl)-3-methyl-2-oxo-2,3-dihydro-1H-imidazo[4,5-c]quinolin-8-yl]-2-methoxy-nicotinonitrile



embedded image


The title compound was synthesized in a similar manner as described for Example 1.1 using 8-bromo-1-(1,3-dimethyl-1H-pyrazol-4-yl)-3-methyl-1,3-dihydro-imidazo[4,5-c]quinolin-2-one (Intermediate A) and 2-Methoxy-5-(4,4,5,5-tetramethyl-[1,3,2]dioxaborolan-2-yl)-nicotinonitrile (Combi-Blocks, San Diego, USA) to give the title compound as a white solid. (HPLC: tR 2.60 min (Method A); M+H=426 MS-ES)


Example 133
8-(6-Ethoxy-pyridin-3-yl)-1-{3-methyl-1-[2-(4-methyl-piperazin-1-yl)-2-oxo-ethyl]-1H-pyrazol-4-yl}-1,3-dihydro-imidazo[4,5-c]quinolin-2-one



embedded image


The title compound was synthesized in a similar manner as described for Example 1.1 using 8-bromo-1-{3-methyl-1-[2-(4-methyl-piperazin-1-yl)-2-oxo-ethyl]-1H-pyrazol-4-yl}-1,3-dihydro-imidazo[4,5-c]quinolin-2-one (Stage 133.1.1) and 6-ethoxypyridine-3-boronic acid (ABCR, Karlsruhe, Germany) to give the title compound as a white solid. (HPLC: tR 2.27 min (Method A); M+H=527 MS-ES; 1H-NMR (d6-DMSO, 400 MHz) 11.69 (s, br, 1H), 8.71 (s, 1H), 8.45-8.42 (m, 1H), 8.08-8.03 (m, 2H), 7.96-7.88 (m, 2H), 7.74-7.71 (m, 1H), 6.81-6.67 (m, 1H), 5.27-5.11 (m, 2H), 4.32 (q, 2H), 3.58-3.38 (m, 4H), 2.38-2.26 (m, 4H), 2.19 (s, 3H), 1.92 (s, 3H), 1.31 (t, 2H))


Stage 133.1. 8-Bromo-1-{3-methyl-1-[2-(4-methyl-piperazin-1-yl)-2-oxo-ethyl]-1H-pyrazol-4-yl}-1,3-dihydro-imidazo[4,5-c]quinolin-2-one



embedded image


A solution of [4-(8-bromo-2-oxo-2,3-dihydro-imidazo[4,5-c]quinolin-1-yl)-3-methyl-pyrazol-1-yl]-acetic acid (Stage 101.1.2, 178 mg, 0.443 mmol), DIPE (0.232 ml, 1.33 mmol), TPTU (223 mg, 0.752 mmol) in DMA (5 ml) was stirred at rt for 5 min, then was added N-methylpiperazine (0.1 ml, 0.90 mmol). The reaction mixture was stirred 19 h at rt and then was added N-methylpiperazine (0.1 ml, 0.90 mmol) and the reaction mixture was stirred 25 h at rt. The reaction mixture was purified by prep. HPLC to give the title compound as an off-white solid. (HPLC: tR 1.98 min (Method A); M+H=484, 486 MS-ES)


Example 134
3-Methyl-1-{3-methyl-1-[2-(4-methyl-piperazin-1-yl)-2-oxo-ethyl]-1H-pyrazol-4-yl}-8-phenyl-1,3-dihydro-imidazo[4,5-c]quinolin-2-one



embedded image


The title compound was synthesized in a similar manner as described for Example 1.1 using 8-bromo-3-methyl-1-{3-methyl-1-[2-(4-methyl-piperazin-1-yl)-2-oxo-ethyl]-1H-pyrazol-4-yl}-1,3-dihydro-imidazo[4,5-c]quinolin-2-one (Stage 134.1.1) and phenylboronic acid (Aldrich, Buchs, Switzerland) to give the title compound as a white solid. (HPLC: tR 2.32 min (Method A); M+H=496 MS-ES; 1H-NMR (d6-DMSO, 400 MHz) 8.96 (s, 1H), 8.11-8.07 (m, 2H), 7.96-7.92 (m, 1H), 7.81-7.79 (m, 1H), 7.69-7.65 (m, 2H), 7.45-7.39 (m, 2H), 7.37-7.32 (m, 1H), 5.28-5.16 (m, 21-1), 3.59-3.43 (m, 7H), 2.40-2.29 (m, 4H), 2.20 (s, 3H), 1.92 (s, 3H))


Stage 134.1 8-Bromo-3-methyl-1-{3-methyl-1-[2-(4-methyl-piperazin-1-yl)-2-oxo-ethyl]-1H-pyrazol-4-yl}-1,3-dihydro-imidazo[4,5-c]quinolin-2-one



embedded image


The title compound was synthesized in a similar manner as described for Intermediate A using 8-bromo-1-{3-methyl-1-[2-(4-methyl-piperazin-1-yl)-2-oxo-ethyl]-1H-pyrazol-4-yl}-1,3-dihydro-imidazo[4,5-c]quinolin-2-one (Stage 133.1.1) to give the title compound as an off-white solid. (HPLC: tR 2.06 min (Method A); M+H=498, 500 MS-ES)


Example 135
N-Ethyl-N-methyl-2-[3-methyl-4-(3-methyl-2-oxo-8-phenyl-2,3-dihydro-imidazo[4,5-c]quinolin-1-yl)-pyrazol-1-yl]-acetamide



embedded image


The title compound was synthesized in a similar manner as described for Example 134 using N-ethyl-N-methylamine (Aldrich, Buchs, Switzerland) to give the title compound as a white solid. (HPLC: tR 2.76 min (Method A); M+H=455 MS-ES; 1H-NMR (d6-DMSO, 500 MHz) 8.98 (s, 1H), 8.14-8.09 (m, 2H), 7.98-7.94 (m, 1H), 7.83-7.81 (m, 1H), 7.72-7.68 (m, 2H), 7.47-7.42 (m, 2H), 7.38-7.34 (m, 11-1), 5.25-5.15 (m, 2H), 3.60 (s, 3H), 3.48-3.36 (m, 2H), 3.05 and 2.90 (2×s, 3H), 1.93 and 1.93 (2×s, 3H), 1.20 and 1.08 (2×t, 3H))


Example 136
2-{4-[8-(6-Ethoxy-pyridin-3-yl)-3-methyl-2-oxo-2,3-dihydro-imidazo[4,5-c]quinolin-1-yl]-3-methyl-pyrazol-1-yl}-N-ethyl-N-methyl-acetamide



embedded image


The title compound was synthesized in a similar manner as described for Example 135 using 6-ethoxypyridine-3-boronic acid (ABCR, Karlsruhe, Germany) to give the title compound as a white solid. (HPLC: tR 2.70 min (Method A); M+H=500 MS-ES; 1H-NMR (d6-DMSO, 400 MHz) 8.95 (s, 1H), 8.46-8.43 (m, 1H), 8.11-8.05 (m, 2H), 8.00-7.91 (m, 2H), 7.74-7.71 (m, 1H), 6.77-6.82 (m, 1H), 5.24-5.10 (m, 2H), 4.36-4.28 (m, 2H), 3.57 (s, 3H), 3.46-3.30 (m, 2H), 3.02 and 2.86 (2×s, 3H), 1.92 and 1.91 (2×s, 3H), 1.31 (t, 3H), 1.18 and 1.03 (2×t, 3H))


Example 137
N-(2-Methoxy-ethyl)-N-methyl-2-[3-methyl-4-(3-methyl-2-oxo-8-phenyl-2,3-dihydro-imidazo[4,5-c]quinolin-1-yl)-pyrazol-1-yl]-acetamide



embedded image


The title compound was synthesized in a similar manner as described for Example 134 using N-(2-methoxyethyl)-N-methylamine (ABCR, Karlsruhe, Germany) to give the title compound as a white foam. (HPLC: tR 2.73 min (Method A); M+H=485 MS-ES; 1H-NMR (d6-DMSO, 500 MHz) 8.96 (s, 1H), 8.12-8.07 (m, 2H), 7.97-7.93 (m, 1H), 7.82-7.79 (m, 1H), 7.70-7.65 (m, 2H), 7.45-7.40 (m, 2H), 7.38-7.32 (m, 1H), 5.28-5.15 (m, 2H), 3.62-3.44 (m, 7H), 3.33 and 3.26 (2×s, 3H), 3.09 and 2.93 (2×s, 3H), 1.92 and 1.91 (2×s, 3H))


Example 138
1-[1-(2-Azetidin-1-yl-2-oxo-ethyl)-3-methyl-1H-pyrazol-4-yl]-8-(6-ethoxy-pyridin-3-yl)-3-methyl-1,3-dihydro-imidazo[4,5-c]quinolin-2-one



embedded image


The title compound was synthesized in a similar manner as described for Example 134 using azetidine (Fluka, Buchs, Switzerland) and 6-ethoxypyridine-3-boronic acid (ABCR, Karlsruhe, Germany) to give the title compound as a white solid. (HPLC: tR 2.62 min (Method A); M+H=498 MS-ES; 1H-NMR (d6-DMSO, 500 MHz) 8.95 (s, 1H), 8.41-8.39 (m, 1H), 8.13-8.07 (m, 2H), 7.95-7.88 (m, 2H), 7.61-7.63 (m, 1H), 6.86-6.82 (m, 1H), 4.94-4.84 (m, 2H), 4.34 (q, 2H), 4.27-4.15 (m, 2H), 3.99-3.88 (m, 2H), 3.58 (s, 3H), 2.28-2.14 (m, 2H), 1.94 (s, 3H), 1.33 (t, 3H))


Example 139
N,N-Diethyl-2-{3-methyl-4-[3-methyl-8-(6-methyl-pyridin-3-yl)-2-oxo-2,3-dihydro-imidazo[4,5-c]quinolin-1-yl]-pyrazol-1-yl}-acetamide



embedded image


The title compound was synthesized in a similar manner as described for Example 134 using dimethylamine (Fluka, Buchs, Switzerland) and 2-methylpyridine-5-boronic acid (Frontier Scientific, Logan, USA) to give the title compound as a white foam. (HPLC: tR 2.21 min (Method A); M+H=484 MS-ES; 1H-NMR (d6-DMSO, 500 MHz) 8.97 (s, 1H), 8.71-8.69 (m, 1H), 8.13-8.08 (m, 2H), 7.97-7.92 (m, 2H), 7.80-7.78 (m, 1H), 7.28-7.25 (m, 1H), 5.21-5.09 (m, 2H), 3.59 (s, 3H), 3.44-3.28 (m, 7H), 1.93 (s, 3H), 1.20 (t, 3H), 1.05 (t, 3H))


Example 140.1
N-Ethyl-N-methyl-2-{3-methyl-4-[3-methyl-2-oxo-8-(2-pyrrolidin-1-yl-pyrimidin-5-yl)-2,3-dihydro-imidazo[4,5-c]quinolin-1-yl]-pyrazol-1-yl}-acetamide



embedded image


The title compound was synthesized in a similar manner as described for Example 1.1 using 2-[4-(8-bromo-3-methyl-2-oxo-2,3-dihydro-imidazo[4,5-c]quinolin-1-yl)-3-methyl-pyrazol-1-yl]-N-ethyl-N-methyl-acetamide (Intermediate P) and 2-(pyrrolidin-1-yl)pyrimidine-5-boronic acid pinacol ester (Frontier Scientific, Logan, USA, 37 mg, 0.132 mmol) to give the title compound as an off-white solid. (HPLC: tR 2.53 min (Method A); M+H=526 MS-ES; 1H-NMR (d6-DMSO, 400 MHz) cis&trans amide 8.92 (s, 1H), 8.59-8.55 (m, 2H), 8.08-8.01 (m, 2H), 7.88-7.84 (m, 1H), 7.68-7.63 (m, 1H), 5.23-5.15 (m, 1H), 5.11-5.04 (m, 1H), 3.57 (s, 3H), 3.53-3.21 (m, 6H), 3.01, 2.83 (2×s, 3H), 1.97-1.89 (m, 4H), 1.94, 1.93 (2×s, 3H), 1.17, 0.99 (2×t, 3H))


The following example was synthesized in a similar manner as described for Example 1.1 using 2-(pyrrolidin-1-yl)pyrimidine-5-boronic acid pinacol ester and the specified intermediate.






















HPLC






MS-ES
tR


Example
Intermed.
structure
Name of the example
(M + H)
(min)




















140.2
A


embedded image


1-(1,3-Dimethyl-1H- pyrazol-4-yl)-3- methyl-8-(2- pyrrolidin-1-yl- pyrimidin-5-yl)-1,3- dihydro-imidazo[4,5-c] quinolin-2-one
441
2.44









Example 141.1
8-(5-Fluoro-6-methylamino-pyridin-3-yl)-3-methyl-1-(1,3,5-trimethyl-1H-pyrazol-4-yl)-1,3-dihydro-imidazo[4,5-c]quinolin-2-one



embedded image


The title compound was synthesized in a similar manner as described for Example 1.1 using 8-bromo-3-methyl-1-(1,3,5-trimethyl-1H-pyrazol-4-yl)-1,3-dihydro-imidazo[4,5-c]quinolin-2-one (Intermediate H) and [3-fluoro-5-(4,4,5,5-tetramethyl-[1,3,2]dioxaborolan-2-yl)-pyridin-2-yl]-methyl-amine (stage 141.1.1) to give the title compound as a yellow foam. (HPLC: tR 2.15 min (Method A); M+H=432 MS-ES; 1H-NMR (d6-DMSO, 400 MHz) 8.92 (s, 1H), 8.05-7.99 (m, 2H), 7.89-7.84 (m, 1H), 7.41-7.36 (m, 1H), 7.35-7.33 (m, 1H), 6.92-6.86 (m, 1H), 3.83 (s, 3H), 3.58 (s, 3H), 2.88 (d, 3H), 2.07 (s, 3H), 1.91 (s, 3H))


Stage 141.1.1 [3-Fluoro-5-(4,4,5,5-tetramethyl-[1,3,2]dioxaborolan-2-yl)-pyridin-2-yl]-methyl-amine



embedded image


A mixture of (5-bromo-3-fluoro-pyridin-2-yl)-methyl-amine (Stage 141.1.2, 1.255 mmol), bis(pinacolato)-diborane (1.381 mmol), potassium acetate (3.77 mmol) and PdCl2(dppf) (0.063 mmol) in dioxane (7 ml) was stirred in a closed vial flushed with argon at 90° C. for 15 h. Then the RM was diluted with toluene (7 ml), sonicated and filtered. The solid residue is washed with hot toluene and the filtrated is evaporated to dryness to give the crude title product as a brown oil. (HPLC: tR 3.68 min (Method A); M+H=253 MS-ES)


Stage 141.1.2 (5-Bromo-3-fluoro-pyridin-2-yl)-methyl-amine



embedded image


A mixture of 5-bromo-2,3-difluoropyridine (Matrix, Columbia, USA, 2.53 mmol) and 8 M methylamine in EtOH (Aldrich, Buchs, Switzerland, 2 ml, 16 mmol) was sealed in a vial and heated with microwave irradiation at 100° C. for 30 min. The cooled RM was diluted with EtOAc, washed with brine, dried over Na2SO4, filtered and evaporated to dryness to give the title product as an off-white solid. (HPLC: tR 1.94 min (Method A); M+H=205, 207, M−H=203, 205 MS-ES)


The following examples were synthesized in a similar manner as described for Example 1.1 using [3-fluoro-5-(4,4,5,5-tetramethyl-[1,3,2]dioxaborolan-2-yl)-pyridin-2-yl]-methyl-amine (stage 141.1.1) and the specified intermediate.






















HPLC






MS-ES
tR


Example
Intermed.
structure
Name of the example
(M + H)
(min)




















141.2
A


embedded image


1-(1,3-Dimethyl-1H- pyrazol-4-yl)-8-(5- fluoro-6-methylamino- pyridin-3-yl)-3-methyl- 1,3-dihydro- imidazo[4,5-c] quinolin-2-one
418
2.09





141.3
G


embedded image


8-(5-Fluoro-6- methylamino-pyridin- 3-yl)-1-(1-isopropyl-3- methyl-1H-pyrazol-4- yl)-3-methyl-1,3- dihydro-imidazo[4,5-c] quinolin-2-one
446
2.25









Example 142.1
8-(6-Amino-5-fluoro-pyridin-3-yl)-3-methyl-1-(1,3,5-trimethyl-1H-pyrazol-4-yl)-1,3-dihydro-imidazo[4,5-c]quinolin-2-one



embedded image


The title compound was synthesized in a similar manner as described for Example 1.1 using 8-bromo-3-methyl-1-(1,3,5-trimethyl-1H-pyrazol-4-yl)-1,3-dihydro-imidazo[4,5-c]quinolin-2-one (Intermediate H) and 3-fluoro-5-(4,4,5,5-tetramethyl-[1,3,2]dioxaborolan-2-yl)-pyridin-2-ylamine (stage 142.1.1) to give the title compound as a yellow foam. (HPLC: tR 2.07 min (Method A); M+H=418 MS-ES; 1H-NMR (d6-DMSO, 400 MHz) 8.92 (s, 1H), 8.05-8.01 (m, 1H), 7.91-7.84 (m, 2H), 7.47-7.42 (m, 1H), 7.35-7.32 (m, 1H), 6.49 (s, 2H), 3.83 (s, 3H), 3.58 (s, 3H), 2.07 (s, 3H), 1.90 (s, 3H))


Stage 142.1.1 3-Fluoro-5-(4,4,5,5-tetramethyl-[1,3,2]dioxaborolan-2-yl)-pyridin-2-ylamine



embedded image


The title compound was synthesized in a similar manner as described for stage 141.1.1-2 using 2 M ammonia in isopropanol (Aldrich, Buchs, Switzerland) and heating up to 195° C. (unstable in the HPLC condition (Method A); M+H=239 MS-ES)


The following examples were synthesized in a similar manner as described for Example 1.1 using 3-fluoro-5-(4,4,5,5-tetramethyl-[1,3,2]dioxaborolan-2-yl)-pyridin-2-ylamine (stage 142.1.1) and the specified intermediate.






















HPLC






MS-ES
tR


Example
Intermed.
structure
Name of the example
(M + H)
(min)




















142.2
A


embedded image


8-(6-Amino-5-fluoro- pyridin-3-yl)-1-(1,3- dimethyl-1H-pyrazol- 4-yl)-3-methyl-1,3- dihydro-imidazo[4,5-c] quinolin-2-one
404
2.02





142.3
G


embedded image


8-(6-Amino-5-fluoro- pyridin-3-yl)-1-(1- isopropyl-3-methyl- 1H-pyrazol-4-yl)-3- methyl-1,3-dihydro- imidazo[4,5-c] quinolin-2-one
432
2.17









Example 143
3-Methyl-8-(6-trideuteromethylamino-5-trifluoromethyl-pyridin-3-yl)-1-(1,3,5-trimethyl-1H-pyrazol-4-yl)-1,3-dihydro-imidazo[4,5-c]quinolin-2-one



embedded image


The title compound was synthesized in a similar manner as described for Example 1.1 using 8-bromo-3-methyl-1-(1,3,5-trimethyl-1H-pyrazol-4-yl)-1,3-dihydro-imidazo[4,5-c]quinolin-2-one (Intermediate H, 0.104 mmol) and trideuteromethyl-[5-(4,4,5,5-tetramethyl-[1,3,2]dioxaborolan-2-yl)-3-trifluoromethyl-pyridin-2-yl]-amine (stage 143.1.1) to give the title compound as a yellow foam. (HPLC: tR 2.53 min (Method A); M+H=485 MS-ES; 1H-NMR (d6-DMSO, 400 MHz) 8.94 (s, 1H), 8.51-8.49 (m, 1H), 8.08-8.04 (m, 1H), 7.96-7.92 (m, 1H), 7.72-7.69 (m, 1H), 7.39-7.36 (m, 1H), 6.74 (s, br, 1H), 3.80 (s, 3H), 3.58 (s, 3H), 2.08 (s, 3H), 1.89 (s, 3H))


Stage 143.1.1 Trideuteromethyl-[5-(4,4,5,5-tetramethyl-[1,3,2]dioxaborolan-2-yl)-3-trifluoromethyl-pyridin-2-yl]-amine



embedded image


The title compound was synthesized in a similar manner as described for stage 5.1.1 using (5-bromo-3-trifluoromethyl-pyridin-2-yl)-trideuteromethyl-amine (Stage 143.1.2, 0.833 mmol) to give the title compound as a crude brown oil. (degrading under the HPLC condition (Method A); M+H=306 MS-ES)


Stage 143.1.2 (5-Bromo-3-trifluoromethyl-pyridin-2-yl)-trideuteromethyl-amine



embedded image


To a solution of 5-bromo-3-trifluoromethyl-pyridin-2-ylamine (Stage 25.1.2, 1.66 mmol) in DMF cooled with an ice-bath was added 55% sodium hydride in oil (1.66 mmol). The RM was stirred for 30 min at 0° C. then was added d3-iodomethane (Aldrich, Buchs, Switzerland, 1.66 mmol) and the RM was stirred for 30 min at it and the formed slurry was sonicated for 30 min at rt. The RM was quenched with saturated aqueous NaHCO3 and extracted with EtOAc (2×). The combined organic layers were washed with saturated aqueous NaHCO3 (3×), with brine, dried over Na2SO4, filtered and evaporated. The residue was purified by flash chromatography (hexane/CH2Cl2 1:1 to 1:8) to give the title compound as an oil (HPLC: tR 3.30 min (Method A); M+H=258, 260 MS-ES)


Example 144.1
3-Methyl-8-(6-methylamino-5-trifluoromethyl-pyridin-3-yl)-1-(1,3,5-trimethyl-1H-pyrazol-4-yl)-1,3-dihydro-imidazo[4,5-c]quinolin-2-one



embedded image


The title compound was synthesized in a similar manner as described for Example 143 using iodomethane as replacement for d3-iodomethane to give the title compound as a yellow film. (HPLC: tR 2.53 min (Method A); M+H=482 MS-ES; 1H-NMR (d6-DMSO, 400 MHz) 8.94 (s, 1H), 8.51-8.49 (m, 1H), 8.08-8.04 (m, 1H), 7.96-7.92 (m, 1H), 7.72-7.69 (m, 1H), 7.38-7.36 (m, 1H), 6.77 (q, 1H), 3.79 (s, 3H), 3.58 (s, 3H), 2.92 (d, 3H), 2.07 (s, 3H), 1.89 (s, 3H))


The following examples were synthesized in a similar manner as described for Example 144.1 using the specified intermediate.






















HPLC






MS-ES
tR


Example
Intermed.
structure
Name of the example
(M + H)
(min)




















144.2
G


embedded image


1-(1-Isopropyl-3- methyl-1H-pyrazol-4- yl)-3-methyl-8-(6- methylamino-5- trifluoromethyl-pyridin- 3-yl)-1,3-dihydro- imidazo[4,5-c] quinolin-2-one
496
2.73





144.3
A


embedded image


1-(1,3-Dimethyl-1H- pyrazol-4-yl)-3- methyl-8-(6- methylamino-5- trifluoromethyl-pyridin- 3-yl)-1,3-dihydro- imidazo[4,5-c] quinolin-2-one
468
2.47









Example 145.1
8-(6-Ethylamino-5-trifluoromethyl-pyridin-3-yl)-3-methyl-1-(1,3,5-trimethyl-1H-pyrazol-4-yl)-1,3-dihydro-imidazo[4,5-c]quinolin-2-one



embedded image


The title compound was synthesized in a similar manner as described for Example 143 using iodoethane as replacement for d3-iodomethane to give the title compound as a yellow foam. (HPLC: tR 2.74 min (Method A); M+H=496 MS-ES; 1H-NMR (d6-DMSO, 400 MHz) 8.94 (s, 1H), 8.50-8.47 (m, 1H), 8.08-8.03 (m, 1H), 7.96-7.91 (m, 1H), 7.71-7.67 (m, 1H), 7.37-7.34 (m, 1H), 6.74 (t, 1H), 3.79 (s, 3H), 3.58 (s, 3H), 3.49 (qt, 2H), 2.08 (s, 3H), 1.89 (s, 3H), 1.14 (t, 3H))


The following example was synthesized in a similar manner as described for Example 145.1 using the specified intermediate.






















HPLC






MS-ES
tR


Example
Intermed.
structure
Name of the example
(M + H)
(min)




















145.2
A


embedded image


1-(1,3-Dimethyl-1H- pyrazol-4-yl)-8-(6- ethylamino-5- trifluoromethyl-pyridin- 3-yl)-3-methyl-1,3- dihydro-imidazo[4,5-c] quinolin-2-one
482
2.70









Example 146.1
8-(5-Chloro-6-methylamino-pyridin-3-yl)-1-(1,3-dimethyl-1H-pyrazol-4-yl)-3-methyl-1,3-dihydro-imidazo[4,5-c]quinolin-2-one



embedded image


The title compound was synthesized in a similar manner as described for Example 1.1 using 8-bromo-1-(1,3-dimethyl-1H-pyrazol-4-yl)-3-methyl-1,3-dihydro-imidazo[4,5-c]quinolin-2-one (Intermediate A, 0.107 mmol) and [3-chloro-5-(4,4,5,5-tetramethyl-[1,3,2]dioxaborolan-2-yl)-pyridin-2-yl]-methyl-amine (stage 146.1.1) to give the title compound as a yellow foam. (HPLC: tR 2.53 min (Method A); M+H=485 MS-ES; 1H-NMR (d6-DMSO, 400 MHz) 8.91 (s, 1H), 8.24-8.21 (m, 1H), 8.15 (s, 1H), 8.06-8.01 (m, 1H), 7.92-7.87 (m, 1H), 7.62-7.57 (m, 1H), 7.40-7.37 (m, 1H), 6.81-6.76 (m, 1H), 3.95 (s, 3H), 3.57 (s, 3H), 2.89 (d, 3H), 1.95 (s, 3H))


Stage 146.1.1 [3-Chloro-5-(4,4,5,5-tetramethyl-[1,3,2]dioxaborolan-2-yl)-pyridin-2-yl]-methyl-amine



embedded image


The title compound was synthesized in a similar manner as described for Stage 141.1-2 using 5-bromo-2,3-dichloropyridine (Asymchem Laboratories, Morrisville, N.C., USA) and heating to 150° C. as replacement for 5-bromo-2,3-difluoropyridine to give the title compound as a crude brown oil. (HPLC: tR 1.62 min (Method A); M+H=269 MS-ES)


The following examples were synthesized in a similar manner as described for Example 1.1 using [3-chloro-5-(4,4,5,5-tetramethyl-[1,3,2]dioxaborolan-2-yl)-pyridin-2-yl]-methyl-amine and the specified intermediate.






















HPLC






MS-ES
tR


Example
Intermed.
structure
Name of the example
(M + H)
(min)




















146.2
F


embedded image


8-(5-Chloro-6- methylamino-pyridin- 3-yl)-1-(1-ethyl-3- methyl-1H-pyrazol-4- yl)-3-methyl-1,3- dihydro-imidazo[4,5-c] quinolin-2-one
448
2.30





146.3
G


embedded image


8-(5-Chloro-6- methylamino-pyridin- 3-yl)-1-(1-isopropyl-3- methyl-1H-pyrazol-4- yl)-3-methyl-1,3- dihydro-imidazo[4,5-c] quinolin-2-one
462
2.40





146.4
H


embedded image


8-(5-Chloro-6- methylamino-pyridin- 3-yl)-3-methyl-1- (1,3,5-trimethyl-1H- pyrazol-4-yl)-1,3- dihydro-imidazo[4,5-c] quinolin-2-one
448
2.27





146.5
C


embedded image


8-(5-Chloro-6- methylamino-pyridin- 3-yl)-1-(2,5-dimethyl- 2H-pyrazol-3-yl)-3- methyl-1,3-dihydro- imidazo[4,5-c] quinolin-2-one
434
2.39





146.6
Q


embedded image


8-(5-Chloro-6- methylamino-pyridin- 3-yl)-1-(3,5-dimethyl- isoxazol-4-yl)-3- methyl-1,3-dihydro- imidazo[4,5-c] quinolin-2-one
435
2.35









Example 147
8-(5-Chloro-6-ethylamino-pyridin-3-yl)-1-(1,3-dimethyl-1H-pyrazol-4-yl)-3-methyl-1,3-dihydro-imidazo[4,5-c]quinolin-2-one



embedded image


The title compound was synthesized in a similar manner as described for Example 146.1 using 2 M ethylamine in MeOH (Aldrich, Buchs, Switzerland) as replacement for the methylamine to give the title compound as a beige foam. (HPLC: tR 2.35 min (Method A); M+H=448 MS-ES; 1H-NMR (d6-DMSO, 400 MHz) 8.92 (s, 1H), 8.22-8.20 (m, 1H), 8.16 (s, 1H), 8.05-8.01 (m, 1H), 7.91-7.87 (m, 1H), 7.61-7.58 (m, 1H), 7.39-7.36 (m, 1H), 6.74 (t, 1H), 3.94 (s, 3H), 3.57 (s, 3H), 3.43 (qt, 2H), 1.94 (s, 3H), 1.15 (t, 3H))


Example 148
8-(6-Amino-5-chloro-pyridin-3-yl)-3-methyl-1-(1,3,5-trimethyl-1H-pyrazol-4-yl)-1,3-dihydro-imidazo[4,5-c]quinolin-2-one



embedded image


The title compound was synthesized in a similar manner as described for Example 1.1 using 8-bromo-3-methyl-1-(1,3,5-trimethyl-1H-pyrazol-4-yl)-1,3-dihydro-imidazo[4,5-c]quinolin-2-one (Intermediate H, 0.075 mmol) and 3-chloro-5-(4,4,5,5-tetramethyl-[1,3,2]dioxaborolan-2-yl)-pyridin-2-ylamine (stage 148.1.1) to give the title compound as a yellow foam. (HPLC: tR 2.53 min (Method A); M+H=485 MS-ES; 1H-NMR (d6-DMSO, 400 MHz) 8.94 (s, 1H), 8.51-8.49 (m, 1H), 8.08-8.04 (m, 1H), 7.96-7.92 (m, 1H), 7.72-7.69 (m, 1H), 7.39-7.36 (m, 1H), 6.74 (s, br, 2H), 3.80 (s, 3H), 3.58 (s, 3H), 2.08 (s, 3H), 1.89 (s, 3H))


Stage 148.1.1 3-Chloro-5-(4,4,5,5-tetramethyl-[1,3,2]dioxaborolan-2-yl)-pyridin-2-ylamine



embedded image


The title compound was synthesized in a similar manner as described for Stage 5.1.1 using 2-amino-5-bromo-3-chloropyridine (Beta Pharma, New Haven, Conn., USA) to give the title compound as a crude sticky black solid. (degrading under the HPLC condition: tR 1.44 min (Method A); M+H=255 MS-ES).


The following examples were synthesized in a similar manner as described for Example 1.1 using 3-chloro-5-(4,4,5,5-tetramethyl-[1,3,2]dioxaborolan-2-yl)-pyridin-2-ylamine and the specified intermediate.






















HPLC






MS-ES
tR


Example
Intermed.
structure
Name of the example
(M + H)
(min)




















148.2
A


embedded image


8-(6-Amino-5-chloro- pyridin-3-yl)-1-(1,3- dimethyl-1H-pyrazol- 4-yl)-3-methyl-1,3- dihydro-imidazo[4,5-c] quinolin-2-one
420
2.14





148.3
F


embedded image


8-(6-Amino-5-chloro- pyridin-3-yl)-1-(1- ethyl-3-methyl-1H- pyrazol-4-yl)-3- methyl-1,3-dihydro- imidazo[4,5-c] quinolin-2-one
434
2.21





148.4
Q


embedded image


8-(6-Amino-5-chloro- pyridin-3-yl)-1-(3,5- dimethyl-isoxazol-4- yl)-3-methyl-1,3- dihydro-imidazo[4,5-c] quinolin-2-one
421
2.24









Example 149
8-(5-Amino-6-fluoro-pyridin-3-yl)-1-(1-isopropyl-3-methyl-1H-pyrazol-4-yl)-3-methyl-1,3-dihydro-imidazo[4,5-c]quinolin-2-one



embedded image


The title compound was synthesized in a similar manner as described for Example 1.1 using 8-bromo-1-(1-isopropyl-3-methyl-1H-pyrazol-4-yl)-3-methyl-1,3-dihydro-imidazo[4,5-c]quinolin-2-one (Intermediate G, 0.098 mmol) and 2-fluoro-5-(4,4,5,5-tetramethyl-[1,3,2]dioxaborolan-2-yl)-pyridin-3-ylamine (stage 149.1.1) to give the title compound as a yellow foam. (HPLC: tR 2.53 min (Method A); M+H=485 MS-ES; 1H-NMR (d6-DMSO, 400 MHz) 8.97 (s, 1H), 8.20 (s, 1H), 8.12-8.08 (m, 1H), 7.76-7.72 (m, 1H), 7.47-7.44 (m, 1H), 7.29-7.23 (m, 2H), 5.57 (s, br, 2H), 4.54 (hp, 1H), 3.58 (s, 3H), 1.95 (s, 3H), 1.44 (d, 6H))


Stage 149.1.1 2-Fluoro-5-(4,4,5,5-tetramethyl-[1,3,2]dioxaborolan-2-yl)-pyridin-3-ylamine



embedded image


The title compound was synthesized in a similar manner as described for Stage 5.1.1 using 3-amino-5-bromo-2-fluoropyridine (Matrix Scientific, Columbia, S.C., USA) to give the title compound as a crude sticky black solid. (degrading under the HPLC condition (Method A); M+H=239 MS-ES).


The following examples were synthesized in a similar manner as described for Example 1.1 using 2-fluoro-5-(4,4,5,5-tetramethyl-[1,3,2]dioxaborolan-2-yl)-pyridin-3-ylamine and the specified intermediate.






















HPLC






MS-ES
tR


Example
Intermed.
structure
Name of the example
(M + H)
(min)




















149.2
A


embedded image


8-(5-Amino-6-fluoro- pyridin-3-yl)-1-(1,3- dimethyl-1H-pyrazol- 4-yl)-3-methyl-1,3- dihydro-imidazo[4,5-c] quinolin-2-one
404
2.27





149.3
C


embedded image


8-(5-Amino-6-fluoro- pyridin-3-yl)-1-(2,5- dimethyl-2H-pyrazol- 3-yl)-3-methyl-1,3- dihydro-imidazo[4,5-c] quinolin-2-one
404
2.21









Example 150.1
1-(1-Ethyl-3-methyl-1H-pyrazol-4-yl)-8-(6-fluoro-5-methylamino-pyridin-3-yl)-3-methyl-1,3-dihydro-imidazo[4,5-c]quinolin-2-one



embedded image


The title compound was synthesized in a similar manner as described for Example 1.1 using 8-bromo-1-(1-ethyl-3-methyl-1H-pyrazol-4-yl)-3-methyl-1,3-dihydro-imidazo[4,5-c]quinolin-2-one (Intermediate F, 0.078 mmol) and [2-fluoro-5-(4,4,5,5-tetramethyl-[1,3,2]dioxaborolan-2-yl)-pyridin-3-yl]-methyl-amine (stage 150.1.1) to give the title compound as a yellow foam. (HPLC: tR 2.53 min (Method A); M+H=485 MS-ES; 1H-NMR (d6-DMSO, 400 MHz) 8.97 (s, 1H), 8.16 (s, 1H), 8.11-8.07 (m, 1H), 7.95-7.90 (m, 1H), 7.53-7.51 (m, 1H), 7.42-7.39 (m, 1H), 7.01-6.97 (m, 1H), 6.08 (q, br, 1H), 4.15 (q, 2H), 3.58 (s, 3H), 2.80 (d, 3H), 1.97 (s, 3H), 1.37 (t, 3H))


Stage 150.1.1 [2-Fluoro-5-(4,4,5,5-tetramethyl-[1,3,2]dioxaborolan-2-yl)-pyridin-3-yl]-methyl-amine



embedded image


The title compound was synthesized in a similar manner as described for Stage 5.1.1 using 5-bromo-2-fluoro-3-methylaminopyridine (Stage 150.1.2) to give the title compound as a crude black oil. (degrading under the HPLC condition: tR 1.70 min (Method A); M+H=239 MS-ES).


Stage 150.1.2 (5-Bromo-2-fluoro-pyridin-3-yl)-methyl-amine



embedded image


A mixture of 3-amino-5-bromo-2-fluoropyridine (Matrix Scientific, Columbia, S.C., USA, 1.571 mmol) in DMF (3 ml) and 55% NaH in oil (1.571 mmol) was stirred for 15 min at rt. Was added iodomethane (Aldrich, Buchs, Switzerland, 1.571 mmol) and the RM was stirred for 13 h at rt. The RM was diluted with EtOAc, washed with brine (4×), dried over Na2SO4, filtered and evaporated. The residue was absorbed on silica gel and purified by flash chromatography (heptane/EtOAc 0% to 40%). The fraction containing the first eluting product were evaporated to give (5-bromo-2-fluoro-pyridin-3-yl)-dimethyl-amine as an orange oil (HPLC: tR 3.15 min (Method A); M+H=219, 221 MS-ES) and the fraction containing the second eluting product were evaporated to give the title compound as a red solid (HPLC: tR 2.90 min (Method A); M+H=205, 207 MS-ES).


The following example was synthesized in a similar manner as described for Example 1.1 using [2-fluoro-5-(4,4,5,5-tetramethyl-[1,3,2]dioxaborolan-2-yl)-pyridin-3-yl]-methyl-amine and the specified intermediate.






















HPLC






MS-ES
tR


Example
Intermed.
structure
Name of the example
(M + H)
(min)




















150.2
A


embedded image


1-(1,3-Dimethyl-1H- pyrazol-4-yl)-8-(6- fluoro-5-methylamino- pyridin-3-yl)-3-methyl- 1,3-dihydro- imidazo[4,5-c] quinolin-2-one
418
2.45









Example 151
8-(5-Dimethylamino-6-fluoro-pyridin-3-yl)-1-(1,3-dimethyl-1H-pyrazol-4-yl)-3-methyl-1,3-dihydro-imidazo[4,5-c]quinolin-2-one



embedded image


The title compound was synthesized in a similar manner as described for Example 1.1 using 8-bromo-1-(1-isopropyl-3-methyl-1H-pyrazol-4-yl)-3-methyl-1,3-dihydro-imidazo[4,5-c]quinolin-2-one (Intermediate G, 0.098 mmol) and [2-fluoro-5-(4,4,5,5-tetramethyl-[1,3,2]dioxaborolan-2-yl)-pyridin-3-yl]-dimethyl-amine (stage 151.1.1) to give the title compound as a yellow foam. (HPLC: tR 2.59 min (Method A); M+H=432 MS-ES; 1H-NMR (d6-DMSO, 400 MHz) 8.98 (s, 1H), 8.13-8.08 (m, 2H), 7.99-7.94 (m, 1H), 7.80-7.77 (m, 1H), 7.57-7.54 (m, 1H), 7.28-7.23 (m, 1H), 3.88 (s, 3H), 3.58 (s, 3H), 2.89 (s, 6H), 1.96 (s, 3H))


Stage 151.1.1 [2-Fluoro-5-(4,4,5,5-tetramethyl-[1,3,2]dioxaborolan-2-yl)-pyridin-3-yl]-dimethyl-amine



embedded image


The title compound was synthesized in a similar manner as described for Stage 5.1.1 using 5-bromo-2-fluoro-3-dimethylaminopyridine (Stage 150.1.2, side product) to give the title compound as a crude black oil. (degrading under the HPLC condition: tR 1.77 min (Method A); M+H=267 MS-ES).


Example 152.1
8-(5-Amino-6-chloro-pyridin-3-yl)-1-(1-isopropyl-3-methyl-1H-pyrazol-4-yl)-3-methyl-1,3-dihydro-imidazo[4,5-c]quinolin-2-one



embedded image


The title compound was synthesized in a similar manner as described for Example 1.1 using 8-bromo-1-(1-isopropyl-3-methyl-1H-pyrazol-4-yl)-3-methyl-1,3-dihydro-imidazo[4,5-c]quinolin-2-one (Intermediate G, 0.098 mmol) and 2-chloro-5-(4,4,5,5-tetramethyl-[1,3,2]dioxaborolan-2-yl)-pyridin-3-ylamine (stage 152.1.1) to give the title compound as a yellow foam. (HPLC: tR 2.55 min (Method A); M+H=448 MS-ES; 1H-NMR (d6-DMSO, 400 MHz) 8.99 (s, 1H), 8.19 (s, 1H), 8.14-8.09 (m, 1H), 7.78-7.73 (m, 1H), 7.57-7.53 (m, 1H), 7.50-7.47 (m, 1H), 7.28-7.24 (m, 1H), 5.68 (s, br, 2H), 4.55 (hp, 1H), 3.58 (s, 3H), 1.95 (s, 3H), 1.44 (d, 6H))


Stage 152.1.1 2-Chloro-5-(4,4,5,5-tetramethyl-[1,3,2]dioxaborolan-2-yl)-pyridin-3-ylamine



embedded image


The title compound was synthesized in a similar manner as described for Stage 5.1.1 using 5-bromo-2-chloro-pyridin-3-ylamine (stage 152.1.2, 2.6 mmol) to give the title compound as a crude black solid. (degrading under the HPLC condition: tR 1.57 min (Method A); M+H=255 MS-ES).


Stage 152.1.2 5-Bromo-2-chloro-pyridin-3-ylamine



embedded image


A suspension of 5-bromo-2-chloro-3-nitropyridine (Combi-Blocks, San Diego, USA, 41.3 mmol) in concentrated HCl (45 ml) was cooled with an ice-bath. Was added portionwise over 1.5 h SnCl2 dihydrate (124 mmol). The RM was stirred for 24 h at rt then poured on ice and basified with 6 M aqueous NaOH (125 ml). The resulting slurry was filtered and the solid was taken in aqueous NaHCO3, sonicated and filtered. The solid was dissolved in EtOAc and water and the aqueous layer was separated and extracted with EtOAc. The combined organic layers were washed with water, brine, dried over Na2SO4, filtered and evaporated to give the title compound as an off-white solid. (HPLC: tR 2.52 min (Method A); M+H=207 (BrCl pattern) MS-ES)


The following examples were synthesized in a similar manner as described for Example 1.1 using 2-chloro-5-(4,4,5,5-tetramethyl-[1,3,2]dioxaborolan-2-yl)-pyridin-3-ylamine and the specified intermediate.






















HPLC






MS-ES
tR


Example
Intermed.
structure
Name of the example
(M + H)
(min)




















152.2
A


embedded image


8-(5-Amino-6-chloro- pyridin-3-yl)-1-(1,3- dimethyl-1H-pyrazol- 4-yl)-3-methyl-1,3- dihydro-imidazo[4,5-c] quinolin-2-one
420
2.36





152.3
H


embedded image


8-(5-Amino-6-chloro- pyridin-3-yl)-3-methyl-1- (1,3,5-trimethyl-1H- pyrazol-4-yl)-1,3- dihydro-imidazo[4,5-c] quinolin-2-one
434
2.43









Example 153.1
8-(6-Chloro-5-ethylamino-pyridin-3-yl)-3-methyl-1-(1,3,5-trimethyl-1H-pyrazol-4-yl)-1,3-dihydro-imidazo[4,5-c]quinolin-2-one



embedded image


The title compound was synthesized in a similar manner as described for Example 1.1 using 8-bromo-3-methyl-1-(1,3,5-trimethyl-1H-pyrazol-4-yl)-1,3-dihydro-imidazo[4,5-c]quinolin-2-one (Intermediate H, 0.101 mmol) and [2-chloro-5-(4,4,5,5-tetramethyl-[1,3,2]dioxaborolan-2-yl)-pyridin-3-yl]-ethyl-amine (stage 153.1.1) to give the title compound as a yellow solid. (HPLC: tR 2.74 min (Method A); M+H=462 MS-ES; 1H-NMR (d6-DMSO, 400 MHz) 8.99 (s, 1H), 8.13-8.08 (m, 1H), 7.98-7.93 (m, 1H), 7.76-7.73 (m, 1H), 7.58-7.54 (m, 1H), 6.97-6.93 (m, 1H), 5.72 (t, 1H), 3.79 (s, 3H), 3.59 (s, 3H), 3.26 (qt, 2H), 2.07 (s, 3H), 1.91 (s, 3H), 1.22 (t, 3H))


Stage 153.1.1 [2-Chloro-5-(4,4,5,5-tetramethyl-[1,3,2]dioxaborolan-2-yl)-pyridin-3-yl]-ethyl-amine



embedded image


The title compound was synthesized in a similar manner as described for Stage 5.1.1 using (5-bromo-2-chloro-pyridin-3-yl)-ethyl-amine (stage 153.1.2, 3.71 mmol) to give the title compound as a crude black oil. (degrading under the HPLC condition: tR 2.17 min (Method A); M+H=283 MS-ES).


Stage 153.1.2 (5-Bromo-2-chloro-pyridin-3-yl)-ethyl-amine



embedded image


The title compound was synthesized in a similar manner as described for (Stage 87.1.2.) using 3-amino-5-bromo-2-chloropyridine (stage 152.1.2, 4.34 mmol) to give the title compound as an oil (HPLC: tR 3.38 min (Method A); M+H=235 (BrCl pattern) MS-ES).


The following examples were synthesized in a similar manner as described for Example 1.1 using 2-chloro-5-(4,4,5,5-tetramethyl-[1,3,2]dioxaborolan-2-yl)-pyridin-3-yl]-ethyl-amine and the specified intermediate.






















HPLC






MS-ES
tR


Example
Intermed.
structure
Name of the example
(M + H)
(min)




















153.2
A


embedded image


8-(6-Chloro-5- ethylamino-pyridin-3- yl)-1-(1,3-dimethyl- 1H-pyrazol-4-yl)-3- methyl-1,3-dihydro- imidazo[4,5-c] quinolin-2-one
448
2.69





153.3
Q


embedded image


8-(6-Chloro-5- ethylamino-pyridin-3- yl)-1-(3,5-dimethyl- isoxazol-4-yl)-3- methyl-1,3-dihydro- imidazo[4,5-c] quinolin-2-one
448
2.88









Example 154.1
8-(5-Ethylamino-6-fluoro-pyridin-3-yl)-3-methyl-1-(1,3,5-trimethyl-1H-pyrazol-4-yl)-1,3-dihydro-imidazo[4,5-c]quinolin-2-one



embedded image


The title compound was synthesized in a similar manner as described for Example 1.1 using 8-bromo-3-methyl-1-(1,3,5-trimethyl-1H-pyrazol-4-yl)-1,3-dihydro-imidazo[4,5-c]quinolin-2-one (Intermediate H, 0.104 mmol) and ethyl-[2-fluoro-5-(4,4,5,5-tetramethyl-[1,3,2]dioxaborolan-2-yl)-pyridin-3-yl]-amine (stage 154.1.1) to give the title compound as a white solid. (HPLC: tR 2.63 min (Method A); M+H=446 MS-ES; 1H-NMR (d6-DMSO, 400 MHz) 8.97 (s, 1H), 8.11-8.07 (m, 1H), 7.96-7.91 (m, 1H), 7.55-7.52 (m, 1H), 7.48-7.45 (m, 1H), 7.00-6.95 (m, 1H), 5.96 (t, 1H), 3.78 (s, 3H), 3.59 (s, 3H), 3.20 (qt, 2H), 2.07 (s, 3H), 1.91 (s, 3H), 1.23 (t, 3H))


Stage 154.1.1 Ethyl-[2-fluoro-5-(4,4,5,5-tetramethyl-[1,3,2]dioxaborolan-2-yl)-pyridin-3-yl]-amine



embedded image


The title compound was synthesized in a similar manner as described for Stage 5.1.1 using (5-bromo-2-fluoro-pyridin-3-yl)-ethyl-amine (stage 154.1.2, 2.283 mmol) to give the title compound as a crude black oil. (degrading under the HPLC condition: tR 1.92 min (Method A); M+H=267 MS-ES).


Stage 154.1.2 (5-Bromo-2-fluoro-pyridin-3-yl)-ethyl-amine



embedded image


The title compound was synthesized in a similar manner as described for (Stage 87.1.2.) using 3-amino-5-bromo-2-fluoropyridine (Matrix Scientific, Columbia, S.C., USA, 3.14 mmol) to give the title compound as greenish solid (HPLC: tR 3.20 min (Method A); M+H=219, 221 MS-ES).


The following example was synthesized in a similar manner as described for Example 1.1 using ethyl-[2-fluoro-5-(4,4,5,5-tetramethyl-[1,3,2]dioxaborolan-2-yl)-pyridin-3-yl]-amine and the specified intermediate.






















HPLC






MS-ES
tR


Example
Intermed.
structure
Name of the example
(M + H)
(min)




















154.2
Q


embedded image


1-(3,5-Dimethyl- isoxazol-4-yl)-8-(5- ethylamino-6-fluoro- pyridin-3-yl)-3-methyl- 1,3-dihydro- imidazo[4,5-c] quinolin-2-one
433
2.76









Example 155.1
1-(1,3-Dimethyl-1H-pyrazol-4-yl)-8-(5-ethylamino-6-hydroxymethyl-pyridin-3-yl)-3-methyl-1,3-dihydro-imidazo[4,5-c]quinolin-2-one



embedded image


A solution of acetic acid 3-(tert-butoxycarbonyl-ethyl-amino)-5-[1-(1,3-dimethyl-1H-pyrazol-4-yl)-3-methyl-2-oxo-2,3-dihydro-1H-imidazo[4,5-c]quinolin-8-yl]-pyridin-2-ylmethyl ester 155.1.1, 0.041 mmol) in dioxane (0.33 ml) was treated with 1 M aqueous LiOH (0.082 ml) for 1.5 h at rt then was added 1 M aqueous LiOH (0.082 ml) and the RM was stirred for 2 h at rt. The RM was diluted with EtOAc and washed with sat. aqueous NaHCO3, dried over Na2SO4, filtered and evaporated. The residue was taken in DMA and purified by preparative HPLC. The pure fraction was basified with NaHCO3, concentrated and extracted with EtOAc (3×). The combined organic layers were dried over Na2SO4, filtered, evaporated and dried under vacuum to give the title compound as a film. (HPLC: tR 2.10 min (Method A); M+H=444 MS-ES; 1H-NMR (d6-DMSO, 400 MHz) 8.97 (s, 1H), 8.12-8.08 (m, 2H), 7.97-7.90 (m, 2H), 7.63-7.60 (m, 1H), 6.87 (s, 1H), 5.49 (t, 1H), 5.31 (t, 1H), 4.57 (d, 2H), 3.88 (s, 3H), 3.58 (s, 3H), 3.19 (qt, 2H), 1.96 (s, 3H), 1.25 (t, 3H))


Stage 155.1.1 Acetic acid 3-(tert-butoxycarbonyl-ethyl-amino)-5-[1-(1,3-dimethyl-1H-pyrazol-4-yl)-3-methyl-2-oxo-2,3-dihydro-1H-imidazo[4,5-c]quinolin-8-yl]-pyridin-2-ylmethyl ester



embedded image


The title compound was synthesized in a similar manner as described for Example 1.1 using 8-bromo-1(1,3-dimethyl-1H-pyrazol-4-yl)-3-methyl-1,3-dihydro-imidazo[4,5-c]quinolin-2-one (Intermediate A, 0.109 mmol) and acetic acid 3-(tert-butoxycarbonyl-ethyl-amino)-5-(4,4,5,5-tetramethyl-[1,3,2]dioxaborolan-2-yl)-pyridin-2-ylmethyl ester (stage 155.1.2) to give the title compound as an off-white solid. (HPLC: tR 2.88 min (Method A); M+H=586 MS-ES)


Stage 155.1.2 Acetic acid 3-(tert-butoxycarbonyl-ethyl-amino)-5-(4,4,5,5-tetramethyl-[1,3,2]dioxaborolan-2-yl)-pyridin-2-ylmethyl ester



embedded image


The title compound was synthesized in a similar manner as described for Stage 5.1.1 using acetic acid 5-bromo-3-(tert-butoxycarbonyl-ethyl-amino)-pyridin-2-ylmethyl ester (stage 155.1.3, 0.968 mmol) to give the title compound as a crude black oil. (degrading under the HPLC condition: tR 3.09 min (Method A); M+H=421 MS-ES).


Stage 155.1.3 Acetic acid 5-bromo-3-(tert-butoxycarbonyl-ethyl-amino)-pyridin-2-ylmethyl ester



embedded image


(5-Bromo-2-methyl-1-oxy-pyridin-3-yl)-ethyl-carbamic acid tert-butyl ester (Stage 155.1.4, 1.467 mmol) in acetic anhydride (1.5 ml) was stirred under Ar for 35 min at 120° C. The RM was quenched with EtOH and stirred then diluted with water, neutralized with saturated aqueous NaHCO3 and extracted with EtOAc. The organic layer was washed with brine, dried over Na2SO4, filtered and evaporated. The residue was purified by flash chromatography (heptane/EtOAc 0% to 30%) to give after evaporation of the fractions containing the title compound an oil (HPLC: tR 3.51 min (Method A); M+H=373, 375 MS-ES).


Stage 155.1.4 (5-Bromo-2-methyl-1-oxy-pyridin-3-yl)-ethyl-carbamic acid tert-butyl ester



embedded image


A mixture of (5-bromo-2-methyl-pyridin-3-yl)-ethyl-carbamic acid tert-butyl ester (stage 155.1.5, 1.508 mmol) in dichloromethane (13 ml) and 65% m-chloroperbenzoic acid (3.02 mmol) was stirred for 4 h at rt. The RM was diluted with dichloromethane, washed with saturated aqueous Na2CO3, saturated aqueous NaHCO3 (4×) and brine, dried over Na2SO4, filtered, evaporated and dried under vacuum to give the title compound as an oil (HPLC: tR 3.02 min (Method A); M+H=331, 333 MS-ES).


Stage 155.1.5 (5-Bromo-2-methyl-pyridin-3-yl)-ethyl-carbamic acid tert-butyl ester



embedded image


A mixture of (5-bromo-2-methyl-pyridin-3-yl)-ethyl-amine (Stage 87.1.2, 1.634 mmol) and di-tertbutyl dicarbonate (Fluka, Buchs, Switzerland, 1.961 mmol) in THF (1.6 ml) was stirred for 1 h at rt and 3 h at 65° C. Was added di-tertbutyl dicarbonate (Fluka, Buchs, Switzerland, 1.961 mmol) and an extra stirring for 22 h at 65° C. to bring reaction to completion. The RM was diluted with EtOAc, washed with saturated aqueous NaHCO3, with brine, dried over Na2SO4, filtered and evaporated. The residue was absorbed on silica gel and purified by flash chromatography (heptane/EtOAc 0% to 30%) to give after evaporation of the fractions containing the title compound an oil (HPLC: tR 3.41 min (Method A); M+H=315, 317 MS-ES).


The following examples were synthesized in a similar manner as described for Example 155.1 using the specified intermediate.






















HPLC






MS-ES
tR


Example
Intermed.
structure
Name of the example
(M + H)
(min)




















155.2
F


embedded image


8-(5-Ethylamino-6- hydroxymethyl- pyridin-3-yl)-1-(1- ethyl-3-methyl-1H- pyrazol-4-yl)-3- methyl-1,3-dihydro- imidazo[4,5-c] quinolin-2-one
458
2.15





155.3
G


embedded image


8-(5-Ethylamino-6- hydroxymethyl- pyridin-3-yl)-1-(1- isopropyl-3-methyl- 1H-pyrazol-4-yl)-3- methyl-1,3-dihydro- imidazo[4,5-c] quinolin-2-one
472
2.21





155.4
H


embedded image


8-(5-Ethylamino-6- hydroxymethyl- pyridin-3-yl)-3-methyl- 1-(1,3,5-trimethyl-1H- pyrazol-4-yl)-1,3- dihydro-imidazo[4,5-c] quinolin-2-one
458
2.16









Example 156
1-(1,3-Dimethyl-1H-pyrazol-4-yl)-8-(5-ethylamino-6-methoxymethyl-pyridin-3-yl)-3-methyl-1,3-dihydro-imidazo[4,5-c]quinolin-2-one



embedded image


A solution of 1-(1,3-dimethyl-1H-pyrazol-4-yl)-8-(5-ethylamino-6-hydroxymethyl-pyridin-3-yl)-3-methyl-1,3-dihydro-imidazo[4,5-c]quinolin-2-one (Example 155.1, 0.086 mmol) in DMF (0.5 ml) was treated with 55% NaH in oil (0.086 mmol) and the RM was stirred for 10 min at rt, then was added iodomethane (0.086 mmol) and the RM was stirred for 2 h at rt. The RM was quenched with water, diluted with DMF, filtered and purified by preparative HPLC. The pure fractions were basified with NaHCO3, concentrated and extracted with CH2Cl2 (3×) and with EtOAc. The combined organic layers were dried over Na2SO4, filtered, evaporated and dried under vacuum to give the title compound as a film. (HPLC: tR 2.24 min (Method A); M+H=458 MS-ES; 1H-NMR (d6-DMSO, 400 MHz) 8.97 (s, 1H), 8.13-8.08 (m, 2H), 7.98-7.91 (m, 2H), 7.64-7.61 (m, 1H), 6.90 (s, 1H), 5.32 (t, 1H), 4.53 (s, 2H), 3.88 (s, 3H), 3.58 (s, 3H), 3.28 (s, 3H), 3.20 (qt, 2H), 1.97 (s, 3H), 1.23 (t, 3H))


Example 157
8-(5-Ethylamino-6-methoxymethyl-pyridin-3-yl)-1-(1-ethyl-3-methyl-1H-pyrazol-4-yl)-3-methyl-1,3-dihydro-imidazo[4,5-c]quinolin-2-one



embedded image


The title compound was synthesized in a similar manner as described for Example 156.1 using 8-(5-ethylamino-6-hydroxymethyl-pyridin-3-yl)-1-(1-ethyl-3-methyl-1H-pyrazol-4-yl)-3-methyl-1,3-dihydro-imidazo[4,5-c]quinolin-2-one (Example 155.2) to give the title compound as an off-white solid. (HPLC: tR 2.29 min (Method A); M+H=472 MS-ES; 1H-NMR (d6-DMSO, 400 MHz) 8.97 (s, 1H), 8.16 (s, 1H), 8.12-8.08 (m, 1H), 7.96-7.92 (m, 1H), 7.87-7.85 (m, 1H), 7.58-7.56 (m, 1H), 6.95-6.92 (m, 1H), 5.31 (t, 1H), 4.52 (s, 2H), 4.15 (q, 2H), 3.58 (s, 3H), 3.26 (s, 3H), 3.25-3.17 (m, 2H), 1.97 (s, 3H), 1.37 (t, 3H), 1.22 (t, 3H))


Example 158.1
1-(1,3-Dimethyl-1H-pyrazol-4-yl)-8-(6-hydroxymethyl-5-methylamino-pyridin-3-yl)-3-methyl-1,3-dihydro-imidazo[4,5-c]quinolin-2-one



embedded image


The title compound was synthesized in a similar manner as described for Example 155.1 using (5-bromo-2-methyl-pyridin-3-yl)-methyl-carbamic acid tert-butyl ester (stage 158.1.1) to give the title compound as an off-white solid. (HPLC: tR 2.02 min (Method A); M+H=430 MS-ES; 1H-NMR (d6-DMSO, 400 MHz) 8.97 (s, 1H), 8.13-8.07 (m, 2H), 7.99-7.90 (m, 2H), 7.65-7.61 (m, 1H), 6.85-6.80 (m, 1H), 5.67 (q, br, 1H), 5.22 (br, 1H), 4.55 (d, 2H), 3.88 (s, 3H), 3.58 (s, 3H), 2.83 (d, 3H), 1.97 (s, 3H))


Stage 158.1.1 (5-Bromo-2-methyl-pyridin-3-yl)-methyl-carbamic acid tert-butyl ester



embedded image


A solution of (5-bromo-2-methyl-pyridin-3-yl)-carbamic acid tert-butyl ester (Stage 158.1.2, 4.53 mmol) in DMF (20 ml) was cooled with an ice-bath and 55% NaH in oil (5.89 mmol) was added. The RM was stirred for 25 min at 0° C. then was added iodomethane (5.22 mmol). The RM was stirred for 2 h at it then was quenched with aqueous NaHCO3 and extracted with EtOAc. The organic layer was washed with water (3×), with brine (3×), dried over Na2SO4, filtered, evaporated and dried under vacuum to give the title compound as a brown solid (HPLC: tR 3.20 min (Method A); M+H=301, 303 MS-ES).


Stage 158.1.2 (5-Bromo-2-methyl-pyridin-3-yl)-carbamic acid tert-butyl ester



embedded image


The title compound was synthesized in a similar manner as described for stage 155.1.5 using 5-bromo-2-methyl-pyridin-3-ylamine (Stage 75.1.4, 7.86 mmol) to give the title compound as an oil (HPLC: tR 2.88 min (Method A); M+H=287, 289 MS-ES).


The following examples were synthesized in a similar manner as described for Example 158.1 using the specified intermediate.






















HPLC






MS-ES
tR


Example
Intermed.
structure
Name of the example
(M + H)
(min)




















158.2
G


embedded image


8-(6-Hydroxymethyl- 5-methylamino- pyridin-3-yl)-1-(1- isopropyl-3-methyl- 1H-pyrazol-4-yl)-3- methyl-1,3-dihydro- imidazo[4,5-c] quinolin-2-one
458
2.12





158.3
K


embedded image


1-(3-Chloro-1-methyl- 1H-pyrazol-4-yl)-8-(6- hydroxymethyl-5- methylamino-pyridin- 3-yl)-3-methyl-1,3- dihydro-imidazo[4,5-c] quinolin-2-one
450
2.20





158.4
H


embedded image


8-(6-Hydroxymethyl- 5-methylamino- pyridin-3-yl)-3-methyl- 1-(1,3,5-trimethyl-1H- pyrazol-4-yl)-1,3- dihydro-imidazo[4,5-c] quinolin-2-one
444
2.07





158.5
F


embedded image


1-(1-Ethyl-3-methyl- 1H-pyrazol-4-yl)-8-(6- hydroxymethyl-5- methylamino-pyridin- 3-yl)-3-methyl-1,3- dihydro-imidazo[4,5-c] quinolin-2-one
444
2.07









Example 159
1-(1,3-Dimethyl-1H-pyrazol-4-yl)-8-(6-methoxymethyl-5-methylamino-pyridin-3-yl)-3-methyl-1,3-dihydro-imidazo[4,5-c]quinolin-2-one



embedded image


The title compound was synthesized in a similar manner as described for Example 156.1 using 1-(1,3-dimethyl-1H-pyrazol-4-yl)-8-(6-hydroxymethyl-5-methylamino-pyridin-3-yl)-3-methyl-1,3-dihydro-imidazo[4,5-c]quinolin-2-one (Example 158.1) to give the title compound as an off-white foam. (HPLC: tR 2.15 min (Method A); M+H=444 MS-ES; 1H-NMR (d6-DMSO, 400 MHz) 8.97 (s, 1H), 8.12-8.08 (m, 2H), 7.99-7.91 (m, 2H), 7.65-7.62 (m, 1H), 6.85-6.82 (m, 1H), 5.57 (q, 1H), 4.49 (s, 2H), 3.88 (s, 3H), 3.58 (s, 3H), 3.27 (s, 3H), 2.82 (d, 3H), 1.97 (s, 3H))


Example 160.1
1-(3-Chloro-1-methyl-1H-pyrazol-4-yl)-8-(6-methoxymethyl-5-methylamino-pyridin-3-yl)-3-methyl-1,3-dihydro-imidazo[4,5-c]quinolin-2-one



embedded image


The title compound was synthesized in a similar manner as described for Example 156.1 using 1-(3-chloro-1-methyl-1H-pyrazol-4-yl)-8-(6-hydroxymethyl-5-methylamino-pyridin-3-yl)-3-methyl-1,3-dihydro-imidazo[4,5-c]quinolin-2-one (Example 158.3) to give the title compound as an off-white solid. (HPLC: tR 2.32 min (Method A); M+H=464 MS-ES; 1H-NMR (d6-DMSO, 400 MHz) 9.00 (s, 1H), 8.37 (s, 1H), 8.14-8.09 (m, 1H), 8.02-7.94 (m, 2H), 7.63-7.60 (m, 1H), 6.90-6.86 (m, 1H), 5.60 (q, br, 1H), 4.50 (s, 2H), 3.95 (s, 3H), 3.59 (s, 3H), 3.28 (s, 3H), 2.83 (d, 3H))


The following example was synthesized in a similar manner as described for Example 156.1 using the specified example as intermediate.






















HPLC






MS-ES
tR


Example
Intermed.
structure
Name of the example
(M + H)
(min)




















160.2
158.5


embedded image


1-(1-Ethyl-3-methyl- 1H-pyrazol-4-yl)-8-(6- methoxymethyl-5- methylamino-pyridin- 3-yl)-3-methyl-1,3- dihydro-imidazo[4,5-c] quinolin-2-one
458
2.19









Example 161
1-(1,3-Dimethyl-1H-pyrazol-4-yl)-8-(6-ethyl-5-ethylamino-pyridin-3-yl)-3-methyl-1,3-dihydro-imidazo[4,5-c]quinolin-2-one



embedded image


The title compound was synthesized in a similar manner as described for Example 87.1 using diethyl methylmalonate (Fluka, Buchs, Switzerland) to give the title compound as a white solid. (HPLC: tR 2.26 min (Method A); M+H=442 MS-ES; 1H-NMR (d6-DMSO, 400 MHz) 8.96 (s, 1H), 8.12-8.07 (m, 2H), 7.96-7.91 (m, 2H), 7.63-7.59 (m, 1H), 6.78-6.75 (m, 1H), 5.29 (t, 1H), 3.88 (s, 3H), 3.58 (s, 3H), 3.18 (qt, 2H), 2.67 (q, 2H), 1.97 (s, 3H), 1.25 (t, 3H), 1.20 (t, 3H))


Example 162
1-(1,3-Dimethyl-1H-pyrazol-4-yl)-8-(6-ethyl-5-isopropylamino-pyridin-3-yl)-3-methyl-1,3-dihydro-imidazo[4,5-c]quinolin-2-one



embedded image


The title compound was synthesized in a similar manner as described for Example 161 using (5-bromo-2-ethyl-pyridin-3-yl)-isopropyl-amine (Stage 162.1.1) to give the title compound as an off-white foam. (HPLC: tR 2.34 min (Method A); M+H=456 MS-ES; 1H-NMR (d6-DMSO, 400 MHz) 8.96 (s, 1H), 8.12-8.07 (m, 2H), 7.95-7.90 (m, 2H), 7.61-7.58 (m, 1H), 6.81-6.78 (m, 1H), 4.88 (d, 1H), 3.88 (s, 3H), 3.76-3.62 (m, 1H), 3.58 (s, 3H), 2.67 (q, 2H), 1.97 (s, 3H), 1.25 (d, 3H), 1.21 (d, 3H), 1.19 (t, 3H))


Stage 162.1.1 (5-Bromo-2-ethyl-pyridin-3-yl)-isopropyl-amine



embedded image


To solution of (5-bromo-2-ethyl-pyridin-3-yl)-isopropylidene-amine (Stage 162.1.2, 1.17 mmol) in dichloromethane (25 ml) was added AcOH (0.25 ml) and sodium triacetoxyborohydride (3.51 mmol). The reaction mixture was stirred for 4 h at rt. The RM was quenched with aqueous NaHCO3 and extracted with dichloromethane (2×). The combined organic layers were washed with saturated aqueous NaHCO3, with brine, dried over Na2SO4, filtered and evaporated. The residue was absorbed on silica gel and eluted (CH2Cl2/MeOH 0% to 3%). The fractions containing the product were purified by preparative HPLC. The fractions containing pure product were basified with NaHCO3, concentrated and extracted with EtOAc (3×). The combined organic layers were dried over Na2SO4, filtered and evaporated to the title compound as an oil (HPLC: tR 2.40 min (Method A); M+H=243, 245 MS-ES).


Stage 162.1.2 (5-Bromo-2-ethyl-pyridin-3-yl)-isopropylidene-amine



embedded image


To a solution of 5-bromo-2-ethyl-pyridin-3-ylamine (1.492 mmol), synthesized in a similar manner as described for 5-bromo-2-methyl-pyridin-3-ylamine (Stage 75.1.4) using diethyl methylmalonate (HPLC: tR 1.71min (Method A); M+H=201, 203 MS-ES), in chloroform (0.75 ml) and 2-methoxypropene (Aldrich, Buchs, Switzerland, 7.46 mmol) were added triethylamine (1.492 mmol) and pyridinium para-toluensulfonate (0.149 mmol). The RM was stirred for 17 h at 100° C., then was quenched with aqueous Na2CO3 and extracted with EtOAc (2×). The combined organic layers were washed with brine, dried over Na2SO4, filtered, evaporated and dried under vacuum to give the title compound as a brown oil (M+H=241, 243 MS-ES).


Example 163
1-(1,3-Dimethyl-1H-pyrazol-4-yl)-3-methyl-8-(6-methyl-5-methylamino-pyridin-3-yl)-1,3-dihydro-imidazo[4,5-c]quinolin-2-one



embedded image


The title compound was synthesized in a similar manner as described for Example 1.1 using 8-bromo-1-(1,3-dimethyl-1H-pyrazol-4-yl)-3-methyl-1,3-dihydro-imidazo[4,5-c]quinolin-2-one (Intermediate A) and methyl-[2-methyl-5-(4,4,5,5-tetramethyl-[1,3,2]dioxaborolan-2-yl)-pyridin-3-yl]-amine (Stage 163.1.1) to give the title compound as a white solid. (HPLC: tR 2.10 min (Method A); M+H=414 MS-ES; 1H-NMR (d6-DMSO, 400 MHz) 8.95 (s, 1H), 8.12-8.06 (m, 2H), 7.96-7.92 (m, 1H), 7.89-7.87 (m, 1H), 7.62-7.60 (m, 1H), 6.73-6.70 (m, 1H), 5.51 (q, br, 1H), 3.88 (s, 3H), 3.57 (s, 3H), 2.80 (d, 3H), 2.31 (s, 3H), 1.97 (s, 3H))


Stage 163.1.1 Methyl[2-methyl-5-(4,4,5,5-tetramethyl-[1,3,2]dioxaborolan-2-yl)-pyridin-3-yl]-amine



embedded image


The title compound was synthesized in a similar manner as described for Stage 5.1.1 using (5-bromo-2-methyl-pyridin-3-yl)-methyl-amine (stage 163.1.2, 1.194 mmol) to give the title compound as a crude black oil. (degrading under the HPLC condition: tR 1.64 min (Method A); M+H=249 MS-ES).


Stage 163.1.2 (5-Bromo-2-methyl-pyridin-3-yl)-methyl-amine



embedded image


To a solution of 5-bromo-2-methyl-pyridin-3-ylamine (Stage 75.1.4, 3.81 mmol) in THF (25 ml) cooled with an ice-bath was added 1 M bis(trimethylsilyl)amide in THF (4.38 mmol). The RM was stirred for 1 h at rt then was added iodomethane (4.38 mmol). The RM was stirred for 1 h at rt. The RM was cooled with an ice-bath and was added 1 M bis(trimethylsilyl)amide in THF (1.9 mmol). The RM was stirred for 30 min at it then was added iodomethane (1.9 mmol). The RM was stirred for 1 h at it then was diluted with EtOAc and washed with aqueous Na2CO3, with brine, dried over Na2SO4, filtered and evaporated. The residue was taken in MeOH and separated by preparative HPLC. The first eluting pure fractions containing product were basified with NaHCO3, concentrated and extracted with dichloromethane (2×). The combined fractions were washed with brine, dried over Na2SO4, filtered and evaporated to give the title compound as a brown oil (HPLC: tR 1.88 min (Method A); M+H=201, 203 MS-ES). The second eluting pure fractions, that contained (5-bromo-2-methyl-pyridin-3-yl)-dimethyl-amine side product, were basified with NaHCO3, concentrated and extracted with dichloromethane (2×). The combined fractions were washed with brine, dried over Na2SO4, filtered and evaporated to give the title compound as a brown oil (HPLC: tR 2.01 min (Method A); M+H=215, 217 MS-ES).


Example 164
8-(5-Dimethylamino-6-methyl-pyridin-3-yl)-1-(1,3-dimethyl-1H-pyrazol-4-yl)-3-methyl-1,3-dihydro-imidazo[4,5-c]quinolin-2-one



embedded image


The title compound was synthesized in a similar manner as described for Example 1.1 using 8-bromo-1-(1,3-dimethyl-1H-pyrazol-4-yl)-3-methyl-1,3-dihydro-imidazo[4,5-c]quinolin-2-one (Intermediate A) and dimethyl-[2-methyl-5-(4,4,5,5-tetramethyl-[1,3,2]dioxaborolan-2-yl)-pyridin-3-yl]-amine (Stage 164.1.1) to give the title compound as an off-white foam. (HPLC: tR 2.15 min (Method A); M+H=428 MS-ES; 1H-NMR (d6-DMSO, 400 MHz) 8.97 (s, 1H), 8.30-8.27 (m, 1H), 8.13-8.08 (m, 2H), 7.99-7.94 (m, 1H), 7.59-7.56 (m, 1H), 7.33-7.30 (m, 1H), 3.88 (s, 3H), 3.58 (s, 3H), 2.72 (s, 6H), 2.50 (s, 3H), 1.97 (s, 3H))


Stage 164.1.1 Dimethyl-[2-methyl-5-(4,4,5,5-tetramethyl-[1,3,2]dioxaborolan-2-yl)-pyridin-3-yl]-amine



embedded image


The title compound was synthesized in a similar manner as described for Stage 5.1.1 using (5-bromo-2-methyl-pyridin-3-yl)-dimethyl-amine (stage 163.1.2, 1.255 mmol) to give the title compound as a crude black oil. (degrading under the HPLC condition: tR 1.93 min (Method A); M+H=263 MS-ES).


Example 165
1-(1,3-Dimethyl-1H-pyrazol-4-yl)-8-[5-(ethyl-methyl-amino)-6-methyl-pyridin-3-yl]-3-methyl-1,3-dihydro-imidazo[4,5-c]quinolin-2-one



embedded image


The title compound was synthesized in a similar manner as described for Example 1.1 using 8-bromo-1-(1,3-dimethyl-1H-pyrazol-4-yl)-3-methyl-1,3-dihydro-imidazo[4,5-c]quinolin-2-one (Intermediate A) and ethyl-methyl-[2-methyl-5-(4,4,5,5-tetramethyl-[1,3,2]dioxaborolan-2-yl)-pyridin-3-yl]-amine (Stage 165.1.1) to give the title compound as a white foam. (HPLC: tR 2.26 min (Method A); M+H=442 MS-ES; 1H-NMR (d6-DMSO, 400 MHz) 8.95 (s, 1H), 8.32-8.29 (m, 1H), 8.13-8.09 (m, 2H), 7.99-7.94 (m, 1H), 7.61-7.58 (m, 1H), 7.35-7.32 (m, 1H), 3.89 (s, 3H), 3.58 (s, 3H), 2.97 (q, 2H), 2.71 (s, 31-1), 2.45 (s, 3H), 1.97 (s, 3H), 1.09 (t, 3H))


Stage 165.1.1 Ethyl-methyl-[2-methyl-5-(4,4,5,5-tetramethyl-[1,3,2]dioxaborolan-2-yl)-pyridin-3-yl]-amine



embedded image


The title compound was synthesized in a similar manner as described for Stage 5.1.1 using (5-bromo-2-methyl-pyridin-3-yl)-ethyl-methyl-amine (stage 165.1.2, 0.646 mmol) to give the title compound as a crude black oil. (degrading under the HPLC condition: tR 2.12 min (Method A); M+H=277 MS-ES).


Stage 165.1.2 (5-Bromo-2-methyl-pyridin-3-yl)-ethyl-methyl-amine



embedded image


The title compound was synthesized in a similar manner as described for Stage 163.1.2 using (5-bromo-2-methyl-pyridin-3-yl)-ethyl-amine (Stage 87.1.2, 0.677 mmol) to give the title compound as a brown oil (HPLC: tR 2.22 min (Method A); M+H=229, 231 MS-ES).


Example 166.1
8-(6-Amino-5-ethoxymethyl-pyridin-3-yl)-1-(1,3-dimethyl-1H-pyrazol-4-yl)-3-methyl-1,3-dihydro-imidazo[4,5-c]quinolin-2-one



embedded image


The title compound was synthesized in a similar manner as described for Example 1.1 using 8-bromo-1-(1,3-dimethyl-1H-pyrazol-4-yl)-3-methyl-1,3-dihydro-imidazo[4,5-c]quinolin-2-one (Intermediate A) and 3-ethoxymethyl-5-(4,4,5,5-tetramethyl-[1,3,2]dioxaborolan-2-yl)-pyridin-2-ylamine (Stage 166.1.1) to give the title compound as a white solid. (HPLC: tR 2.17 min (Method A); M+H=444 MS-ES; 1H-NMR (d6-DMSO, 400 MHz) 8.90 (s, 1H), 8.13 (s, 1H), 8.08-8.06 (m, 1H), 8.05-8.01 (m, 1H), 7.86-7.82 (m, 1H), 7.49-7.47 (m, 1H), 7.44-7.42 (m, 1H), 6.02 (s, br, 2H), 4.37 (s, 2H), 3.92 (s, 3H), 3.57 (s, 3H), 3.51 (q, 2H), 1.95 (s, 3H), 1.18 (t, 3H))


Stage 166.1.1 3-Ethoxymethyl-5-(4,4,5,5-tetramethyl-[1,3,2]dioxaborolan-2-yl)-pyridin-2-ylamine



embedded image


The title compound was synthesized in a similar manner as described for Stage 5.1.1 using 5-bromo-3-ethoxymethyl-pyridin-2-ylamine (stage 166.1.2, 1.082 mmol) to give the title compound as a crude black oil. (degrading under the HPLC condition: tR 1.72 min (Method A); M+H=279 MS-ES).


Stage 166.1.2 5-Bromo-3-ethoxymethyl-pyridin-2-ylamine



embedded image


A solution of (2-amino-5-bromo-pyridin-3-yl)-methanol hydrobromide (Apollo, Cheshire, UK, 3.52 mmol) in DMF (15 ml) cooled with an ice-bath was treated with 55% NaH in oil (7.4 mmol) and the RM was stirred for 5 min at 0° C. and 30 min at rt, then was added iodoethane (3.87 mmol) and the RM was stirred for 1 h 15 min at rt. The RM was quenched with water and extracted with EtOAc. The organic layer was washed with saturated aqueous NaHCO3, with brine (2×), dried over Na2SO4, filtered and evaporated. The residue was taken in DMF and purified by preparative HPLC. The fractions containing product were basified with NaHCO3, concentrated and extracted with CH2Cl2 (2×). The combined organic layers were washed with brine, dried over Na2SO4, filtered, evaporated and dried under vacuum to give the title compound as a light yellow oil. (HPLC: tR 2.07 min (Method A); M+H=231, 233 MS-ES)


The following examples were synthesized in a similar manner as described for Example 1.1 using 3-ethoxymethyl-5-(4,4,5,5-tetramethyl-[1,3,2]dioxaborolan-2-yl)-pyridin-2-ylamine (Stage 166.1.1) and the specified intermediate.






















HPLC






MS-ES
tR


Example
Intermed.
structure
Name of the example
(M + H)
(min)




















166.2
F


embedded image


8-(6-Amino-5- ethoxymethyl-pyridin- 3-yl)-1-(1-ethyl-3- methyl-1H-pyrazol-4- yl)-3-methyl-1,3- dihydro-imidazo[4,5-c] quinolin-2-one
458
2.22





166.3
G


embedded image


8-(6-Amino-5- ethoxymethyl-pyridin- 3-yl)-1-(1-isopropyl-3- methyl-1H-pyrazol-4- yl)-3-methyl-1,3- dihydro-imidazo[4,5-c] quinolin-2-one
472
2.29





166.4
K


embedded image


8-(6-Amino-5- ethoxymethyl-pyridin- 3-yl)-1-(3-chloro-1- methyl-1H-pyrazol-4- yl)-3-methyl-1,3- dihydro-imidazo[4,5-c] quinolin-2-one
464
2.33





166.5
H


embedded image


8-(6-Amino-5- ethoxymethyl-pyridin- 3-yl)-3-methyl-1- (1,3,5-trimethyl-1H- pyrazol-4-yl)-1,3- dihydro-imidazo[4,5-c] quinolin-2-one
458
2.21









Example 167
1-(1,3-Dimethyl-1H-pyrazol-4-yl)-8-(5-ethoxymethyl-6-ethylamino-pyridin-3-yl)-3-methyl-1,3-dihydro-imidazo[4,5-c]quinolin-2-one



embedded image


The title compound was synthesized in a similar manner as described for Example 1.1 using 8-bromo-1-(1,3-dimethyl-1H-pyrazol-4-yl)-3-methyl-1,3-dihydro-imidazo[4,5-c]quinolin-2-one (Intermediate A) and [3-ethoxymethyl-5-(4,4,5,5-tetramethyl-[1,3,2]dioxaborolan-2-yl)-pyridin-2-yl]-ethyl-amine (Stage 167.1.1) to give the title compound as a white solid. (HPLC: tR 2.30 min (Method A); M+H=472 MS-ES; 1H-NMR (d6-DMSO, 400 MHz) 8.90 (s, 1H), 8.19-8.16 (m, 1H), 8.12 (s, 1H), 8.05-8.01 (m, 1H), 7.87-7.83 (m, 1H), 7.44-7.41 (m, 2H), 6.07 (t, 1H), 4.39 (s, 2H), 3.92 (s, 3H), 3.56 (s, 3H), 3.51 (q, 2H), 3.46-3.37 (m, 2H), 1.95 (s, 3H), 1.19 (t, 3H), 1.15 (t, 3H))


Stage 167.1.1 [3-Ethoxymethyl-5-(4,4,5,5-tetramethyl-[1,3,2]dioxaborolan-2-yl)-pyridin-2-yl]-ethyl-amine



embedded image


The title compound was synthesized in a similar manner as described for Stage 5.1.1 using (5-bromo-3-ethoxymethyl-pyridin-2-yl)-ethyl-amine (stage 167.1.2, 0.99 mmol) to give the title compound as a crude black oil. (degrading under the HPLC condition: tR 1.98 min (Method A); M+H=307 MS-ES).


Stage 167.1.2 (5-Bromo-3-ethoxymethyl-pyridin-2-yl)-ethyl-amine



embedded image


The title compound was synthesized in a similar manner as described for Stage 87.1.2 using 5-bromo-3-ethoxymethyl-pyridin-2-ylamine (stage 166.1.2, 1.082 mmol) to give the title compound as a yellow oil. (HPLC: tR 2.30 min (Method A); M+H=259, 261 MS-ES)


Example 168.1
8-(6-Amino-5-methoxymethyl-pyridin-3-yl)-1-(1-isopropyl-3-methyl-1H-pyrazol-4-yl)-3-methyl-1,3-dihydro-imidazo[4,5-c]quinolin-2-one



embedded image


The title compound was synthesized in a similar manner as described for Example 1.1 using 8-bromo-1-(1-isopropyl-3-methyl-1H-pyrazol-4-yl)-3-methyl-1,3-dihydro-imidazo[4,5-c]quinolin-2-one (Intermediate G) and 3-methoxymethyl-5-(4,4,5,5-tetramethyl-[1,3,2]dioxaborolan-2-yl)-pyridin-2-ylamine (Stage 168.1.1) to give the title compound as a white solid. (HPLC: tR 2.19 min (Method A); M+H=458 MS-ES; 1H-NMR (d6-DMSO, 400 MHz) 8.91 (s, 1H), 8.20 (s, 1H), 8.06-8.01 (m, 2H), 7.85-7.80 (m, 1H), 7.53-7.50 (m, 1H), 7.44-7.41 (m, 1H), 5.99 (s, br, 2H), 4.54 (hp, 1H), 4.30 (s, 2H), 3.57 (s, 3H), 3.31 (s, 3H), 1.95 (s, 3H), 1.47 (d, 6H))


Stage 168.1.1 3-Methoxymethyl-5-(4,4,5,5-tetramethyl-[1,3,2]dioxaborolan-2-yl)-pyridin-2-ylamine



embedded image


The title compound was synthesized in a similar manner as described for Stage 166.1.1-2 using iodomethane as replacement for iodoethane to give the title compound as a crude black soft solid. (degrading under the HPLC condition: tR 1.47 min (Method A); M+H=265 MS-ES).


The following examples were synthesized in a similar manner as described for Example 1.1 using 3-methoxymethyl-5-(4,4,5,5-tetramethyl-[1,3,2]dioxaborolan-2-yl)-pyridin-2-ylamine (Stage 168.1.1) and the specified intermediate.






















HPLC






MS-ES
tR


Example
Intermed.
structure
Name of the example
(M + H)
(min)




















168.2
F


embedded image


8-(6-Amino-5- methoxymethyl- pyridin-3-yl)-1-(1- ethyl-3-methyl-1H- pyrazol-4-yl)-3- methyl-1,3-dihydro- imidazo[4,5-c] quinolin-2-one
444
2.12





168.3
K


embedded image


8-(6-Amino-5- methoxymethyl- pyridin-3-yl)-1-(3- chloro-1-methyl-1H- pyrazol-4-yl)-3- methyl-1,3-dihydro- imidazo[4,5-c] quinolin-2-one
472
2.29









Example 169.1
8-(6-Amino-5-hydroxymethyl-pyridin-3-yl)-1-(1-isopropyl-3-methyl-1H-pyrazol-4-yl)-3-methyl-1,3-dihydro-imidazo[4,5-c]quinolin-2-one



embedded image


A mixture of 8-bromo-1-(1-isopropyl-3-methyl-1H-pyrazol-4-yl)-3-methyl-1,3-dihydro-imidazo[4,5-c]quinolin-2-one (Intermediate G, 0.098 mmol), crude acetic acid 2-diacetylamino-5-(4,4,5,5-tetramethyl-[1,3,2]dioxaborolan-2-yl)-pyridin-3-ylmethyl ester (stage 169.1.1, 0.92 mg) and PdCl2(PPh3)2 (0.0057 mmol) in DMF (1.2 ml) and 1 M aqueous K2CO3 (0.245 ml) was stirred under argon at 105° C. for 1 h. Then the RM was cooled to it and 2 M aqueous LiOH (0.245 ml) was added. The RM was stirred for 1 h 15 min at rt then quenched with 2 M aqueous HCl (0.245 ml), diluted with MeOH and purified directly by Prep.HPLC. The fractions containing product were collected together, basified with NaHCO3, concentrated and extracted with dichloromethane (2×). The combined organic layers were washed with brine, dried over Na2SO4, filtered, evaporated and dried under vacuum to give the title compound as a white solid. (HPLC: tR 2.04 min (Method A); M+H=444 MS-ES; 1H-NMR (d6-DMSO, 400 MHz) 8.91 (s, 1H), 8.20 (s, 1H), 8.06-8.02 (m, 1H), 7.97-7.94 (m, 1H), 7.83-7.78 (m, 1H), 7.57-7.54 (m, 1H), 7.45-7.42 (m, 1H), 5.95 (s, br, 2H), 5.20 (t, 1H), 4.55 (hp, 1H), 4.37 (d, 2H), 3.57 (s, 3H), 1.95 (s, 3H), 1.47 (d, 6H))


Stage 169.1.1 Acetic acid 2-diacetylamino-5-(4,4,5,5-tetramethyl-[1,3,2]dioxaborolan-2-yl)-pyridin-3-ylmethyl ester



embedded image


The title compound was synthesized in a similar manner as described for Stage 5.1.1 using acetic acid 2-diacetylamino-5-(4,4,5,5-tetramethyl-[1,3,2]dioxaborolan-2-yl)-pyridin-3-ylmethyl ester (stage 169.1.2, 1.762 mmol) to give the title compound as a crude black oil. (degrading under the HPLC condition: tR 2.05 min (Method A); M+H=377 MS-ES).


Stage 169.1.2 Acetic acid 2-diacetylamino-5-(4,4,5,5-tetramethyl-[1,3,2]dioxaborolan-2-yl)-pyridin-3-ylmethyl ester



embedded image


To a suspension of 2-amino-5-bromo-3-hydroxymethylpyridine hydrobromide (Apollo, Cheshire, UK, 1.761 mmol) in dichloromethane (9 ml) were added triethylamine (7.92 mmol) and then acetyl chloride (5.81 mmol). The RM was stirred for 1.5 h at it then was diluted with dichloromethane, washed with brine (2×), dried over Na2SO4, filtered, evaporated and dried under vacuum to give the title compound as an oil. (HPLC: tR 1.69 min (Method A); M+H=329, 331 MS-ES).


The following examples were synthesized in a similar manner as described for Example 169.1 using the specified intermediate.






















HPLC






MS-ES
tR


Example
Intermed.
structure
Name of the example
(M + H)
(min)




















169.2
H


embedded image


8-(6-Amino-5- hydroxymethyl- pyridin-3-yl)-3-methyl- 1-(1,3,5-trimethyl-1H- pyrazol-4-yl)-1,3- dihydro-imidazo[4,5-c] quinolin-2-one
430
1.98





169.3
K


embedded image


8-(6-Amino-5- hydroxymethyl- pyridin-3-yl)-1-(3- chloro-1-methyl-1H- pyrazol-4-yl)-3- methyl-1,3-dihydro- imidazo[4,5-c] quinolin-2-one
436
2.06









Example 170
1-(1-Isopropyl-3-methyl-1H-pyrazol-4-yl)-3-methyl-8-(1-methyl-2-oxo-1,4-dihydro-2H-pyrido[2,3-d][1,3]oxazin-6-yl)-1,3-dihydro-imidazo[4,5-c]quinolin-2-one



embedded image


The title compound was synthesized in a similar manner as described for Example 1.1 using 8-bromo-1-(1-isopropyl-3-methyl-1H-pyrazol-4-yl)-3-methyl-1,3-dihydro-imidazo[4,5-c]quinolin-2-one (Intermediate G, 0.125 mmol) and 1-methyl-6-(4,4,5,5-tetramethyl-[1,3,2]dioxaborolan-2-yl)-1,4-dihydro-pyrido[2,3-d][1,3]oxazin-2-one (Stage 170.1.1) to give the title compound as a beige solid. (HPLC: tR 2.59 min (Method A); M+H=484 MS-ES; 1H-NMR (d6-DMSO, 400 MHz) 8.98 (s, 1H), 8.35-8.33 (m, 1H), 8.21 (s, 1H), 8.15-8.11 (m, 1H), 7.91-7.83 (m, 2H), 7.52-7.49 (m, 1H), 5.36-5.29 (m, 2H), 4.56 (qt, 1H), 3.58 (s, 3H), 3.35 (s, 3H), 1.95 (s, 3H), 1.46 (d, 6H))


Stage 170.1.1 1-Methyl-6-(4,4,5,5-tetramethyl-[1,3,2]dioxaborolan-2-yl)-1,4-dihydro-pyrido[2,3-d][1,3]oxazin-2-one



embedded image


The title compound was synthesized in a similar manner as described for Stage 5.1.1 using 6-bromo-1-methyl-1,4-dihydro-pyrido[2,3-d][1,3]oxazin-2-one (stage 170.1.2, 0.30 mmol) to give the title compound as a crude brown soft solid. (degrading partially under the HPLC condition: tR 1.87 and 3.68 min (Method A); M+H=291 MS-ES).


Stage 170.1.2 6-Bromo-1-methyl-1,4-dihydro-pyrido[2,3-d][1,3]oxazin-2-one



embedded image


To a solution of 6-bromo-1,4-dihydro-pyrido[2,3-d][1,3]oxazin-2-one (Stage 170.1.3, 0.707 mmol) in DMF (1.4 ml) was added 55% sodium hydride in oil (0.778 mmol). The RM was stirred for 5 min at rt then was added iodomethane (0.778 mmol) and the RM was stirred for 30 min at rt. The RM was diluted with EtOAc, washed with saturated NaHCO3, with brine (3×), dried over Na2SO4, filtered and evaporated. The residue was absorbed on silica gel and separated by flash chromatography (heptane/EtOAc 0% to 70%). The fractions containing product were evaporated together to give the title compound as a yellow solid. (HPLC: tR 2.64 min (Method A).


Stage 170.1.3 6-Bromo-1,4-dihydro-pyrido[2,3-d][1,3]oxazin-2-one



embedded image


A mixture of 2-amino-5-bromo-3-hydroxymethylpyridine hydrobromide (Apollo, Cheshire, UK, 0.528 mmol) in dichloromethane (1.25 ml) and triethylamine (1.162 mmol) was cooled with an ice-bath. Was added to the RM trichloromethyl chloroformate (0.317 mmol) in dichloromethane and the RM was stirred for 30 min at 0° C. and 1 h at rt. The RM was diluted with dichloromethane, washed with saturated aqueous NaHCO3, dried over Na2SO4, filtered and evaporated. The residue was absorbed on silica gel and separated by flash chromatography (heptane/EtOAc 0% to 80%). The fractions containing product were evaporated together to give the title compound as a yellow solid. (HPLC: tR 2.16 min (Method A); M+H=229, 231 MS-ES)


Example 171
8-(5-Hydroxymethyl-6-methylamino-pyridin-3-yl)-1-(1-isopropyl-3-methyl-1H-pyrazol-4-yl)-3-methyl-1,3-dihydro-imidazo[4,5-c]quinolin-2-one



embedded image


A solution of 1-(1-isopropyl-3-methyl-1H-pyrazol-4-yl)-3-methyl-8-(1-methyl-2-oxo-1,4-dihydro-2H-pyrido[2,3-d][1,3]oxazin-6-yl)-1,3-dihydro-imidazo[4,5-c]quinolin-2-one (Example 170, 0.04 mmol) in dioxane (0.32 ml) and 1 M aqueous LiOH (0.08 ml) was stirred for 1.5 h at rt. The reaction mixture was diluted with EtOAc and quenched with 2 M aqueous HCl (0.12 ml) and water. Then was added saturated aqueous NaHCO3 and the aqueous layer was extracted with EtOAc (2×). The combined organic layers were dried over Na2SO4, filtered, evaporated and dried under vacuum to give the title compound as an off-white solid. (HPLC: tR 2.09 min (Method A); M+H=458 MS-ES; 1H-NMR (d6-DMSO, 400 MHz) 8.90 (s, 1H), 8.20 (s, 1H), 8.09-8.01 (m, 2H), 7.83-7.79 (m, 1H), 7.52-7.49 (m, 1H), 7.45-7.42 (m, 1H), 6.10 (q, br, 1H), 5.21 (t, 1H), 4.56 (qt, 1H), 4.38 (d, 2H), 3.57 (s, 3H), 2.86 (d, 3H), 1.95 (s, 3H), 1.49-1.45 (m, 6H))


Example 172
8-(5-Cyclobutylamino-pyridin-3-yl)-1-(1,3-dimethyl-1H-pyrazol-4-yl)-3-methyl-1,3-dihydro-imidazo[4,5-c]quinolin-2-one



embedded image


The title compound was synthesized in a similar manner as described for Example 1.1 using 8-bromo-1-(1,3-dimethyl-1H-pyrazol-4-yl)-3-methyl-1,3-dihydro-imidazo[4,5-c]quinolin-2-one (Intermediate A) and cyclobutyl-[5-(4,4,5,5-tetramethyl-[1,3,2]dioxaborolan-2-yl)-pyridin-3-yl]-amine (Stage 172.1.1) to give the title compound as a white solid. (HPLC: tR 2.29 min (Method A); M+H=440 MS-ES; 1H-NMR (d6-DMSO, 400 MHz) 8.97 (s, 1H), 8.13-8.07 (m, 2H), 7.93-7.84 (m, 3H), 7.58-7.55 (m, 1H), 6.80-6.76 (m, 1H), 6.34 (d, 1H), 3.94-3.85 (m, 1H), 3.90 (s, 3H), 3.58 (s, 3H), 2.44-2.34 (m, 2H), 1.96 (s, 3H), 1.93-1.73 (m, 4H))


Stage 172.1.1 Cyclobutyl-[5-(4,4,5,5-tetramethyl-[1,3,2]dioxaborolan-2-yl)-pyridin-3-yl]-amine



embedded image


The title compound was synthesized in a similar manner as described for Stage 5.1.1 using (5-bromo-pyridin-3-yl)-cyclobutyl-amine (stage 172.1.2, 2.349 mmol) to give the title compound as a crude brown foam. (degrading under the HPLC condition: tR 2.06 min (Method A); M+H=275 MS-ES).


Stage 172.1.2 (5-Bromo-pyridin-3-yl)-cyclobutyl-amine



embedded image


A mixture of 3-bromo-5-fluoropyridine (Frontier Scientific, Logan, USA, 5.63 mmol) and cyclobutylamine (Fluka, Buchs, Switzerland, 12.38 mmol) in NMP (8 ml) was heated under microwave irradiation for 1 h at 190° C. and for 5.5 h at 200° C. The reaction mixture was diluted with EtOAc and washed with saturated aqueous NaHCO3, with brine (3×), dried over Na2SO4, filtered, evaporated and dried under vacuum to give the title compound as an off-white solid. (HPLC: tR 2.31 min (Method A); M+H=227, 229 MS-ES)


Example 173
1-(1,3-Dimethyl-1H-pyrazol-4-yl)-8-[5-(isopropyl-methyl-amino)-pyridin-3-yl]-3-methyl-1,3-dihydro-imidazo[4,5-c]quinolin-2-one



embedded image


The title compound was synthesized in a similar manner as described for Example 172 using N-isopropylmethylamine (Fluka, Buchs, Switzerland, 7.61 mmol) as replacement of the cyclobutylamine to give the title compound as a white solid. (HPLC: tR 2.29 min (Method A); M+H=442 MS-ES; 1H-NMR (d6-DMSO, 400 MHz) 8.98-8.97 (m, 1H), 8.18-8.15 (m, 1H), 8.13-8.08 (m, 2H), 8.03-8.00 (m, 1H), 7.98-7.93 (m, 1H), 7.61-7.58 (m, 1H), 7.05-7.03 (m, 1H), 4.20 (qt, 1H), 3.87 (s, 3H), 3.58 (s, 3H), 2.77 (s, 3H), 1.97 (s, 3H), 1.17 (d, 3H), 1.16 (d, 3H))


Example 174
8-[5-(Cyclobutyl-methyl-amino)-pyridin-3-yl]-1-(1,3-dimethyl-1H-pyrazol-4-yl)-3-methyl-1,3-dihydro-imidazo[4,5-c]quinolin-2-one



embedded image


The title compound was synthesized in a similar manner as described for Example 1.1 using 8-bromo-1-(1,3-dimethyl-1H-pyrazol-4-yl)-3-methyl-1,3-dihydro-imidazo[4,5-c]quinolin-2-one (Intermediate A) and Cyclobutyl-methyl-[5-(4,4,5,5-tetramethyl-[1,3,2]dioxaborolan-2-yl)-pyridin-3-yl]-amine (Stage 174.1.1) to give the title compound as a white solid. (HPLC: tR 2.39 min (Method A); M+H=454 MS-ES; 1H-NMR (d6-DMSO, 400 MHz) 8.97 (s, 1H), 8.15-8.04 (m, 4H), 7.96-7.92 (m, 1H), 7.60-7.57 (m, 11-1), 7.06-7.03 (m, 1H), 4.17 (qt, 1H), 3.88 (s, 3H), 3.58 (s, 3H), 2.89 (s, 3H), 2.28-2.02 (m, 4H), 1.97 (s, 3H), 1.81-1.63 (m, 2H))


Stage 174.1.1 Cyclobutyl-methyl-[5-(4,4,5,5-tetramethyl-[1,3,2]dioxaborolan-2-yl)-pyridin-3-yl]-amine



embedded image


The title compound was synthesized in a similar manner as described for Stage 5.1.1 using (5-bromo-pyridin-3-yl)-cyclobutyl-methyl-amine (stage 174.1.2, 2.349 mmol) to give the title compound as a crude black sticky oil. (degrading under the HPLC condition: tR 2.27 min (Method A); M+H=289 MS-ES).


Stage 174.1.2 (5-Bromo-pyridin-3-yl)-cyclobutyl-methyl-amine



embedded image


The title compound was synthesized in a similar manner as described for Stage 163.1.2 using (5-bromo-pyridin-3-yl)-cyclobutyl-amine (stage 172.1.2, 0.427 mmol) to give the title compound as a crude brown oil. (HPLC: tR 2.49 min (Method A); M+H=241, 243 MS-ES).


Example 175.1
1-(1,3-Dimethyl-1H-pyrazol-4-yl)-3-methyl-8-(5-morpholin-4-yl-pyridin-3-yl)-1,3-dihydro-imidazo[4,5-c]quinolin-2-one



embedded image


The title compound was synthesized in a similar manner as described for Example 172 using morpholine (Fluka, Buchs, Switzerland, 6.02 mmol) as replacement of the cyclobutylamine to give the title compound as an off-white solid. (HPLC: tR 2.10 min (Method A); M+H=456 MS-ES; 1H-NMR (d6-DMSO, 400 MHz) 8.98 (s, 1H), 8.34-8.31 (m, 1H), 8.20-8.17 (m, 1H), 8.14-8.09 (m, 2H), 8.01-7.96 (m, 1H), 7.60-7.58 (m, 1H), 7.29-7.26 (m, 1H), 3.88 (s, 3H), 3.82-3.77 (m, 4H), 3.58 (s, 3H), 3.27-3.21 (m, 4H), 1.95 (s, 3H))


The following examples were synthesized in a similar manner as described for Example 175.1 using the specified intermediate.






















HPLC






MS-ES
tR


Example
Intermed.
structure
Name of the example
(M + H)
(min)




















175.2
C


embedded image


1-(2,5-Dimethyl-2H- pyrazol-3-yl)-3- methyl-8-(5- morpholin-4-yl- pyridin-3-yl)-1,3- dihydro-imidazo[4,5-c] quinolin-2-one
456
2.26





175.3
Stage 103.1.1


embedded image


1-[1-(2-Hydroxy- ethyl)-3-methyl-1H- pyrazol-4-yl]-3- methyl-8-(5- morpholin-4-yl- pyridin-3-yl)-1,3- dihydro-imidazo[4,5-c] quinolin-2-one
486
2.05









Example 176
1-(1,3-Dimethyl-1H-pyrazol-4-yl)-8-[5-(ethyl-methyl-amino)-pyridin-3-yl]-3-methyl-1,3-dihydro-imidazo[4,5-c]quinolin-2-one



embedded image


The title compound was synthesized in a similar manner as described for Example 172 using N-ethylmethylamine (Aldrich, Buchs, Switzerland, 5.75 mmol) as replacement for the cyclobutylamine to give the title compound as a yellowish solid. (HPLC: tR 2.21 min (Method A); M+H=428 MS-ES; 1H-NMR (d6-DMSO, 400 MHz) 8.97 (s, 1H), 8.13-8.07 (m, 3H), 8.02-7.99 (m, 1H), 7.98-7.93 (m, 1H), 7.62-7.58 (m, 1H), 6.99-6.96 (m, 1H), 3.87 (s, 3H), 3.58 (s, 3H), 3.53-3.43 (m, 2H), 2.95 (s, 3H), 1.96 (s, 3H), 1.07 (t, 3H))


Example 177.1
1-(1,3-Dimethyl-1H-pyrazol-4-yl)-8-(5-isopropylamino-pyridin-3-yl)-3-methyl-1,3-dihydro-imidazo[4,5-c]quinolin-2-one



embedded image


The title compound was synthesized in a similar manner as described for Example 172 using isopropylamine (Aldrich, Buchs, Switzerland, 6.27 mmol) as replacement of the cyclobutylamine to give the title compound as an off-white solid. (HPLC: tR 2.21 min (Method A); M+H=428 MS-ES; 1H-NMR (d6-DMSO, 400 MHz) 8.97 (s, 1H), 8.13-8.07 (m, 2H), 7.96-7.92 (m, 1H), 7.90-7.84 (m, 2H), 7.59-7.56 (m, 1H), 6.87-6.84 (m, 1H), 5.87 (d, 1H), 3.88 (s, 3H), 3.63 (oc, 1H), 3.58 (s, 3H), 1.95 (s, 3H), 1.22-1.13 (m, 6H))


The following example was synthesized in a similar manner as described for Example 177.1 using the specified intermediate.






















HPLC






MS-ES
tR


Example
Intermed.
structure
Name of the example
(M + H)
(min)




















177.2
N


embedded image


8-(5-Isopropylamino- pyridin-3-yl)-1-[1-(2- methoxy-ethyl)-3,5- dimethyl-1H-pyrazol- 4-yl]-3-methyl-1,3- dihydro-imidazo[4,5-c] quinolin-2-one
486
2.33









Example 178
8-(5-Dimethylamino-pyridin-3-yl)-1-(1,3-dimethyl-1H-pyrazol-4-yl)-3-methyl-1,3-dihydro-imidazo[4,5-c]quinolin-2-one



embedded image


The title compound was synthesized in a similar manner as described for Example 172 using 2 M dimethylamine in THF (Aldrich, Buchs, Switzerland, 6.11 mmol) as replacement of the cyclobutylamine to give the title compound as a yellowish solid. (HPLC: tR 2.12 min (Method A); M+H=414 MS-ES; 1H-NMR (d6-DMSO, 400 MHz) 8.97 (s, 1H), 8.13-8.04 (m, 4H), 7.99-7.94 (m, 1H), 7.62-7.59 (m, 1H), 7.02-6.99 (m, 1H), 3.88 (s, 3H), 3.58 (s, 3H), 3.00 (s, 6H), 1.96 (s, 3H))


Example 179
8-(5-Azetidin-1-yl-pyridin-3-yl)-1-(1,3-dimethyl-1H-pyrazol-4-yl)-3-methyl-1,3-dihydro-imidazo[4,5-c]quinolin-2-one



embedded image


The title compound was synthesized in a similar manner as described for Example 172 using azetidine (Fluka, Buchs, Switzerland, 8.79 mmol) as replacement of the cyclobutylamine to give the title compound as a yellowish solid. (HPLC: tR 2.18 min (Method A); M+H=426 MS-ES; 1H-NMR (d6-DMSO, 400 MHz) 8.97 (s, 1H), 8.13-8.05 (m, 3H), 7.97-7.92 (m, 1H), 7.81-7.77 (m, 1H), 7.60-7.57 (m, 1H), 6.78-6.74 (m, 1H), 3.98-3.86 (m, 7H), 3.58 (s, 3H), 2.39 (qt, 2H), 1.96 (s, 3H))


Example 180.1
1-(1-Ethyl-3-methyl-1H-pyrazol-4-yl)-3-methyl-8-(5-methylamino-pyridin-3-yl)-1,3-dihydro-imidazo[4,5-c]quinolin-2-one



embedded image


The title compound was synthesized in a similar manner as described for Example 172 using 8-bromo-1-(1-ethyl-3-methyl-1H-pyrazol-4-yl)-3-methyl-1,3-dihydro-imidazo[4,5-c]quinolin-2-one (Intermediate F, 0.071 mmol) and 8 M methylamine in ethanol (Fluka, Buchs, Switzerland, 6.48 mmol) as replacement of the cyclobutylamine to give the title compound as an off-white solid. (HPLC: tR 2.08 min (Method A); M+H=414 MS-ES; 1H-NMR (d6-DMSO, 400 MHz) 8.97 (s, 1H), 8.17 (s, 1H), 8.12-8.08 (m, 1H), 7.94-7.92 (m, 1H), 7.91-7.87 (m, 1H), 7.86-7.84 (m, 1H), 7.57-7.55 (s, 1H), 6.89-6.86 (s, 1H), 6.05 (q, br, 1H), 4.16 (q, 2H), 3.58 (s, 3H), 2.75 (d, 3H), 1.97 (s, 3H), 1.39 (t, 3H))


The following example was synthesized in a similar manner as described for Example 180.1 using the specified intermediate.






















HPLC






MS-ES
tR


Example
Intermed.
structure
Name of the example
(M + H)
(min)




















180.2
G


embedded image


1-(1-Isopropyl-3- methyl-1H-pyrazol-4- yl)-3-methyl-8-(5- methylamino-pyridin- 3-yl)-1,3-dihydro- imidazo[4,5-c] quinolin-2-one
428
2.15









Example 181
1-(1,3-Dimethyl-1H-pyrazol-4-yl)-8-[5-(2-fluoro-ethoxy)-pyridin-3-yl]-3-methyl-1,3-dihydro-imidazo[4,5-c]quinolin-2-one



embedded image


The title compound was synthesized in a similar manner as described for Example 1.1 using 8-bromo-1-(1,3-dimethyl-1H-pyrazol-4-yl)-3-methyl-1,3-dihydro-imidazo[4,5-c]quinolin-2-one (Intermediate A) and 3-(2-fluoro-ethoxy)-5-(4,4,5,5-tetramethyl-[1,3,2]dioxaborolan-2-yl)-pyridine (Stage 181.1.1) to give the title compound as a white solid. (HPLC: tR 2.20 min (Method A); M+H=433 MS-ES; 1H-NMR (d6-DMSO, 400 MHz) 8.99 (s, 1H), 8.36-8.32 (m, 2H), 8.17-8.10 (m, 2H), 8.03-7.98 (m, 1H), 7.61-7.57 (m, 1H), 7.47-7.44 (m, 1H), 4.89-4.73 (m, 2H), 4.48-4.36 (m, 2H), 3.90 (s, 3H), 3.58 (s, 3H), 1.96 (s, 3H))


Stage 181.1.1 3-(2-Fluoro-ethoxy)-5-(4,4,5,5-tetramethyl-[1,3,2]dioxaborolan-2-yl)-pyridine



embedded image


The title compound was synthesized in a similar manner as described for Stage 58.1.1 using 2-fluoroethanol (Aldrich, Buchs, Switzerland, 1.672 mmol) as replacement for isopropanol to give the title compound as a crude brown sticky oil. (degrading under HPLC condition: tR 2.10 min (Method A); M+H=268 MS-ES).


Example 182
1-(1,3-Dimethyl-1H-pyrazol-4-yl)-8-[5-(2-fluoro-1-fluoromethyl-ethoxy)-pyridin-3-yl]-3-methyl-1,3-dihydro-imidazo[4,5-c]quinolin-2-one



embedded image


The title compound was synthesized in a similar manner as described for Example 1.1 using 8-bromo-1-(1,3-dimethyl-1H-pyrazol-4-yl)-3-methyl-1,3-dihydro-imidazo[4,5-c]quinolin-2-one (Intermediate A) and 3-(2-fluoro-1-fluoromethyl-ethoxy)-5-(4,4,5,5-tetramethyl-[1,3,2]dioxaborolan-2-yl)-pyridine (Stage 182.1.1) to give the title compound as a white solid. (HPLC: tR 2.31 min (Method A); M+H=465 MS-ES; 1H-NMR (d6-DMSO, 400 MHz) 8.99 (s, 1H), 8.40-8.37 (m, 1H), 8.36-8.33 (m, 1H), 8.16-8.10 (m, 2H), 8.02-7.97 (m, 1H), 7.59-7.54 (m, 2H), 5.24-5.08 (m, 1H), 4.91-4.65 (m, 4H), 3.90 (s, 3H), 3.58 (s, 3H), 1.96 (s, 3H))


Stage 182.1.1 3-(2-Fluoro-1-fluoromethyl-ethoxy)-5-(4,4,5,5-tetramethyl-[1,3,2]dioxaborolan-2-yl)-pyridine



embedded image


The title compound was synthesized in a similar manner as described for Stage 58.1.1 using 1,3-difluoro-2-propanol (Aldrich, Buchs, Switzerland, 1.672 mmol) as replacement for isopropanol to give the title compound as a crude black oil. (degrading under HPLC condition: tR 2.00 min (Method A); M+H=300 MS-ES).


Example 183
8-(5-Difluoromethoxy-pyridin-3-yl)-1-(1,3-dimethyl-1H-pyrazol-4-yl)-3-methyl-1,3-dihydro-imidazo[4,5-c]quinolin-2-one



embedded image


The title compound was synthesized in a similar manner as described for Example 1.1 using 8-bromo-1-(1,3-dimethyl-1H-pyrazol-4-yl)-3-methyl-1,3-dihydro-imidazo[4,5-c]quinolin-2-one (Intermediate A) and 3-difluoromethoxy-5-(4,4,5,5-tetramethyl-[1,3,2]dioxaborolan-2-yl)-pyridine (Stage 183.1.1) to give the title compound as a white foam. (HPLC: tR 2.48 min (Method A); M+H=437 MS-ES; 1H-NMR (d6-DMSO, 400 MHz) 9.01 (s, 1H), 8.61-8.59 (m, 1H), 8.52-8.50 (m, 1H), 8.17-8.13 (m, 2H), 8.02-7.98 (m, 1H), 7.74-7.71 (m, 1H), 7.61-7.59 (m, 1H), 7.39 (t, 1H), 3.90 (s, 3H), 3.59 (s, 3H), 1.95 (s, 3H))


Stage 183.1.1 3-Difluoromethoxy-5-(4,4,5,5-tetramethyl-[1,3,2]dioxaborolan-2-yl)-pyridine



embedded image


The title compound was synthesized in a similar manner as described for Stage 5.1.1 using 3-bromo-5-difluoromethoxy-pyridine (stage 183.1.2, 0.192 mmol) to give the title compound as a crude brown oil. (degrading under the HPLC condition: tR 2.27 min (Method A); M+H=227 MS-ES).


Stage 183.1.2 3-Bromo-5-difluoromethoxy-pyridine



embedded image


A mixture of 3-bromo-5-hydroxypyridine (Aldrich, Buchs, Switzerland, 1.394 mmol), sodium chlorodifluoroacetate (Aldrich, Buchs, Switzerland, 1.672 mmol) and potassium carbonate (2.79 mmol) in acetonitrile (10 ml) was refluxed for 4 h 45 min. The reaction was cooled and diluted with dichloromethane, washed with saturated aqueous NaHCO3, with brine, dried over Na2SO4, filtered and evaporated. The residue was taken in DMA and purified by preparative HPLC. The fractions containing product were basified with NaHCO3, concentrated and extracted with dichloromethane (2×). The combined organic layers were washed with brine, dried over Na2SO4, filtered, evaporated to give the title compound as a brown oil. (HPLC: tR 2.91 min (Method A); M+H=224, 226 MS-ES).


Example 184
1-(1,3-Dimethyl-1H-pyrazol-4-yl)-8-(5-methoxy-6-methyl-pyridin-3-yl)-3-methyl-1,3-dihydro-imidazo[4,5-c]quinolin-2-one



embedded image


The title compound was synthesized in a similar manner as described for Example 84 using methanol (Fluka, Buchs, Switzerland) as replacement for the isopropanol to give the title compound as a white solid. (HPLC: tR 2.10 min (Method A); M+H=415 MS-ES; 1H-NMR (d6-DMSO, 400 MHz) 8.98 (s, 1H), 8.20-8.17 (m, 1H), 8.14-8.10 (m, 2H), 8.03-7.98 (m, 1H), 7.62-7.59 (m, 1H), 7.32-7.29 (m, 1H), 3.92 (s, 3H), 3.89 (s, 3H), 3.59 (s, 3H), 2.39 (s, 3H), 1.98 (s, 3H))


Example 185.1
1-(1,3-Dimethyl-1H-pyrazol-4-yl)-8-(5-hydroxy-6-methyl-pyridin-3-yl)-3-methyl-1,3-dihydro-imidazo[4,5-c]quinolin-2-one



embedded image


The title compound was synthesized in a similar manner as described for Example 84 using dioxane/water 1:1 as replacement for the isopropanol to give the title compound as a white solid. (HPLC: tR 1.98 min (Method A); M+H=401 MS-ES; MS-ES; 1H-NMR (d6-DMSO, 400 MHz) 9.97 (s, 1H), 8.97 (s, 1H), 8.14-8.09 (m, 2H), 7.99-7.96 (m, 1H), 7.82-7.77 (m, 1H), 7.55-7.52 (m, 1H), 7.21-7.18 (m, 1H), 3.92 (s, 3H), 3.58 (s, 3H), 2.36 (s, 3H), 1.96 (s, 3H))


The following example was synthesized in a similar manner as described for Example 185.1 using the specified intermediate.






















HPLC






MS-ES
tR


Example
Intermed.
structure
Name of the example
(M + H)
(min)




















185.2
C


embedded image


1-(2,5-Dimethyl-2H- pyrazol-3-yl)-8-(5- hydroxy-6-methyl- pyridin-3-yl)-3- methyl-1,3-dihydro- imidazo[4,5-c] quinolin-2-one
401
2.14









Example 186
1-(1,3-Dimethyl-1H-pyrazol-4-yl)-8-(6-ethyl-5-isopropoxy-pyridin-3-yl)-3-methyl-1,3-dihydro-imidazo[4,5-c]quinolin-2-one



embedded image


The title compound was synthesized in a similar manner as described for Example 84 using diethyl methylmalonate (Fluka, Buchs, Switzerland) as replacement for the diethyl malonate to give the title compound as a white solid. (HPLC: tR 2.44 min (Method A); M+H=467 MS-ES; 1H-NMR (d6-DMSO, 400 MHz) 8.98 (s, 1H), 8.23-8.20 (m, 1H), 8.13-8.09 (m, 2H), 8.01-7.96 (m, 1H), 7.61-7.58 (m, 1H), 7.31-7.28 (m, 1H), 4.75 (hp, 1H), 3.89 (s, 3H), 3.58 (s, 3H), 2.75 (q, 2H), 1.98 (s, 3H), 1.37-1.33 (m, 6H), 1.19 (t, 3H))


Example 187
1-(1,3-Dimethyl-1H-pyrazol-4-yl)-8-(5-ethoxy-6-ethyl-pyridin-3-yl)-3-methyl-1,3-dihydro-imidazo[4,5-c]quinolin-2-one



embedded image


The title compound was synthesized in a similar manner as described for Example 186 using ethanol as replacement for isopropanol to give the title compound as a white solid. (HPLC: tR 2.32 min (Method A); M+H=443 MS-ES; 1H-NMR (d6-DMSO, 400 MHz) 8.98 (s, 1H), 8.25-8.22 (m, 1H), 8.14-8.09 (m, 2H), 8.02-7.98 (m, 1H), 7.62-7.59 (m, 1H), 7.30-7.27 (m, 1H), 4.24-4.10 (m, 2H), 3.89 (s, 3H), 3.58 (s, 3H), 2.77 (q, 2H), 1.97 (s, 3H), 1.43 (t, 3H), 1.20 (t, 3H))


Example 188
1-(1,3-Dimethyl-1H-pyrazol-4-yl)-8-(6-ethyl-5-hydroxy-pyridin-3-yl)-3-methyl-1,3-dihydro-imidazo[4,5-c]quinolin-2-one



embedded image


The title compound was synthesized in a similar manner as described for Example 186 using dioxane/water 1:1 as replacement for isopropanol to give the title compound as an off-white solid. (HPLC: tR 2.07 min (Method A); M+H=415 MS-ES; 1H-NMR (d6-DMSO, 400 MHz) 9.98 (s, br, 1H), 8.97 (s, 1H), 8.14-8.08 (m, 2H), 8.03-7.99 (m, 1H), 7.82-7.76 (m, 1H), 7.55-7.52 (m, 1H), 7.20-7.17 (m, 1H), 3.91 (s, 3H), 3.58 (s, 3H), 2.73 (q, 2H), 1.96 (s, 3H), 1.18 (t, 3H))


Example 189
1-(1,3-Dimethyl-1H-pyrazol-4-yl)-8-[5-(2-fluoro-1-fluoromethyl-ethoxy)-6-methyl-pyridin-3-yl]-3-methyl-1,3-dihydro-imidazo[4,5-c]quinolin-2-one



embedded image


The title compound was synthesized in a similar manner as described for Example 1.1 using 8-bromo-1-(1,3-dimethyl-1H-pyrazol-4-yl)-3-methyl-1,3-dihydro-imidazo[4,5-c]quinolin-2-one (Intermediate A) and 3-(2-fluoro-1-fluoromethyl-ethoxy)-2-methyl-5-(4,4,5,5-tetramethyl-[1,3,2]dioxaborolan-2-yl)-pyridine (Stage 189.1.1) to give the title compound as a white foam. (HPLC: tR 2.26 min (Method A); M+H=479 MS-ES; 1H-NMR (d6-DMSO, 400 MHz) 8.98 (s, 1H), 8.19-8.17 (m, 1H), 8.14-8.10 (m, 2H), 8.00-7.95 (m, 1H), 7.58-7.52 (m, 2H), 5.16-5.01 (m, 1H), 4.92-4.66 (m, 4H), 3.89 (s, 3H), 3.58 (s, 3H), 2.41 (s, 3H), 1.97 (s, 3H))


Stage 189.1.1 3-(2-Fluoro-1-fluoromethyl-ethoxy)-2-methyl-5-(4,4,5,5-tetramethyl-[1,3,2]dioxaborolan-2-yl)-pyridine



embedded image


The title compound was synthesized in a similar manner as described for Stage 182.1.1 using 5-bromo-2-methyl-pyridin-3-ol (stage 189.1.2) as replacement for 3-bromo-5-hydroxypyridine to give the title compound as a crude black oil. (degrading under the HPLC condition: tR 2.06 min (Method A); M+H=314 MS-ES).


Stage 189.1.2 5-Bromo-2-methyl-pyridin-3-ol



embedded image


The title compound was synthesized in a similar manner as described for Stage 84.1.2 using dioxane/water 1:1 as replacement for isopropanol to give the title compound as an orange solid. (HPLC: tR 1.41 min (Method A); M+H=188, 190 MS-ES).


Example 190
1-(1,3-Dimethyl-1H-pyrazol-4-yl)-8-(6-hydroxymethyl-5-isopropoxy-pyridin-3-yl)-3-methyl-1,3-dihydro-imidazo[4,5-c]quinolin-2-one



embedded image


The title compound was synthesized in a similar manner as described for Example 1.1 using 8-bromo-1-(1,3-dimethyl-1H-pyrazol-4-yl)-3-methyl-1,3-dihydro-imidazo[4,5-c]quinolin-2-one (Intermediate A) and [3-isopropoxy-5-(4,4,5,5-tetramethyl-[1,3,2]dioxaborolan-2-yl)-pyridin-2-yl]-methanol (Stage 190.1.1) to give the title compound as a white solid. (HPLC: tR 2.19 min (Method A); M+H=459 MS-ES; 1H-NMR (d6-DMSO, 400 MHz) 8.99 (s, 1H), 8.27-8.23 (m, 1H), 8.15-8.10 (m, 2H), 8.03-7.98 (m, 1H), 7.62-7.59 (m, 1H), 7.40-7.37 (m, 1H), 4.84 (br, 1H), 4.76 (hp, 1H), 4.55 (s, 2H), 3.88 (s, 3H), 3.58 (s, 3H), 1.97 (s, 3H), 1.36-1.31 (m, 6H))


Stage 190.1.1 [3-Isopropoxy-5-(4,4,5,5-tetramethyl-[1,3,2]dioxaborolan-2-yl)-pyridin-2-yl]-methanol



embedded image


The title compound was synthesized in a similar manner as described for Stage 5.1.1 using (5-bromo-3-isopropoxy-pyridin-2-yl)-methanol (stage 190.1.2, 0.546 mmol) to give the title compound as a crude black oil. (degrading under the HPLC condition: tR 2.06 min (Method A)).


Stage 190.1.2 (5-Bromo-3-isopropoxy-pyridin-2-yl)-methanol



embedded image


To a solution of 5-bromo-3-isopropoxy-2-methyl-pyridine 1-oxide (Stage 190.1.3, 2.054 mmol) in THF (13 ml) was added trifluoroacetic anhydride (10.27 mmol). The RM was stirred for 4 h at rt. The RM was evaporated to dryness. The residue was treated with saturated aqueous NaHCO3 (20 ml), stirred for 15 h at it and then extracted with EtOAc (2×). The combined organic layers were washed with brine, dried over Na2SO4, filtered and evaporated. The residue was taken in DMA and purified by preparative HPLC. The fractions containing the product are basified with NaHCO3, concentrated and extracted with dichloromethane (2×). The combined organic layers were washed with brine, dried over Na2SO4, filtered and evaporated to give a yellowish slowly crystallizing solid. (HPLC: tR 2.21 min (Method A); M+H=246, 248 MS-ES).


Stage 190.1.3 5-Bromo-3-isopropoxy-2-methyl-pyridine 1-oxide



embedded image


The title compound was synthesized in a similar manner as described for Stage 155.1.4 using 5-bromo-3-isopropoxy-2-methyl-pyridine (Stage 84.1.2, 2.108 mmol) as replacement for (5-bromo-2-methyl-pyridin-3-yl)-ethyl-carbamic acid tert-butyl ester to give the title compound as a slowly crystallizing orange solid. (HPLC: tR 2.75 min (Method A); M+H=246, 248 MS-ES).


Example 191.1
1-(1,3-Dimethyl-1H-pyrazol-4-yl)-8-(5-isopropoxy-6-methoxymethyl-pyridin-3-yl)-3-methyl-1,3-dihydro-imidazo[4,5-c]quinolin-2-one



embedded image


The title compound was synthesized in a similar manner as described for Example 1.1 using 8-bromo-1-(1,3-dimethyl-1H-pyrazol-4-yl)-3-methyl-1,3-dihydro-imidazo[4,5-c]quinolin-2-one (Intermediate A) and 3-isopropoxy-2-methoxymethyl-5-(4,4,5,5-tetramethyl-[1,3,2]dioxaborolan-2-yl)-pyridine (Stage 191.1.1) to give the title compound as a white foam. (HPLC: tR 2.41 min (Method A); M+H=473 MS-ES; 1H-NMR (d6-DMSO, 400 MHz) 8.99 (s, 1H), 8.27-8.25 (m, 1H), 8.15-8.10 (m, 2H), 8.03-7.98 (m, 1H), 7.62-7.60 (m, 1H), 7.42-7.40 (m, 1H), 4.77 (hp, 1H), 4.47 (s, 2H), 3.88 (s, 3H), 3.58 (s, 3H), 3.31 (s, 3H), 1.97 (s, 3H), 1.37-1.32 (m, 6H))


Stage 191.1.1 3-Isopropoxy-2-methoxymethyl-5-(4,4,5,5-tetramethyl-[1,3,2]dioxaborolan-2-yl)-pyridine



embedded image


The title compound was synthesized in a similar manner as described for Stage 5.1.1 using 5-bromo-3-isopropoxy-2-methoxymethyl-pyridine (stage 191.1.2, 0.142 mmol) to give the title compound as a crude brown oil. (degrading under the HPLC condition: tR 2.40 min (Method A); M+H=308 MS-ES).


Stage 191.1.2 5-Bromo-3-isopropoxy-2-methoxymethyl-pyridine



embedded image


To a solution of (5-bromo-3-isopropoxy-pyridin-2-yl)-methanol (stage 190.1.2, 0.61 mmol) in DMF (3 ml) was added 55% NaH in oil (0.688 mmol) was added. The RM was stirred for 30 min at rt then was added iodomethane (0.684 mmol). The RM was stirred for 2.5 h at rt then was quenched with MeOH and purified by preparative HPLC. The fractions containing product were combined, basified with NaHCO3, concentrated and extracted with dichloromethane (2×). The combined organic layers were washed with brine, dried over Na2SO4, filtered and evaporated to dryness to give the title compound as a yellow oil. (HPLC: tR 2.83 min (Method A); M+H=260, 262 MS-ES).


The following example was synthesized in a similar manner as described for Example 191.1 using the specified intermediate.






















HPLC





Name of the
MS-ES
tR


Example
Intermed.
structure
example
(M + H)
(min)







191.2
F


embedded image


1-(1-Ethyl-3-methyl- 1H-pyrazol-4-yl)-8- (5-isopropoxy-6- methoxymethyl- pyridin-3-yl)-3- methyl-1,3-dihydro- imidazo[4,5- c]quinolin-2-one
487
2.49









Example 192
1-(1,3-Dimethyl-1H-pyrazol-4-yl)-8-[5-(2-fluoro-1-fluoromethyl-ethoxy)-6-hydroxymethyl-pyridin-3-yl]-3-methyl-1,3-dihydro-imidazo[4,5-c]quinolin-2-one



embedded image


The title compound was synthesized in a similar manner as described for Example 190 using 5-bromo-3-(2-fluoro-1-fluoromethyl-ethoxy)-2-methyl-pyridine (Stage 192.1.1) to give the title compound as a white solid. (HPLC: tR 2.15 min (Method A); M+H=495 MS-ES; 1H-NMR NMR (d6-DMSO, 400 MHz) 8.99 (s, 1H), 8.29-8.26 (m, 1H), 8.15-8.10 (m, 2H), 8.02-7.98 (m, 1H), 7.63-7.58 (m, 2H), 5.19-5.04 (m, 1H), 4.93 (t, 1H), 4.91-4.66 (m, 4H), 4.60 (d, 2H), 3.89 (s, 3H), 3.58 (s, 3H), 1.97 (s, 3H))


Stage 192.1.1 5-Bromo-3-(2-fluoro-1-fluoromethyl-ethoxy)-2-methyl-pyridine



embedded image


The title compound was synthesized in a similar manner as described for stage 58.1.2 using 5-bromo-2-methyl-pyridin-3-ol (stage 189.1.2, 2.234 mmol) and 1,3-difluoro-2-propanol (Aldrich, Buchs, Switzerland, 2.68 mmol) to give the title compound as a yellow oil. (HPLC: tR 2.41 min (Method A); M+H=266, 268 MS-ES).


Example 193
1-(1,3-Dimethyl-1H-pyrazol-4-yl)-8-(6-hydroxymethyl-5-methoxy-pyridin-3-yl)-3-methyl-1,3-dihydro-imidazo[4,5-c]quinolin-2-one



embedded image


The title compound was synthesized in a similar manner as described for Example 190 using methanol as replacement for isopropanol to give the title compound as a white foam. (HPLC: tR 1.99 min (Method A); M+H=431 MS-ES; 1H-NMR (d6-DMSO, 400 MHz) 8.99 (s, 1H), 8.28-8.25 (m, 1H), 8.15-8.11 (m, 2H), 8.05-8.01 (m, 1H), 7.64-7.62 (m, 1H), 7.40-7.37 (m, 1H), 4.90 (t, 1H), 4.56 (d, 2H), 3.92 (s, 3H), 3.89 (s, 3H), 3.58 (s, 3H), 1.98 (s, 3H))


Example 194.1
8-(6-Hydroxymethyl-5-methoxy-pyridin-3-yl)-1-(1-isopropyl-3-methyl-1H-pyrazol-4-yl)-3-methyl-1,3-dihydro-imidazo[4,5-c]quinolin-2-one



embedded image


The title compound was synthesized in a similar manner as described for Example 169.1 using acetic acid 3-methoxy-5-(4,4,5,5-tetramethyl-[1,3,2]dioxaborolan-2-yl)-pyridin-2-ylmethyl ester (stage 194.1) to give the title compound as an off-white solid. (HPLC: tR 2.13 min (Method A); M+H=459 MS-ES; 1H-NMR (d6-DMSO, 400 MHz) 8.99 (s, 1H), 8.22-8.11 (m, 3H), 8.03-7.98 (m, 1H), 7.58-7.54 (m, 1H), 7.48-7-45 (m, 1H), 4.96 (t, 1H), 4.54 (d, 2H), 4.52 (hp, 1H), 3.92 (s, 3H), 3.59 (s, 3H), 1.99 (s, 3H), 1.46-1.40 (m, 6H))


Stage 194.1.1 Acetic acid 3-methoxy-5-(4,4,5,5-tetramethyl-[1,3,2]dioxaborolan-2-yl)-pyridin-2-ylmethyl ester



embedded image


The title compound was synthesized in a similar manner as described for Stage 5.1.1 using acetic acid 5-bromo-3-methoxy-pyridin-2-ylmethyl ester (stage 194.1.2, 0.142 mmol) to give the title compound as a crude brown oil. (degrading under the HPLC condition: tR 2.54, 3.69 min (Method A); M+H=308 MS-ES).


Stage 194.1.2 Acetic acid 5-bromo-3-methoxy-pyridin-2-ylmethyl ester



embedded image


To a mixture of (5-bromo-3-methoxy-pyridin-2-yl)-methanol (Stage 194.1.3, 2.79 mmol) and triethylamine (4.18 mmol) in dichloromethane was added slowly acetyl chloride (3.35 mmol) and the RM was stirred for 1 h at rt. The RM was diluted with dichloromethane, washed with saturated aqueous NaHCO3, with brine, dried over Na2SO4, filtered and evaporated. The residue was absorbed on silica gel and purified by flash chromatography (heptane/EtOAc 0% to 60%). The fractions containing product were evaporated together to give the title compound as a white solid. (HPLC: tR 2.72 min (Method A); M+H=260, 262 MS-ES)


Stage 194.1.3 (5-Bromo-3-methoxy-pyridin-2-yl)-methanol



embedded image


The title compound was synthesized in a similar manner as described for Stage 190.1.2 using methanol as replacement for isopropanol to give the title compound as an off-white solid. (HPLC: tR 1.76 min (Method A); M+H=218, 220 MS-ES).


The following example was synthesized in a similar manner as described for Example 194.1 using the specified intermediate.






















HPLC





Name of the
MS-ES
tR


Example
Intermed.
structure
example
(M + H)
(min)







194.2
K


embedded image


1-(3-Chloro-1- methyl-1H-pyrazol-4- yl)-8-(6- hydroxymethyl-5- methoxy-pyridin-3- yl)-3-methyl-1,3- dihydro-imidazo[4,5- clquinolin-2-one
451
2.18









Example 195.1
1-(1,3-Dimethyl-1H-pyrazol-4-yl)-8-(5-methoxy-6-methoxymethyl-pyridin-3-yl)-3-methyl-1,3-dihydro-imidazo[4,5-c]quinolin-2-one



embedded image


The title compound was synthesized in a similar manner as described for Example 191 using (5-bromo-3-methoxy-pyridin-2-yl)-methanol (Stage 194.1.3) to give the title compound as a white foam. (HPLC: tR 2.21 min (Method A); M+H=445 MS-ES; 1H-NMR (CDCl3, 400 MHz) 8.81 (s, 1H), 8.40-8.38 (m, 1H), 8.31-8.24 (m, 1H), 7.91-7.86 (m, 1H), 7.73-7.70 (m, 1H), 7.66-7.64 (m, 1H), 7.19-7.17 (m, 1H), 4.68 (s, 2H), 3.97 (s, 3H), 3.96 (s, 3H), 3.70 (s, 3H), 3.53 (s, 3H), 2.14 (s, 3H))


The following examples were synthesized in a similar manner as described for Example 195.1 using the specified intermediate.






















HPLC





Name of the
MS-ES
tR


Example
Intermed.
structure
example
(M + H)
(min)







195.2
G


embedded image


1-(1-Isopropyl-3- methyl-1H-pyrazol-4- yl)-8-(5-methoxy-6- methoxymethyl- pyridin-3-yl)-3- methyl-1,3-dihydro- imidazo[4,5- c]quinolin-2-one
473
2.37





195.3
F


embedded image


1-(1-Ethyl-3-methyl- 1H-pyrazol-4-yl)-8- (5-methoxy-6- methoxymethyl- pyridin-3-yl)-3- methyl-1,3-dihydro- imidazo[4,5- c]quinolin-2-one
459
2.28





195.4
K


embedded image


1-(3-Chloro-1- methyl-1H-pyrazol-4- yl)-8-(5-methoxy-6- methoxymethyl- pyridin-3-yl)-3- methyl-1,3-dihydro- imidazo[4,5- c]quinolin-2-one
459
2.28









Example 196.1
1-(3-Chloro-1-methyl-1H-pyrazol-4-yl)-8-(6-ethoxymethyl-5-methoxy-pyridin-3-yl)-3-methyl-1,3-dihydro-imidazo[4,5-c]quinolin-2-one



embedded image


The title compound was synthesized in a similar manner as described for Example 195.1 using iodoethane as replacement for iodomethane to give the title compound as a white foam. (HPLC: tR 2.51 min (Method A); M+H=479 MS-ES; 1H-NMR (d6-DMSO, 400 MHz) 9.02 (s, 1H), 8.38-8.37 (m, 1H), 8.31-8.29 (m, 1H), 8.17-8.14 (m, 1H), 8.07-8.03 (m, 1H), 7.63-7.61 (m, 1H), 7.47-7.45 (m, 1H), 4.53 (s, 2H), 3.96 (s, 3H), 3.93 (s, 3H), 3.60 (s, 3H), 3.52 (q, 2H), 1.11 (t, 3H))


The following example was synthesized in a similar manner as described for Example 196.1 using the specified intermediate.






















HPLC





Name of the
MS-ES
tR


Example
Intermed.
structure
example
(M + H)
(min)







196.2
A


embedded image


1-(1,3-Dimethyl-1H- pyrazol-4-yl)-8-(6- ethoxymethyl-5- methoxy-pyridin-3- yl)-3-methyl-1,3- dihydro-imidazo[4,5- c]quinolin-2-one
459
2.31









Example 197.1
1-(1,3-Dimethyl-1H-pyrazol-4-yl)-8-(5-ethoxy-6-methoxymethyl-pyridin-3-yl)-3-methyl-1,3-dihydro-imidazo[4,5-c]quinolin-2-one



embedded image


The title compound was synthesized in a similar manner as described for Example 191 using (5-bromo-3-ethoxy-pyridin-2-yl)-methanol (Stage 197.1.2) to give the title compound as a white foam. (HPLC: tR 2.33 min (Method A); M+H=459 MS-ES; 1H-NMR (d6-DMSO, 400 MHz) 8.99 (s, 1H), 8.28-8.26 (m, 1H), 8.15-8.10 (m, 2H), 8.04-8.00 (m, 1H), 7.64-7.61 (m, 1H), 7.41-7.38 (m, 1H), 4.49 (s, 2H), 4.22-4.14 (m, 2H), 3.89 (s, 3H), 3.58 (s, 3H), 3.31 (s, 3H), 1.97 (s, 31-1), 1.41 (t, 3H))


Stage 197.1.2 (5-Bromo-3-ethoxy-pyridin-2-yl)-methanol



embedded image


The title compound was synthesized in a similar manner as described for Stage 190.1.2 using ethanol as replacement for isopropanol to give the title compound as an orange solid. (HPLC: tR 2.03 min (Method A); M+H=232, 234 MS-ES).


The following example was synthesized in a similar manner as described for Example 197.1 using the specified intermediate.






















HPLC





Name of the
MS-ES
tR


Example
Intermed.
structure
example
(M + H)
(min)







197.2
G


embedded image


8-(5-Ethoxy-6- methoxymethyl- pyridin-3-yl)-1-(1- isopropyl-3-methyl- 1H-pyrazol-4-yl)-3- methyl-1,3-dihydro- imidazo[4,5- c]quinolin-2-one
487
2.49









Example 198
1-(1,3-Dimethyl-1H-pyrazol-4-yl)-8-(5-ethoxy-6-trideuteromethoxymethyl-pyridin-3-yl)-3-methyl-1,3-dihydro-imidazo[4,5-c]quinolin-2-one



embedded image


The title compound was synthesized in a similar manner as described for Example 197.1 using d3-iodomethane (Aldrich, Buchs, Switzerland) as replacement for iodomethane to give the title compound as an off-white foam. (HPLC: tR 2.33 min (Method A); M+H=462 MS-ES; 1H-NMR (d6-DMSO, 400 MHz) 8.99 (s, 1H), 8.29-8.26 (m, 1H), 8.15-8.11 (m, 2H), 8.04-8.00 (m, 1H), 7.64-7.61 (m, 1H), 7.41-7.38 (m, 1H), 4.49 (s, 2H), 4.22-4.14 (m, 2H), 3.89 (s, 3H), 3.58 (s, 3H), 1.97 (s, 3H), 1.41 (t, 3H))


Example 199
1-(3-Chloro-1-methyl-1H-pyrazol-4-yl)-8-(5-methoxy-6-trideuteromethoxymethyl-pyridin-3-yl)-3-methyl-1,3-dihydro-imidazo[4,5-c]quinolin-2-one



embedded image


A solution of 1-(3-chloro-1-methyl-1H-pyrazol-4-yl)-8-(6-hydroxymethyl-5-methoxy-pyridin-3-yl)-3-methyl-1,3-dihydro-imidazo[4,5-c]quinolin-2-one (Example 194.2, 0.033 mmol) in DMF (0.4 ml) was treated with 55% NaH in oil (0.037 mmol) and the RM was stirred for 5 min at rt, then was added d3-iodomethane (Aldrich, Buchs, Switzerland, 0.037 mmol) and the RM was stirred for 30 min at rt. The RM was quenched with water, diluted with DMF, filtered and purified by preparative HPLC. The pure fractions were basified with NaHCO3, concentrated and extracted with EtOAc (3×). The combined organic layers were dried over Na2SO4, filtered, evaporated and dried under vacuum to give the title compound as a foam. (HPLC: tR 2.40 min (Method A); M+H=468 MS-ES; 1H-NMR (d6-DMSO, 400 MHz) 9.02 (s, 1H), 8.37 (s, 1H), 8.32-8.30 (m, 1H), 8.17-8.13 (m, 1H), 8.07-8.03 (m, 1H), 7.63-7.61 (s, 1H), 7.48-7.45 (m, 1H), 4.49 (s, 2H), 3.96 (s, 3H), 3.93 (s, 3H), 3.60 (s, 3H))


Example 200
1-(3-Chloro-1-methyl-1H-pyrazol-4-yl)-8-(5-hydroxymethyl-6-methoxy-pyridin-3-yl)-3-methyl-1,3-dihydro-imidazo[4,5-c]quinolin-2-one



embedded image


To a solution of 5-[1-(3-chloro-1-methyl-1H-pyrazol-4-yl)-3-methyl-2-oxo-2,3-dihydro-1H-imidazo[4,5-c]quinolin-8-yl]-2-methoxy-nicotinic acid methyl ester (stage 200.1, 0.176 mmol) in THF (2 ml) cooled with an ice-bath was added dropwise a 1 M solution of LiAlH4 in THF (0.150 mmol). The reaction mixture was stirred for 1 h 15 min at rt, then quenched with water, diluted with EtOAc and filtered over Celite. The filtrate was washed with saturated aqueous NaHCO3, with water, with brine, dried over Na2SO4, filtered and evaporated. The residue was dissolved in MeOH/TFA and purified by preparative HPLC. The fractions containing pure product were basified with NaHCO3 and concentrated. The precipitate was filtered, washed with water (2×) and dried under vacuum to give the title compound as a white solid. (HPLC: tR 2.53 min (Method A); M+H=451 MS-ES; 1H-NMR (d6-DMSO, 400 MHz) 8.99 (s, 1H), 8.41 (s, 1H), 8.30-8.27 (m, 1H), 8.14-8.10 (m, 1H), 7.98-7.93 (m, 1H), 7.84-7.81 (m, 1H), 7.53-7.50 (m, 1H), 5.32 (t, 1H), 4.51 (d, 2H), 4.01 (s, 3H), 3.92 (s, 3H), 3.59 (s, 3H))


Stage 200.1.1 5-[1-(3-Chloro-1-methyl-1H-pyrazol-4-yl)-3-methyl-2-oxo-2,3-dihydro-1H-imidazo[4,5-c]quinolin-8-yl]-2-methoxy-nicotinic acid methyl ester



embedded image


The title compound was synthesized in a similar manner as described for Example 1 using 8-bromo-1-(3-chloro-1-methyl-1H-pyrazol-4-yl)-3-methyl-1,3-dihydro-imidazo[4,5-c]quinolin-2-one (Intermediate K) and 2-methoxy-3-(carbomethoxy)pyridine-5-boronic acid pinacol ester (Combi-Blocks, San Diego, USA) to give the title compound as a white solid. (HPLC: tR 2.75 min (Method A); M+H=479 MS-ES).


Example 201
1-(3-Chloro-1-methyl-1H-pyrazol-4-yl)-8-(6-methoxy-5-methoxymethyl-pyridin-3-yl)-3-methyl-1,3-dihydro-imidazo[4,5-c]quinolin-2-one



embedded image


The title compound was synthesized in a similar manner as described for Example 156 using 1-(3-chloro-1-methyl-1H-pyrazol-4-yl)-8-(5-hydroxymethyl-6-methoxy-pyridin-3-yl)-3-methyl-1,3-dihydro-imidazo[4,5-c]quinolin-2-one (Example 200, 0.081 mmol) to give the title compound as a white foam. (HPLC: tR 2.82 min (Method A); M+H=465 MS-ES; 1H-NMR (d6-DMSO, 400 MHz) 8.99 (s, 1H), 8.40 (s, 1H), 8.35-8.32 (m, 1H), 8.14-8.10 (m, 1H), 7.98-7.93 (m, 1H), 7.75-7.72 (m, 1H), 7.50-7.47 (m, 1H), 4.43 (s, 2H), 3.99 (s, 3H), 3.93 (s, 3H), 3.59 (s, 3H), 3.40 (s, 3H))


Example 202
1-(1,3-Dimethyl-1H-pyrazol-4-yl)-8-(6-methoxy-5-methoxymethyl-pyridin-3-yl)-3-methyl-1,3-dihydro-imidazo[4,5-c]quinolin-2-one



embedded image


The title compound was synthesized in a similar manner as described for Example 201 using 8-bromo-1-(1,3-dimethyl-1H-pyrazol-4-yl)-3-methyl-1,3-dihydro-imidazo[4,5-c]quinolin-2-one (Intermediate A) to give the title compound as a yellow solid. (HPLC: tR 2.36 min (Method A); M+H=431 MS-ES; 1H-NMR (d6-DMSO, 400 MHz) 8.96 (s, 1H), 8.31-8.28 (m, 1H), 8.13 (s, 1H), 8.11-8.07 (m, 1H), 7.94-7.90 (m, 1H), 7.72-7.69 (m, 1H), 7.54-7.51 (m, 1H), 4.42 (s, 2H), 3.92 (s, 3H), 3.92 (s, 3H), 3.58 (s, 3H), 3.39 (s, 3H), 1.95 (s, 3H))


Example 203
1-(3-Chloro-1-methyl-1H-pyrazol-4-yl)-8-(6-methoxymethyl-pyridin-3-yl)-3-methyl-1,3-dihydro-imidazo[4,5-c]quinolin-2-one



embedded image


The title compound was synthesized in a similar manner as described for Example 104 using 1-(3-chloro-1-methyl-1H-pyrazol-4-yl)-8-(6-hydroxymethyl-pyridin-3-yl)-3-methyl-1,3-dihydro-imidazo[4,5-c]quinolin-2-one (Example 16.5, 0.085 mmol) to give the title compound as a white solid. (HPLC: tR 2.31 min (Method A); M+H=435 MS-ES; 1H-NMR (d6-DMSO, 400 MHz) 9.02 (s, 1H), 8.67-8.65 (m, 1H), 8.40 (s, 1H), 8.17-8.13 (m, 1H), 8.01-7.91 (m, 2H), 7.56-7.51 (m, 2H), 4.54 (s, 2H), 3.99 (s, 3H), 3.60 (s, 3H), 3.39 (s, 3H))


Example 204
8-(5,6-Dimethoxy-pyridin-3-yl)-1-(1,3-dimethyl-1H-pyrazol-4-yl)-3-methyl-1,3-dihydro-imidazo[4,5-c]quinolin-2-one



embedded image


The title compound was synthesized in a similar manner as described for Example 93.1 using 2-chloro-3-methoxy-pyridine (Apollo, Cheshire, UK, 7.1 mmol) to give the title compound as a white solid. (HPLC: tR 2.52 min (Method A); M+H=431 MS-ES; 1H-NMR (d6-DMSO, 400 MHz) 8.96 (s, 1H), 8.12-8.07 (m, 2H), 7.99-7.95 (m, 1H), 7.92-7.90 (m, 1H), 7.55-7.53 (m, 1H), 7.25-7.23 (m, 1H), 3.90 (s, 3H), 3.89 (s, 6H), 3.58 (s, 3H), 1.98 (s, 3H))


Example 205
1-[1-(2-Azetidin-1-yl-2-oxo-ethyl)-3-methyl-1H-pyrazol-4-yl]-8-(5-isopropoxy-pyridin-3-yl)-3-methyl-1,3-dihydro-imidazo[4,5-c]quinolin-2-one



embedded image


The title compound was synthesized in a similar manner as described for Example 1.1 using 8-bromo-1-(1,3-dimethyl-1H-pyrazol-4-yl)-3-methyl-1,3-dihydro-imidazo[4,5-c]quinolin-2-one (stage 205.1.1, 0.067 mmol) and 3-isopropoxy-5-(4,4,5,5-tetramethyl-[1,3,2]dioxaborolan-2-yl)-pyridine (Stage 58.1.1, 0.102 mmol) to give the title compound as a white foam. (HPLC: tR 2.35 min (Method A); M+H=512 MS-ES; 1H-NMR (d6-DMSO, 400 MHz) 8.99 (s, 1H), 8.34-8.32 (m, 1H), 8.24-8.21 (m, 1H), 8.13-8.09 (m, 2H), 8.01-7.96 (m, 1H), 7.67-7.64 (m, 1H), 7.38-7.35 (m, 1H), 4.91-4.73 (m, 3H), 4.18-4.07 (m, 2H), 3.91-3.78 (m, 2H), 3.58 (s, 3H), 2.22-2.05 (m, 2H), 1.98 (s, 3H), 1.33 (d, 3H), 1.31 (d, 3H))


Stage 205.1.1 1-[1-(2-Azetidin-1-yl-2-oxo-ethyl)-3-methyl-1H-pyrazol-4-yl]-8-bromo-3-methyl-1,3-dihydro-imidazo[4,5-c]quinolin-2-one



embedded image


The title compound was synthesized in a similar manner as described for Stage 134.1 using azetidine (Fluka, Buchs, Switzerland) as replacement for N-methylpiperazine to give the title compound as a white solid. (HPLC: tR 2.28 min (Method A); M+H=441, 443 MS-ES).


Example 206.1
1-(1,3-Dimethyl-1H-pyrazol-4-yl)-8-(6-ethylamino-5-methoxymethyl-pyridin-3-yl)-3-methyl-1,3-dihydro-imidazo[4,5-c]quinolin-2-one



embedded image


The title compound was synthesized in a similar manner as described for Example 1.1 using 8-bromo-1-(1,3-dimethyl-1H-pyrazol-4-yl)-3-methyl-1,3-dihydro-imidazo[4,5-c]quinolin-2-one (stage 205.1.1, 0.067 mmol) and ethyl-[3-methoxymethyl-5-(4,4,5,5-tetramethyl-[1,3,2]dioxaborolan-2-yl)-pyridin-2-yl]-amine (Stage 206.1.1) to give the title compound as a yellow solid. (HPLC: tR 2.20 min (Method A); M+H=458 MS-ES; 1H-NMR (d6-DMSO, 400 MHz) 8.90 (s, 1H), 8.22-8.18 (m, 1H), 8.13 (s, 1H), 8.05-8.00 (m, 1H), 7.88-7.84 (m, 1H), 7.45-7.40 (m, 2H), 6.09 (t, 1H), 4.38-4.30 (m, 2H), 3.92 (s, 3H), 3.56 (s, 3H), 3.45-3.37 (m, 2H), 3.33 (s, 3H), 1.95 (s, 3H), 1.14 (t, 3H))


Stage 206.1.1 Ethyl-[3-methoxymethyl-5-(4,4,5,5-tetramethyl-[1,3,2]dioxaborolan-2-yl)-pyridin-2-yl]-amine



embedded image


The title compound was synthesized in a similar manner as described for Stage 167.1.1 using iodomethane as replacement for iodoethane to give the title compound as a crude black oil. (degrading under the HPLC condition: tR 1.81 min (Method A); M+H=293 MS-ES).


The following example was synthesized in a similar manner as described for Example 206.1 using the specified intermediate.






















HPLC





Name of the
MS-ES
tR


Example
Intermed.
structure
example
(M + H)
(min)







206.2
H


embedded image


8-(6-Ethylamino-5- methoxymethyl- pyridin-3-yl)-3- methyl-1-(1,3,5- trimethyl-1H-pyrazol- 4-yl)-1,3-dihydro- imidazo[4,5- c]quinolin-2-one
472
2.24









Example 207
8-(2-Dimethylamino-pyrimidin-5-yl)-1-(1,3-dimethyl-1H-pyrazol-4-yl)-1,3-dihydro-imidazo[4,5-c]quinolin-2-one



embedded image


The title compound was synthesized in a similar manner as described for Example 109 using 2-dimethylamino-pyrimidine-5-boronic acid pinacol ester (Frontier Scientific, Logan, USA) to give the title compound as a white solid. (HPLC: tR 2.31 min (Method A); M+H=401 MS-ES; 1H-NMR (d6-DMSO, 400 MHz) 11.66 (s, br, 1H), 8.69 (s, 1H), 8.46 (s, 2H), 8.10 (s, 1H), 8.05-8.00 (m, 1H), 7.87-7.82 (m, 1H), 7.43-7.40 (m, 1H), 3.90 (s, 3H), 3.16 (s, 6H), 1.96 (s, 3H))


Example 208
8-(5-Amino-6-ethyl-pyridin-3-yl)-1-(1,3-dimethyl-1H-pyrazol-4-yl)-3-methyl-1,3-dihydro-imidazo[4,5-c]quinolin-2-one



embedded image


The title compound was synthesized in a similar manner as described for Stage A2 using 1-(1,3-dimethyl-1H-pyrazol-4-yl)-8-(6-ethyl-5-nitro-pyridin-3-yl)-3-methyl-1,3-dihydro-imidazo[4,5-c]quinolin-2-one (Stage 208.1.1, 0.06 mmol) to give the title compound after purification as a white foam (HPLC: tR 2.06 min (Method A); M+H=414 MS-ES; 1H-NMR (d6-DMSO, 400 MHz) 8.96 (s, 1H), 8.13-8.07 (m, 2H), 7.79-7.74 (m, 2H), 7.54-7.51 (m, 1H), 7.06-7.03 (m, 1H), 5.18 (s, br, 2H), 3.92 (s, 3H), 3.58 (s, 3H), 2.64 (q, 2H), 1.96 (s, 3H), 1.19 (t, 3H))


Stage 208.1.1 1-(1,3-Dimethyl-1H-pyrazol-4-yl)-8-(6-ethyl-5-nitro-pyridin-3-yl)-3-methyl-1,3-dihydro-imidazo[4,5-c]quinolin-2-one



embedded image


The title compound was synthesized in a similar manner as described for for Example 1.1 using 8-bromo-1-(1,3-dimethyl-1H-pyrazol-4-yl)-3-methyl-1,3-dihydro-imidazo[4,5-c]quinolin-2-one (Intermediate A) and 2-ethyl-3-nitro-5-(4,4,5,5-tetramethyl-[1,3,2]dioxaborolan-2-yl)-pyridine (stage 208.1.2) to give the title compound as a yellow foam. (HPLC: tR 2.72 min (Method A); M+H=444 MS-ES).


Stage 208.1.2 2-Ethyl-3-nitro-5-(4,4,5,5-tetramethyl-[1,3,2]dioxaborolan-2-yl)-pyridine



embedded image


The title compound was synthesized in a similar manner as described for Stage 5.1.1 using 5-bromo-2-ethyl-3-nitro-pyridine (stage 208.1.3, 0.493 mmol) to give the title compound as a crude brown oil. (degrading under the HPLC condition: tR 2.65 min (Method A); M+H=279 MS-ES).


Stage 208.1.3 5-Bromo-2-ethyl-3-nitro-pyridine



embedded image


The title compound was synthesized in a similar manner as described for Stage 75.1.5 using diethyl methylmalonate (Fluka, Buchs, Switzerland) as replacement for diethyl malonate to give the title compound as a brown oil. (HPLC: tR 3.34 min (Method A); M+H=231, 233 MS-ES).


Example 209
1-(1,3-Dimethyl-1H-pyrazol-4-yl)-3-methyl-8-(4-methyl-3,4-dihydro-2H-pyrido[3,2-b][1,4]oxazin-7-yl)-1,3-dihydro-imidazo[4,5-c]quinolin-2-one



embedded image


The title compound was synthesized in a similar manner as described for Example 1.1 using 8-bromo-1-(1,3-dimethyl-1H-pyrazol-4-yl)-3-methyl-1,3-dihydro-imidazo[4,5-c]quinolin-2-one (Intermediate A) and 4-methyl-7-(4,4,5,5-tetramethyl-1,3,2-dioxaborolan-2-yl)-3,4-dihydro-2H-pyrido[3,2-b][1,4]oxazine (ABCR, Karlsruhe, Germany) to give the title compound as a yellow foam. (HPLC: tR 2.15 min (Method A); M+H=442 MS-ES; 1H-NMR (d6-DMSO, 400 MHz) 8.90 (s, 1H), 8.13 (s, 1H), 8.03-7.99 (m, 1H), 7.89-7.82 (m, 2H), 7.40-7.37 (m, 1H), 6.97-6.94 (m, 1H), 4.25 (t, 2H), 3.92 (s, 3H), 3.56 (s, 3H), 3.47 (t, 2H), 3.06 (s, 3H), 1.95 (s, 3H))


Example 210
8-(5-Ethylamino-6-methyl-pyridin-3-yl)-1-[1-(2-hydroxy-ethyl)-3,5-dimethyl-1H-pyrazol-4-yl]-3-methyl-1,3-dihydro-imidazo[4,5-c]quinolin-2-one



embedded image


The title compound was synthesized in a similar manner as described for Example 1.1 using 8-Bromo-1-{1-[2-(tert-butyl-dimethyl-silanyloxy)-ethyl]-3,5-dimethyl-1H-pyrazol-4-yl}-3-methyl-1,3-dihydro-imidazo[4,5-c]quinolin-2-one (stage 210.1.1) and ethyl-[2-methyl-5-(4,4,5,5-tetramethyl-[1,3,2]dioxaborolan-2-yl)-pyridin-3-yl]-amine (Stage 87.1.1) to give the title compound as an off-white solid; deprotection of the silyl group occurred during the purification step. (HPLC: tR 2.16 min (Method A); M+H=472 MS-ES; 1H-NMR (d6-DMSO, 400 MHz) 8.96 (s, 1H), 8.10-8.06 (m, 1H), 7.94-7.90 (m, 1H), 7.85-7.82 (m, 1H), 7.55-7.52 (m, 1H), 6.83-6.80 (m, 1H), 5.21 (t, 1H), 4.92 (t, 1H), 4.21-4.03 (m, 2H), 3.81-3.67 (m, 2H), 3.59 (s, 3H), 3.24-3.14 (m, 2H), 2.32 (s, 3H), 2.09 (s, 3H), 1.94 (s, 3H), 1.24 (t, 3H))


Stage 210.1.2 8-Bromo-1-{1-[2-(tert-butyl-dimethyl-silanyloxy)-ethyl]-3,5-dimethyl-1H-pyrazol-4-yl}-3-methyl-1,3-dihydro-imidazo[4,5-c]quinolin-2-one



embedded image


The title compound was synthesized in a similar manner as described for intermediate N using (2-bromoethoxy)-tertbutyldimethylsilane (Frontier Scientific, Logan, USA) as replacement for the 2-bromoethyl methyl ether to give the title compound as a brown foam. (HPLC: tR 3.61 min (Method A); M+H=530, 532 MS-ES).


Example 211.1
1-[1-(2-Hydroxy-ethyl)-3-methyl-1H-pyrazol-4-yl]-8-(5-methoxy-6-methyl-pyridin-3-yl)-3-methyl-1,3-dihydro-imidazo[4,5-c]quinolin-2-one



embedded image


The title compound was synthesized in a similar manner as described for Example 103.1 using 3-methoxy-2-methyl-5-(4,4,5,5-tetramethyl-[1,3,2]dioxaborolan-2-yl)-pyridine (stage 211.1.1) to give the title compound as a white solid. (HPLC: tR 2.02 min (Method A); M+H=445 MS-ES; 1H-NMR (d6-DMSO, 400 MHz) 9.00-8.96 (m, 1H), 8.19-8.09 (m, 3H), 8.03-7.97 (m, 1H), 7.58 (s, 1H), 7.33 (s, 1H), 4.94 (t, 1H), 4.25-4.11 (m, 2H), 3.92 (s, 3H), 3.84-3.69 (m, 2H), 3.59 (s, 3H), 2.38 (s, 3H), 1.98 (s, 3H))


Stage 211.1.1 3-Methoxy-2-methyl-5-(4,4,5,5-tetramethyl-[1,3,2]dioxaborolan-2-yl)-pyridine



embedded image


The title compound was synthesized in a similar manner as described for Stage 84.1.1 using methanol as replacement for isopropanol to give the title compound as a crude black oil. (degrading under the HPLC condition: tR 1.86 min (Method A); M+H=250 MS-ES).


The following example was synthesized in a similar manner as described for Example 211.1 using 3-ethoxy-2-methyl-5-(4,4,5,5-tetramethyl-[1,3,2]dioxaborolan-2-yl)-pyridine (Stage 85.1.1).




















HPLC




Name of the
MS-ES
tR


Example
structure
example
(M + H)
(min)







211.2


embedded image


8-(5-Ethoxy-6-methyl- pyridin-3-yl)-1-[1-(2- hydroxy-ethyl)-3- methyl-1H-pyrazol-4- yl]-3-methyl-1,3- dihydro-imidazo[4,5- c]quinolin-2-one
459
2.14









Example 212.1
1-(1,3-Dimethyl-1H-pyrazol-4-yl)-8-[6-((R)-3-hydroxy-pyrrolidin-1-yl)-pyridin-3-yl]-3-methyl-1,3-dihydro-imidazo[4,5-c]quinolin-2-one



embedded image


The title compound was synthesized in a similar manner as described for Example 1.1 using 8-bromo-1-(1,3-dimethyl-1H-pyrazol-4-yl)-3-methyl-1,3-dihydro-imidazo[4,5-c]quinolin-2-one (Intermediate A) and (R)-1-[5-(4,4,5,5-tetramethyl-[1,3,2]dioxaborolan-2-yl)-pyridin-2-yl]-pyrrolidin-3-ol (stage 212.1.1) to give the title compound as a white solid. (HPLC: tR 2.03 min (Method A); M+H=456 MS-ES; 1H-NMR (d6-DMSO, 400 MHz) 8.90 (s, 1H), 8.25-8.22 (m, 1H), 8.12 (s, 1H), 8.05-8.01 (m, 1H), 7.87-7.83 (m, 1H), 7.57-7.53 (m, 1H), 7.43-7.41 (m, 1H), 6.55-6.51 (m, 1H), 4.95 (d, 1H), 4.42-4.36 (m, 1H), 3.92 (s, 3H), 3.56 (s, 3H), 3.54-3.43 (m, 3H), 3.37-3.31 (m, 1H), 2.08-1.86 (m, 2H), 1.96 (s, 3H))


Stage 212.1.1 (R)-1-[5-(4,4,5,5-Tetramethyl-[1,3,2]dioxaborolan-2-yl)-pyridin-2-yl]-pyrrolidin-3-ol



embedded image


The title compound was synthesized in a similar manner as described for Stage 5.1.1-2 using (R)-3-hydroxypyrrolidine (Fluka, Buchs, Switzerland) to give the title compound as a crude black oil. (degrading under the HPLC condition: tR 1.54 min (Method A); M+H=291 MS-ES).


The following example was synthesized in a similar manner as described for Example 212.1 using (S)-3-hydroxypyrrolidine (Fluka, Buchs, Switzerland).




















HPLC




Name of the
MS-ES
tR


Example
structure
example
(M + H)
(min)







212.2


embedded image


1-(1,3-Dimethyl- 1H-pyrazol-4-yl)-8- [6-((S)-3-hydroxy- pyrrolidin-1-yl)- pyridin-3-yl]-3- methyl-1,3-dihydro- imidazo[4,5- c]quinolin-2-one
456
2.04









Example 213.1
1-(1,3-Dimethyl-1H-pyrazol-4-yl)-8-[6-((R)-3-methoxy-pyrrolidin-1-yl)-pyridin-3-yl]-3-methyl-1,3-dihydro-imidazo[4,5-c]quinolin-2-one



embedded image


The title compound was synthesized in a similar manner as described for Example 104 using 1-(1,3-Dimethyl-1H-pyrazol-4-yl)-8-[6-((R)-3-hydroxy-pyrrolidin-1-yl)-pyridin-3-yl]-3-methyl-1,3-dihydro-imidazo[4,5-c]quinolin-2-one (Example 212.1, 0.116 mmol) to give the title compound as a white solid. (HPLC: tR 2.20 min (Method A); M+H=470 MS-ES; 1H-NMR (d6-DMSO, 400 MHz) 8.90 (s, 1H), 8.26-8.23 (m, 1H), 8.12 (s, 1H), 8.05-8.02 (m, 1H), 7.88-7.84 (m, 1H), 7.59-7.55 (m, 1H), 7.44-7.41 (m, 1H), 6.59-6.54 (m, 1H), 4.08 (qt, 1H), 3.93 (s, 3H), 3.57 (s, 3H), 3.56-3.49 (m, 4H), 3.45-3.34 (m, 1H), 3.27 (s, 3H), 2.11-2.02 (m, 2H), 1.97 (s, 3H))


The following example was synthesized in a similar manner as described for Example 213.1 using (S)-3-hydroxypyrrolidine (Fluka, Buchs, Switzerland).




















HPLC




Name of the
MS-ES
tR


Example
structure
example
(M + H)
(min)







213.2


embedded image


1-(1,3-Dimethyl- 1H-pyrazol-4-yl)- 8-[6-((S)-3- methoxy- pyrrolidin-1-yl)- pyridin-3-yl]-3- methyl-1,3- dihydro- imidazo[4,5- c]quinolin-2-one
470
2.19









Example 214
1-(1,3-Dimethyl-1H-pyrazol-4-yl)-3-methyl-8-[6-(tetrahydro-pyran-4-ylamino)-pyridin-3-yl]-1,3-dihydro-imidazo[4,5-c]quinolin-2-one



embedded image


The title compound was synthesized in a similar manner as described for Example 1.1 using 8-bromo-1-(1,3-dimethyl-1H-pyrazol-4-yl)-3-methyl-1,3-dihydro-imidazo[4,5-c]quinolin-2-one (Intermediate A) and (tetrahydro-pyran-4-yl)-[5-(4,4,5,5-tetramethyl-[1,3,2]dioxaborolan-2-yl)-pyridin-2-yl]-amine (stage 214.1.1) to give the title compound as a white solid. (HPLC: tR 2.13 min (Method A); M+H=470 MS-ES; 1H-NMR (d6-DMSO, 400 MHz) 8.89 (s, 1H), 8.15-8.10 (m, 2H), 8.04-8.00 (m, 1H), 7.84-7.79 (m, 1H), 7.47-7.42 (m, 1H), 7.41-7.38 (m, 1H), 6.78-6.73 (m, 1H), 6.57-6.53 (m, 1H), 4.00-3.82 (m, 3H), 3.91 (s, 3H), 3.56 (s, 3H), 3.45-3.37 (m, 2H), 1.96 (s, 3H), 1.91-1.83 (m, 2H), 1.49-1.37 (m, 2H))


Stage 214.1.1 (Tetrahydro-pyran-4-yl)-[5-(4,4,5,5-tetramethyl-[1,3,2]dioxaborolan-2-yl)-pyridin-2-yl]-amine



embedded image


The title compound was synthesized in a similar manner as described for Stage 5.1.1-2 using 4-aminotetrahydropyran (Maybridge, Basel, Switzerland) to give the title compound as a crude brown sticky solid. (degrading under the HPLC condition: tR 1.74 min (Method A); M+H=305 MS-ES).


Example 215.1
8-[5-(1-Hydroxy-1-methyl-ethyl)-pyridin-3-yl]-1-(1-isopropyl-3-methyl-1H-pyrazol-4-yl)-3-methyl-1,3-dihydro-imidazo[4,5-c]quinolin-2-one



embedded image


The title compound was synthesized in a similar manner as described for Example 1.1 using 8-bromo-1-(1-isopropyl-3-methyl-1H-pyrazol-4-yl)-3-methyl-1,3-dihydro-imidazo[4,5-c]quinolin-2-one (Intermediate G) and 2-[5-(4,4,5,5-tetramethyl-[1,3,2]dioxaborolan-2-yl)-pyridin-3-yl]-propan-2-ol (Stage 215.1.1) to give the title compound as a white foam. (HPLC: tR 2.13 min (Method A); M+H=457 MS-ES; 1H-NMR (d6-DMSO, 400 MHz) 8.99 (s, 1H), 8.69-8.66 (m, 1H), 8.46-8.44 (m, 1H), 8.21 (s, 1H), 8.16-8.12 (m, 1H), 7.98-7.91 (m, 2H), 7.58-7.56 (m, 1H), 5.26 (s, 1H), 4.53 (hp, 1H), 3.59 (s, 3H), 1.97 (s, 3H), 1.49 (s, 6H), 1.44 (d, 6H))


Stage 215.1.1 2-[5-(4,4,5,5-Tetramethyl-[1,3,2]dioxaborolan-2-yl)-pyridin-3-yl]-propan-2-ol



embedded image


The title compound was synthesized in a similar manner as described for Stage 5.1.1 using 2-(5-bromo-pyridin-3-yl)-propan-2-ol (stage 215.1.2, 1.518 mmol) to give the title compound as a crude black sticky oil. (degrading under the HPLC condition: tR 1.87, 3.68 min (Method A); M+H=264 MS-ES).


Stage 215.1.2 2-(5-Bromo-pyridin-3-yl)-propan-2-ol



embedded image


To a solution of 3,5-dibromopyridine (Aldrich, Buchs, Switzerland, 4.6 mmol) in dry THF under Ar was added slowly a ˜2 M solution of isopropylmagnesium chloride in THF (2.76 ml). The RM was stirred for 2 h at it then was added acetone (6.9 mmol) and the RM was stirred for 2 h at rt. The RM was quenched with brine and extracted with EtOAc (2×). The combined organic layers were washed with brine, dried over Na2SO4, filtered and evaporated. The residue was absorbed on silica gel and purified by flash chromatography (heptane/EtOAc 0% to 70%). The fractions containing product were evaporated together to give the title compound as an oil. (HPLC: tR 1.82 min (Method A); M+H=216, 218 MS-ES)


The following examples were synthesized in a similar manner as described for Example 215.1 using the specified intermediate.






















HPLC





Name of the
MS-ES
tR


Example
Intermed.
structure
example
(M + H)
(min)







215.2
A


embedded image


1-(1,3-Dimethyl-1H- pyrazol-4-yl)-8-[5-(1- hydroxy-1-methyl- ethyl)-pyridin-3-yl]-3- methyl-1,3-dihydro- imidazo[4,5- c]quinolin-2-one
429
1.98





215.3
K


embedded image


1-(3-Chloro-1- methyl-1H-pyrazol-4- yl)-8-[5-(1-hydroxy-1- methyl-ethyl)-pyridin- 3-yl]-3-methyl-1,3- dihydro-imidazo[4,5- c]quinolin-2-one
459
2.16





215.4
F


embedded image


1-(1-Ethyl-3-methyl- 1H-pyrazol-4-yl)-8- [5-(1-hydroxy-1- methyl-ethyl)-pyridin- 3-yl]-3-methyl-1,3- dihydro-imidazo[4,5- c]quinolin-2-one
443
2.05









Example 216
1-(1,3-Dimethyl-1H-pyrazol-4-yl)-8-[5-(1-ethyl-1-hydroxy-propyl)-pyridin-3-yl]-3-methyl-1,3-dihydro-imidazo[4,5-c]quinolin-2-one



embedded image


The title compound was synthesized in a similar manner as described for Example 215.1 using 8-bromo-1-(1,3-dimethyl-1H-pyrazol-4-yl)-3-methyl-1,3-dihydro-imidazo[4,5-c]quinolin-2-one (Intermediate A) and 3-pentanone (Fluka, Buchs, Switzerland) to give the title compound as a white solid. (HPLC: tR 2.13 min (Method A); M+H=457 MS-ES; 1H-NMR (d6-DMSO, 400 MHz) 8.99 (s, 1H), 8.63-8.57 (m, 2H), 8.16-8.11 (m, 2H), 8.01-7.96 (m, 1H), 7.76-7.73 (m, 1H), 7.65-7.62 (m, 1H), 4.82 (s, 1H), 3.90 (s, 3H), 3.58 (s, 3H), 1.96 (s, 3H), 1.87-1.72 (m, 4H), 0.72-0.65 (m, 6H))


Example 217
(rac)-1-(1,3-Dimethyl-1H-pyrazol-4-yl)-8-[5-(1-hydroxy-ethyl)-pyridin-3-yl]-3-methyl-1,3-dihydro-imidazo[4,5-c]quinolin-2-one



embedded image


The title compound was synthesized in a similar manner as described for Example 1.1 using 8-bromo-1-(1,3-dimethyl-1H-pyrazol-4-yl)-3-methyl-1,3-dihydro-imidazo[4,5-c]quinolin-2-one (Intermediate A) and acetaldehyde (Fluka, Buchs, Switzerland) to give the title compound as a white solid. (HPLC: tR 1.95 min (Method A); M+H=415 MS-ES; 1H-NMR (d6-DMSO, 400 MHz) 8.99 (s, 1H), 8.63-8.60 (m, 1H), 8.56-8.53 (m, 1H), 8.16-8.11 (m, 2H), 8.00-7.95 (m, 1H), 7.81-7.76 (m, 1H), 7.61-7.58 (m, 1H), 5.42-5.38 (m, 1H), 4.88-4.80 (m, 1H), 3.94-3.90 (m, 3H), 3.58 (s, 3H), 1.97-1.92 (m, 3H), 1.43-1.39 (m, 3H))


Example 218
1-(1,3-Dimethyl-1H-pyrazol-4-yl)-8-[5-(1-hydroxy-cyclopentyl)-pyridin-3-yl]-3-methyl-1,3-dihydro-imidazo[4,5-c]quinolin-2-one



embedded image


The title compound was synthesized in a similar manner as described for Example 1.1 using 8-bromo-1-(1,3-dimethyl-1H-pyrazol-4-yl)-3-methyl-1,3-dihydro-imidazo[4,5-c]quinolin-2-one (Intermediate A) and cyclopentanone (Fluka, Buchs, Switzerland) to give the title compound as a white solid. (HPLC: tR 2.14 min (Method A); M+H=455 MS-ES; 1H-NMR (d6-DMSO, 400 MHz) 8.99 (s, 1H), 8.71-8.68 (m, 1H), 8.61-8.58 (m, 1H), 8.16-8.11 (m, 2H), 8.01-7.96 (m, 1H), 7.85-7.81 (m, 1H), 7.63-7.59 (m, 1H), 5.05 (s, 1H), 3.90 (s, 3H), 3.58 (s, 3H), 1.98-1.77 (m, 8H), 1.95 (s, 3H))


Example 219
8-[5-(2-Fluoro-1-fluoromethyl-1-hydroxy-ethyl)-pyridin-3-yl]-1-(1-isopropyl-3-methyl-1H-pyrazol-4-yl)-3-methyl-1,3-dihydro-imidazo[4,5-c]quinolin-2-one



embedded image


The title compound was synthesized in a similar manner as described for Example 215.1 using 1,3-difluoropropanone (Apollo Scientific, Cheshire, United Kingdom) to give the title compound as a yellow solid. (HPLC: tR 2.24 min (Method A); M+H=493 MS-ES; 1H-NMR (d6-DMSO, 400 MHz) 9.00 (s, 1H), 8.72-8.70 (m, 1H), 8.55-8.52 (m, 1H), 8.22 (s, 1H), 8.18-8.14 (m, 1H), 8.09-8.07 (m, 1H), 7.96-7.92 (m, 1H), 7.59-7.57 (m, 1H), 6.31 (s, 1H), 4.78-4.70 (m, 2H), 4.66-4.58 (m, 2H), 4.54 (hp, 1H), 3.59 (s, 3H), 1.97 (s, 3H), 1.47-1.42 (m, 6H))


Example 220.1
2-{5-[1-(1,3-Dimethyl-1H-pyrazol-4-yl)-3-methyl-2-oxo-2,3-dihydro-1H-imidazo[4,5-c]quinolin-8-yl]-pyridin-3-yl}-2-methyl-propionitrile



embedded image


The title compound was synthesized in a similar manner as described for Example 1.1 using 8-bromo-1-(1,3-dimethyl-1H-pyrazol-4-yl)-3-methyl-1,3-dihydro-imidazo[4,5-c]quinolin-2-one (Intermediate A) and 2-methyl-2-[5-(4,4,5,5-tetramethyl-[1,3,2]dioxaborolan-2-yl)-pyridin-3-yl]-propionitrile (Stage 220.1.1) to give the title compound as a white solid. (HPLC: tR 2.36 min (Method A); M+H=438 MS-ES; 1H-NMR (d6-DMSO, 400 MHz) 9.01 (s, 1H), 8.78-8.76 (m, 1H), 8.73-8.71 (m, 1H), 8.18-8.14 (m, 1H), 8.12 (s, 1H), 8.05-8.01 (m, 1H), 7.93-7.90 (m, 1H), 7.62-7.60 (m, 1H), 3.88 (s, 3H), 3.59 (s, 3H), 1.97 (s, 3H), 1.80 (s, 3H), 1.79 (s, 3H))


Stage 220.1.1 2-Methyl-2-[5-(4,4,5,5-tetramethyl-[1,3,2]dioxaborolan-2-yl)-pyridin-3-yl]-propionitrile



embedded image


The title compound was synthesized in a similar manner as described for Stage 5.1.1 using 2-(5-bromo-pyridin-3-yl)-2-methyl-propionitrile (stage 220.1.2, 1.111 mmol) to give the title compound as a crude brown soft solid. (degrading under the HPLC condition (Method A); M+H=273 MS-ES).


Stage 220.1.2 2-(5-Bromo-pyridin-3-yl)-2-methyl-propionitrile



embedded image


To a solution of (5-bromo-pyridin-3-yl)-acetonitrile (Stage 220.1.3, 4.61 mmol) in dry DMF (15 ml) cooled with an ice-bath was added portionwise 55% sodium hydride in oil (9.97 mmol). Was then added iodomethane (13.56 mmol) and DMF (5 ml). The RM was stirred for 3 h at 0° C. then was quenched with saturated aqueous NH4Cl, diluted with water and extracted with EtOAc(3×). The combined organic layers were washed with brine, dried over Na2SO4, filtered and evaporated. The residue was purified by flash chromatography (heptane/EtOAc 25%). The fractions containing product were evaporated together to give the title compound as an oil. (HPLC: tR 2.72 min (Method A); M+H=225, 227 MS-ES)


Stage 220.1.3 (5-Bromo-pyridin-3-yl)-acetonitrile



embedded image


To SOCl2 (26.7 ml) cooled with an ice-bath was added portionwise (5-bromo-pyridin-3-yl)-methanol (ABCR, Karlsruhe, Germany, 26.6 mmol). The RM was refluxed for 1 h then was cooled at 0° C. and quenched with diethyl ether. The resulting precipitate was filtered, washed with cooled diethyl ether and dried under vacuum at 50° C. The solid was mixed with potassium cyanide (64.5 mmol), MeOH (35 ml) and water (14 ml) and the RM was refluxed for 2 h. The RM was cooled, quenched with aqueous K2CO3 and extracted with diethyl ether (3×). The combined organic layers dried over Na2SO4, filtered and evaporated to give the title compound as a purple solid. (HPLC: tR 2.16 min (Method A); M+H=197, 199 MS-ES)


The following examples were synthesized in a similar manner as described for Example 220.1 using the specified intermediate.






















HPLC





Name of the
MS-ES
tR


Example
Intermed.
structure
example
(M + H)
(min)







220.2
F


embedded image


2-{5-[1-(1-Ethyl-3- methyl-1H-pyrazol-4- yl)-3-methyl-2-oxo- 2,3-dihydro-1H- imidazo[4,5- c]quinolin-8-yl]- pyridin-3-yl}-2- methyl-propionitrile
452
2.45





220.3
K


embedded image


2-{5-[1-(3-Chloro-1- methyl-1H-pyrazol-4- yl)-3-methyl-2-oxo- 2,3-dihydro-1H- imidazo[4,5- c]quinolin-8-yl]- pyridin-3-yl}-2- methyl-propionitrile
458
2.55









Example 221.1
1-{5-[1-(1,3-Dimethyl-1H-pyrazol-4-yl)-3-methyl-2-oxo-2,3-dihydro-1H-imidazo[4,5-c]quinolin-8-yl]-pyridin-3-yl}-cyclobutanecarbonitrile



embedded image


The title compound was synthesized in a similar manner as described for Example 1.1 using 8-bromo-1-(1,3-dimethyl-1H-pyrazol-4-yl)-3-methyl-1,3-dihydro-imidazo[4,5-c]quinolin-2-one (Intermediate A) and 1-[5-(4,4,5,5-tetramethyl-[1,3,2]dioxaborolan-2-yl)-pyridin-3-yl]-cyclobutanecarbonitrile (Stage 221.1.1) to give the title compound as an off-white foam. (HPLC: tR 2.43 min (Method A); M+H=450 MS-ES; 1H-NMR (d6-DMSO, 400 MHz) 9.01 (s, 1H), 8.74-8.73 (m, 1H), 8.70-8.68 (m, 1H), 8.17-8.12 (m, 2H), 8.06-8.03 (m, 1H), 7.90-7.88 (m, 1H), 7.63-7.61 (m, 1H), 3.89 (s, 3H), 3.59 (s, 3H), 2.86-2.71 (m, 4H), 2.13-2.01 (m, 2H), 1.97 (s, 3H))


Stage 221.1.1 1-[5-(4,4,5,5-Tetramethyl-[1,3,2]dioxaborolan-2-yl)-pyridin-3-yl]-cyclobutanecarbonitrile



embedded image


The title compound was synthesized in a similar manner as described for Stage 5.1.1 using 1-(5-bromo-pyridin-3-yl)-cyclobutanecarbonitrile (stage 221.1.2, 0.476 mmol) to give the title compound as a crude back oil. (degrading under the HPLC condition: tR 2.69 min (Method A); M+H=285 MS-ES).


Stage 221.1.2 1-(5-Bromo-pyridin-3-yl)-cyclobutanecarbonitrile



embedded image


To a solution of (5-bromo-pyridin-3-yl)-acetonitrile (Stage 220.1.3, 1.37 mmol) in dry DMF (10 ml) was added 55% sodium hydride in oil (1.507 mmol). After 30 min stirring at rt was added 1-bromo-3-chloropropane (1.507 mmol). The RM was stirred for 1 h at rt then was added 55% sodium hydride in oil (1.507 mmol). The RM was stirred for 1 h at it then quenched with saturated aqueous NaHCO3 and extracted with EtOAc. The organic layer was washed with brine (2×), dried over Na2SO4, filtered and evaporated. The residue was taken in DMA and purified by preparative HPLC. The fractions containing product were basified with NaHCO3, concentrated and extracted with EtOAc (2×). The combined organic layers were washed with brine, dried over Na2SO4, filtered, evaporated and dried under vacuum to give the title compound as a red oil. (HPLC: tR 2.86 min (Method A); M+H=237, 239 MS-ES)


The following example was synthesized in a similar manner as described for Example 221.1 using the specified intermediate.






















HPLC





Name of the
MS-ES
tR


Example
Intermed.
structure
example
(M + H)
(min)







221.2
F


embedded image


1-{5-[1-(1-Ethyl-3- methyl-1H-pyrazol-4- yl)-3-methyl-2-oxo-2,3- dihydro-1H- imidazo[4,5-c]quinolin- 8-yl]-pyridin-3-yl}- cyclobutanecarbonitrile
464
2.52









Example 222
N-{2-Chloro-5-[1-(1,3-dimethyl-1H-pyrazol-4-yl)-3-methyl-2-oxo-2,3-dihydro-1H-imidazo[4,5-c]quinolin-8-yl]-pyridin-3-yl}-acetamide



embedded image


The title compound was synthesized in a similar manner as described for Example 1.1 using 8-bromo-1-(1,3-dimethyl-1H-pyrazol-4-yl)-3-methyl-1,3-dihydro-imidazo[4,5-c]quinolin-2-one (Intermediate A) and N-[2-chloro-5-(4,4,5,5-tetramethyl-[1,3,2]dioxaborolan-2-yl)-pyridin-3-yl]-acetamide (Stage 222.1.1) to give the title compound as an off-white solid. (HPLC: tR 2.33 min (Method A); M+H=462 MS-ES; 1H-NMR (d6-DMSO, 400 MHz) 9.80 (s, 1H), 9.01 (s, 1H), 8.34-8.28 (m, 2H), 8.17-8.11 (m, 2H), 7.95-7.90 (m, 1H), 7.61-7.58 (m, 1H), 3.92 (s, 3H), 3.59 (s, 3H), 2.18 (s, 3H), 1.93 (s, 3H))


Stage 222.1.1 N-[2-Chloro-5-(4,4,5,5-tetramethyl-[1,3,2]dioxaborolan-2-yl)-pyridin-3-yl]-acetamide



embedded image


The title compound was synthesized in a similar manner as described for Stage 5.1.1 using N-(5-bromo-2-chloro-pyridin-3-yl)-acetamide (stage 222.1.2, 2.434 mmol) to give the title compound as a crude back oil. (degrading under the HPLC condition: tR 1.71 min (Method A); M+H=297 MS-ES).


Stage 222.1.2 N-(5-Bromo-2-chloro-pyridin-3-yl)-acetamide



embedded image


To a solution of 3-amino-5-bromo-2-chloropyridine (stage 152.1.2, 3.59 mmol) and triethylamine (1 ml) in dichloromethane (20 ml) was added acetyl chloride (Aldrich, Buchs, Switzerland, 0.312 ml). The RM was stirred for 17 h at rt then was added acetyl chloride (0.3 ml), the RM was stirred for 3 h at rt. Acetyl chloride (0.1 ml) was added and the RM was stirred for 1 h at rt. The RM was quenched with aqueous NaHCO3 and extracted with EtOAc. The organic layer was washed with brine, dried over Na2SO4, filtered and evaporated. The residue was absorbed on silica gel and purified by flash chromatography (heptane/EtOAc 0% to 40%). The fractions containing product were evaporated together to give the title compound as a white solid. (HPLC: tR 2.46 min (Method A); M+H=249, 251 MS-ES)


Example 223
N-{2-Chloro-5-[1-(1,3-dimethyl-1H-pyrazol-4-yl)-3-methyl-2-oxo-2,3-dihydro-1H-imidazo[4,5-c]quinolin-8-yl]-pyridin-3-yl}-methanesulfonamide



embedded image


The title compound was synthesized in a similar manner as described for Example 1.1 using 8-bromo-1-(1,3-dimethyl-1H-pyrazol-4-yl)-3-methyl-1,3-dihydro-imidazo[4,5-c]quinolin-2-one (Intermediate A) and N-[2-chloro-5-(4,4,5,5-tetramethyl-[1,3,2]dioxaborolan-2-yl)-pyridin-3-yl]-methanesulfonamide (Stage 223.1.1) to give the title compound as a white solid. (HPLC: tR 2.31 min (Method A); M+H=498 MS-ES; 1H-NMR (d6-DMSO, 400 MHz) 9.87 (s, 1H), 9.01 (s, 1H), 8.41-8.38 (m, 1H), 8.18-8.11 (m, 2H), 7.98-7.93 (m, 1H), 7.91-7.88 (m, 1H), 7.62-7.59 (m, 1H), 3.92 (s, 3H), 3.59 (s, 3H), 3.18 (s, 3H), 1.95 (s, 3H))


Stage 223.1.1 N-[2-Chloro-5-(4,4,5,5-tetramethyl-[1,3,2]dioxaborolan-2-yl)-pyridin-3-yl]-methanesulfonamide



embedded image


The title compound was synthesized in a similar manner as described for Stage 5.1.1 using N-(5-bromo-2-chloro-pyridin-3-yl)-methanesulfonamide (stage 223.1.2, 3.56 mmol) to give the title compound as a crude back oil. (degrading under the HPLC condition: tR 2.05 min (Method A); M+H=333 MS-ES).


Stage 223.1.2 N-(5-Bromo-2-chloro-pyridin-3-yl)-methanesulfonamide



embedded image


To a solution of 3-amino-5-bromo-2-chloropyridine (stage 152.1.2, 3.59 mmol) in pyridine (7 ml) was added methanesulfonyl chloride (Fluka, Buchs, Switzerland, 0.365 ml). The RM was stirred for 22 h at rt then was added methanesulfonyl chloride (0.2 ml), the RM was stirred for 5 h at rt. Methanesulfonyl chloride (0.2 ml) was added and the RM was stirred for 17 h at rt. The RM was evaporated to dryness and then taken in EtOAc, washed with aqueous NaHCO3, with brine, dried over Na2SO4, filtered and evaporated. The residue was absorbed on silica gel and purified by flash chromatography (heptane/EtOAc 0% to 40%). The fractions containing product were evaporated together to give the title compound as a pink solid. (HPLC: tR 2.91 min (Method A); M+H=285, 287 MS-ES)


Example 224.1
2-Amino-5-[1-(1,3-dimethyl-1H-pyrazol-4-yl)-3-methyl-2-oxo-2,3-dihydro-1H-imidazo[4,5-c]quinolin-8-yl]-N-methyl-nicotinamide



embedded image


The title compound was synthesized in a similar manner as described for Example 1.1 using 8-bromo-1-(1,3-dimethyl-1H-pyrazol-4-yl)-3-methyl-1,3-dihydro-imidazo[4,5-c]quinolin-2-one (Intermediate A) and 2-amino-N-methyl-5-(4,4,5,5-tetramethyl-[1,3,2]dioxaborolan-2-yl)-nicotinamide (Stage 224.1.1) to give the title compound as an off-white solid. (HPLC: tR 2.01 min (Method A); M+H=443 MS-ES; 1H-NMR (d6-DMSO, 400 MHz) 8.92 (s, 1H), 8.54 (q, 1H), 8.14-8.11 (m, 2H), 8.10-8.06 (m, 2H), 7.96-7.92 (m, 1H), 7.47-7.44 (m, 1H), 7.27 (s, br, 2H), 3.89 (s, 3H), 3.57 (s, 3H), 2.78 (d, 3H), 1.95 (s, 3H))


Stage 224.1.1 2-Amino-N-methyl-5-(4,4,5,5-tetramethyl-[1,3,2]dioxaborolan-2-yl)-nicotinamide



embedded image


The title compound was synthesized in a similar manner as described for Stage 5.1.1 using 2-amino-5-bromo-N-methyl-nicotinamide (stage 224.1.2, 0.352 mmol) to give the title compound as a crude brown oil. (degrading under the HPLC condition: tR 1.46 min (Method A); M+H=278 MS-ES).


Stage 224.1.2 2-Amino-5-bromo-N-methyl-nicotinamide



embedded image


To a solution of 2-amino-5-bromonicotinic acid (Combi-Blocks, San Diego, USA, 1.355 mmol) and triethylamine (0.378 ml) in dichloromethane (10 ml) cooled with an ice-bath was added a solution of trichloromethyl chloroformate (Acros, Basel, Switzerland, 0.677 mmol) in dichloromethane (10 ml). After 40 min stirring at 0° C., was added a solution 8 M of methylamine in EtOH (1.7 ml). The RM was stirred for 30 min at rt then was diluted with dichloromethane, washed with saturated aqueous NaHCO3, with brine, dried over Na2SO4, filtered and evaporated. The residue was taken in DMF and purified by preparative HPLC. The fractions containing product were basified with NaHCO3, concentrated and extracted with dichloromethane (2×). The combined organic layers were washed with brine, dried over Na2SO4, filtered, evaporated and dried under vacuum to give the title compound as a white solid. (HPLC: tR 1.69 min (Method A); M+H=230, 232 MS-ES)


The following example was synthesized in a similar manner as described for Example 224.1 using the specified intermediate.






















HPLC





Name of the
MS-ES
tR


Example
Intermed.
structure
example
(M + H)
(min)







224.2
G


embedded image


2-Amino-5-[1-(1- isopropyl-3-methyl- 1H-pyrazol-4-yl)-3- methyl-2-oxo-2,3- dihydro-1H- imidazo[4,5- c]quinolin-8-yl]-N- methyl-nicotinamide
471
2.12









Example 225
2-Amino-5-[1-(1,3-dimethyl-1H-pyrazol-4-yl)-3-methyl-2-oxo-2,3-dihydro-1H-imidazo[4,5-c]quinolin-8-yl]-N-isopropyl-nicotinamide



embedded image


The title compound was synthesized in a similar manner as described for Example 224 using isopropylamine (Aldrich, Buchs, Switzerland) as replacement for methylamine to give the title compound as an off-white solid. (HPLC: tR 2.20 min (Method A); M+H=471 MS-ES; 1H-NMR (d6-DMSO, 400 MHz) 8.93 (s, 1H), 8.30 (d, 1H), 8.13-8.04 (s, 4H), 7.97-7.92 (m, 1H), 7.45-7.42 (m, 1H), 7.21 (s, br, 2H), 4.08 (oc, 1H), 3.88 (s, 3H), 3.57 (s, 3H), 1.97 (s, 3H), 1.22-1.15 (m, 6H))


Example 226
2-Amino-5-[1-(1,3-dimethyl-1H-pyrazol-4-yl)-3-methyl-2-oxo-2,3-dihydro-1H-imidazo[4,5-c]quinolin-8-yl]-N-(2-methoxy-ethyl)-nicotinamide



embedded image


The title compound was synthesized in a similar manner as described for Example 224 using 2-methoxyethylamine (Fluka, Buchs, Switzerland) as replacement for methylamine to give the title compound as a white solid. (HPLC: tR 2.10 min (Method A); M+H=487 MS-ES; 1H-NMR (d6-DMSO, 400 MHz) 8.93 (s, 1H), 8.65 (t, 1H), 8.15-8.06 (m, 4H), 7.97-7.93 (m, 1H), 7.47-7.44 (m, 1H), 7.27 (s, br, 2H), 3.89 (s, 3H), 3.57 (s, 3H), 3.50-3.34 (m, 4H), 3.26 (s, 3H), 1.96 (s, 3H))


Example 227
2-Amino-N-ethyl-5-[1-(1-isopropyl-3-methyl-1H-pyrazol-4-yl)-3-methyl-2-oxo-2,3-dihydro-1H-imidazo[4,5-c]quinolin-8-yl]-nicotinamide



embedded image


The title compound was synthesized in a similar manner as described for Example 1.1 using 8-bromo-1-(1-isopropyl-3-methyl-1H-pyrazol-4-yl)-3-methyl-1,3-dihydro-imidazo[4,5-c]quinolin-2-one (Intermediate G, 0.098 mmol) and 2-amino-N-methyl-5-(4,4,5,5-tetramethyl-[1,3,2]dioxaborolan-2-yl)-nicotinamide (stage 227.1.1) to give the title compound as a white solid. (HPLC: tR 2.22 min (Method A); M+H=485 MS-ES; 1H-NMR (d6-DMSO, 400 MHz) 8.93 (s, 1H), 8.53 (t, 1H), 8.19 (s, 1H), 8.11-8.06 (m, 3H), 7.95-7.91 (m, 1H), 7.44-7.41 (m, 1H), 7.22 (s, br, 2H), 4.52 (hp, 1H), 3.57 (s, 3H), 3.35-3.18 (m, 2H), 1.96 (s, 3H), 1.47-1.42 (m, 6H), 1.14 (t, 3H))


Stage 227.1.1 2-Amino-N-methyl-5-(4,4,5,5-tetramethyl-[1,3,2]dioxaborolan-2-yl)-nicotinamide



embedded image


The title compound was synthesized in a similar manner as described for Stage 224.1.1 using 2 M ethylamine in MeOH (Aldrich, Buchs, Switzerland) as replacement for the methylamine to give the title compound as a crude brown sticky oil. (degrading under the HPLC condition: tR 1.69 min (Method A); M+H=292 MS-ES).


Example 228
2-{5-[1-(1,3-Dimethyl-1H-pyrazol-4-yl)-3-methyl-2-oxo-2,3-dihydro-1H-imidazo[4,5-c]quinolin-8-yl]-pyridin-3-yl}-N-methyl-acetamide



embedded image


The title compound was synthesized in a similar manner as described for Example 1.1 using 8-bromo-1-(1,3-dimethyl-1H-pyrazol-4-yl)-3-methyl-1,3-dihydro-imidazo[4,5-c]quinolin-2-one (Intermediate A) and N-methyl-2-[5-(4,4,5,5-tetramethyl-[1,3,2]dioxaborolan-2-yl)-pyridin-3-yl]-acetamide (Stage 228.1.1) to give the title compound as an off-white foam. (HPLC: tR 1.97 min (Method A); M+H=442 MS-ES; 1H-NMR (d6-DMSO, 400 MHz) 8.99 (s, 1H), 8.55-8.53 (m, 1H), 8.45-8.43 (m, 1H), 8.16-8.12 (m, 2H), 8.07-8.01 (m, 1H), 7.95-7.90 (m, 1H), 7.77-7.74 (m, 1H), 7.59-7.57 (m, 1H), 3.92 (s, 3H), 3.58 (s, 3H), 3.51 (s, 2H), 2.60 (d, 3H), 1.95 (s, 3H))


Stage 228.1.1 N-Methyl-2-[5-(4,4,5,5-tetramethyl-[1,3,2]dioxaborolan-2-yl)-pyridin-3-yl]-acetamide



embedded image


The title compound was synthesized in a similar manner as described for Stage 5.1.1 using 2-(5-bromo-pyridin-3-yl)-N-methyl-acetamide (stage 228.1.2, 0.851 mmol) to give the title compound as a crude black oil. (degrading under the HPLC condition (Method A); M+H=277 MS-ES).


Stage 228.1.2 2-(5-Bromo-pyridin-3-yl)-N-methyl-acetamide



embedded image


The title compound was synthesized in a similar manner as described for Example 103 using (5-bromo-pyridin-3-yl)-acetic acid (ABCR, Karlsruhe, Germany, 1.815 mmol) and 8 M methylamine in EtOH (Aldrich, Buchs, Switzerland, 7.26 mmol) to give the title compound as an off-white solid. (HPLC: tR 1.74 min (Method A); M+H=229, 231 MS-ES)


Example 229
1-(1,3-Dimethyl-1H-pyrazol-4-yl)-8-[5-(2-hydroxy-1,1-dimethyl-ethyl)-pyridin-3-yl]-3-methyl-1,3-dihydro-imidazo[4,5-c]quinolin-2-one



embedded image


To a solution of 2-{5-[1-(1,3-dimethyl-1H-pyrazol-4-yl)-3-methyl-2-oxo-2,3-dihydro-1H-imidazo[4,5-c]quinolin-8-yl]-pyridin-3-yl}-2-methyl-propionic acid methyl ester (Stage 229.1.1, 0.134 mmol) in THF (1.2 ml) were added MeOH (0.009 ml) and NaBH4 (0.185 mmol) four times during the course of the heating at 40° C. for 39 h. After that, the RM was quenched with saturated aqueous NaHCO3 and extracted with EtOAc (2×). The combined organic layers were washed with brine, dried over Na2SO4, filtered and evaporated. The residue was taken in DMF and purified by preparative HPLC. The fractions containing product were basified with NaHCO3, concentrated and extracted with dichloromethane (2×). The combined organic layers were washed with brine, dried over Na2SO4, filtered, evaporated and dried under vacuum to give the title compound as a white foam. (HPLC: tR 2.06 min (Method A); M+H=442 MS-ES; 1H-NMR (d6-DMSO, 400 MHz) 8.99 (s, 1H), 8.62-8.58 (m, 2H), 8.15-8.11 (m, 2H), 8.01-7.96 (m, 1H), 7.74-7.71 (m, 1H), 7.62-7.59 (m, 1H), 4.79 (t, 1H), 3.88 (s, 3H), 3.58 (s, 3H), 3.50 (d, 2H), 1.96 (s, 3H), 1.30 (s, 6H))


Stage 229.1.1 2-{5-[1-(1,3-Dimethyl-1H-pyrazol-4-yl)-3-methyl-2-oxo-2,3-dihydro-1H-imidazo[4,5-c]quinolin-8-yl]-pyridin-3-yl}-2-methyl-propionic acid methyl ester



embedded image


The title compound was synthesized in a similar manner as described for Example 1.1 using 8-bromo-1-(1,3-dimethyl-1H-pyrazol-4-yl)-3-methyl-1,3-dihydro-imidazo[4,5-c]quinolin-2-one (Intermediate A, 0.215 mmol) and 2-methyl-2-[5-(4,4,5,5-tetramethyl-[1,3,2]dioxaborolan-2-yl)-pyridin-3-yl]-propionic acid methyl ester (Stage 229.1.1, 0.279 mmol) to give the title compound as a brown solid. (HPLC: tR 2.28 min (Method A); M+H=471 MS-ES)


Stage 229.1.2 2-Methyl-2-[5-(4,4,5,5-tetramethyl-[1,3,2]dioxaborolan-2-yl)-pyridin-3-yl]-propionic acid methyl ester



embedded image


The title compound was synthesized in a similar manner as described for Stage 5.1.1 using 2-(5-bromo-pyridin-3-yl)-2-methyl-propionic acid methyl ester (stage 229.1.2, 0.872 mmol) to give the title compound as a crude black sticky solid. (degrading under the HPLC condition: tR 2.20 min (Method A); M+H=306 MS-ES).


Stage 229.1.3 2-(5-Bromo-pyridin-3-yl)-2-methyl-propionic acid methyl ester



embedded image


The title compound was synthesized in a similar manner as described for stage 220.1.2 using (5-bromo-pyridin-3-yl)-acetic acid methyl ester (stage 229.1.4, 1.815 mmol) to give the title compound as yellowish oil. (HPLC: tR 2.74 min (Method A); M+H=258, 260 MS-ES)


Stage 229.1.4 (5-Bromo-pyridin-3-yl)-acetic acid methyl ester



embedded image


A mixture of (5-bromo-pyridin-3-yl)-acetic acid (ABCR, Karlsruhe, Germany, 4.54 mmol) and concentrated sulfuric acid (0.02 ml) in MeOH was refluxed for 13.5 h. The RM was concentrated, taken in EtOAc and sonicated. The organic layer was washed with saturated aqueous NaHCO3, with brine, dried over Na2SO4, filtered and evaporated to dryness to give the title compound as a brown oil. (HPLC: tR 2.21 min (Method A); M+H=230, 232 MS-ES)


Example 230
8-(5-Aminomethyl-pyridin-3-yl)-1-(1,3-dimethyl-1H-pyrazol-4-yl)-3-methyl-1,3-dihydro-imidazo[4,5-c]quinolin-2-one



embedded image


The title compound was synthesized in a similar manner as described for Example 1.1 using 8-bromo-1-(1,3-dimethyl-1H-pyrazol-4-yl)-3-methyl-1,3-dihydro-imidazo[4,5-c]quinolin-2-one (Intermediate A) and 3-(N-boc-aminomethyl)pyridine-5-boronic acid pinacol ester (Frontier Scientific, Logan, USA) to give the title compound as an off-white solid. (HPLC: tR 1.87 min (Method A); M+H=400 MS-ES; 1H-NMR (d6-DMSO, 400 MHz) 8.99 (s, 1H), 8.56-8.51 (m, 2H), 8.17-8.11 (m, 2H), 7.99-7.95 (m, 1H), 7.86-7.83 (m, 1H), 7.61-7.58 (m, 1H), 3.92 (s, 3H), 3.79 (s, 2H), 3.58 (s, 3H), 2.06-1.97 (br, 2H), 1.95 (s, 3H))


Example 231
N-{5-[1-(1,3-Dimethyl-1H-pyrazol-4-yl)-3-methyl-2-oxo-2,3-dihydro-1H-imidazo[4,5-c]quinolin-8-yl]-pyridin-3-ylmethyl}-acetamide



embedded image


To a mixture of 8-(5-aminomethyl-pyridin-3-yl)-1-(1,3-dimethyl-1H-pyrazol-4-yl)-3-methyl-1,3-dihydro-imidazo[4,5-c]quinolin-2-one (Example 230, 0.053 mmol) and Hünig's base (0.014 ml) in dichloromethane (1 ml) was added acetyl chloride (Aldrich, Buchs, Switzerland, 0.058 mmol). The RM was stirred for 45 min at it then evaporated to dryness. The residue was taken in MeOH and purified by preparative HPLC. The fractions containing product were basified with NaHCO3, concentrated and extracted with dichloromethane (2×). The combined organic layers were washed with brine, dried over Na2SO4, filtered, evaporated and dried under vacuum to give the title compound as a white solid. (HPLC: tR 1.95 min (Method A); M+H=442 MS-ES; 1H-NMR (d6-DMSO, 400 MHz) 8.99 (s, 1H), 8.56-8.53 (m, 1H), 8.48-8.46 (m, 1H), 8.40 (t, 1H), 8.16-8.12 (m, 2H), 7.94-7.90 (m, 1H), 7.78-7.75 (m, 1H), 7.58-7.56 (m, 1H), 4.38-4.27 (m, 2H), 3.92 (s, 3H), 3.58 (s, 3H), 1.95 (s, 3H), 1.89 (s, 3H))


Example 232
8-(5-Aminomethyl-pyridin-3-yl)-1-(1,3-dimethyl-1H-pyrazol-4-yl)-3-methyl-1,3-dihydro-imidazo[4,5-c]quinolin-2-one



embedded image


The title compound was synthesized in a similar manner as described for Example 231 using methanesulfonyl chloride (Aldrich, Buchs, Switzerland) to give the title compound as a white solid. (HPLC: tR 1.98 min (Method A); M+H=478 MS-ES; 1H-NMR (d6-DMSO, 400 MHz) 9.01-8.99 (m, 1H), 8.58-8.55 (m, 2H), 8.17-8.13 (m, 2H), 7.95-7.91 (m, 2H), 7.65-7.58 (m, 2H), 4.26 (s, 2H), 3.92 (s, 3H), 3.58 (s, 3H), 2.96 (s, 3H), 1.95 (s, 3H))


Example 233
1-(1,3-Dimethyl-1H-pyrazol-4-yl)-3-methyl-8-(1,3,3-trimethyl-2-oxo-2,3-dihydro-1H-pyrrolo[2,3-b]pyridin-5-yl)-1,3-dihydro-imidazo[4,5-c]quinolin-2-one



embedded image


The title compound was synthesized in a similar manner as described for Example 1.1 using 8-bromo-1-(1,3-dimethyl-1H-pyrazol-4-yl)-3-methyl-1,3-dihydro-imidazo[4,5-c]quinolin-2-one (Intermediate A) and 1,3,3-trimethyl-5-(4,4,5,5-tetramethyl-[1,3,2]dioxaborolan-2-yl)-1,3-dihydro-pyrrolo[2,3-b]pyridin-2-one (Stage 233.1.1) to give the title compound as a white solid. (HPLC: tR 2.53 min (Method A); M+H=468 MS-ES; 1H-NMR (d6-DMSO, 400 MHz) 8.96 (s, 1H), 8.32-8.29 (m, 1H), 8.14-8.09 (m, 2H), 7.96-7.91 (m, 1H), 7.79-7.76 (m, 1H), 7.54-7.51 (m, 1H), 3.90 (s, 3H), 3.58 (s, 3H), 3.18 (s, 3H), 1.96 (s, 3H), 1.37 (s, 3H), 1.36 (s, 3H))


Stage 233.1.1 1,3,3-Trimethyl-5-(4,4,5,5-tetramethyl-[1,3,2]dioxaborolan-2-yl)-1,3-dihydro-pyrrolo[2,3-b]pyridin-2-one



embedded image


The title compound was synthesized in a similar manner as described for Stage 5.1.1 using 5-bromo-1,3,3-trimethyl-1,3-dihydro-pyrrolo[2,3-b]pyridin-2-one (stage 233.1.2, 0.779 mmol) to give the title compound as a crude black solid. (degrading under the HPLC condition: tR 2.05 min (Method A); M+H=303 MS-ES).


Stage 233.1.2 5-Bromo-1,3,3-trimethyl-1,3-dihydro-pyrrolo[2,3-b]pyridin-2-one



embedded image


To a mixture of 5-bromo-1,3-dihydro-pyrrolo[2,3-b]pyridin-2-one (Aldrich, Buchs, Switzerland, 1.394 min) in DMF (7 ml) cooled with an ice-bath was added 55% NaH in oil (1.6 mmol) and the RM was stirred for 30 min at rt, then was added iodomethane (0.1 ml) and the RM was stirred for 30 min at rt. The RM was cooled with an ice-bath and was added 55% NaH in oil (1.6 mmol) and the RM was stirred for 15 min at rt, then was added iodomethane (0.1 ml) and the RM was stirred for 30 min at rt. The RM was cooled with an ice-bath and was added 55% NaH in oil (1.6 mmol) and the RM was stirred for 15 min at rt, then was added iodomethane (0.1 ml) and the RM was stirred for 1.5 h at rt. The RM was quenched with saturated aqueous NaHCO3 and extracted with EtOAc. The organic layer was washed with brine (3×), dried over Na2SO4, filtered and evaporated. The residue was absorbed on silica gel and purified by flash chromatography (heptane/EtOAc 0% to 40%). The fractions containing product were evaporated together to give the title compound as an off-white solid. (HPLC: tR 2.99 min (Method A); M+H=255, 257 MS-ES)


Example 234.1
8-(2,4-Dimethoxy-pyrimidin-5-yl)-1-(1-ethyl-3-methyl-1H-pyrazol-4-yl)-3-methyl-1,3-dihydro-imidazo[4,5-c]quinolin-2-one



embedded image


The title compound was synthesized in a similar manner as described for Example 1.1 using 8-bromo-1-(1-ethyl-3-methyl-1H-pyrazol-4-yl)-3-methyl-1,3-dihydro-imidazo[4,5-c]quinolin-2-one (Intermediate F, 0.101 mmol) and 2,4-dimethoxypyrimidine-5-boronic acid pinacol ester (Frontier Scientific, Logan, USA, 0.119 mmol) to give the title compound as a white foam. (HPLC: tR 2.51 min (Method A); M+H=446 MS-ES; 1H-NMR (d6-DMSO, 400 MHz) 8.97 (s, 1H), 8.32 (s, 1H), 8.11 (s, 1H), 8.07-8.04 (m, 1H), 7.78-7.74 (m, 1H), 7.56-7.54 (m, 1H), 4.14 (q, 2H), 3.92 (s, 1H), 3.92 (s, 3H), 3.57 (s, 3H), 1.95 (s, 3H), 1.33 (t, 3H))


The following examples were synthesized in a similar manner as described for Example 234.1 using the specified intermediate.






















HPLC





Name of the
MS-ES
tR


Example
Intermed.
structure
example
(M + H)
(min)







234.2
A


embedded image


8-(2,4-Dimethoxy- pyrimidin-5-yl)-1-(1,3- dimethyl-1H-pyrazol- 4-yl)-3-methyl-1,3- dihydro-imidazo[4,5- c]quinolin-2-one
432
2.43





234.3
G


embedded image


8-(2,4-Dimethoxy- pyrimidin-5-yl)-1-(1- isopropyl-3-methyl- 1H-pyrazol-4-yl)-3- methyl-1,3-dihydro- imidazo[4,5- c]quinolin-2-one
460
2.62





234.4
C


embedded image


8-(2,4-Dimethoxy- pyrimidin-5-yl)-1-(2,5- dimethyl-2H-pyrazol- 3-yl)-3-methyl-1,3- dihydro-imidazo[4,5- c]quinolin-2-one
432
2.56









Example 235
1-(1,3-Dimethyl-1H-pyrazol-4-yl)-8-(2-ethylamino-4-methoxy-pyrimidin-5-yl)-3-methyl-1,3-dihydro-imidazo[4,5-c]quinolin-2-one



embedded image


The title compound was synthesized in a similar manner as described for Example 1.1 using 8-bromo-1-(1,3-dimethyl-1H-pyrazol-4-yl)-3-methyl-1,3-dihydro-imidazo[4,5-c]quinolin-2-one (Intermediate A) and ethyl-[4-methoxy-5-(4,4,5,5-tetramethyl-[1,3,2]dioxaborolan-2-yl)-pyrimidin-2-yl]-amine (Stage 235.1.1) to give the title compound as a white solid. (HPLC: tR 2.24 min (Method A); M+H=445 MS-ES; 1H-NMR (d6-DMSO, 400 MHz) 8.91 (s, 1H), 8.16-8.06 (m, 3H), 8.01-7.97 (m, 1H), 7.74-7.69 (m, 1H), 7.61-7.58 (m, 1H), 3.88 (s, 3H), 3.84 (s, br, 3H), 3.56 (s, 3H), 3.36-3.28 (m, 2H), 1.93 (s, 3H), 1.13 (t, 3H))


Stage 235.1.1 Ethyl-[4-methoxy-5-(4,4,5,5-tetramethyl-[1,3,2]dioxaborolan-2-yl)-pyrimidin-2-yl]-amine



embedded image


The title compound was synthesized in a similar manner as described for Stage 5.1.1 using (5-bromo-4-methoxy-pyrimidin-2-yl)-ethyl-amine (stage 235.1.2, 0.366 mmol) to give the title compound as a crude back oil. (degrading under the HPLC condition: tR 1.91 min (Method A); M+H=280 MS-ES).


Stage 235.1.2 (5-Bromo-4-methoxy-pyrimidin-2-yl)-ethyl-amine



embedded image


To a solution of 5-bromo-2-chloro-4-methoxypyrimidine (Frontier Scientific, Logan, USA, 0.895 mmol) in THF (2.5 ml) cooled with an ice-bath was added a 2 M solution of ethylamine in MeOH (Aldrich, Buchs, Switzerland, 0.492 ml). The RM was stirred at 0° C. for 1 h and at rt for 66 h then the reaction mixture was diluted with EtOAc, washed with saturated aqueous NaHCO3, with brine, dried over Na2SO4, filtered and evaporated. The residue was absorbed on silica gel and purified by flash chromatography (CH2Cl2/iPrOH 0% to 6%) to give after evaporation of the fractions containing the title compound an off-white solid. (HPLC: tR 2.16min (Method A); M+H=232, 234 MS-ES)


Example 236
1-(1-Ethyl-3-methyl-1H-pyrazol-4-yl)-8-(4-methoxy-2-methylamino-pyrimidin-5-yl)-3-methyl-1,3-dihydro-imidazo[4,5-c]quinolin-2-one



embedded image


The title compound was synthesized in a similar manner as described for Example 1.1 using 8-bromo-1-(1-ethyl-3-methyl-1H-pyrazol-4-yl)-3-methyl-1,3-dihydro-imidazo[4,5-c]quinolin-2-one (Intermediate F) and [4-methoxy-5-(4,4,5,5-tetramethyl-[1,3,2]dioxaborolan-2-yl)-pyrimidin-2-yl]-methyl-amine (stage 236.1.1) to give the title compound as a white solid. (HPLC: tR 2.19 min (Method A); M+H=445 MS-ES; 1H-NMR (d6-DMSO, 400 MHz) 8.91 (s, 1H), 8.11 (s, 1H), 8.08-8.02 (m, 1H), 8.01-7.97 (m, 1H), 7.74-7.69 (m, 1H), 7.50-7.48 (m, 1H), 7.27-7.16 (m, 1H), 4.15 (q, 2H), 3.85 (s, br, 3H), 3.56 (s, 3H), 2.82 (d, 3H), 1.95 (s, 3H) 1.36 (t, 3H))


Stage 236.1.1 [4-Methoxy-5-(4,4,5,5-tetramethyl-[1,3,2]dioxaborolan-2-yl)-pyrimidin-2-yl]-methyl-amine



embedded image


The title compound was synthesized in a similar manner as described for Stage 235.1.1 using 8 M methylamine in EtOH (Fluka, Buchs, Switzerland, 0.366 mmol) to give the title compound as a crude back oil. (degrading under the HPLC condition: tR 1.69 min (Method A); M+H=266 MS-ES).


Example 237
1-(1,3-Dimethyl-1H-pyrazol-4-yl)-8-(1-ethyl-2-oxo-1,4-dihydro-2H-pyrido[3,2-d][1,3]oxazin-7-yl)-3-methyl-1,3-dihydro-imidazo[4,5-c]quinolin-2-one



embedded image


A mixture of acetic acid 3-(tert-butoxycarbonyl-ethyl-amino)-5-[1-(1,3-dimethyl-1H-pyrazol-4-yl)-3-methyl-2-oxo-2,3-dihydro-1H-imidazo[4,5-c]quinolin-8-yl]-pyridin-2-ylmethyl ester (stage 155.1.1, 0.107 mmol) and KCN (0.16 mmol) in EtOH (0.6 ml) was stirred for 17 h at 80° C. The RM was diluted with EtOAc and washed with water, with brine, dried over Na2SO4, filtered and evaporated. The residue The residue was absorbed on silica gel and purified by flash chromatography (CH2Cl2/MeOH 0% to 8%). The fractions containing product were evaporated together to give the title compound as an off-white solid. (HPLC: tR 2.42 min (Method A); M+H=470 MS-ES; 1H-NMR (d6-DMSO, 400 MHz) 9.00 (s, 1H), 8.35-8.32 (m, 1H), 8.17-8.13 (m, 1H), 8.11 (s, 1H), 8.04-8.00 (m, 1H), 7.62-7.59 (m, 1H), 7.49-7.47 (m, 1H), 5.40-5.31 (m, 2H), 4.04-3.85 (m, 2H), 3.87 (s, 3H), 3.59 (s, 3H), 1.97 (s, 3H), 1.24 (t, 3H))


Example 238
8-(5-Chloro-6-hydroxymethyl-pyridin-3-yl)-1-(1,3-dimethyl-1H-pyrazol-4-yl)-3-methyl-1,3-dihydro-imidazo[4,5-c]quinolin-2-one



embedded image


The title compound was synthesized in a similar manner as described for Example 169.1 using 8-bromo-1-(1,3-dimethyl-1H-pyrazol-4-yl)-3-methyl-1,3-dihydro-imidazo[4,5-c]quinolin-2-one (Intermediate A) and acetic acid 3-chloro-5-(4,4,5,5-tetramethyl-[1,3,2]dioxaborolan-2-yl)-pyridin-2-ylmethyl ester (Stage 238.1.1) to give the title compound as an off-white solid. (HPLC: tR 2.27 min (Method A); M+H=435 MS-ES; 1H-NMR (d6-DMSO, 400 MHz) 9.00 (s, 1H), 8.65-8.62 (m, 1H), 8.18-8.11 (m, 2H), 8.05-8.00 (m, 1H), 7.97-7.94 (m, 1H), 7.58-7.55 (m, 1H), 5.30 (t, 1H), 4.67 (d, 2H), 3.94 (s, 3H), 3.58 (s, 3H), 1.95 (s, 3H))


Stage 238.1.1 Acetic acid 3-chloro-5-(4,4,5,5-tetramethyl-[1,3,2]dioxaborolan-2-yl)-pyridin-2-ylmethyl ester



embedded image


The title compound was synthesized in a similar manner as described for Stage 5.1.1 using acetic acid 5-bromo-3-chloro-pyridin-2-ylmethyl ester (stage 238.1.2, 0.306 mmol) to give the title compound as a crude back oil. (degrading under the HPLC condition: tR 2.65 min (Method A); M+H=312 MS-ES).


Stage 238.1.2 Acetic acid 5-bromo-3-chloro-pyridin-2-ylmethyl ester



embedded image


The title compound was synthesized in a similar manner as described for Stage 194.1.2 using (5-bromo-3-chloro-pyridin-2-yl)-methanol (stage 238.1.3, 0.351 mmol) to give the title compound as an oil. (HPLC: tR 3.04 min (Method A); M+H=264 (BrCl pattern) MS-ES)


Stage 238.1.3 (5-Bromo-3-chloro-pyridin-2-yl)-methanol



embedded image


The title compound was synthesized in a similar manner as described for Stage 190.1.2-3 using 5-bromo-3-chloro-2-methyl-pyridine (stage 238.1.4, 0.801 mmol) to give the title compound as a white solid. (HPLC: tR 2.40 min (Method A); M+H=222, 244 MS-ES)


Stage 238.1.4 5-Bromo-3-chloro-2-methyl-pyridine



embedded image


The title compound was synthesized in a similar manner as described for Stage 75.1.5 using 5-bromo-2,3-dichloropyridine (Asymchem Laboratories, Morrisville, N.C., USA, 2.182 mmol) to give the title compound as a crude black solid. (HPLC: tR 3.29 min (Method A); M+H=206, 208 MS-ES)


Example 239
1-(1,3-Dimethyl-1H-pyrazol-4-yl)-8-[5-(1-methoxy-1-methyl-ethyl)-pyridin-3-yl]-3-methyl-1,3-dihydro-imidazo[4,5-c]quinolin-2-one



embedded image


The title compound was synthesized in a similar manner as described for Example 104 using 1-(1,3-dimethyl-1H-pyrazol-4-yl)-8-[5-(1-hydroxy-1-methyl-ethyl)-pyridin-3-yl]-3-methyl-1,3-dihydro-imidazo[4,5-c]quinolin-2-one (Example 215.2, 0.121 mmol) to give the title compound as a film. (HPLC: tR 2.19 min (Method A); M+H=443 MS-ES; 1H-NMR (d6-DMSO, 400 MHz) 8.99 (s, 1H), 8.71-8.68 (m, 1H), 8.62-8.59 (m, 1H), 8.16-8.11 (m, 2H), 8.04-7.99 (m, 1H), 7.76-7.73 (m, 1H), 7.63-7.60 (m, 1H), 3.89 (s, 3H), 3.58 (s, 3H), 3.05 (s, 3H), 1.97 (s, 3H), 1.54 (s, 6H))


Example 240
1-(1,3-Dimethyl-1H-pyrazol-4-yl)-8-[5-(1-ethoxy-1-methyl-ethyl)-pyridin-3-yl]-3-methyl-1,3-dihydro-imidazo[4,5-c]quinolin-2-one



embedded image


The title compound was synthesized in a similar manner as described for Example 104 using 1-(1,3-dimethyl-1H-pyrazol-4-yl)-8-[5-(1-hydroxy-1-methyl-ethyl)-pyridin-3-yl]-3-methyl-1,3-dihydro-imidazo[4,5-c]quinolin-2-one (Example 215.2, 0.063 mmol) and iodethane as replacement for the iodomethane to give the title compound as a film. (HPLC: tR 2.30 min (Method A); M+H=457 MS-ES; 1H-NMR (d6-DMSO, 400 MHz) 8.99 (s, 1H), 8.69-8.67 (m, 1H), 8.63-8.61 (m, 1H), 8.16-8.12 (m, 2H), 8.03-7.98 (m, 1H), 7.77-7.74 (m, 1H), 7.63-7.61 (m, 1H), 3.89 (s, 3H), 3.58 (s, 3H), 3.21 (q, 2H), 1.97 (s, 3H), 1.55 (s, 3H), 1.54 (s, 3H), 1.09 (t, 3H))


Example 241
1-(1-isopropyl-3-methyl-1H-pyrazol-4-yl)-3-methyl-8-(6-(methylamino)pyridin-3-yl)-1H-imidazo[4,5-c]quinoline-2(3H)-thione



embedded image


The title compound was synthesized in a similar manner as described for Example 128.1 using 1-(1-isopropyl-3-methyl-1H-pyrazol-4-yl)-3-methyl-8-(6-methylamino-pyridin-3-yl)-1,3-dihydro-imidazo[4,5-c]quinolin-2-one (Example 118.1, 0.051 mmol) to give the title compound as a white solid. (HPLC: tR 2.44 min (Method A); M+H=444 MS-ES; 1H-NMR (d6-DMSO, 400 MHz) 9.11 (s, 1H), 8.21-8.17 (m, 2H), 8.12-8.08 (m, 1H), 7.95-7.90 (m, 1H), 7.49-7.44 (m, 1H), 7.39-7.36 (m, 1H), 6.75 (q, 1H), 6.50-6.45 (m, 1H), 4.58 (hp, 1H), 3.94 (s, 3H), 2.79 (d, 3H), 1.93 (s, 3H), 1.52-1.46 (m, 6H))


Example 242.1
5-[1-(1,3-Dimethyl-1H-pyrazol-4-yl)-3-methyl-2-oxo-2,3-dihydro-1H-imidazo[4,5-c]quinolin-8-yl]-N-ethyl-2-methylamino-nicotinamide



embedded image


The title compound was synthesized in a similar manner as described for Example 1.1 using 8-bromo-1-(1,3-dimethyl-1H-pyrazol-4-yl)-3-methyl-1,3-dihydro-imidazo[4,5-c]quinolin-2-one (Intermediate A) and N-ethyl-2-methylamino-5-(4,4,5,5-tetramethyl-[1,3,2]dioxaborolan-2-yl)-nicotinamide (Stage 242.1.1) to give the title compound as a yellowish foam. (HPLC: tR 2.17 min (Method A); M+H=471 MS-ES; 1H-NMR (d6-DMSO, 400 MHz) 8.92 (s, 1H), 8.58 (t, 1H), 8.25-8.20 (m, 2H), 8.11-8.06 (m, 2H), 8.05-8.02 (m, 1H), 7.96-7.92 (m, 1H), 7.47-7.44 (m, 1H), 3.89 (s, 3H), 3.57 (s, 3H), 3.40-3.19 (m, 2H), 2.93 (d, 3H), 1.97 (s, 3H), 1.15 (t, 3H))


Stage 242.1.1 N-Ethyl-2-methylamino-5-(4,4,5,5-tetramethyl-[1,3,2]dioxaborolan-2-yl)-nicotinamide



embedded image


The title compound was synthesized in a similar manner as described for Stage 227.1.1 using 5-bromo-2-methylamino-nicotinic acid (Princeton BioMolecular Research, Monmouth Junction, N.J., USA) to give the title compound as a crude brown oil. (degrading under the HPLC condition: tR 1.81 min (Method A); M+H=306 MS-ES).


The following example was synthesized in a similar manner as described for Example 242.1 using the specified intermediate.






















HPLC





Name of the
MS-ES
tR


Example
Intermed.
structure
example
(M + H)
(min)







242.2
H


embedded image


N-Ethyl-2- methylamino-5-[3- methyl-2-oxo-1-(1,3,5- trimethyl-1H-pyrazol- 4-yl)-2,3-dihydro-1H- imidazo[4,5- c]quinolin-8-yl]- nicotinamide
432
2.43









Example 243
1-(1,3-Dimethyl-1H-pyrazol-4-yl)-8-(5-ethoxy-6-hydroxymethyl-pyridin-3-yl)-3-methyl-1,3-dihydro-imidazo[4,5-c]quinolin-2-one



embedded image


The title compound was synthesized in a similar manner as described for Example 190 using ethanol as replacement for isopropanol to give the title compound as a white solid. (HPLC: tR 2.11 min (Method A); M+H=445 MS-ES; 1H-NMR (d6-DMSO, 400 MHz) 8.99 (s, 1H), 8.28-8.25 (m, 1H), 8.14-8.10 (m, 2H), 8.04-8.00 (m, 1H), 7.63-7.61 (m, 1H), 7.38-7.35 (m, 1H), 4.88 (t, 1H), 4.57 (d, 2H), 4.22-4.14 (m, 2H), 3.89 (s, 3H), 3.58 (s, 3H), 1.97 (s, 3H), 1.41 (t, 3H))


Example 244
1-(1,3-Dimethyl-1H-pyrazol-4-yl)-8-[6-hydroxymethyl-5-(2-methoxy-ethoxy)-pyridin-3-yl]-3-methyl-1,3-dihydro-imidazo[4,5-c]quinolin-2-one



embedded image


The title compound was synthesized in a similar manner as described for Example 190 using 2-methoxyethanol as replacement for isopropanol to give the title compound as a white solid. (HPLC: tR 2.09 min (Method A); M+H=475 MS-ES; 1H-NMR (d6-DMSO, 400 MHz) 8.99 (s, 1H), 8.27-8.25 (m, 1H), 8.15-8.11 (m, 2H), 8.04-8.00 (m, 1H), 7.63-7.60 (m, 1H), 7.44-7.41 (m, 1H), 4.87 (t, 1H), 4.57 (d, 2H), 4.31-4.22 (m, 2H), 3.89 (s, 3H), 3.75 (t, 2H), 3.58 (s, 3H), 3.35 (s, 3H), 1.97 (s, 3H))


Example 245
8-(5-Amino-pyridin-3-yl)-1-(1,3-dimethyl-1H-pyrazol-4-yl)-3-ethyl-1,3-dihydro-imidazo[4,5-c]quinolin-2-one



embedded image


The title compound was synthesized in a similar manner as described for Example 1.1 using 8-bromo-1-(1,3-dimethyl-1H-pyrazol-4-yl)-3-ethyl-1,3-dihydro-imidazo[4,5-c]quinolin-2-one (stage 245.1.1) and 3-aminopyridine-5-boronic acid pinacol ester (Apollo Scientific, Cheshire, United Kingdom) to give the title compound as a white solid. (HPLC: tR 2.02 min (Method A); M+H=400 MS-ES; 1H-NMR (d6-DMSO, 400 MHz) 9.02 (s, 1H), 8.15 (s, 1H), 8.12-8.07 (m, 1H), 7.94-7.91 (m, 1H), 7.81-7.76 (m, 2H), 7.54-7.51 (m, 1H), 7.03-7.00 (m, 1H), 5.44 (s, 2H), 4.11 (q, 2H), 3.91 (s, 3H), 1.94 (s, 3H), 1.35 (t, 3H))


Stage 245.1.1 8-Bromo-1-(1,3-dimethyl-1H-pyrazol-4-yl)-3-ethyl-1,3-dihydro-imidazo[4,5-c]quinolin-2-one



embedded image


To a solution of 8-bromo-1-(1,3-dimethyl-1H-pyrazol-4-yl)-3-methyl-1,3-dihydro-imidazo[4,5-c]quinolin-2-one (Stage A.1, 0.698 mmol) in DMF (5 ml) cooled with an ice-bath was added 55% NaH in oil (1.398 mmol). The RM was stirred for 30 min at rt then was added iodoethane (0.085 ml) and the RM was stirred for 30 min at rt. The RM was diluted with EtOAc and washed with saturated aqueous NaHCO3, with brine (2×), dried over Na2SO4, filtered and evaporated. The residue was absorbed on silica gel and purified by flash chromatography (CH2Cl2/MeOH 0% to 3.5%). The fractions containing product were evaporated together to give the title compound as a brown solid. (HPLC: tR 2.41 min (Method A); M+H=386, 388 MS-ES)


Example 246
3-Allyl-8-(5-amino-pyridin-3-yl)-1-(1,3-dimethyl-1H-pyrazol-4-yl)-1,3-dihydro-imidazo[4,5-c]quinolin-2-one



embedded image


The title compound was synthesized in a similar manner as described for Example 245 using allyl bromide (Fluka, Buchs, Switzerland) as replacement for iodoethane to give the title compound as a white solid. (HPLC: tR 2.08 min (Method A); M+H=412 MS-ES; 1H-NMR (d6-DMSO, 400 MHz) 8.89 (s, 1H), 8.17 (s, 1H), 8.11-8.08 (m, 1H), 7.94-7.92 (m, 1H), 7.81-7.77 (m, 2H), 7.55-7.53 (m, 1H), 7.03-7.01 (m, 1H), 6.09-5.98 (m, 1H), 5.44 (s, 2H), 5.26-5.17 (m, 2H), 4.72 (d, 2H), 3.92 (s, 3H), 1.95 (s, 3H))


Example 247.1
N,N-Diethyl-2-{3-methyl-4-[3-methyl-2-oxo-8-(2-pyrrolidin-1-yl-pyrimidin-5-yl)-2,3-dihydro-imidazo[4,5-c]quinolin-1-yl]-pyrazol-1-yl}-acetamide



embedded image


To a solution of {3-methyl-4-[3-methyl-2-oxo-8-(2-pyrrolidin-1-yl-pyrimidin-5-yl)-2,3-dihydro-imidazo[4,5-c]quinolin-1-yl]-pyrazol-1-yl}-acetic acid (Stage 247.1.1, 0.12 mmol) and DMF (0.007 ml) in dichloromethane (2 ml) was added oxallyl chloride (0.36 mmol) and the RM was stirred for 45 min at rt. The RM was quenched with diethylamine (Riedel-deHaën, Buchs, Switzerland, 2.4 mmol) and stirred for 5 min at it then diluted with saturated aqueous NaHCO3 and extracted with EtOAc (2×). The combined organic layers were washed with brine (2×), dried over Na2SO4, filtered and evaporated. The residue was taken in MeOH/DMF and purified by preparative HPLC. The fractions containing pure product were basified with NaHCO3, concentrated, cooled at 4° C. and the precipitate was filtered, washed with water and dried under vacuum to give the title compound as white solid. (HPLC: tR 2.63 min (Method A); M+H=540 MS-ES; 1H-NMR (d6-DMSO, 400 MHz) 8.92 (s, 1H), 8.57 (s, 2H), 8.07-8.04 (m, 2H), 7.87-7.84 (m, 1H), 7.67-7.65 (m, 1H), 5.21-5.04 (m, 2H), 3.57 (s, 3H), 3.52-3.46 (m, 4H), 3.42-3.34 (m, 2H), 3.32-3.34 (m, 2H), 1.96-1.90 (m, 4H), 1.94 (s, 3H), 1.18 (t, 3H), 0.99 (t, 3H))


Stage 247.1.1 {3-Methyl-4-[3-methyl-2-oxo-8-(2-pyrrolidin-1-yl-pyrimidin-5-yl)-2,3-dihydro-imidazo[4,5-c]quinolin-1-yl]-pyrazol-1-yl}-acetic acid



embedded image


The title compound was synthesized in a similar manner as described for Example 1.1 using [4-(8-bromo-3-methyl-2-oxo-2,3-dihydro-imidazo[4,5-c]quinolin-1-yl)-3-methyl-pyrazol-1-yl]-acetic acid methyl ester (stage 247.1.2) and 2-(pyrrolidin-1-yl)pyrimidine-5-boronic acid pinacol ester (Frontier Scientific, Logan, USA) to give the title compound as a yellow hydrochloride salt after evaporation of the fractions containing pure product and exchange of the trifluoroacetate to the chlorure. (HPLC: tR 2.29 min (Method A); M+H=485, M−H=483 MS-ES)


Stage 247.1.2 [4-(8-Bromo-3-methyl-2-oxo-2,3-dihydro-imidazo[4,5-c]quinolin-1-yl)-3-methyl-pyrazol-1-yl]-acetic acid methyl ester



embedded image


The title compound was synthesized in a similar manner as described for Stage 245.1.1 using [4-(8-bromo-2-oxo-2,3-dihydro-imidazo[4,5-c]quinolin-1-yl)-3-methyl-pyrazol-1-yl]-acetic acid methyl ester (Stage 101.1.3, 3.43 mmol) and iodomethane to give the title compound as brown solid. (HPLC: tR 2.42 min (Method A); M+H=430, 432 MS-ES)


The following examples were synthesized in a similar manner as described for Example 247.1 using the specified amines (Fluka, Buchs, Switzerland).






















HPLC





Name of the
MS-ES
tR


Example
amine
structure
example
(M + H)
(min)







247.2
azetidine


embedded image


1-[1-(2-Azetidin-1-yl- 2-oxo-ethyl)-3- methyl-1H-pyrazol-4- yl]-3-methyl-8-(2- pyrrolidin-1-yl- dihydro-imidazo[4,5- c]quinolin-2-one
524
2.48





247.3
Morpholine


embedded image


3-Methyl-1-[3- methyl-1-(2- morpholin-4-yl-2- oxo-ethyl)-1H- pyrazol-4-yl]-8-(2- pyrrolidin-1-yl- pyrimidin-5-yl)-1,3- dihydro-imidazo[4,5- c]quinolin-2-one
554
2.44





247.4
Pyrrolidine


embedded image


3-Methyl-1-[3- methyl-1-(2-oxo-2- pyrrolidin-1-yl-ethyl)- 1H-pyrazol-4-yl]-8- (2-pyrrolidin-1-yl- dihydro-imidazo[4,5- c]quinolin-2-one
538
2.57





247.5
Morpholine


embedded image


3-Methyl-1-{3- methyl-1-[2-(4- methyl-piperazin-1- yl)-2-oxo-ethyl]-1H- pyrazol-4-yl}-8-(2- pyrrolidin-l-yl- pyrimidin-5-yl)-1,3- dihydro-imidazo[4,5- c]quinolin-2-one
567
2.26









Example 248.1
1-(1-Isopropyl-3-methyl-1H-pyrazol-4-yl)-8-(5-methoxymethyl-6-methylamino-pyridin-3-yl)-3-methyl-1,3-dihydro-imidazo[4,5-c]quinolin-2-one



embedded image


The title compound was synthesized in a similar manner as described for Example 1.1 using 8-bromo-1-(1-isopropyl-3-methyl-1H-pyrazol-4-yl)-3-methyl-1,3-dihydro-imidazo[4,5-c]quinolin-2-one (Intermediate G) and [3-methoxymethyl-5-(4,4,5,5-tetramethyl-[1,3,2]dioxaborolan-2-yl)-pyridin-2-yl]-methyl-amine (Stage 248.1.1) to give the title compound as a yellowish foam. (HPLC: tR 2.24 min (Method A); M+H=472 MS-ES; 1H-NMR (d6-DMSO, 400 MHz) 8.90 (s, 1H), 8.20 (s, 1H), 8.15-8.13 (m, 1H), 8.05-8.02 (m, 1H), 7.85-7.81 (m, 1H), 7.48-7.45 (m, 1H), 7.43-7.41 (m, 1H), 6.13 (q, 1H), 4.55 (hp, 1H), 4.30 (s, 2H), 3.57 (s, 3H), 3.31 (s, 3H), 2.86 (d, 3H), 1.96 (s, 3H), 1.49-1.45 (m, 6H))


Stage 248.1.1 [3-Methoxymethyl-5-(4,4,5,5-tetramethyl-[1,3,2]dioxaborolan-2-yl)-pyridin-2-yl]-methyl-amine



embedded image


The title compound was synthesized in a similar manner as described for Stage 168.1.1 using (5-bromo-2-methylamino-pyridin-3-yl)-methanol (stage 248.1.2) to give the title compound as a crude back oil. (degrading under the HPLC condition (Method A); M+H=279 MS-ES).


Stage 248.1.2 (5-Bromo-2-methylamino-pyridin-3-yl)-methanol



embedded image


The title compound was synthesized in a similar manner as described for Example 171 using 6-bromo-1,4-dihydro-pyrido[2,3-d][1,3]oxazin-2-one (Stage 170.1.3) to give the title compound as a solid. (HPLC: tR 1.92 min (Method A); M+H=217, 219 MS-ES).


The following examples were synthesized in a similar manner as described for Example 1.1 using [3-methoxymethyl-5-(4,4,5,5-tetramethyl-[1,3,2]dioxaborolan-2-yl)-pyridin-2-yl]-methyl-amine (Stage 248.1.1) and the specified intermediate.






















HPLC





Name of the
MS-ES
tR


Example
Intermed.
structure
example
(M + H)
(min)







248.2
F


embedded image


1-(1-Ethyl-3-methyl- 1H-pyrazol-4-yl)-8-(5- methoxymethyl-6- methylamino-pyridin- 3-yl)-3-methyl-1,3- dihydro-imidazo[4,5- c]quinolin-2-one
458
2.18





248.3
A


embedded image


1-(1,3-Dimethyl-1H- pyrazol-4-yl)-8-(5- methoxymethyl-6- methylamino-pyridin- 3-yl)-3-methyl-1,3- dihydro-imidazo[4,5- c]quinolin-2-one
444
2.12





248.4
K


embedded image


1-(3-Chloro-1-methyl- 1H- pyrazol-4-yl)-8-(5- methoxymethyl-6- methylamino-pyridin- 3-yl)-3-methyl-1,3- dihydro-imidazo[4,5- c]quinolin-2-one
464
2.27





248.5
H


embedded image


8-(5-Methoxymethyl- 6-methylamino- pyridin-3-yl)-3-methyl- 1-(1,3,5-trimethyl-1H- pyrazol-4-yl)-1,3- dihydro-imidazo[4,5- c]quinolin-2-one
458
2.17









Example 249
8-(3,4-dimethoxy-phenyl)-1-(1,3-dimethyl-1H-pyrazol-4-yl)-1,3-dihydro-1,3,5,9-tetraaza-cyclopenta[a]naphthalen-2-one



embedded image


A mixture of 6-(3,4-dimethoxy-phenyl)-4-(1,3-dimethyl-1H-pyrazol-4-ylamino)-[1,5]naphthyridine-3-carboxylic acid ethyl ester (Stage 249.1.1, 160 mg, 0.358 mmol) and LiOH 1 M (0.715 ml, 0.715 mmol) in dioxane (2.6 ml) was stirred at 50° C. for 2.5 h. The RM was then quenched with 2 M aqueous HCl (0.36 ml, 0.072 mmol) and evaporated to dryness. The residue was diluted with toluene (2.6 ml) and NMP (1.3 ml) and treated under argon with TEA (0.164 ml) and diphenylphosphorylazide (0.231 ml). The RM was stirred again at 95° C. for 2.5 h. After that, the RM was quenched with saturated aqueous NaHCO3, the suspension was then filtered. The cake was dissolved with EtOAc (200 ml) and THF (30 ml). The solution was extracted with brine (2×). The combined organic layers were dried over Na2SO4, filtered and evaporated to dryness to give the title compound as an off-white solid. (HPLC: tR 2.56 min (Method A); M+H=417 MS-ES; 1H-NMR (d6-DMSO, 400 MHz) 11.80 (s, 1H), 8.75 (s, 1H), 8.38 (d, 1H), 8.22 (d, 1H), 7.96 (s, 1H), 7.60-7.55 (m, 1H), 7.42-7.38 (m, 1H), 7.02-6.98 (m, 1H), 3.83 (s, 6H), 3.81 (s, 3H), 1.97 (s, 3H))


Stage 249.1.1 6-(3,4-Dimethoxy-phenyl)-4-(1,3-dimethyl-1H-pyrazol-4-ylamino)-[1,5]naphthyridine-3-carboxylic acid ethyl ester



embedded image


A mixture of 4-chloro-6-(3,4-dimethoxy-phenyl)-[1,5]naphthyridine-3-carboxylic acid ethyl ester (Stage 249.1.2, 170 mg, 0.456 mmol), 1,3-dimethyl-4-aminopyrazole. HCl (ChemCollect, Remscheid, Germany, 85 mg, 0.576 mmol) and 1,2,2,6,6-pentamethylpiperidine (0.292 ml, 1.596 mmol) in DMA (2 ml) was stirred at 50° C. for 5.5 h. Then the RM was cooled to rt and quenched with water, before being extracted with EtOAc (2×). The combined organic layers were dried over Na2SO4, filtered and evaporated to dryness to give the title compound as an orange solid. (HPLC: tR 2.93 min (Method A); M+H=448 MS-ES)


Stage 249.1.2 4-Chloro-6-(3,4-dimethoxy-phenyl)-[1,5]naphthyridine-3-carboxylic acid ethyl ester



embedded image


A mixture of 6-(3,4-dimethoxy-phenyl)-4-hydroxy-[1,5]naphthyridine-3-carboxylic acid ethyl ester (Stage 249.1.3, 493 mg, 1.391 mmol) in POCl3 was stirred at 125° C. for 1.5 h. Then the RM was evaporated to dryness. The residue was quenched with saturated aqueous NaHCO3. The suspension was filtered, the cake was washed with water and dried in the vacuum oven to give the title compound as a brown solid. Used for next step without further purification. (HPLC: tR 3.80 min (Method A); M+H=373 MS-ES)


Stage 249.1.3 6-(3,4-Dimethoxy-phenyl)-4-hydroxy-[1,5]naphthyridine-3-carboxylic acid ethyl ester



embedded image


A mixture of 6-(3,4-dimethoxy-phenyl)-pyridin-3-ylamine (Stage 249.1.4, 2.0 g, 8.69 mmol) and diethyl ethoxymethylenemalonate (Aldrich, Buchs, Switzerland, 2.087 ml, 10.42 mmol) in o-xylene (22 ml) was heated by microwaves at 150° C. for 45 min and at 250° C. for 9 h. The RM was cooled to rt and crystallized with diethylether. The suspension was filtered and the cake was triturated again in hot EtOAc and cooled after in the freezer. The suspension was filtered again. The cake was washed with EtOAc and dried in the vacuum oven to give the title compound as a brown solid. Used for next step without further purification. (HPLC: tR 2.58 min (Method A); M+H=355 MS-ES)


Stage 249.1.4 6-(3,4-dimethoxy-phenyl)-pyridin-3-ylamine



embedded image


To a mixture of 2-(3,4-dimethoxyphenyl)-5-nitropyridine (Interchim, Montlucon, France, 2.85 g, 10.95 mmol) in MeOH (27 ml) and THF (27 ml), Ra/Ni catalyst (1.10 g, 10.95 mmol) was added and shaked under hydrogen at rt for 15 h. After that, the RM was filtered over celite, the catalyst was washed with MeOH and the filtrate was evaporated to dryness to give the title compound as an off-white solid. (HPLC: tR 2.22 min (Method A); M+H=231 MS-ES)


Example 250
8-(3,4-Dimethoxy-phenyl)-1-(1,3-dimethyl-1H-pyrazol-4-yl)-3-methyl-1,3-dihydro-1,3,5,9-tetraaza-cyclopenta[a]naphthalen-2-one



embedded image


A mixture of 8-(3,4-dimethoxy-phenyl)-1-(1,3-dimethyl-1H-pyrazol-4-yl)-1,3-dihydro-1,3,5,9-tetraaza-cyclopenta[a]naphthalen-2-one (Example 249, 50 mg, 0.120 mmol) and NaH 55% (8 mg, 0.183 mmol) in DMF (1.2 ml) was stirred at rt for 20 min. Then iodomethane (0.011 ml, 0.180 mmol) was added and the RM was stirred at rt for 2.25 h. After that, the RM was quenched with saturated aqueous NaHCO3, the suspension was then filtered, the cake was washed with water and dried in the vacuum oven to give the title compound as an off-white solid. (HPLC: tR 2.67 min (Method A); M+H=431 MS-ES; 1H-NMR (d6-DMSO, 400 MHz) 8.98 (s, 1H), 8.38 (d, 1H), 8.24 (d, 1H), 7.96 (s, 1H), 7.62-7.54 (m, 1H), 7.42-7.38 (m, 1H), 7.02 (d, 1H), 3.85 (s, 6H), 3.81 (s, 3H), 3.59 (s, 3H), 1.97 (s, 3H))


Example 251
8-(3,4-Dimethoxy-phenyl)-1-(1,3-dimethyl-1H-pyrazol-4-yl)-3-ethyl-1,3-dihydro-1,3,5,9-tetraaza-cyclopenta[a]naphthalen-2-one



embedded image


A mixture of 8-(3,4-dimethoxy-phenyl)-1-(1,3-dimethyl-1H-pyrazol-4-yl)-1,3-dihydro-1,3,5,9-tetraaza-cyclopenta[a]naphthalen-2-one (Example 249, 50 mg, 0.120 mmol) and NaH 55% (8 mg, 0.183 mmol) in DMF was stirred at rt for 25 min. Then iodoethane (0.015 ml, 0.186 mmol) was added and the RM was stirred at rt for 5.5 h. After that, the RM was quenched with saturated aqueous NaHCO3, the suspension was then filtered, the cake was washed with water and dried in the vacuum oven to give the title compound as a white solid. (HPLC: tR 2.74 min (Method A); M+H=445 MS-ES; 1H-NMR (d6-DMSO, 400 MHz) 9.03 (s, 1H), 8.40-8.32 (m, 1H), 8.25-8.19 (m, 1H), 7.95 (s, 1H), 7.60-7.52 (m, 1H), 7.41-7.36 (m, 1H), 7.04-6.97 (m, 1H), 4.11 (q, 2H), 3.85 (s, 3H), 3.83 (s, 3H), 3.81 (s, 3H), 1.94 (s, 3H), 1.37 (t, 3H))


Example 252
8-(3,4-Dimethoxy-phenyl)-1-(2,5-dimethyl-2H-pyrazol-3-yl)-1,3-dihydro-1,3,5,9-tetraaza-cyclopenta[a]naphthalen-2-one



embedded image


The title compound was synthesized in a similar manner as described for Example 249 using 2,5-dimethyl-2H-pyrazol-3-ylamine (Aldrich, Buchs, Switzerland, 130 mg, 1.170 mmol) to give the title compound as an off-white solid. (HPLC: tR 2.73 min (Method A); M+H=417 MS-ES; 1H-NMR (d6-DMSO, 400 MHz) 11.96 (s, 1H), 8.79 (s, 1H), 8.38 (d, 1H), 8.25 (d, 1H), 7.62-7.56 (m, 1H), 7.42-7.38 (m, 1H), 7.02-6.97 (m, 1H), 6.26 (s, 1H), 3.85 (s, 3H), 3.81 (s, 3H), 3.58 (s, 3H), 2.23 (s, 3H))


Example 253
8-(3,4-Dimethoxy-phenyl)-1-(2,5-dimethyl-2H-pyrazol-3-yl)-3-methyl-1,3-dihydro-1,3,5,9-tetraaza-cyclopenta[a]naphthalen-2-one



embedded image


The title compound was synthesized in a similar manner as described for Example 250 using 8-(3,4-dimethoxy-phenyl)-1-(2,5-dimethyl-2H-pyrazol-3-yl)-1,3-dihydro-1,3,5,9-tetraaza-cyclopenta[a]naphthalen-2-one (Example 252, 37 mg, 0.088 mmol) to give the title compound as an off-white solid. (HPLC: tR 2.90 min (Method A); M+H=431 MS-ES; 1H-NMR (d6-DMSO, 400 MHz) 9.03 (s, 1H), 8.43-8.35 (m, 1H), 8.29-8.22 (m, 1H), 7.62-7.54 (m, 1H), 7.38 (s, 1H), 7.03-6.95 (m, 1H), 6.31-6.23 (m, 1H), 3.86 (s, 3H), 3.81 (s, 3H), 3.60 (s, 3H), 3.52 (s, 3H), 2.23 (s, 3H))


Example 254
8-(3,4-Dimethoxy-phenyl)-1-(1-ethyl-3-methyl-1H-pyrazol-4-yl)-3-methyl-1,3-dihydro-1,3,5,9-tetraaza-cyclopenta[a]naphthalen-2-one



embedded image


The title compound was synthesized in a similar manner as described for Example 250 using 1-ethyl-3-methyl-1H-pyrazol-4-ylamine. HCl (ChemCollect, Remscheid, Germany, 95 mg, 0.587 mmol) to give the title compound as a light yellow foam. (HPLC: tR 2.74 min (Method A); M+H=445 MS-ES; 1H-NMR (d6-DMSO, 400 MHz) 8.98 (s, 1H), 8.41-8.32 (m, 1H), 8.25-8.18 (m, 1H), 7.95 (s, 1H), 7.56-7.49 (m, 1H), 7.46-7.39 (m, 1H), 7.02-6.94 (m, 1H), 4.18-4.07 (m, 2H), 3.87 (s, 3H), 3.81 (s, 3H), 3.60 (s, 3H), 1.97 (s, 3H), 1.46-1.35 (m, 3H))


Physicochemical Properties


The physicochemical properties of relevance for the absorption of the compound, such as the solubility and the membrane permeability, especially at a pH close to neutral pH can be measured using the procedure as described by L. ZHOU et al. in JOURNAL OF PHARMACEUTICAL SCIENCES, VOL. 96, NO. 11, p. 3052-3071 (2007) for the solubility at pH 6.8 and the procedure as described by F. Wohnsland and B. Faller in Journal of Medicinal Chemistry Vol 44, p. 923-930 (2001) for the Parallel Artificial Membrane Permeability Assay (PAMPA) at pH 6.8.


The following solubility in mg/l was measured at pH 6.8 for compounds of formula (I) as exemplified below:
























solubility
4
15
3
466
10
2
8
49
22
3


Example
150.2
189
37.1
58.5
1.8
79
199
107
234.2
146.5


solubility
3
84
2
43
10
7
11
92
10
4


Example
211.2
183
1.3
212.2
169.3
29.2
52
244
103.2
51.2


solubility
>486
10
>458
5
217
14
5
3
129
>429


Example
56.2
180.2
158.2
1.5
213.1
237
142.3
29.1
245
169.2


solubility
4
5
2
3
4
414
136
>403
410
2


Example
2.2
122
154.1
118.1
240
217
88.2
106
87.1
28.3


solubility
41
242
2
13
2
>429
11
35
42
4


Example
73
26
3.6
234.3
40
158.1
180.1
75
10.2
104


solubility
>473
128
70
4
9
17
17
21
5
36


Example
195.2
115
118.4
167
30.2
132
185.1
215.3
250
140.1


solubility
16
14
3
14
3
400
150
>417
9
36


Example
202
218
28.2
56.4
35
164
193
142.1
28.1
6.4


solubility
8
30
33
>431
41
2
37
439
>459
240


Example
74
118.2
49
141.1
37.3
27.1
72
195.1
195.3
18


solubility
14
>513
3
65
75
4
47
24
>502
164


Example
41
87.5
53.1
123
146.4
3.5
121
168.2
90.2
54.1


solubility
3
2
18
7
>485
3
>428
8
16
5


Example
64
140.2
8.1
2.3
242.2
148.4
215.2
46
249
190


solubility
6
76
164
102
5
>435
6
5
8
16


Example
1.7
60.2
135
16.2
15.3
54.2
153.1
242.1
61
224.2


solubility
43
3
6
37
2
3
16
2
2
133


Example
243
88.1
146.2
37.4
220.1
69
56.5
32.1
11
81.2


solubility
125
7
15
361
433
9
7
355
>472
59


Example
239
253
3.1
197.1
161
9
5.2
37.2
155.3
176


solubility
33
7
427
445
40
>444
47
13
>486
13


Example
166.1
4.2
137
210
53.2
59.1
70
149.1
175.3
91


solubility
5
10
2
>428
2
12
413
38
58
>456


Example
150.1
15.1
209
16.3
141.2
251
231
103.1
234.1
162


solubility
4
26
4
25
2
9
27
8
16
39


Example
17.3
138
8.2
56.1
29.3
7.2
58.4
186
23.1
12


solubility
>487
32
219
>457
62
19
3
>500
8
>484


Example
85.2
17.2
84.1
215.1
155.4
43.1
4.7
3.12
184
139


solubility
72
44
18
>472
>444
55
81
>473
45
>385


Example
133
144.3
207
157
159
212.1
17.1
3.11
23.2
45.1


solubility
>544
>434
21
>399
71
14
>443
11
141
14


Example
93.2
146.1
149.2
230
4.3
168.3
215.4
233
136
51.5


solubility
41
300
26
194
5
6
>512
4
5
50


Example
6.2
56.3
3.10
32.2
224.1
85.1
205
30.1
252
2.4


solubility
44
>443
>486
5
>384
8
76
6
>472
8


Example
188
105
63
141.3
10.1
206.1
85.3
125.1
206.2
2.1


solubility
3
32
75
104
30
2
3
225
>428
10


Example
3.7
108
98.2
3.3
113
110
158.3
197.2
58.1
98.3


solubility
10
3
56
16
27
12
74
2
8
24


Example
45.2
89
247.2
220.3
192
203
130
99
173
163


solubility
31
28
>442
53
12
133
4
8
237
7


Example
65
179
165
14
100
208
93.1
98.1
160.2
4.5


solubility
2
>455
65
>442
>458
65
3
4
13
21


Example
66
126
1.6
87.3
155.2
3.9
5.1
27.2
2.5
129


solubility
13
73
>415
289
11
222
6
3
4
25


Example
38
155.1
21.1
169.1
172
87.2
4.6
116
1.4
24


solubility
>414
15
21
>459
386
35
336
6
25
246


Example
16.4
16.5
221.1
196.2
127
175.1
4.1
58.3
178
84.2


solubility
4
8
2
3
5
7
6
3
13
3


Example
45.3
44
48
187
51.1
92
59.2
2.7
76
109


solubility
2
2
>481
71
243
83
92
4
56
>441


Example
3.4
67
144.1
15.2
191.2
232
148.1
148.2
182
228


solubility
2
4
>473
69
3
7
2
61
75
94


Example
125.2
152.2
191.1
247.1
117
102
236
114
16.1
194.2


solubility
21
5
11
2
3
>486
169
44
129
32


Example
118.3
171
51.4
2.8
211.1
87.4
177.1
196.1
194.1
160.1


solubility
3
75
315
>469
4
479
8
>458


Example
55
246
1.9
96
131
177.2
238
156









The following permeability log Pe was measured for compound of formula (I) as exemplified below:
























Log Pe
−3.6
−3.8
−3.8
−3.9
−3.6
−3.4
−3.9
−4.9
−4.4
−4


Example
146.5
27.1
51.1
28.1
37.1
92
3.8
196.1
160.1
248.1


Log Pe
−4.4
−4.3
−3.9
−4.7
−4.6
−3.6
−3.9
−3.7
−3.8
−3.7


Example
248.5
189
206.2
150.2
7.2
2.3
28.2
4.6
27.2
84.1


Log Pe
−4
−3.9
−3.9
−4.8
−4.5
−4.7
−3.9
−5
−4.4
−3.5


Example
51.3
9
141.3
148.1
141.2
182
250
200
53.1
42


Log Pe
−4.6
−4.7
−4.7
−4.7
−4.5
−3.9
−3.8
−4.8
−4.9
−3.9


Example
248.3
24
87.4
135
30.1
2.5
8.1
190
179
173


Log Pe
−3.7
−3.9
−3.7
−4
−4.9
−4
−4.7
−4.7
−4.9
−4.5


Example
201
60.1
186
4.4
32.2
5.2
191.1
89
10.1
203


Log Pe
−3.8
−3.8
−3.6
−4.4
−5
−3.8
−3.9
−4.5
−3.9
−3.8


Example
113
1.3
90.2
164
103.2
130
146.2
156
4.9
25.4


Log Pe
−3.7
−3.6
−3.9
−4.1
−4.7
−3.8
−4.5
−3.9
−3.7
−4.7


Example
2.6
3.11
153.2
209
220.1
234.4
31
85.1
3.5
87.3


Log Pe
−3.9
−3.9
−3.5
−3.9
−4
−3.9
−4.2
−4.1
−4.2
−4.1


Example
98.3
98.1
3.4
144.1
19
144.2
53.2
252
161
44


Log Pe
−4.4
−4.7
−4
−4.4
−4.5
−4.8
−3.8
−5
−4.2
−3.8


Example
220.3
142.3
61
86
148.3
87.1
128.2
148.2
248.2
98.2


Log Pe
−3.7
−4.9
−3.8
−3.8
−4.6
−4.1
−4.2
−3.3
−4
−3.6


Example
13
127
4.1
90.1
25.3
66
132
1.4
4.5
93.1


Log Pe
−3.7
−3.7
−4
−3.9
−4.2
−4.5
−4.6
−4.8
−3.8
−3.9


Example
1.2
3.3
146.4
165
221.2
220.2
86.2
136
55
29.1


Log Pe
−5.6
−4
−5
−3.7
−3.8
−3.9
−4
−3.9
−4.7
−4.6


Example
93.2
140.2
115
1.7
2.7
3.1
6.3
167
17.3
195.2


Log Pe
−4
−3.8
−4.4
−4.1
−3.7
−3.7
−3.7
−3.8
−4.8
−4.1


Example
206.1
145.2
248.4
197.2
8.2
146.3
58.4
1.5
54.2
38


Log Pe
−3.6
−4.6
−3.8
−3.8
−4
−3.8
−5
−4.3
−4.3
−4.2


Example
79
233
58.1
82
28.3
56.3
137
240
6.2
150.1


Log Pe
−3.8
−4.6
−4.7
−3.9
−4.9
−4.1
−3.8
−4.4
−3.8
−4.9


Example
58.2
104
178
148.4
180.2
1.8
25.5
56.1
35
194.1


Log Pe
−4.6
−4.6
−3.8
−4.4
−3.8
−3.8
−3.8
−4.8
−4.2
−3.9


Example
5.1
236
2.8
116
2.4
234.3
6.4
52
184
4.3


Log Pe
−4.9
−3.7
−3.7
−4.3
−3.7
−3.7
−4.8
−4.4
−4.2
−4.6


Example
177.2
187
153.1
119
144.3
131
172
30.2
234.1
239


Log Pe
−4.3
−4.6
−4.3
−4.2
−4.8
−4
−3.4
−4.5
−4.1
−5.5


Example
183
242.1
249
157
12
29.2
154.2
34
162
211.2


Log Pe
−3.9
−4
−4.3
−4.2
−3.7
−5
−3.8
−3.5
−3.6
−3.6


Example
128.1
1.6
213.1
20
37.2
65
50
202
4.8
51.5


Log Pe
−5
−3.7
−4.5
−4.4
−3.7
−4.1
−4
−4.1
−5.2
−4.8


Example
197.1
58.3
114
118.1
4.2
191.2
105
154.1
177.1
37.4


Log Pe
−4
−3.9
−4.5
−4
−4.4
−3.9
−3.4
−3.4
−4
−3.9


Example
94
85.2
18
11
176
251
3.6
83
1.9
4.7


Log Pe
−4.1
−3.8
−4.6
−4.6
−4
−3.8
−4.8
−4.7
−3.7
−3.8


Example
3.2
3.7
160.2
25.1
29.3
56.5
118.5
87.2
91
97


Log Pe
−4.1
−4.5
−3.8
−4.8
−4.5
−3.6
−4.6
−4.3
−4
−3.3


Example
146.1
221.1
2.1
59.2
141.1
174
234.2
242.2
56.4
6.1


Log Pe
−3.8
−3.8


Example
84.2
84.2









The permeability in 10−6 cm/s of compounds of formula (I) have been confirmed for selected example using a cellular CaCo2 permeability assay from apical to basal (A-B):
























Pe A-B
6.0
20.5
29.4
35.1
39.7
29.9
33.5
29.7
7.7
15.8


Example
96
104
252
4.1
56.1
87.2
54.2
6.4
102
197.1


Pe A-B
17.0
26.7
5.6
35.5
21.0
26.4
24.0
15.9
28.6
22.1


Example
136
84.1
16.2
234.1
3.3
84.2
12
118.4
3.1
249


Pe A-B
30.5
21.5
31.6
7.8
29.1
26.1
18.4
31.2
17.0
10.9


Example
58.1
2.7
1.6
175.1
146.1
189
28.1
3.5
87.1
155.2


Pe A-B
27.8
5.9
16.1
28.6
38.4
26.6
13.9
14.8
16.0


Example
3.7
215.1
4.5
1.8
2.5
6.2
159
3.9
179










Skin Penetration


The skin penetration/permeation properties of two representative compounds of the present invention were tested as follows:


In Vitro Test to Determine Skin Penetration and Permeation Properties


The compounds were applied as 0.5% solutions in propylene glycol to pig skin mounted in static Franz-type diffusion cells. At the end of a 48 hours exposure time, drug concentrations were measured in the skin (after removal of stratum corneum) and in the receiver.












Skin penetration and permeation in vitro
















Skin
Permeation





Concentration
concentration
rate


Example
Skin
Formulation
[%]
[μg/g]
[ng/cm2/hr]





84.1
Pig+
PG
0.5
6.4 ± 3.5
<0.4


58.1
Pig+
PG
0.5
9.3 ± 6.2
0.5 ± 0.3





Mean ± standard deviation of triplicate determinations are given; +: skin from 4 months old farm pigs (Landrace X Deutsches Edelschwein).


PG: propylene glycol






In conclusion, both examples penetrate well into pig skin (pig skin is similar to human skin regarding barrier function and architecture) in vitro, while permeation rate through pig skin is low, indicating a low systemic exposure.


In Vivo Test to Determine Penetration into Dermis of Topically Treated Pigs


Small skin areas (4 cm2) on the dorsolateral back of young domestic pigs were treated topically with 0.5% solutions at different time intervals (1-8 hrs) prior to drug level determination. Skin flaps with the treated sites in the centre were dissected and removed. The skin flaps were spread, and heated metal blocks placed on the test sites for 1 minute to induce separation of epidermis from the dermis. After removal of the loosened epidermal sheets, 1 mm thick dermal sheets were prepared from the treated, de-epidermized skin with a dermatome. From these sheets 6 mm punch samples (6 mm Ø) were collected and analysed for test compound concentration by LC/MS. The procedure described was done with careful avoidance of contamination of the dermal samples with compound attached superficially to the epidermis.


The following table provides AUC values of the agents of the invention in pig dermis when applied epicutaneously in the identified compositions (n=8).












Skin PK in vivo














Concentration
AUC (0-8 h)


Example
Dermis
Formulation
[%]
[μg * h/g]





84.1
Pig
PG/EtOH 7:3
0.5
2.8 ± 1.0


58.1
Pig
PG/EtOH 7:3
0.5
3.7 ± 1.3





Mean ± standard error mean of eight determinations are given.


PG: propylene glycol


EtOH: ethanol






AUC means area under the curve, and is a well known term in clinical pharmacology. The AUC value describes the total uptake of the agent in a time interval.


In conclusion, both examples penetrate well into pig skin in vivo after a single application, confirming in vitro data described above.


Biological Activity


The efficacy of the compounds of formula I and salts thereof as PI3 kinase inhibitors can be demonstrated as follows:


The kinase reaction is performed in a final volume of 50 μL per well of a half area COSTAR, 96 well plate. The final concentrations of ATP and phosphatidyl inositol in the assay are 5 μM and 6 μg/mL respectively. The reaction is started by the addition of PI3 kinase, e.g. PI3 kinase.


p110β. The components of the assay are added per well as follows:

    • 10 μL test compound in 5% DMSO per well in columns 2-1.
    • Total activity is determined by addition 10 μL of 5% vol/vol DMSO in the first 4 wells of column 1 and the last 4 wells of column 12.
    • The background is determined by addition of 10 μM control compound to the last 4 wells of column 1 and the first 4 wells of column 12.
    • 2 mL ‘Assay mix’ are prepared per plate:
      • 1.912 mL of HEPES assay buffer
      • 8.33 μL of 3 mM stock of ATP giving a final concentration of 5 μM per well
      • 1 μL of [33P]ATP on the activity date giving 0.05 μCi per well
      • 30 μL of 1 mg/mL PI stock giving a final concentration of 6 μg/mL per well
      • 5 μL of 1 M stock MgCl2 giving a final concentration of 1 mM per well
    • 20 μL of the assay mix are added per well.
    • 2 mL ‘Enzyme mix’ are prepared per plate (x′* μL PI3 kinase p110 in 2 mL of kinase buffer). The ‘Enzyme mix’ is kept on ice during addition to the assay plates. *The volume of enzyme is dependent on the enzymatic activity of the batch in use.
    • 20 μl ‘Enzyme mix’ are added/well to start the reaction.
    • The plate is then incubated at room temperature for 90 minutes.
    • The reaction is terminated by the addition of 50 L WGA-SPA bead (wheat germ agglutinin-coated Scintillation Proximity Assay beads) suspension per well.
    • The assay plate is sealed using TopSeal-S) heat seal for polystyrene microplates, PerkinElmer LAS (Deutschland) GmbH, Rodgau, Germany) and incubated at room temperature for at least 60 minutes.
    • The assay plate is then centrifuged at 1500 rpm for 2 minutes using the Jouan bench top centrifuge (Jouan Inc., Nantes, France).
    • The assay plate is counted using a Packard TopCount, each well being counted for 20 seconds.


In a more preferred assay, the kinase reaction is performed in a final volume of 10 μL per well of a low volume non binding CORNING, 384 well black plate (Cat. No. #3676). The final concentrations of ATP and phosphatidyl inositol (PI) in the assay are 1 μM and 10 μg/mL respectively. The reaction is started by the addition of ATP.


The components of the assay are added per well as follows:


50 nL test compounds in 90% DMSO per well, in columns 1-20, 8 concentrations (1/3 and 1/3.33 serial dilution step) in single.

    • Low control: 50 nL of 90% DMSO in half the wells of columns 23-24 (0.45% in final).
    • High control: 50 nL of reference compound (e.g. compound of Example 7 in WO 2006/122806) in the other half of columns 23-24 (2.5 μM in final).
    • Standard: 50 nL of reference compound as just mentioned diluted as the test compounds in columns 21-22
    • 20 mL ‘buffer’ are prepared per assay:
      • 200 μL of 1M TRIS HCl pH7.5 (10 mM in final)
      • 60 μL of 1M MgCl2 (3 mM in final)
      • 500 μL of 2M NaCl (50 mM in final)
      • 100 μL of 10% CHAPS (0.05% in final)
      • 200 μL of 100 mM DTT (1 mM in final)
      • 18.94 mL of nanopure water
    • 10 mL ‘PI’ are prepared per assay:
      • 200 μL of 1 mg/ml L-alpha-Phosphatidylinositol (Liver Bovine, Avanti Polar Lipids Cat. No. 840042C MW=909.12) prepared in 3% OctylGlucoside (10 μg/ml in final)
      • 9.8 mL of ‘buffer’
    • 10 mL ‘ATP’ are prepared per assay:
      • 6.7 μL of 3 mM stock of ATP giving a final concentration of 1 μM per well
      • 10 mL of ‘buffer’
    • 2.5 mL of each PI3K construct are prepared per assay in ‘PI’ with the following final concentration:
      • 10 nM PI3K alfa EMV B1075
      • 25 nM beta EMV BV949
      • 10 nM delta EMV BV1060
      • 150 nM gamma EMV BV950
    • 5 μL of ‘PI/PI3K’ are added per well.
    • 5 μl ‘ATP’ are added per well to start the reaction.
    • The plates are then incubated at room temperature for 60 minutes (alfa, beta, delta) or 120 minutes (gamma).
    • The reaction is terminated by the addition of 10 μL Kinase-Glo (Promega Cat. No. #6714).
    • The assay plates are read after 10 minutes in Synergy 2 reader (BioTek, Vermont USA) with an integration time of 100 milliseconds and sensitivity set to 191.
    • Output: The High control is around 60,000 counts and the Low control is 30,000 or lower
    • This luminescence assay gives a useful Z′ ratio between 0.4 and 0.7


The Z′ value is a universal measurement of the robustness of an assay. A Z′ between 0.5 and 1.0 is considered an excellent assay.


For this assay, the PI3K constructs mentioned are prepared as follows:


Molecular Biology:


Two different constructs, BV 1052 and BV 1075, are used to generate the PI3 Kinase α proteins for compound screening.


PI3Kα BV-1052 p85(iSH2)-Gly Linker-p110a(D20aa)-C-Term His Tag


PCR products for the inter SH2 domain (iSH2) of the p85 subunit and for the p110-a subunit (with a deletion of the first 20 amino acids) are generated and fused by overlapping PCR.


The iSH2 PCR product is generated from first strand cDNA using initially primers











gwG130-p01



(SEQ ID NO: 1)



(5′-CGAGAATATGATAGATTATATGAAGAAT-3′)



and







gwG130-p02



(SEQ ID NO: 2)



(5′-TGGTTT-AATGCTGTTCATACGTTTGTCAAT-3′).






Subsequently in a secondary PCR reaction, Gateway (Invitrogen AG, Basel, Switzerland) recombination AttB1 sites and linker sequences are added at the 5′end and 3′end of the p85 iSH2 fragment respectively, using primers









gwG130-p03


(SEQ ID NO: 3)


(5′-GGGACAAGTTTGTACAAAAAAGCAGGCTACGAAGGAGATATAC


ATAT-GCGAGAATATGATAGATTATATGAAGAAT-3′)


and





gwG152-p04


(SEQ ID NO: 4)


(5′-TACCATAATTCCACCACCACCACCGGAAATTCCCCCTGGTTT-


AATGCTGTTCATACGTTTGTCAAT-3′).






The p110-a fragment is also generated from first strand cDNA, initially using primers











gwG152-p01



(SEQ ID NO: 5)



(5′-CTAGTGGAATGTTTACTACCAAATGG-3′)



and



gwG152-p02



(SEQ ID NO: 6)



(5′-GTTCAATG-CATGCTGTTTAATTGTGT-3′).






In a subsequent PCR reaction, linker sequence and a Histidine tag are added at the 5′end and 3′end of the p110-a fragment respectively, using primers











gw152-p03



(SEQ ID NO: 7)



(5′-GGGGGAATTTCCGGTGGTGGTGGTGGAATTATGGTAC-







TAGTGGAATGTTTACTACC-AAATGGA-3′)



and







gwG152-p06



(SEQ ID NO: 8)



(5′-AGCTCCGTGATGGTGATGGTGATGTGCTCCGTTCAATG-







CATGCTGTTTAATTGTGT-3′).






The p85-iSH2/p110-a fusion protein is assembled in a third PCR reaction by the overlapping linkers at the 3′end of the iSH2 fragment and the 5′end of the p110-a fragment, using the above mentioned gwG130-p03 primer and a primer containing an overlapping Histidine tag and the AttB2 recombination sequences









(SEQ ID NO: 9)


(5′-GGGACCACTTTGTACAAGAAAGCTGGGTTTAAGCTCCGTGATG





GTGATGGTGAT-GTGCTCC-3′).






This final product is recombined in a (Invitrogen) OR reaction into the donor vector pDONR201 to generate the ORF318 entry clone. This clone is verified by sequencing and used in a Gateway LR reaction to transfer the insert into the Gateway adapted pBlueBac4.5 (Invitrogen) vector for generation of the baculovirus expression vector LR410.


PI3Kα BV-1075 p85(iSH2)-12 XGly Linker-p110a(D20aa)-C-Term His Tag


The construct for Baculovirus BV-1075 is generated by a three-part ligation comprised of a p85 fragment and a p110-a fragment cloned into vector pBlueBac4.5. The p85 fragment is derived from plasmid p1661-2 digested with Nhe/Spe. The p110-a fragment derived from LR410 (see above) as a SpeI/HindIII fragment. The cloning vector pBlueBac4.5 (Invitrogen) is digested with Nhe/HindIII. This results in the construct PED 153.8


The p85 component (iSH2) is generated by PCR using ORF 318 (described above) as a template and one forward primer









KAC1028


(SEQ ID NO: 10)


(5′-GCTAGCATGCGAGAATATGATAGATTATATGAAGAATATACC)







and two reverse primers,









KAC1029


(SEQ ID NO: 11)


(5′-GCCTCCACCACCTCCGCCTGGTTTAATGCTGTTCATACGTTTG


TC)


and





KAC1039


(SEQ ID NO: 12)


(5′-TACTAGTCCGCCTCCACCACCTCCGCCTCCACCACCTCCGCC).






The two reverse primers overlap and incorporate the 12x Gly linker and the N-terminal sequence of the p110a gene to the SpeI site. The 12x Gly linker replaces the linker in the BV1052 construct. The PCR fragment is cloned into pCR2.1 TOPO (Invitrogen). Of the resulting clones, p1661-2 is determined to be correct. This plasmid is digested with Nhe and SpeI and the resulting fragment is gel-isolated and purified for sub-cloning.


The p110-a cloning fragment is generated by enzymatic digest of clone LR410 (see above) with Spe I and HindIII. The SpeI site is in the coding region of the p110a gene. The resulting fragment is gel-isolated and purified for sub-cloning.


The cloning vector, pBlueBac4.5 (Invitrogen) is prepared by enzymatic digestion with Nhe and HindIII. The cut vector is purified with Qiagen (Quiagen N.V, Venlo, Netherlands) column and then dephosphorylated with Calf Intestine alkaline phosphatase (CIP) (New England BioLabs, Ipswich, Mass.). After completion of the CIP reaction the cut vector is again column purified to generate the final vector. A 3 part ligation is performed using Roche Rapid ligase and the vendor specifications.


PI3Kβ BV-949 p85(iSH2)-Gly Linker-p110b(Full-Length)-C-Term His Tag


PCR products for the inter SH2 domain (iSH2) of the p85 subunit and for the full-length p110-b subunit are generated and fused by overlapping PCR.


The iSH2 PCR product is generated from first strand cDNA initially using primers











gwG130-p01



(SEQ ID NO: 1)



(5′-CGAGAATATGATAGATTATATGAAGAAT-3′)



and







gwG130-p02



(SEQ ID NO: 2)



(5′-TGGTTT-AATGCTGTTCATACGTTTGTCAAT-3′).






Subsequently, in a secondary PCR reaction Gateway (Invitrogen) recombination AttB1 sites and linker sequences are added at the 5′end and 3′end of the p85 iSH2 fragment respectively, using primers











gwG130-p03



(SEQ ID NO: 3)



(5′-GGGACAAGTTTGTACAAAAAAGCAGGCTACGAAGGAGATA-



TACATATGCGAGAATATGATAGATTATATGAAGAAT-3′)



and







gwG130-p05



(SEQ ID NO: 13)



(5′-ACTGAAGCATCCTCCTCCTCCTCCTCCTGGTTTAAT-



GCTGTTCATACGTTTGTC-3′).






The p110-b fragment is also generated from first strand cDNA initially using primers gwG130-p04 (5′-ATTAAACCAGGAGGAGGAGGAGGAGGATGCTTCAGTTTCATAATGCC-TCCTGCT-3′) (SEQ ID NO: 4)


which contains linker sequences and the 5′end of p110-b and









gwG130-p06


(SEQ ID NO: 14)


(5′-AGCTCCGTGATGGTGATGGTGATGTGCTCCAGATCTGTAGTCT





TT-CCGAACTGTGTG-3′)







which contains sequences of the 3′end of p110-b fused to a Histidine tag.


The p85-iSH2/p110-b fusion protein is assembled by an overlapping PCR a reaction of the linkers at the 3′end of the iSH2 fragment and the 5′end of the p110-b fragment, using the above mentioned gwG130-p03 primer and a primer containing an overlapping Histidine tag and the AttB2 recombination sequences (5′-GGGACCACTTTGTACAAGAAAGCTGGGTTT-AAGCTCCGTGATGGTGATGGTGATGTGCTCC-3) (SEQ ID NO: 9).


This final product is recombined in a Gateway (Invitrogen) OR reaction into the donor vector pDONR201 to generate the ORF253 entry clone. This clone is verified by sequencing and used in a Gateway LR reaction to transfer the insert into the Gateway adapted pBlueBac4.5 (Invitrogen) vector for generation of the baculovirus expression vector LR280.


PI3Kδ BV-1060 p85(iSH2)-Gly Linker-p110d(Full-Length)-C-Term His Tag.


PCR products for the inter SH2 domain (iSH2) of the p85 subunit and for the full-length p110-d subunit are generated and fused by overlapping PCR.


The iSH2 PCR product is generated from first strand cDNA using initially primers











gwG130-p01



(SEQ ID NO: 1)



(5′-CGAGAATATGATAGATTATATGAAGAAT-3′)



and







gwG130-p02



(SEQ ID NO: 2)



(5′-TGGTTT-AATGCTGTTCATACGTTTGTCAAT-3′).






Subsequently, in a secondary PCR reaction Gateway (Invitrogen) recombination AttB1 sites and linker sequences are added at the 5′end and 3′end of the p85 iSH2 fragment respectively, using primers









gwG130-p03


(SEQ ID NO: 3)


(5′-GGGACAAGTTTGTACAAAAAAGCAGGCTACGAAGGAGATATAC


AT-ATGCGAGAATATGATAGATTATATGAAGAAT-3′)


and





gwG154-p04


(SEQ ID NO: 15)


(5′-TCCTCCTCCTCCTCCTCCTGGTTTAATGCTGTTCATACGTTTG


TC-3′).






The p110-a fragment is also generated from first strand cDNA using initially primers











gwG154-p01



(SEQ ID NO: 16)



(5′-ATGCCCCCTGGGGTGGACTGCCCCAT-3′)



and







gwG154-p02



(SEQ ID NO: 17)



(5′-CTACTG-CCTGTTGTCTTTGGACACGT-3′).






In a subsequent PCR reaction linker sequences and a Histidine tag is added at the 5′end and 3′end of the p110-d fragment respectively, using primers









gw154-p03


(SEQ ID NO: 18)


(5′-ATTAAACCAGGAGGAGGAGGAGGAGGACCCCCTGGGGTGGAC-


TGCCCCATGGA-3′)


and





gwG154-p06


(SEQ ID NO: 19)


(5′-AGCTCCGTGATGGTGAT-GGTGATGTGCT-CCCTGCCTGTTGT


CTTTGGACACGTTGT-3′).






The p85-iSH2/p110-d fusion protein is assembled in a third PCR reaction by the overlapping linkers at the 3′end of the iSH2 fragment and the 5′end of the p110-d fragment, using the above mentioned gwG130-p03 primer and a primer containing an overlapping Histidine tag and the Gateway (Invitrogen) AttB2 recombination sequences (5′-GGGACCACTTTGTA-CAAGAAAGCTGGGTTT-AAGCTCCGTGATGGTGATGGTGATGTGCTCC-3) (SEQ ID NO: 09).


This final product is recombined in a Gateway (Invitrogen) OR reaction into the donor vector pDONR201 to generate the ORF319 entry clone. This clone is verified by sequencing and used in a Gateway LR reaction to transfer the insert into the Gateway adapted pBlueBac4.5 (Invitrogen) vector for generation of the baculovirus expression vector LR415.


PI3Kγ BV-950 p110g(D144aa)-C-Term His Tag


This construct is obtained from Roger Williams lab, MRC Laboratory of Molecular Biology, Cambridge, UK (November, 2003). Description of the construct in: Pacold M. E. et al. (2000) Cell 103, 931-943.


Expression:


Methods to Generate Recombinant Baculovirus and Protein for PI3K Isoforms:


The pBlue-Bac4.5 (for a, b, and d isoforms) or pVL1393 (for g) plasmids containing the different PI3 kinase genes are co-transfected with BaculoGold WT genomic DNA (BD Biosciences, Franklin Lakes, N.J., USA) using methods recommended by the vendor. Subsequently, the recombinant baculovirus obtained from the transfection is plaque-purified on Sf9 insect cells to yield several isolates expressing recombinant protein. Positive clones are selected by anti-HIS or anti-isoform antibody western. For PI3K alpha and delta isoforms, a secondary plaque-purification is performed on the first clonal virus stocks of PI3K. Amplification of all baculovirus isolates is performed at low multiplicity of infection (moi) to generate high-titer, low passage stock for protein production. The baculoviruses are designated BV1052 (α) and BV1075 (α), BV949 (β), BV1060 (δ) and BV950 (γ).


Protein production involves infection (passage 3 or lower) of suspended Tn5 (Trichoplusia ni) or TiniPro (Expression Systems, LLC, Woodland, Calif., USA) cells in protein-free media at moi of 2-10 for 39-48 hours in 2 L glass Erlenmyer flasks (110 rpm) or wave-bioreactors (22-25 rpm). Initially, 10 L working volume wave-bioreactors are seeded at a density of 3e5 cells/ml at half capacity (5 L). The reactor is rocked at 15 rpm during the cell growth phase for 72 hours, supplemented with 5% oxygen mixed with air (0.2 L per minute). Immediately prior to infection, the wave-reactor cultures are analyzed for density, viability and diluted to approximately 1.5e6 cell/ml. 100-500 ml of high titer, low passage virus is added following 2-4 hours of additional culture. Oxygen is increased to 35% for the 39-48 hour infection period and rocking platform rpm increased to 25. During infection, cells are monitored by Vicell viability analyzer (Beckman Coulter, Inc, Fullerton, Calif., USA) bioprocess for viability, diameter and density. Nova Bioanalyzer (NOVA Biomedical Corp., Waltham, Mass., USA) readings of various parameters and metabolites (pH, O2 saturation, glucose, etc.) are taken every 12-18 hours until harvest. The wave-bioreactor cells are collected within 40 hours post infection. Cells are collected by centrifugation (4 degrees C. at 1500 rpm), and subsequently maintained on ice during pooling of pellets for lysis and purification. Pellet pools are made with small amounts of cold, un-supplemented Grace's media (w/o protease inhibitors).


PI3K Alpha Purification Protocol For HTS (BV1052)


PI3K alpha is purified in three chromatographic steps: immobilized metal affinity chromatography on a Ni Sepharose resin (GE Healthcare, belonging to General Electric Company, Fairfield, Conn., USA), gel filtration utilizing a Superdex 200 26160 column (GE Healthcare), and finally a cation exchange step on a SP-XL column (GE Healthcare). All buffers are chilled to 4° C. and lysis is performed chilled on ice. Column fractionation is performed rapidly at room temperature.


Typically frozen insect cells are lysed in a hypertonic lysis buffer and applied to a prepared IMAC column. The resin is washed with 3-5 column volumes of lysis buffer, followed by 3-5 column volumes wash buffer containing 45 mM imidazole, and the target protein is then eluted with a buffer containing 250 mM imidazole. Fractions are analyzed by Coomassie stained SDS-PAGE gels, and fractions containing target protein are pooled and applied to a prepared GFC column. Fractions from the GFC column are analyzed by Coomassie stained SDS-PAGE gels, and fractions containing target protein are pooled. The pool from the GFC column is diluted into a low salt buffer and applied to a prepared SP-XL column. The column is washed with low salt buffer until a stable A280 baseline absorbance is achieved, and eluted using a 20 column volume gradient from 0 mM NaCl to 500 mM NaCl. Again, fractions from the SP-XL column are analyzed by Coomassie stained SDS-PAGE gels, and fractions containing the target protein are pooled. The final pool is dialyzed into a storage buffer containing 50% glycerol and stored at −20° C. The final pool is assayed for activity in a phosphoinosititol kinase assay.


PI3K Beta Purification Protocol For HTS (BV949)


PI3K beta is purified in two chromatographic steps: immobilized metal affinity chromatography (IMAC) on a Ni Sepharose resin (GE Healthcare) and gel filtration (GFC) utilizing a Superdex 200 26/60 column (GE Healthcare). All buffers are chilled to 4° C. and lysis is performed chilled on ice. Column fractionation is performed rapidly at room temperature.


Typically frozen insect cells are lysed in a hypertonic lysis buffer and applied to a prepared IMAC column. The resin is washed with 3-5 column volumes of lysis buffer, followed by 3-5 column volumes wash buffer containing 45 mM imidazole, and the target protein is then eluted with a buffer containing 250 mM imidazole. Fractions are analyzed by Coomassie stained SDS-PAGE gels, and fractions containing target protein are pooled and applied to a prepared GFC column. Fractions from the GFC column are analyzed by Coomassie stained SDS-PAGE gels, and fractions containing target protein are pooled. The final pool is dialyzed into a storage buffer containing 50% glycerol and stored at −20° C. The final pool is assayed for activity in the phosphoinostitol kinase assay.


PI3K Gamma Purification Protocol For HTS (BV950)


PI3K gamma is purified in two chromatographic steps: immobilized metal affinity chromatography (IMAC) on a Ni Sepharose resin (GE Healthcare) and gel filtration (GFC) utilizing a Superdex 200 26/60 column (GE Healthcare). All buffers are chilled to 4° C. and lysis is performed chilled on ice. Column fractionation is performed rapidly at room temperature. Typically frozen insect cells are lysed in a hypertonic lysis buffer and applied to a prepared IMAC column. The resin is washed with 3-5 column volumes of lysis buffer, followed by 3-5 column volumes wash buffer containing 45 mM imidazole, and the target protein is then eluted with a buffer containing 250 mM imidazole. Fractions are analyzed by Coomassie stained SDS-PAGE gels, and fractions containing target protein are pooled and applied to a prepared GFC column. Fractions from the GFC column are analyzed by Coomassie stained SDS-PAGE gels, and fractions containing target protein are pooled. The final pool is dialyzed into a storage buffer containing 50% glycerol and stored at −20° C. The final pool is assayed for activity in the phosphoinostitol kinase assay.


PI3K Delta Purification Protocol For HTS (BV1060)


PI3K delta is purified in three chromatographic steps: immobilized metal affinity chromatography on a Ni Sepharose resin (GE Healthcare), gel filtration utilizing a Superdex 200 26/60 column (GE Healthcare), and finally a anion exchange step on a Q-HP column (GE Healthcare). All buffers are chilled to 4° C. and lysis is performed chilled on ice. Column fractionation is performed rapidly at room temperature. Typically frozen insect cells are lysed in a hypertonic lysis buffer and applied to a prepared IMAC column. The resin is washed with 3-5 column volumes of lysis buffer, followed by 3-5 column volumes wash buffer containing 45 mM imidazole, and the target protein is then eluted with a buffer containing 250 mM imidazole. Fractions are analyzed by Coomassie stained SDS-PAGE gels, and fractions containing the target protein are pooled and applied to a prepared GFC column. Fractions from the GFC column are analyzed by Coomassie stained SDS-PAGE gels, and fractions containing the target protein are pooled. The pool from the GFC column is diluted into a low salt buffer and applied to a prepared Q-HP column. The column is washed with low salt buffer until a stable A280 baseline absorbance is achieved, and eluted using a 20 column volume gradient from 0 mM NaCl to 500 mM NaCl. Again, fractions from the Q-HP column are analyzed by Coomassie stained SDS-PAGE gels, and fractions containing the target protein are pooled. The final pool is dialyzed into a storage buffer containing 50% glycerol and stored at −20° C. The final pool is assayed for activity in the phosphoinostitol kinase assay.


IC50 is determined by a four parameter curve fitting routine that comes along with “excel fit”. A 4 Parameter logistic equation is used to calculate IC50 values (IDBS XLfit) of the percentage inhibition of each compound at 8 concentrations (usually 10, 3.0, 1.0, 0.3, 0.1, 0.030, 0.010 and 0.003 μM). Alternatively, IC50 values are calculated using idbsXLfit model 204, which is a 4 parameter logistic model.


Yet alternatively, for an ATP depletion assay, compounds of the formula (I) to be tested are dissolved in DMSO and directly distributed into a white 384-well plate at 0.5 μL per well. To start the reaction, 10 μL of 10 nM PI3 kinase and 5 μg/mL 1-alpha-phosphatidylinositol (PI) are added into each well followed by 10 μL of 2 μM ATP. The reaction is performed until approx 50% of the ATP is depleted, and then stopped by the addition of 20 μL of Kinase-Glo solution (Promega Corp., Madison, Wis., USA). The stopped reaction is incubated for 5 minutes and the remaining ATP is then detected via luminescence. IC50 values are then determined.


Some of the compounds of formula (I) show a certain level of selectivity against the different paralogs PI3K alpha, beta, gamma and delta.


The range of activity, expressed as IC50, in these assays is preferably between 1 nM and 5000 nM, more preferably between 1 nM and about 1000 nM
























PI3K alpha
9
60
155
5
37
62
14
18
16
17


IC50 [nM]


Example
182
4.1
56.5
56.4
124
2.2
177.1
148.2
119
107


PI3K alpha
138
39
44
11
21
42
5
39
12
938


IC50 [nM]


Example
132
82
175.3
128.2
3.9
103.2
110
179
116
133


PI3K alpha
35
11
9
61
25
24
4
30
70
86


IC50 [nM]


Example
146.4
243
36
3.7
56.2
2.7
189
17.1
42
18


PI3K alpha
59
92
<3
14
7
10
12
18
83
30


IC50 [nM]


Example
1.7
146.6
234.2
207
34
239
215.1
195.1
91
30.2


PI3K alpha
20
63
19
70
9
33
32
13
125
4


IC50 [nM]


Example
234.1
149.3
193
177.2
168.3
167
171
218
155.4
56.1


PI3K alpha
8
65
4
23
56
7
10
6
50
13


IC50 [nM]


Example
248.2
2.4
194.2
4.5
55
32.1
166.3
211.2
125.2
191.2


PI3K alpha
30
9
<3
8
6
23
12
42
91
44


IC50 [nM]


Example
155.3
87.3
60.1
1.6
58.2
168.2
13
87.4
3.10
152.3


PI3K alpha
8
9
27
28
16
215
22
14
9
11


IC50 [nM]


Example
144.2
33
152.1
246
99
212.2
51.4
155.2
17.3
202


PI3K alpha
14
14
32
39
4
26
87
210
18
8


IC50 [nM]


Example
45.1
25.1
21.2
172
184
16.2
64
8.1
241
237


PI3K alpha
11
94
76
5
17
85
28
14
11
30


IC50 [nM]


Example
254
2.1
135
249
198
97
125.1
141.2
128.1
93.2


PI3K alpha
20
18
11
6
56
14
24
79
51
48


IC50 [nM]


Example
127
14
120
76
52
75
210
104
126
4.6


PI3K alpha
<3
123
59
817
20
27
27
28
9
6


IC50 [nM]


Example
39
15.3
16.3
141.1
248.1
51.3
145.2
1.9
166.4
240


PI3K alpha
99
10
17
184
10
61
146
37
70
3


IC50 [nM]


Example
4.3
24
176
16.4
1.5
51.6
3.3
3.5
44
252


PI3K alpha
119
7
17
7
27
22
161
29
10
20


IC50 [nM]


Example
146.2
150.1
54.1
148.3
111
180.2
137
31
248.3
74


PI3K alpha
17
118
9
14
29
9
16
64
47
22


IC50 [nM]


Example
88.2
98.2
4.9
7.2
72
188
15.1
234.4
96
6.2


PI3K alpha
43
41
157
100
38
50
56
36
73
94


IC50 [nM]


Example
87.5
186
154.1
230
29.2
3.6
17.2
95
47
53.2


PI3K alpha
17
18
12
7
5
163
8
11
8
41


IC50 [nM]


Example
152.2
89
86
157
203
247.3
23.1
185.2
6.3
25.6


PI3K alpha
15
20
461
24
14
482
11
13
7
110


IC50 [nM]


Example
187
103.1
4.7
169.1
160.1
19
29.3
155.1
165
51.5


PI3K alpha
14
5
13
29
17
15
3
11
220
34


IC50 [nM]


Example
215.2
77
138
238
174
208
183
118.2
213.2
5.2


PI3K alpha
60
7
5
11
14
375
55
8
6
246


IC50 [nM]


Example
6.4
58.5
101
88.1
146.1
70
170
229
211.1
9


PI3K alpha
161
7
59
9
9
71
8
6
462
38


IC50 [nM]


Example
131
149.2
25.3
158.1
220.1
37.3
12
209
213.1
57


PI3K alpha
8
13
34
22
30
6
26
100
14
15


IC50 [nM]


Example
215.3
221.2
85.3
30.1
244
22
206.1
148.4
87.1
234.3


PI3K alpha
15
34
74
15
58
14
10
82
30
250


IC50 [nM]


Example
195.4
98.1
83
166.2
117
158.5
144.3
56.3
87.2
37.2


PI3K alpha
39
23
48
199
36
5
44
9
78
26


IC50 [nM]


Example
69
173
27.2
175.2
144.1
205
90.2
1.10
3.2
148.1


PI3K alpha
6
29
5
12
110
15
32
51
34
9


IC50 [nM]


Example
1.8
2.8
35
181
105
236
248.5
81.2
37.1
86.2


PI3K alpha
15
8
39
43
16
14
46
57
188
25


IC50 [nM]


Example
4.2
51.2
160.2
222
156
122
85.2
3.12
50
136


PI3K alpha
13
132
186
9
971
16
5
4
47
4


IC50 [nM]


Example
190
108
206.2
118.5
247.5
10.2
185.1
84.2
49
93.1


PI3K alpha
5
22
5
21
9
28
9
28
217
42


IC50 [nM]


Example
169.3
233
220.3
141.3
150.2
166.5
166.1
142.1
3.4
145.1


PI3K alpha
175
5
14
154
6
103
10
14
785
44


IC50 [nM]


Example
196.2
250
221.1
106
151
26
43.1
168.1
130
232


PI3K alpha
4
10
43
146
6
9
45
29
74
95


IC50 [nM]


Example
201
153.1
90.1
2.6
85.1
200
4.4
196.1
45.2
8.2


PI3K alpha
46
93
29
42
8
30
82
24
33
30


IC50 [nM]


Example
7.1
224.2
6.1
80.2
43.2
32.2
178
29.1
226
5.1


PI3K alpha
85
28
5
14
61
148
12
22
168
34


IC50 [nM]


Example
228
251
164
58.4
62
115
25.4
245
140.1
159


PI3K alpha
41
19
17
25
8
7
18
16
249
66


IC50 [nM]


Example
197.2
143
139
147
27.1
158.3
142.2
3.8
15.2
175.1


PI3K alpha
446
7
34
34
39
8
9
3
460
41


IC50 [nM]


Example
123
248.4
194.1
197.1
1.4
38
161
223
65
180.1


PI3K alpha
12
8
12
543
21
18
20
207
173
12


IC50 [nM]


Example
61
217
109
134
3.1
59.1
225
3.11
73
219


PI3K alpha
13
8
<3
5
272
36
17
21
81
72


IC50 [nM]


Example
25.2
162
192
59.2
21.1
66
2.5
68
242.2
158.4


PI3K alpha
30
12
136
38
44
75
79
16
37
43


IC50 [nM]


Example
25.5
129
10.1
247.2
158.2
81.1
112
53.1
195.2
2.9


PI3K alpha
4
48
48
15
92
<9
15
6
6
16


IC50 [nM]


Example
253
195.3
79
199
63
41
224.1
163
58.1
118.3


PI3K alpha
104
6
53
173
26
33
93
50
10
35


IC50 [nM]


Example
92
84.1
212.1
154.2
118.1
16.1
247.1
146.3
220.2
23.2


PI3K alpha
405
50
266
14
139
55
30
62
315
20


IC50 [nM]


Example
231
46
37.4
1.3
153.3
98.3
2.3
28.2
60.2
118.4


PI3K alpha
20
19
13
13
236
71
<3
76
30
14


IC50 [nM]


Example
40
121
28.3
102
58.3
227
28.1
45.3
54.2
191.1


PI3K alpha
3
50
15
48
34
23
18
23
25
6


IC50 [nM]


Example
16.5
1.2
153.2
149.1
169.2
242.1
100
51.1
142.3
215.4


PI3K alpha
9


IC50 [nM]


Example
146.5


PI3K beta IC50
252
10
206
17
7
11
28
13
370
7


[nM]


Example
18
158.1
116
211.2
220.3
182
54.1
39
74
168.3


PI3K beta IC50
241
13
24
161
150
37
506
184
122
48


[nM]


Example
2.1
239
77
195.3
234.3
166.1
49
158.2
27.1
25.3


PI3K beta IC50
274
31
123
19
166
39
504
14
59
537


[nM]


Example
178
28.3
3.8
25.1
2.9
1.9
251
153.1
4.9
3.7


PI3K beta IC50
40
6
134
6
68
10
407
83
302
163


[nM]


Example
38
192
222
194.2
149.1
163
98.1
62
118.1
195.2


PI3K beta IC50
21
185
112
103
44
33
130
19
391
51


[nM]


Example
158.5
6.2
72
197.2
225
99
179
59.2
112
148.1


PI3K beta IC50
83
79
21
167
559
120
16
67
382
213


[nM]


Example
124
152.1
12
146.5
175.3
2.4
144.3
242.1
4.3
4.5


PI3K beta IC50
56
101
129
32
340
114
43
140
404
61


[nM]


Example
185.2
153.3
1.3
198
3.5
147
32.1
100
7.1
68


PI3K beta IC50
332
51
6
344
12
20
68
799
9
843


[nM]


Example
103.2
6.3
56.4
230
87.3
162
88.2
10.1
185.1
53.2


PI3K beta IC50
120
17
7
17
246
526
197
21
38
46


[nM]


Example
17.1
150.1
237
160.1
92
15.3
23.2
86.2
109
155.3


PI3K beta IC50
359
110
17
112
62
152
28
19
239
192


[nM]


Example
234.4
63
128.2
41
254
1.7
187
218
30.2
3.1


PI3K beta IC50
25
35
56
40
44
82
281
34
18
495


[nM]


Example
13
128.1
43.2
215.1
127
118.2
81.2
129
161
6.4


PI3K beta IC50
103
733
33
28
16
12
33
109
28
322


[nM]


Example
238
4.4
152.2
88.1
25.4
85.1
249
2.8
157
64


PI3K beta IC50
336
291
35
335
23
13
385
126
787
23


[nM]


Example
4.6
102
148.2
87.5
89
200
142.3
93.2
5.1
248.3


PI3K beta IC50
432
104
71
25
111
132
41
41
115
9


[nM]


Example
206.2
203
248.1
234.2
143
28.2
118.5
220.2
90.2
153.2


PI3K beta IC50
228
22
157
22
86
68
91
163
165
23


[nM]


Example
56.3
87.2
30.1
122
10.2
168.2
2.7
105
32.2
221.1


PI3K beta IC50
76
8
324
188
7
69
15
15
72
29


[nM]


Example
154.2
229
194.1
244
169.3
58.5
28.1
34
195.1
45.2


PI3K beta IC50
21
23
46
473
377
167
13
193
578
612


[nM]


Example
151
220.1
33
3.11
138
207
86
56.5
25.2
2.6


PI3K beta IC50
39
42
51
278
287
5
409
27
76
56


[nM]


Example
233
180.1
54.2
2.2
142.2
215.3
91
199
208
66


PI3K beta IC50
49
145
207
287
407
81
5
162
119
13


[nM]


Example
210
171
146.3
227
141.3
166.2
58.2
145.1
234.1
217


PI3K beta IC50
19
80
112
91
25
515
17
95
20
25


[nM]


Example
155.1
144.1
158.4
81.1
165
16.4
205
148.4
119
61


PI3K beta IC50
79
36
477
61
517
144
28
93
281
180


[nM]


Example
152.3
174
3.6
125.1
26
248.5
16.5
87.4
146.6
2.3


PI3K beta IC50
57
43
6
34
100
17
50
10
101
169


[nM]


Example
29.1
1.6
1.10
168.1
159
155.2
193
215.2
232
45.3


PI3K beta IC50
24
18
23
178
12
8
144
101
66
98


[nM]


Example
252
177.1
101
191.2
149.2
158.3
29.3
1.5
146.2
154.1


PI3K beta IC50
162
173
171
62
45
29
184
41
6
39


[nM]


Example
245
27.2
16.2
224.1
146.1
221.2
241
23.1
201
90.1


PI3K beta IC50
84
142
280
167
95
133
22
37
130
10


[nM]


Example
167
141.2
224.2
29.2
107
25.6
248.2
35
118.4
166.4


PI3K beta IC50
66
802
3
603
387
29
18
222
93
49


[nM]


Example
7.2
126
148.3
242.2
8.2
156
211.1
166.5
125.2
219


PI3K beta IC50
47
811
206
762
12
273
4
970
343
41


[nM]


Example
45.1
47
17.2
4.1
215.4
209
93.1
37.1
52
111


PI3K beta IC50
468
7
129
87
47
13
6
695
73
77


[nM]


Example
197.1
58.1
69
169.1
243
181
56.1
118.3
186
196.1


PI3K beta IC50
81
176
378
130
988
33
13
327
37
288


[nM]


Example
166.3
146.4
1.4
160.2
15.2
176
202
177.2
75
80.2


PI3K beta IC50
67
201
90
544
38
11
227
89
8
3


[nM]


Example
31
142.1
236
96
206.1
22
6.1
59.1
84.1
60.1


PI3K beta IC50
34
93
24
395
946
26
101
86
10
225


[nM]


Example
40
121
195.4
170
21.1
24
103.1
2.5
76
4.2


PI3K beta IC50
29
51
24
7
190
165
30
218
137
37


[nM]


Example
58.4
53.1
191.1
223
43.1
169.2
25.5
44
110
17.3


PI3K beta IC50
205
907
30
139
404
317
10
477
5
280


[nM]


Example
21.2
117
188
85.2
16.3
56.2
184
85.3
189
1.2


PI3K beta IC50
20
146
32
255
68
130
18
71
228
154


[nM]


Example
1.8
172
36
15.1
250
14
120
226
16.1
82


PI3K beta IC50
951
41
82
161
202
8
148
50
563
12


[nM]


Example
55
95
246
132
149.3
248.4
173
145.2
46
150.2


PI3K beta IC50
21
40
11
8
42
180
215
4
469
30


[nM]


Example
87.1
144.2
164
253
180.2
175.1
57
183
141.1
84.2


PI3K beta IC50
91
36
401
203
55


[nM]


Example
240
190
3.3
58.3
155.4


PI3K delta
44
24
8
234
40
4
14
91
166
28


IC50 [nM]


Example
6.4
36
203
83
125.2
158.3
171
4.6
228
6.1


PI3K delta
9
800
101
118
24
<3
9
16
10
16


IC50 [nM]


Example
119
115
98.2
51.1
95
201
157
116
246
62


PI3K delta
37
<3
29
441
271
8
5
15
9
11


IC50 [nM]


Example
52
248.3
68
42
131
150.1
253
233
89
168.2


PI3K delta
10
922
71
7
11
13
10
56
4
15


IC50 [nM]


Example
120
137
103.2
1.5
1.6
118.2
200
29.2
183
158.1


PI3K delta
141
58
129
5
8
5
25
148
50
16


IC50 [nM]


Example
104
132
56.3
86
249
192
159
3.3
27.2
146.1


PI3K delta
53
147
87
20
19
75
28
13
283
50


IC50 [nM]


Example
5.2
241
179
17.1
103.1
51.3
107
219
3.4
111


PI3K delta
85
4
45
7
292
30
18
57
32
598


IC50 [nM]


Example
2.6
88.1
148.4
220.2
10.1
146.2
1.9
85.2
25.6
51.4


PI3K delta
4
24
69
9
7
12
10
38
41
329


IC50 [nM]


Example
25.4
181
139
145.2
158.5
4.9
146.6
32.2
24
15.3


PI3K delta
9
8
40
<3
36
465
20
3
17
44


IC50 [nM]


Example
234.1
182
3.5
166.4
30.1
37.2
54.2
85.1
4.5
141.1


PI3K delta
10
4
372
9
14
43
19
235
9
89


IC50 [nM]


Example
45.3
142.1
73
22
155.1
3.7
234.4
175.2
144.3
4.4


PI3K delta
12
8
30
5
5
126
68
5
24
794


IC50 [nM]


Example
53.1
58.1
81.2
151
229
175.3
7.1
163
197.2
247.2


PI3K delta
5
7
56
15
26
160
17
57
386
3


IC50 [nM]


Example
168.1
252
2.2
194.1
225
196.2
193
206.2
130
146.5


PI3K delta
120
932
4
33
336
6
121
9
7
3


IC50 [nM]


Example
8.2
133
164
142.2
26
191.1
56.2
59.2
198
220.3


PI3K delta
777
15
11
17
6
15
18
118
144
18


IC50 [nM]


Example
247.1
101
190
61
221.2
13
118.1
58.3
5.1
21.2


PI3K delta
6
6
3
6
647
112
19
<3
13
19


IC50 [nM]


Example
218
208
153.2
202
212.2
10.2
45.1
194.2
7.2
217


PI3K delta
<3
127
33
737
7
196
6
11
5
28


IC50 [nM]


Example
60.1
92
2.4
9
206.1
56.5
99
158.4
196.1
44


PI3K delta
37
175
16
3
106
13
10
4
3
437


IC50 [nM]


Example
173
65
160.2
153.1
49
25.1
215.4
144.2
239
230


PI3K delta
12
102
23
394
33
47
25
11
77
29


IC50 [nM]


Example
177.1
126
40
3.2
172
32.1
80.2
191.2
82
207


PI3K delta
236
170
19
19
5
51
31
52
26
48


IC50 [nM]


Example
97
251
66
87.2
195.4
64
90.1
105
125.1
98.1


PI3K delta
9
37
98
8
721
98
111
10
147
84


IC50 [nM]


Example
127
3.1
141.2
152.1
3.12
4.3
212.1
143
117
118.3


PI3K delta
34
9
163
4
42
12
40
11
5
262


IC50 [nM]


Example
195.3
211.2
70
184
138
1.3
29.3
128.2
199
71


PI3K delta
25
39
19
18
468
6
10
83
70
46


IC50 [nM]


Example
167
4.1
146.4
145.1
19
223
2.5
1.4
175.1
25.3


PI3K delta
72
14
29
6
5
31
7
432
199
16


IC50 [nM]


Example
98.3
122
224.1
221.1
118.5
12
150.2
2.1
96
33


PI3K delta
6
27
10
30
22
8
82
14
43
0


IC50 [nM]


Example
189
29.1
162
31
155.2
187
41
248.5
23.2
204


PI3K delta
318
19
22
18
3
11
211
39
17
42


IC50 [nM]


Example
79
2.7
169.1
186
16.5
215.2
213.2
242.2
250
28.3


PI3K delta
8
33
13
26
23
22
7
6
6
292


IC50 [nM]


Example
147
166.5
144.1
102
170
128.1
38
4.2
28.1
46


PI3K delta
6
29
94
61
27
17
8
30
<3
<3


IC50 [nM]


Example
166.3
35
100
1.2
169.2
244
149.2
245
240
234.3


PI3K delta
14
169
810
115
228
3
17
6
371
11


IC50 [nM]


Example
215.1
1.7
11
18
3.11
248.2
87.4
56.4
50
155.4


PI3K delta
39
18
70
82
4
17
29
<3
147
32


IC50 [nM]


Example
148.2
16.2
177.2
222
248.1
149.1
72
234.2
106
6.2


PI3K delta
10
19
6
453
9
26
37
39
7
3


IC50 [nM]


Example
25.5
109
56.1
51.2
129
254
154.1
81.1
75
166.1


PI3K delta
4
42
10
93
10
3
20
28
178
13


IC50 [nM]


Example
84.1
30.2
87.1
53.2
242.1
39
124
152.2
47
148.3


PI3K delta
4
449
4
8
17
5
431
7
14
8


IC50 [nM]


Example
188
37.1
165
88.2
156
1.8
3.10
166.2
146.3
161


PI3K delta
60
27
30
161
38
5
17
21
10
12


IC50 [nM]


Example
232
16.3
2.3
16.4
149.3
17.3
27.1
226
1.10
58.4


PI3K delta
18
46
5
5
362
54
34
7
167
7


IC50 [nM]


Example
142.3
85.3
215.3
84.2
51.5
2.9
14
236
8.1
34


PI3K delta
<3
8
35
257
9
6
20
18
<3
7


IC50 [nM]


Example
169.3
220.1
197.1
15.1
141.3
180.2
180.1
121
248.4
152.3


PI3K delta
34
26
14
35
203
6
32
3
116
41


IC50 [nM]


Example
3.8
227
195.1
195.2
91
87.3
25.2
168.3
21.1
224.2


PI3K delta
43
19
4
9
26
21
19
39
<3
7


IC50 [nM]


Example
74
54.1
58.2
237
90.2
148.1
118.4
58.5
93.1
243


PI3K delta
<3
6
35
14
36
4
821
80
85
7


IC50 [nM]


Example
160.1
86.2
87.5
211.1
69
45.2
15.2
154.2
178
6.3


PI3K delta
8
15
91
53
13
41
23
34
15
215


IC50 [nM]


Example
158.2
23.1
59.1
28.2
210
93.2
174
43.2
2.8
57


PI3K delta
158
15
473
12
132
214
209
9
6
42


IC50 [nM]


Example
3.6
176
238
205
55
136
112
209
185.2
110


PI3K delta
9
20
38
694
8
10
3
556
691
25


IC50 [nM]


Example
185.1
63
17.2
60.2
77
155.3
76
108
213.1
16.1


PI3K delta
218
112
22


IC50 [nM]


Example
43.1
3.9
153.3


PI3K gamma
82
386
246
415
283
390
213
307
303
777


IC50 [nM]


Example
34
17.1
3.1
16.1
45
2.5
51.1
74
25
68


PI3K gamma
140
150
212
287
191
147
69
453
253
319


IC50 [nM]


Example
32.1
30.2
251
100
7.2
107
29.1
68
58.4
6.2


PI3K gamma
118
160
100
212
184
157
217
190
242
178


IC50 [nM]


Example
31
32.2
1.9
14
121
54.1
2.7
53.1
4.2
30.1


PI3K gamma
341
391
205
179
83
529
199
337
528
292


IC50 [nM]


Example
72
21.2
2.8
59.1
40
3.8
56.2
110
15.1
4.5


PI3K gamma
309
185
182
144
121
129
489
125
157
114


IC50 [nM]


Example
5.1
250
6.1
1.8
127
10.2
16.2
249
1.6
43.2


PI3K gamma
121
113
95
96
123
128
138
118
238
150


IC50 [nM]


Example
56.4
35
58.1
76
38
33
51.2
36
1.10
4.9


PI3K gamma
138
160
92
73
165
132
111
150
145
169


IC50 [nM]


Example
101
23
12
22
41
1.5
24
43.1
254
29.3


PI3K gamma
286
144
236
227
194
540
246
356
357
197


IC50 [nM]


Example
109
37.1
116
5.2
28.3
1.3
102
66
3.5
57


PI3K gamma
646
341
481
388
182
597
225
120
408
407


IC50 [nM]


Example
69
4.4
4.6
46
3.6
52
117
1.7
16.3
4.1


PI3K gamma
206
278
137
216
873
343
701
590
237
199


IC50 [nM]


Example
2.9
49
27.2
1.2
17.2
55
47
42
44
2.4


PI3K gamma
559
471
582
257
250
397
867
760
971
173


IC50 [nM]


Example
3.2
112
104
56.3
91
18
3.10
48
19
123


PI3K gamma
334
359
851
309
788
273
535
325
310
777


IC50 [nM]


Example
50
16.3
115
3.3
2.6
10.1
108
15.3
105
26


PI3K gamma
816
183
142
75
191
75
117
45
138
123


IC50 [nM]


Example
63
53.2
128.1
28.1
103.1
39
128.2
252
118.3
56.1


PI3K gamma
142
140
335
548
164
174
363
303
118
145


IC50 [nM]


Example
4.3
2.1
37.2
15.2
118.1
28.2
125.1
3.7
124
29.2


PI3K gamma
215
88
116
87
279
75


IC50 [nM]


Example
27.1
253
120
13
118.2
77









The efficacy of the compounds of formula I and salts thereof as mTor kinase inhibitors can be demonstrated as follows


Biochemical Assay for m-TOR by TR-FRET.


Assay components are purchased from Invitrogen Corporation (Carlsbad/Calif., USA): GFP-4EBP1 (Cat. No. PV4759), Tb3+-α-p4EBP1 [pThr46] Antibody (Cat. No. PV4757), proprietary TR-FRET dilution buffer (Cat. No. PV3574), mTOR protein (Cat. No. PV4753).


50 nL of compound dilutions (final concentration of 10, 3.0, 1.0, 0.3, 0.1, 0.03, 0.01 and 0.003 μM) are dispensed onto black 384-well low volume non-binding polystyrene (Cat. No. NBS#3676, Corning, Lowell/Mass., USA). Then 5 μL of ATP (8 μM final concentration) and GFP-4EBP1 (400 nM final concentration) with 5 μL mTOR proteins (0.5 nM final concentration) are incubated at rt. The standard reaction buffer for the TR-FRET mTOR assay contained 50 mM HEPES pH 7.5, 10 mM MnCl2, 50 mM NaCl, 1 mM EGTA, 1 mM DTT. Reactions were stopped with 10 μL of a mixture of EDTA containing the Tb3+-α-p4EBP1[pT46] detection Ab (0.5 nM) in TR-FRET dilution buffer (proprietary to IVG). Plates are read 15 mins later in a Synergy2 reader using an integration time of 0.2 seconds and a delay of 0.1 seconds. Control for the 100% inhibition of the kinase reaction is performed by replacing the mTOR kinase by the standard reaction buffer. The control for the 0% inhibition is given by the solvent vehicle of the compounds (90% DMSO in H2O). A standard compound is used as a reference compound and included in all assay plates in the form of 16 dilution points in duplicate.


The range of activity, expressed as IC50, in this assay is preferably between 1 nM and 5000 nM, more preferably between 1 nM and about 1000 nM.
























mTOR IC50
<3
672
5
21
174
210
22
15
22
<3


[nM]


Example
164
106
120
209
238
149.3
98.3
248.3
4.5
79


mTOR IC50
82
7
15
92
12
91
135
96
<3
13


[nM]


Example
25.6
45.3
178
212.2
148.3
121
250
59.1
165
15.1


mTOR IC50
11
94
97
778
3
28
1821
3
101
677


[nM]


Example
51.1
54.2
126
29.2
89
247.3
170
144.3
194.1
8.2


mTOR IC50
19
6
4
8
30
17
30
34
4
15


[nM]


Example
175.3
182
43.2
88.1
249
189
74
16.1
158.2
4.2


mTOR IC50
95
12
9
161
13
<3
43
70
14
152


[nM]


Example
148.1
155.2
25.1
227
5.2
87.2
6.2
237
110
25.2


mTOR IC50
15
<3
123
5
11
14
76
20
191
347


[nM]


Example
203
99
18
127
109
234.1
195.3
112
3.6
2.2


mTOR IC50
56
6
10
179
112
512
17
5
<3
27


[nM]


Example
232
25.4
1.6
72
26
91
234.3
155.3
161
141.3


mTOR IC50
9
12
639
34
58
9
147
71
481
231


[nM]


Example
146.3
158.3
69
247.4
167
2.5
246
40
142.1
46


mTOR IC50
542
3
133
10
5
132
30
703
642
52


[nM]


Example
231
58.2
34
157
90.1
1.3
64
60.2
62
56.2


mTOR IC50
160
3
5
<3
548
7
5
49
68
58


[nM]


Example
73
87.1
156
180.2
3.12
208
129
27.1
17.2
242.1


mTOR IC50
18
7
3
24
140
31
5
25
139
3


[nM]


Example
5.1
23.2
158.5
224.2
135
243
41
191.1
219
162


mTOR IC50
120
16
20
6
11
45
21
51
48
11


[nM]


Example
80.2
56.4
98.1
248.4
4.9
196.1
139
125.1
10.2
147


mTOR IC50
<3
479
373
113
<3
27
3
6
172
<3


[nM]


Example
185.1
146.6
213.1
143
144.2
82
200
142.2
145.1
168.3


mTOR IC50
72
10
110
470
505
7
69
678
13
207


[nM]


Example
212.1
252
33
117
4.7
97
128.1
148.4
133
66


mTOR IC50
60
363
16
32
<3
14
14
4
28
4


[nM]


Example
108
27.2
166.4
220.2
236
1.10
58.1
158.1
32.1
173


mTOR IC50
329
34
<3
6
56
118
26
79
6
162


[nM]


Example
85.3
7.2
160.1
184
221.2
93.2
59.2
54.1
16.5
2.6


mTOR IC50
34
19
113
155
11
5
12
15
322
55


[nM]


Example
206.1
185.2
248.1
1.2
211.2
60.1
17.3
56.1
57
166.3


mTOR IC50
20
105
666
33
9

<3
33
41
157


[nM]


Example
146.2
251
16.4
6.4
118.3
214
87.3
166.1
168.2
50


mTOR IC50
12
213
25
48
11
274
5
<3
<3
447


[nM]


Example
128.2
37.1
160.2
195.1
102
144.1
6.3
172
43.1
141.1


mTOR IC50
8
99
16
7
<3
143
<3
105
17
934


[nM]


Example
187
51.4
28.1
141.2
119
131
171
7.1
85.1
132


mTOR IC50
462
5
129
26
42
95
19
193
9
33


[nM]


Example
68
152.2
90.2
225
4.6
105
37.3
196.2
148.2
2.8


mTOR IC50
20
6
5
25
29
149
151
13
45
201


[nM]


Example
95
100
220.3
55
87.5
169.2
2.9
28.3
16.3
21.1


mTOR IC50
309
564
563
16
48
79
60
161
52
4


[nM]


Example
146.4
71
44
145.2
146.5
240
107
3.4
30.1
118.2


mTOR IC50
58
9
<3
10
34
7
9
23
383
27


[nM]


Example
65
215.2
223
125.2
224.1
45.1
136
58.5
9
51.6


mTOR IC50
35
54
22
4
3
734
6
99
30
<3


[nM]


Example
215.1
30.2
103.2
118.4
155.1
8.1
194.2
247.5
6.1
77


mTOR IC50
565
30
61
155
335
11
65
26
324
10


[nM]


Example
248.5
98.2
83
175.2
15.2
207
61
29.1
137
138


mTOR IC50
46
15
10
15
49
100
30
448
432
13


[nM]


Example
49
116
181
151
239
134
4.1
2.4
25.5
179


mTOR IC50
51
8
27
13
6
6
87
59
96
566


[nM]


Example
35
150.2
201
88.2
1.8
38
96
17.1
2.3
58.3


mTOR IC50
324
79
53
17
22
6
121
12
12
<3


[nM]


Example
81.2
149.1
104
3.5
205
175.1
22
247.2
199
101


mTOR IC50
<3
22
87
619
107
31
65
465
69
4


[nM]


Example
51.2
222
195.2
154.1
53.1
58.4
254
230
39
81.1


mTOR IC50
98
21
4
76
6
177
<3
39
<3
189


[nM]


Example
153.1
193
84.1
245
51.3
31
153.2
197.1
183
152.3


mTOR IC50
61
232
549
7
107
56
11
7
9
13


[nM]


Example
1.5
123
28.2
174
197.2
186
3.1
215.3
3.8
80.1


mTOR IC50
23
308
260
<3
41
77
3
100
15
39


[nM]


Example
16.2
1.9
75
188
218
87.4
253
4.4
176
149.2


mTOR IC50
4
<3
543
74
79
36
251
5
27
79


[nM]


Example
23.1
36
4.3
52
241
140.1
4.8
180.1
220.1
244


mTOR IC50
31
7
13
12
17
87
22
40
17
169


[nM]


Example
86.2
29.3
247.1
168.1
150.1
1.4
155.4
210
12
226


mTOR IC50
17
70
6
494
3
763
24
12
<3
<3


[nM]


Example
142.3
158.4
14
130
177.1
56.5
45.2
15.3
146.1
93.1


mTOR IC50
<3
64
6
81
63
10
34
<3
4
5


[nM]


Example
118.5
233
192
70
13
234.2
191.2
169.1
216
122


mTOR IC50
651
23
12
<3
13
5
187
123
376
55


[nM]


Example
3.3
3.7
217
163
211.1
118.1
234.4
213.2
92
166.2


mTOR IC50
12
116
6
21
65
8
37
13
13
<3


[nM]


Example
159
25.3
86
103.1
42
195.4
190
215.4
152.1
169.3


mTOR IC50
19
13
29
37
15
306
665
281
11
18


[nM]


Example
84.2
2.7
202
24
248.2
63
153.3
47
3.9
3.10


mTOR IC50
53
5
32
73


[nM]


Example
124
76
221.1
198









The efficacy of the compounds of the invention in blocking the activation of the PI3K/PKB pathway was demonstrated in cellular settings using a reverse protein array assay for sensitive quantification of compound of formula I mediated inhibition of PKB Ser473 phosphorylation in Rat1 cells stably transfected with activated versions of PI3-kinase isoforms alpha, beta or delta:


Cells and Cell Culture Conditions:


Rat1 cell lines stably expressing a myr-HA-tagged, constitutively active subunit of the catalytic PI3K class I p110 isoform α, β or δ (addition of a myristylation signal at the N-terminus of p110 isoforms has been shown to lead to constitutive activation of PI3K and corresponding downstream signals, such as phosphorylation of PKB at Ser473) were cultivated in Dulbecco's modified Eagle's medium (DMEM high Glucose, GIBCO, cat. No. 41956-039) supplemented with 10% heat inactivated fetal bovine calf serum (Amimed, cat. No. 2-01F16-I), 1% L-Glutamine (Invitrogen, cat. No. 25030-02), 1% penicillin-streptomycin (GIBCO, cat. No. 15140-114) and 10 μg/ml Puromycine (Sigma, cat. No. P9620).


Compound Treatment of Cells and Preparation of Samples:


The Rat1-myr-HA-p110 alpha, beta and delta cells were trypsinized and counted with a CASY TT cell counter (Schärfe System GmbH, Reutlingen Germany). The cells were diluted in fresh DMEM complete medium and 3×104cells/150 μl/well seeded in 96-well TPP-tissue culture plates (TPP, cat. No. 92096). The plates were incubated at 37° C. and 5% CO2 under humidified condition for at least 20 h. Compound of formula I working solutions were prepared freshly as serial 8 step dilutions (vol/vol) in DMSO on the day of the experiment. The working solutions were further diluted 1/500 in cell culture medium to get final compound concentrations of 10, 3.333, 1.111, 0.370, 0.123, 0.041, 0.014, 0.005 μM. The final DMSO concentration was kept constant at 0.2%. cell culture medium containing 0.2% DMSO was used as vehicle treatment control. Post incubation, the cells were treated with the serial compound dilution. 50 μl of the compound medium mixture was added to the wells containing cells and 150 μl DMEM medium and incubated for 30 minutes (37° C., 5% CO2). After 30 minutes of incubation, the medium mixture was quickly removed by aspiration. For cell lysis, a mixture of 10% CLB1 CeLyA lysis buffer (Zeptosens, cat. No. 9000), 90% CSBL1 CeLyA spotting buffer (Zeptosens, cat. No. 9020) was freshly prepared and supplemented with 1% Octyl β-D-glucopyranoside (SIGMA, cat. No. 08001-5G) and 1 mM Na-Orthovanadate (Sigma, cat No. S-6508). 50 μl of the described lysis buffer mix was added to each well, followed by 10 minutes of incubation on ice. After an additional freeze-thaw cycle, another 50 μl of the lysis buffer mix without Octyl β-D-glucopyranoside was added to the wells, and 90 μl of the cell lysate was transferred to a 96-well V-bottom plate (Fisher Scientific, cat. No. 6067Y), followed by a centrifugation step (5 min, 1500 rpm at 19° C. in an Eppendorf 5810R centrifuge) to remove the unlysed cell debris.


Spotting of the ZeptoMARK® Chips:


The samples were spotted onto ZeptoMARK® PWG protein microarray chips (Zeptosens, Witterswil, Switzerland) with the piezoelectric microdispense-based, non-contact Nano-Plotter 2.1 (GeSiM, Grosserknnannsdorf, Germany). Each sample was spotted at 4 different sample concentrations (d1=100%, d2=75%, d3=50%, d4=25%) by diluting the cell lysate with the corresponding volume of lysis buffer mix. After spotting the ZeptoMARK® protein microarrays, the chips are incubated for 1 hour at 37° C. To receive a uniform blocking result, the CeLyA blocking buffer BB1 (Zeptosens, cat. No. 9040) is administered via an ultrasonic nebulizer. After 20 minutes of blocking the chips are extensively rinsed with deionized water (Milli-Q quality, 18 MΩ×cm) and dried in a nitrogen air flow.


ZeptoREADER Signal Detection and Data Analysis:


After the sample spotting and blocking procedure, the ZeptoMARK® chips were transferred to the ZeptoCARRIER (Zeptosens, cat. No. 1100), whose six flow cells individually address the six arrays on a chip, and washed twice with 200 μl CAB1 CeLyA assay buffer (Zeptosens, cat. No. 9032). The assay buffer was then aspirated and each compartment incubated with 100 μl of the primary target antibody (pAkt Ser473; CST#9271) at RT over night. Post incubation, the primary antibody was removed, the arrays washed twice with CAB1 buffer and further incubated with 100 μl of Alexa fluor 647-labeled anti rabbit IgG Fab fragments (Invitrogen; #Z25305) for one hour at RT in the dark. After incubation, the arrays were washed twice with 200 μl CAB1 buffer. The fluorescence of the target-bound Fab fragments is read out on the ZeptoReader (Zeptosens, Witterswil, Switzerland) using a laser (excitation wavelength 635 nm) and a CCD camera. The fluorescence signal was assessed with exposure times of 1, 3, 5 and 10 seconds, depending on the intensity of the signal. The resulting four images taken per array are stored as 16-bit TIF files.


The fluorescence images for each array were analyzed with the ZeptoVIEW Pro 2.0 software (Zeptosens, Witterswil, Switzerland) and the relative fluorescence intensity for each signal was calculated. The range of activity, expressed as IC50, in this assay is preferably between about 1 nM and about 10 μM, more preferably between about 1 nM and about 1 μM.












Rat1-myr-p110 alpha


























p-PKB IC50
51
17
9
41
264
383
50
21
129
134
38


[nM]


Example
132
27.1
174
250
78
58.3
10.2
151
196.2
108
166.2


p-PKB IC50
7
25
139
30
<5
150
<5
253
136
14
8


[nM]


Example
249
25.3
18
30.1
161
141.1
146.1
154.2
227
5.2
193


p-PKB IC50
14
5
23
7
552
72
197
<5
371
151
46


[nM]


Example
43.1
29.1
202
97
2.1
240
83
87.3
242.2
148.4
1.3


p-PKB IC50
344
<5
45
<5
9
33
33
30
88
7
8


[nM]


Example
175.3
144.3
196.1
94
58.2
87.4
102
254
155.4
28.1
51.3


p-PKB IC50
35
20
<5
12
55
70
21
82
20
28
352


[nM]


Example
3.5
168.1
84.1
98.3
109
146.4
58.1
1.7
178
15.3
15.2


p-PKB IC50
13
9
65
7
168
36
47
35
6
12
166


[nM]


Example
99
1.8
207
103.2
22
138
65
39
220.3
64
67


p-PKB IC50
5
32
143
9
244
<5
206
7
<5
128
26


[nM]


Example
36
6.2
93.2
28.3
92
153.2
75
159
163
3.12
45.2


p-PKB IC50
44
<5
29
5
22
124
234
7
17
18
<5


[nM]


Example
247.4
122
31
166.4
1.1
177.2
91
5.1
234.4
2.5
160.1


p-PKB IC50
<5
175
324
<5
16
<5
60
846
14
11
6


[nM]


Example
146.2
247.3
137
180.1
215.1
118.5
45.1
56.5
51.4
206.1
142.2


p-PKB IC50
13
96
25
10
12
8
<5
63
18
<5
50


[nM]


Example
155.1
66
58.4
142.3
100
25.6
186
195.1
221.2
116
29.2


p-PKB IC50
<5
26
10
<5
138
43
115
<5
53
73
45


[nM]


Example
93.1
144.1
168.3
241
34
215.2
212.2
118.4
4.4
17.1
3.6


p-PKB IC50
47
9
50
30
192
<5
6
5
<5
26
38


[nM]


Example
103.1
6.3
3.3
4.6
8.2
148.2
187
155.2
248.1
233
185.2


p-PKB IC50
8
95
14
7
23
162
17
51
49
214
28


[nM]


Example
188
54.1
27.2
152.1
199
33
90.2
57
149.3
46
2.7


p-PKB IC50
191
107
9
<5
20
265
10
14
24
208
10


[nM]


Example
21.1
118.3
177.1
148.3
74
63
1.6
191.1
3.1
115
111


p-PKB IC50
44
180
13
10
5
134
8
16
46
44
77


[nM]


Example
2.9
76
23.1
203
4.9
4.7
204
4.1
2.8
194.1
197.2


p-PKB IC50
5
6
37
282
104
<5
125
123
<5
6
102


[nM]


Example
25.1
165
71
117
224.2
95
213.1
152.3
164
52
154.1


p-PKB IC50
1
55
33
63
26
13
141
166
285
227
<5


[nM]


Example
79
222
86.2
148.1
1.9
215.3
126
72
214
246
89


p-PKB IC50
59
14
9
10
74
187
12
159
<5
28
<5


[nM]


Example
175.2
4.2
172
156
16.1
85.2
51.6
2.2
128.2
247.1
144.2


p-PKB IC50
52
25
45
82
829
16
33
<5
126
40
7


[nM]


Example
139
15.1
242.1
125.2
60.2
173
1.2
157
206.2
166.3
77


p-PKB IC50
21
8
8
23
76
32
375
13
85
77
13


[nM]


Example
129
118.1
86
183
205
238
53.2
234.2
107
105
81.1


p-PKB IC50
108
29
19
13
9
75
51
65
23
120
8


[nM]


Example
217
140.2
153.1
61
171
125.1
49
2.4
197.1
3.2
35


p-PKB IC50
12
18
214
10
26
<5
5
68
21
279
26


[nM]


Example
2.3
179
3.4
216
135
1.10
127
4.3
17.3
229
14


p-PKB IC50
42
6
44
7
20
157
41
375
14
61
98


[nM]


Example
54.2
43.2
30.2
158.2
215.4
142.1
131
21.2
7.2
6.1
37.1


p-PKB IC50
9
22
<5
44
14
10
304
20
11
24
730


[nM]


Example
145.2
1.4
155.3
82
45.3
3.9
56.3
208
211.1
112
245


p-PKB IC50
97
80
18
5
126
69
<5
28
71
41
36


[nM]


Example
25.5
149.2
253
184
59.1
145.1
141.2
198
104
44
243


p-PKB IC50
<5
10
51
19
17
9
77
28
<5
237
22


[nM]


Example
189
220.1
181
169.3
51.5
194.2
40
239
236
87.5
166.1


p-PKB IC50
172
<5
221
237
19
36
<5
114
52
337
268


[nM]


Example
146.6
118.2
32.2
3.11
190
42
248.4
158.4
219
73
170


p-PKB IC50
40
57
594
15
35
10
<5
10
9
27
20


[nM]


Example
143
210
10.1
182
167
141.3
60.1
234.1
150.1
169.1
146.3


p-PKB IC50
20
<5
<5
108
755
13
5
589
84
32
18


[nM]


Example
195.4
88.1
200
80.2
69
185.1
128.1
8.1
140.1
251
209


p-PKB IC50
<5
<5
<5
18
254
158
11
78
6
85
6


[nM]


Example
84.2
85.1
90.1
237
121
4.8
23.2
24
119
32.1
158.1


p-PKB IC50
<5
9
27
14
<5
8
296
42
828
7
15


[nM]


Example
51.1
56.4
191.2
221.1
162
211.2
85.3
6.4
247.5
150.2
51.2


p-PKB IC50
<5
22
59
48
92
135
12
90
48
73
16


[nM]


Example
98.1
218
3.10
195.2
195.3
212.1
96
25.2
41
47
56.1


p-PKB IC50
8
10
818
15
12
<5
301
72
8
303
115


[nM]


Example
16.5
98.2
113
3.8
59.2
87.2
166.5
50
29.3
114
244


p-PKB IC50
159
9
19
15
7
34
<5
20
220
37
67


[nM]


Example
26
248.3
224.1
234.3
38
153.3
158.3
55
81.2
12
16.3


p-PKB IC50
58
67
12
<5
12
13
53
80
11
151
469


[nM]


Example
213.2
110
192
25.4
146.5
80.1
58.5
225
223
16.2
62


p-PKB IC50
19
15
24
17
11
31
12
303
40
19
22


[nM]


Example
17.2
53.1
88.2
175.1
136
149.1
201
56.2
37.3
220.2
4.5


p-PKB IC50
43
<5
76
45
<5
16
12
460
234
<5
17


[nM]


Example
3.7
180.2
28.2
247.2
176
1.5
252
169.2
16.4
87.1
147


p-PKB IC50
<5
141
12
330


[nM]


Example
152.2
2.6
168.2
130



















Rat1-myr-p110 beta


























p-PKB IC50
63
7
386
<5
21
141
86
21
49
5
84


[nM]


Example
207
155.2
244
153.2
55
2.9
66
27.1
144.1
156
149.3


p-PKB IC50
<5
38
17
36
9
173
25
89
6
24
88


[nM]


Example
43.2
211.2
95
45.3
52
21.1
168.1
109
236
64
158.4


p-PKB IC50
21
111
22
114
6
24
14
207
118
38
37


[nM]


Example
179
225
86
195.1
148.2
169.3
58.2
148.4
135
2.7
175.1


p-PKB IC50
153
196
<5
70
22
37
77
18
64
41
87


[nM]


Example
34
80.2
200
16.2
209
169.1
197.2
81.1
251
2.8
247.2


p-PKB IC50
168
13
16
22
308
7
10
72
38
135
15


[nM]


Example
145.1
141.3
177.1
5.2
115
23.1
35
167
138
37.1
234.3


p-PKB IC50
52
30
<5
725
9
148
185
223
13
93
11


[nM]


Example
6.4
103.1
118.5
32.2
127
22
212.2
206.1
203
29.1
142.2


p-PKB IC50
386
23
<5
22
<5
275
386
16
34
11
220


[nM]


Example
2.4
1.5
162
210
118.4
229
245
215.3
186
43.1
227


p-PKB IC50
196
16
<5
389
41
72
428
52
937
29
<5


[nM]


Example
47
99
171
27.2
105
4.6
137
247.1
10.1
131
118.2


p-PKB IC50
659
497
119
45
245
37
171
6
55
189
13


[nM]


Example
117
219
3.6
243
154.2
96
67
85.1
233
195.2
80.1


p-PKB IC50
634
52
92
22
22
66
51
18
110
86
8


[nM]


Example
53.2
183
54.1
155.1
151
149.1
3.7
182
32.1
166.2
1.8


p-PKB IC50
795
20
6
124
15
<5
8
9
8
295
13


[nM]


Example
2.1
252
152.1
24
29.3
141.2
248.4
146.1
84.1
81.2
172


p-PKB IC50
98
29
139
265
<5
139
8
115
240
8
8


[nM]


Example
125.1
173
58.4
59.1
87.1
148.1
88.1
25.5
247.3
159
5.1


p-PKB IC50
29
160
11
57
7
64
383
16
10
31
457


[nM]


Example
56.1
193
56.4
17.1
176
39
75
136
90.2
84.2
226


p-PKB IC50
40
25
6
586
20
18
11
16
15
18
14


[nM]


Example
17.2
248.3
168.3
169.2
221.1
14
150.1
184
6.3
2.5
118.1


p-PKB IC50
266
766
29
59
110
12
48
43
38
548
81


[nM]


Example
205
85.3
202
224.1
4.4
144.2
215.1
118.3
192
3.3
248.1


p-PKB IC50
42
6
<5
97
356
6
<5
110
13
22
113


[nM]


Example
44
25.1
90.1
250
76
4.9
160.1
71
111
1.6
110


p-PKB IC50
28
10
96
68
516
<5
6
46
37
36
16


[nM]


Example
61
16.5
1.3
149.2
62
87.2
158.2
185.1
41
140.2
129


p-PKB IC50
47
407
386
85
37
18
231
9
417
127
161


[nM]


Example
155.4
87.5
78
87.4
187
168.2
18
51.3
73
146.4
175.2


p-PKB IC50
22
14
715
959
136
29
428
154
<5
30
299


[nM]


Example
17.3
103.2
92
206.2
2.6
28.1
146.6
4.8
163
58.1
72


p-PKB IC50
6
94
88
12
26
<5
157
128
29
23
38


[nM]


Example
23.2
239
185.2
204
254
161
1.4
240
146.5
3.8
30.1


p-PKB IC50
20
57
26
19
510
273
6
43
130
119
23


[nM]


Example
3.1
143
234.2
4.1
3.11
21.2
220.3
65
224.2
213.2
60.1


p-PKB IC50
108
70
199
37
166
116
113
103
22
15
444


[nM]


Example
196.2
3.10
212.1
104
3.12
2.3
1.9
221.2
122
25.6
121


p-PKB IC50
17
21
59
28
29
342
995
119
92
49
13


[nM]


Example
234.1
15.1
234.4
88.2
3.5
213.1
242.2
146.3
68
31
98.1


p-PKB IC50
18
61
125
9
55
725
8
16
176
17
10


[nM]


Example
116
59.2
28.2
38
153.3
114
77
253
70
153.1
152.2


p-PKB IC50
81
66
<5
26
6
16
73
409
99
103
19


[nM]


Example
194.1
1.1
189
199
128.2
98.3
25.3
56.2
132
196.1
3.9


p-PKB IC50
52
58
30
<5
265
65
300
35
58
121
17


[nM]


Example
222
10.2
147
180.1
126
40
142.1
7.2
191.2
4.7
97


p-PKB IC50
19
391
541
530
6
39
106
235
284
22
41


[nM]


Example
142.3
91
46
15.2
51.2
16.3
57
37.3
82
249
247.4


p-PKB IC50
17
17
55
53
744
152
40
38
11
49
128


[nM]


Example
158.1
4.5
237
86.2
63
49
197.1
12
146.2
178
108


p-PKB IC50
32
9
104
<5
353
692
101
47
248
17
43


[nM]


Example
180.2
93.1
154.1
241
83
175.3
107
6.2
3.4
208
53.1


p-PKB IC50
187
39
80
615
<5
10
37
<5
<5
113
27


[nM]


Example
125.2
139
45.1
4.3
1.10
174
198
164
51.1
215.2
218


p-PKB IC50
10
21
184
162
19
<5
516
143
294
10
553


[nM]


Example
194.2
1.2
195.3
141.1
201
144.3
85.2
29.2
246
150.2
2.2


p-PKB IC50
10
100
66
214
15
226
136
18
608
94
11


[nM]


Example
148.3
140.1
42
33
28.3
26
215.4
220.1
214
242.1
165


p-PKB IC50
54
494
73
43
119
<5
281
7
24
138
13


[nM]


Example
181
177.2
112
30.2
50
155.3
58.3
79
223
3.2
145.2


p-PKB IC50
8
116
56
43
22
6
34
61
161
10
12


[nM]


Example
157
238
74
54.2
188
36
16.1
211.1
217
119
51.6


p-PKB IC50
14
11
119
19
113
11
57
27
102
<5
326


[nM]


Example
100
94
166.3
4.2
152.3
166.4
216
128.1
58.5
158.3
8.2


p-PKB IC50
36
54
21
<5
147
23
43
370
32
18
34


[nM]


Example
45.2
191.1
15.3
87.3
1.7
195.4
6.1
170
220.2
98.2
102


p-PKB IC50
16
7
<5
54


[nM]


Example
190
25.4
89
166.1



















Rat1-myr-p110 delta


























p-PKB IC50
140
5
7
24
399
56
15
516
37
298
28


[nM]


Example
1.3
153.2
164
146.1
33
216
51.3
51.5
3.8
67
16.5


p-PKB IC50
564
19
8
88
141
323
131
266
54
13
72


[nM]


Example
146.6
38
248.4
191.2
154.1
80.2
240
126
190
236
192


p-PKB IC50
810
69
59
9
5
53
10
356
26
10
59


[nM]


Example
69
225
4.1
155.3
189
210
118.2
63
23.1
160.1
29.1


p-PKB IC50
154
15
92
84
38
58
15
86
19
18
508


[nM]


Example
45.1
150.2
41
144.1
4.5
138
88.1
58.4
142.2
146.2
27.2


p-PKB IC50
234
238
71
401
906
10
177
140
90
45
297


[nM]


Example
29.2
207
68
108
21.1
201
75
1.9
6.1
28.1
219


p-PKB IC50
636
30
127
202
433
9
471
158
869
11
21


[nM]


Example
247.3
234.3
131
34
226
241
93.2
185.2
169.2
144.3
141.2


p-PKB IC50
634
530
9
11
882
25
22
219
42
115
69


[nM]


Example
87.5
73
25.1
56.4
2.4
95
51.2
37.1
145.2
215.4
59.2


p-PKB IC50
839
91
541
9
83
895
12
370
559
8
138


[nM]


Example
47
15.1
2.2
25.4
208
242.2
157
148.4
177.2
36
40


p-PKB IC50
672
38
833
314
249
130
341
64
772
577
362


[nM]


Example
53.2
29.3
166.5
18
1.7
16.1
121
31
205
58.3
37.3


p-PKB IC50
631
46
158
66
91
132
154
14
50
22
73


[nM]


Example
91
129
42
103.1
243
197.1
224.1
1.8
168.1
77
248.1


p-PKB IC50
84
26
768
56
84
50
41
224
79
170
1630


[nM]


Example
3.10
203
212.1
221.2
39
56.1
169.3
85.2
12
24
10.1


p-PKB IC50
275
280
10
22
21
15
157
44
442
12
68


[nM]


Example
70
74
128.2
86
195.4
172
25.5
4.2
49
144.2
222


p-PKB IC50
473
247
43
101
24
44
118
43
7
131
5


[nM]


Example
3.2
25.2
100
193
187
253
149.1
98.3
168.3
1.4
1.10


p-PKB IC50
62
946
33
32
41
91
8
363
56
450
19


[nM]


Example
6.4
2.1
152.2
25.6
221.1
87.4
93.1
135
149.2
26
155.1


p-PKB IC50
137
29
57
140
547
42
74
58
25
106
12


[nM]


Example
3.5
199
86.2
251
4.7
98.1
14
196.1
179
103.2
148.2


p-PKB IC50
377
133
232
<5
288
14
1508
90
8
314
41


[nM]


Example
71
146.4
3.6
90.1
57
148.3
16.4
175.1
4.9
82
188


p-PKB IC50
66
178
134
276
120
119
479
41
403
66
343


[nM]


Example
136
215.2
44
62
109
234.4
206.2
171
141.1
1.2
195.2


p-PKB IC50
24
103
255
196
78
62
212
66
59
50
390


[nM]


Example
146.3
17.1
195.3
110
152.3
140.2
28.2
209
98.2
173
76


p-PKB IC50
749
59
58
11
30
186
56
19
235
7
631


[nM]


Example
85.3
25.3
17.2
166.4
1.6
3.7
122
153.1
229
119
213.1


p-PKB IC50
157
16
86
211
366
51
9
595
89
91
35


[nM]


Example
64
79
147
3.12
32.2
183
94
137
198
167
141.3


p-PKB IC50
249
193
396
307
48
13
26
204
719
112
69


[nM]


Example
217
32.1
118.3
140.1
176
155.2
234.1
59.1
245
153.3
112


p-PKB IC50
5
168
165
96
240
22
425
145
34
95
240


[nM]


Example
80.1
149.3
2.9
52
227
35
117
132
116
158.4
2.3


p-PKB IC50
145
59
56
336
27
12
86
91
12
211
347


[nM]


Example
194.1
88.2
27.1
197.2
194.2
174
143
30.1
156
211.1
244


p-PKB IC50
21
<5
23
85
28
132
357
837
100
30
127


[nM]


Example
118.4
87.1
220.1
242.1
7.2
224.2
58.5
246
15.3
97
128.1


p-PKB IC50
46
118
40
70
213
223
7
959
90
27
44


[nM]


Example
43.1
250
151
139
45.3
51.4
89
78
148.1
186
54.2


p-PKB IC50
28
33
41
151
602
412
18
7
306
382
128


[nM]


Example
17.3
85.1
180.1
16.2
21.2
8.2
84.1
87.3
142.1
81.2
53.1


p-PKB IC50
154
418
280
297
927
50
205
219
360
45
43


[nM]


Example
195.1
3.4
145.1
22
3.3
1.5
4.6
2.6
175.2
206.1
58.1


p-PKB IC50
22
278
81
91
13
24
116
39
21
53
468


[nM]


Example
215.3
4.8
1.1
125.1
220.3
28.3
254
252
150.1
218
56.2


p-PKB IC50
29
326
49
42
56
197
106
45
<5
7
12


[nM]


Example
51.1
185.1
237
3.1
182
10.2
247.4
158.1
161
200
43.2


p-PKB IC50
70
50
103
225
78
105
29
162
56
246
26


[nM]


Example
169.1
3.9
223
72
102
2.8
249
105
191.1
61
233


p-PKB IC50
24
18
458
489
9
105
110
16
508
288
330


[nM]


Example
6.3
23.2
154.2
46
204
211.2
104
152.1
83
247.2
215.1


p-PKB IC50
570
33
24
327
6
102
54
19
772
15
8


[nM]


Example
50
60.1
180.2
238
118.5
65
55
168.2
3.11
158.2
165


p-PKB IC50
62
41
61
12
24
335
59
<5
45
36
23


[nM]


Example
181
239
125.2
58.2
159
196.2
146.5
87.2
220.2
2.5
142.3


p-PKB IC50
16
39
112
27
23
28
46
59
25
11
60


[nM]


Example
184
177.1
54.1
5.2
234.2
202
90.2
155.4
248.3
81.1
96


p-PKB IC50
19
85
57
12
607
157
203
18
50
62
16


[nM]


Example
99
178
166.1
163
170
247.1
45.2
111
166.2
2.7
84.2


p-PKB IC50
111
15
76
155
<5
125
155
176
18
18
193


[nM]


Example
166.3
51.6
6.2
4.4
158.3
16.3
30.2
66
127
5.1
107


p-PKB IC50
787
12


[nM]


Example
4.3
118.1









The efficacy of the compounds of the invention in displaying an inhibitory effect downstream of mTORC1 complex (mTOR/raptor) was demonstrated in cellular setting using a reverse protein array assay for sensitive quantification of drug-mediated inhibition of S6 Ribosomal Protein phosphorylation Ser235/236 in TSC1 null mouse embryo fibroblast (MEF) cells.


Cells and Cell Culture Conditions:


TSC1−/− MEFs cells (provided by D. Kwiatkowski), were cultivated in Dulbecco's modified Eagle's medium (DMEM high Glucose, GIBCO, cat. No. 41956-039) supplemented with 10% heat inactivated fetal bovine calf serum (Amimed, cat. No. 2-01F16-I), 1% L-Glutamine (Invitrogen, cat. No. 25030-02), 1% penicillin-streptomycin (GIBCO, cat. No. 15140-114) at 37° C. in a 5% CO2 and 95% relative humidity atmosphere incubator.


Treatment of Cells and Preparation of Samples:


The TSC1−/− cells were trypsinized and counted with a CASY TT cell counter (Schärfe System GmbH, Reutlingen Germany). The cells were diluted in fresh DMEM complete medium and 0.75×104 cells/150 μl/well seeded in 96-well TPP-tissue culture plates (TPP, cat. No. 92096). The plates were incubated at 37° C. and 5% CO2 under humidified condition for at least 20 h. Working solutions were prepared freshly as serial 8 step dilutions (vol/vol) in DMSO on the day of the experiment. The working solutions were further diluted 1/5000 in cell culture medium to get final compound concentrations of 1, 0.3333, 0.1111, 0.037, 0.0123, 0.041, 0.0014, 0.005 μM. The final DMSO concentration was kept constant at 0.02%. cell culture medium containing 0.02% DMSO was used as vehicle treatment control. Post incubation, the cells were treated with the serial compound dilution. 50 μl of the compound medium mixture was added to the wells containing cells and 150 μl DMEM medium and incubated for 60 minutes (37° C., 5% CO2). After 60 minutes of incubation, the medium mixture was quickly removed by aspiration. For cell lysis, a mixture of 10% CLB1 CeLyA lysis buffer (Zeptosens, cat. No. 9000), 90% CSBL1 CeLyA spotting buffer (Zeptosens, cat. No. 9020) was freshly prepared and supplemented with 1% Octyl β-D-glucopyranoside (SIGMA, cat. No. 08001-5G) and 1 mM Na-Orthovanadate (Sigma, cat No. S-6508). 50 μl of the described lysis buffer mix was added to each well, followed by 10 minutes of incubation on ice. After an additional freeze-thaw cycle, another 50 μl of the lysis buffer mix without Octyl β-D-glucopyranoside was added to the wells, and 90 μl of the cell lysate was transferred to a 96-well V-bottom plate (Fisher Scientific, cat. No. 6067Y), followed by a centrifugation step (5 min, 1500 rpm at 19° C. in an Eppendorf 5810R centrifuge) to remove the unlysed cell debris.


Spotting of the ZeptoMARK° Chips:


The spotting of the chips follows the previous described method.


ZeptoREADER Signal Detection and Data Analysis:


The signal detection and the data analysis follows the previous described method using the pS6 ribosomal protein Ser235/236 (CST, cat. No. #2211) as a primary antibody.


The range of activity, expressed as IC50, in this assay is preferably between about 0.1 nM and about 1 μM, more preferably between about 0.1 nM and about 0.5 μM.
























p-S6 IC50
3
60
1
6
61
31
36
4
14
46


[nM]


Example
132
112
202
2.7
16.3
195.2
153.3
100
30.1
107


p-S6 IC50
30
11
1
8
39
24.99
2
15
<0.5
1


[nM]


Example
37.1
15.1
25.6
25.5
215.1
51.5
88.1
3.6
144.3
87.2


p-S6 IC50
5
9
7
5.63
3
7
3
21
<0.5
4


[nM]


Example
195.1
29.1
96
169.1
215.2
12
206.1
211.1
118.5
247.4


p-S6 IC50
1
174
3
5
1
10
7
<0.5
2
6.94


[nM]


Example
118.2
58.3
247.1
77
51.2
2.5
167
43.2
28.3
149.3


p-S6 IC50
6
3.56
10
2.66
2
4
35
23
5
<5


[nM]


Example
59.1
34
56.2
146.5
51.3
56.1
90.2
74
84.2
1.8


p-S6 IC50
19
8
<0.5
75
1
<5
41
78
4
46


[nM]


Example
81.2
158.1
168.2
92
156
102
246
110
153.1
45.3


p-S6 IC50
666
1
17
5
13
1
11
1
5
2


[nM]


Example
21.2
172
108
54.1
4.5
183
109
201
140.1
234.3


p-S6 IC50
1
3
41
<0.5
6
38
91
<5
2
5


[nM]


Example
215.3
174
87.4
146.1
135
83
50
1.5
190
208


p-S6 IC50
4
3
4
1.02
43
355
37
234
111
4


[nM]


Example
99
86
191.1
186
53.1
120
205
27.2
85.3
222


p-S6 IC50
2
44
3
<5
5
66
<5
<0.5
11
5


[nM]


Example
199
1.9
233
253
86.2
65
28.1
25.4
51.4
118.1


p-S6 IC50
98
<0.5
20
1
<0.5
1.69
5
4
4
7


[nM]


Example
62
241
152.3
148.3
142.2
81.1
79
1.1
243
88.2


p-S6 IC50
13
2
2
1.32
11
43.5
3
5
3
91.69


[nM]


Example
27.1
152.1
23.2
169.3
3.8
45.1
43.1
131
136
166.5


p-S6 IC50
15
8.15
1
199
1
3
4
11
3
13


[nM]


Example
4.1
188
152.2
3.4
158.2
224.1
151
229
181
250


p-S6 IC50
5
13
1
<5
3
35
50
17
1
1


[nM]


Example
64
103.1
144.2
1.6
220.2
247.3
145.1
15.3
60.1
150.1


p-S6 IC50
1
13.5
17
80
32
2
33
2
1
2


[nM]


Example
221.2
7.2
82
44
175.2
177.1
17.2
125.1
119
118.4


p-S6 IC50
558
77
2
31
33
<0.5
1
3
58
48


[nM]


Example
32.2
206.2
194.2
195.3
251
51.6
175.1
146.3
72
52


p-S6 IC50
22
1
1
20
3
1
7
49.41
127
1


[nM]


Example
203
85.1
54.2
194.1
171
141.2
197.2
213.1
47
129


p-S6 IC50
27
79
32
<0.5
4
10
46
5.53
2
3


[nM]


Example
22
170
210
122
58.2
5.1
214
193
178
58.5


p-S6 IC50
3
10
2
9
1
35
87
1
6
5.53


[nM]


Example
127
13
195.4
149.1
157
223
17.1
221.1
219
147


p-S6 IC50
1
4
278
6
5
36
130
1
<0.5
2


[nM]


Example
166.4
139
146.6
116
182
40
56.5
148.2
220.3
173


p-S6 IC50
21
22
2
7
<0.5
508
<0.5
15
181
1


[nM]


Example
2.8
148.1
176
4.2
90.1
133
204
118.3
16.2
95


p-S6 IC50
3
9
32
6
6
5
7
1
11
3


[nM]


Example
38
128.1
185.2
237
87.3
184
212.1
128.2
32.1
80.1


p-S6 IC50
41
1
25
1.89
11
1
<0.5
3
3
2


[nM]


Example
30.2
59.2
244
187
60.2
164
168.3
154.1
98.1
209


p-S6 IC50
20
39
201
4
1
5
12
123
1
9


[nM]


Example
224.2
104
247.5
29.3
234.2
192
146.4
14
155.2
247.2


p-S6 IC50
28
2
30
23
2
1
72
5
17
10.11


[nM]


Example
80.2
141.3
3.7
41
4.9
150.2
45.2
51.1
180.2
234.4


p-S6 IC50
2
2
2
9
18
<0.5
7
33
33
18


[nM]


Example
242.1
155.1
58.4
234.1
55
218
197.1
16.1
6.1
155.4


p-S6 IC50
36
0.94
3
2
24
1
1
6
255
<0.5


[nM]


Example
142.1
145.2
166.1
84.1
10.2
155.3
168.1
25.2
3.3
89


p-S6 IC50
1
<0.5
40
88
16
<0.5
39
10
27
11


[nM]


Example
1.10
36
3.1
242.2
70
215.4
154.2
179
2.9
240


p-S6 IC50
36
37
1
1
2
1
6
13
13
180


[nM]


Example
91
39
142.3
239
161
93.1
140.2
16.5
71
87.5


p-S6 IC50
43
22
10
22
2
13.38
3
2
175
3


[nM]


Example
245
207
6.4
93.2
146.2
63
42
249
3.12
149.2


p-S6 IC50
1
10
200
1
<0.5
151
3
5
9
1


[nM]


Example
165
217
76
61
158.3
175.3
198
57
137
220.1


p-S6 IC50
3
98
154
217
58
17.7
5
7
8
5.33


[nM]


Example
111
46
117
49
3.5
148.4
26
226
159
126


p-S6 IC50
1
9
2
<0.5
125
10
5
2
12
11


[nM]


Example
189
24
144.1
200
196.2
196.1
252
163
227
211.2


p-S6 IC50
3
3
2
2.26
15
58
1
8
4
5


[nM]


Example
103.2
17.3
35
166.2
37.3
254
56.4
6.2
225
3.9


p-S6 IC50
<0.5
844
3
5
5
10
<0.5
5
2
34


[nM]


Example
216
37.4
138
191.2
166.3
3.10
160.1
5.2
25.3
141.1


p-S6 IC50
5
9
8
3
4
1
6
10
35
150


[nM]


Example
125.2
143
6.3
97
23.1
25.1
238
4.4
185.1
158.4


p-S6 IC50
3


[nM]


Example
58.1









There are also experiments to demonstrate the antitumor activity of compounds of the formula (I) in vivo.


For example, female Harlan (Indianapolis, Ind., USA) athymic nu/nu mice with s.c. transplanted human glioblastoms U87MG tumors can be used to determine the anti-tumor activity of PI3 kinase inhibitors. On day 0, with the animals under peroral Forene® (1-chloro-2,2,2-trifluoroethyldifluormethylether, Abbot, Wiesbaden, Germany) narcosis, a tumor fragment of approximately 25 mg is placed under the skin on the animals' left flank and the small incised wound is closed by means of suture clips. When tumors reach a volume of 100 mm3, the mice are divided at random into groups of 6-8 animals and treatment commences. The treatment is carried out for a 2-3 weeks period with peroral, intravenous or intra-peritoneal administration once daily (or less frequently) of a compound of formula (I) in a suitable vehicle at defined doses. The tumors are measured twice a week with a slide gauge and the volume of the tumors is calculated.


As an alternative to cell line U87MG, other cell lines may also be used in the same manner, for example,

    • the MDA-MB 468 breast adenocarcinoma cell line (ATCC No. HTB 132; see also In Vitro 14, 911-15 [1978]);
    • the MDA-MB 231 breast carcinoma cell line (ATCC No. HTB-26; see also In Vitro 12, 331 [1976]);
    • the MDA-MB 453 breast carcinoma cell line (ATCC No. HTB-131);
    • the Colo 205 colon carcinoma cell line (ATCC No. CCL 222; see also Cancer Res. 38, 1345-55 [1978]);
    • the DU145 prostate carcinoma cell line DU 145 (ATCC No. HTB 81; see also Cancer Res. 37, 4049-58 [1978]),
    • the PC-3 prostate carcinoma cell line PC-3 (especially preferred; ATCC No. CRL 1435; see also Cancer Res. 40, 524-34 [1980]) and the PC-3M prostate carcinoma cell line;
    • the A549 human lung adenocarcinoma (ATCC No. CCL 185; see also Int. J. Cancer 17, 62-70 [1976]),
    • the NCI-H596 cell line (ATCC No. HTB 178; see also Science 246, 491-4 [1989]);
    • the pancreatic cancer cell line SUIT-2 (see Tomioka et al., Cancer Res. 61, 7518-24 [2001]).

Claims
  • 1. A pharmaceutical composition comprising a compound selected from 8-(2,4-dimethoxypyrimidin-5-yl)-1-(1-ethyl-3-methyl-1H-pyrazol-4-yl)-3-methyl-1H-imidazo[4,5-c]quinolin-2(3H)-one and 1-(1-ethyl-3-methyl-1H-pyrazol-4-yl)-8-(6-(methoxymethyl)-5-(methylamino)pyridin-3-yl)-3-methyl-1H-imidazo[4,5-c]quinolin-2(3H)-one, or a pharmaceutically acceptable salt thereof, and optionally a further therapeutic agent, together with a pharmaceutically acceptable carrier.
  • 2. A compound of formula:
  • 3. A compound of formula:
RELATED APPLICATIONS

This application claims priority to U.S. Application Ser. No. 61/184,141 filed 4 Jun. 2009, the contents of which are incorporated herein by reference in their entirety.

US Referenced Citations (1)
Number Name Date Kind
20090082387 Czarnik Mar 2009 A1
Foreign Referenced Citations (12)
Number Date Country
WO 03097641 Nov 2003 WO
WO 2005054237 Jun 2005 WO
WO 2005054238 Jun 2005 WO
WO 2006031878 Mar 2006 WO
WO 2006122806 Nov 2006 WO
WO 2007056112 May 2007 WO
WO 2008064093 May 2008 WO
WO 2008103636 Aug 2008 WO
WO 2009013305 Jan 2009 WO
WO 2009118324 Oct 2009 WO
WO 2009155527 Dec 2009 WO
WO 2010038165 Apr 2010 WO
Non-Patent Literature Citations (8)
Entry
Wolff, Manfred E. “Burger's Medicinal Chemistry, 5ed, Part I”, John Wiley & Sons, 1995, pp. 975-977.
Banker (Modern Pharmaceutics) Banker, G.S. et al, “Modern Pharmaceutics, 3ed.”, Marcel Dekker, New York, 1996, pp. 451 and 596.
Dorwald F. A. Side Reactions in Organic Synthesis, 2005, Wiley: VCH, Weinheim p. IX of Preface.
Faber et al; “Differential induction of apoptosis in HER2 and GFR addicted cancers following PI3K inhibition”; Proc Nat Acad Sci USA 106(46):19503-19508 (2009).
Frédérick et al; “Phosphoinositide-3-kinase (PI3K) inhibitors: Identification of new scaffolds using virtual screening”; Bioorganic & Medicinal Chemistry Letters 19(20):5842-5847 (2009).
Konstantinidou et al; “Dual Phosphoinositide 3-Kinase/Mammalian Target of Rapamycin Blockade Is an Effective Radiosensitizing Strategy for the Treatment of Non-Small Cell Lung Cancer Harboring K-RAS Mutations”; Cancer Res 69(19):7644-7652 (2009).
Liu et al; “NVP-BEZ235, a novel dual phosphatidylinositol 3-kinase/mammalian target of rapamycin inhibitor, elicits multifaceted antitumor activities in human gliomas”; Mol Cancer Ther 8(8):2204-2210 (2009).
Sturgill et al; “Activating Mutations in TOR Are in Similar Structures as Oncogenic Mutations in PI3KC[alpha]”; ACS Chem Biol 4(12):999-1015 (2009).
Related Publications (1)
Number Date Country
20100317657 A1 Dec 2010 US
Provisional Applications (1)
Number Date Country
61184141 Jun 2009 US