The invention concerns the integrated circuit domain and, particularly, volatile and non-volatile memories based on Micro-Electro-Mechanical devices.
Floating gate memory device, like FLASH memory for example, where the memory cell is composed of the following stack: tunnel oxide, storage material and conductive controlling gate over transistor channel was adopted by industry. Charges are stored in a storage material by tunneling through a tunnel oxide when transistor is conducting. Various materials and architectures of such memories have been investigated in the past but some issues still remain:
To reduce the leakage through the gate and avoid the need of very thin tunnel oxide, two inventions were disclosed describing the use of an air-gap to inject charges from a suspended conductive gate to an electrically conductive floating gate by the mechanical contact of the two surfaces (U.S. Pat. No. 6,509,605 and U.S. Pat. No. 6,054,745). The two patents describe an architecture where the actuation of the beam with an electrode and the floating gate are two different components used to actuate the gate and store charges under the beam. The separation of the actuation and storage induces a reduction of the memory density.
a and b represent respectively cross sections of a suspended gate in the up state (after pull-out) and the down state (after pull-in) of actuation.
This invention proposes a new one transistor (1T) memory cell that overcomes the problem of leakage and meets high density requirements by exploiting a hybrid MEMS-MOS technology. We propose a different principle and approach for a 1T MEMS memory cell, essentially using a suspended-gate MOS transistor.
This invention proposes to use a gate dielectric placed under the mobile gate electrode of MOS transistor, without the need of the conductive floating gate mentioned by previous authors. The invention exploits the electromechanical hysteretic behavior of the mobile gate when down contacting (event called pull-in) and up separating (event called pull-out) from the gate dielectric, based on the (non)equilibrium between electrical and elastic forces. The difference between pull-in and pull-out gate voltages defines a significant memory window that can be used in volatile memory applications like SRAM and DRAM. When the gate voltage of mobile gate MOS transistor is increased, an inversion channel forms and the gate is actuated by the electrostatic field under equilibrium up to a non-equilibrium point (pull-in) when the electric force becomes larger than the elastic one and the gate is pulled down at VG=Vpi+ and gets in contact with the dielectric layer of the gate. In the resulting down state the gate capacitance increases significantly and the on current of the transistor also increases very abruptly (
Advantages of the proposed 1T MEMS memory comes form: (i) the 1T compact structure, compatible with CMOS technology, (ii) the scalability of the concept (practically as scalable as the MOS transistor; practically for smaller dimensions of the gate the airgap can be accordingly scaled in order to meet low voltage operation conditions), (iii) the fact that in the up-state (0 memory state in
A way to enhance considerably the device hysteresis to obtain non-volatility is proposed in the invention: filling (activating) the dielectric slow traps in the gate insulator instead of using a conductive floating (like in the two mentioned US patents) gate to store charges is proposed for this purpose. The memory device operates in this case based on a novel mechanism called hybrid mechanical—electrical storage hysteresis: an enlarged memory window is obtained, defined in part by the electromechanical operation and, in part by the charge storage. In the case of the hybrid mechanical-electrical hysteresis, the memory cell storage can be non-volatile due to the large retention time of carriers in the dielectric traps or storage material. A storage material layer such as nitride or nanocrystals can be included in the gate dielectric in order to define non-volatility feature.
The principle of this second type of operation (called hybrid mechanical-electrical storage hysteresis) operation is depicted in
Finally, one should note that in the proposed device operation, the electromechanical displacement under electrostatic actuation and the related electromechanical hysteresis of a mobile-gate transistor are the key principles.
This invention also propose a possible fabrication process flow consisting of patterning an active region in a semiconductor substrate, depositing a dielectric layer and a sacrificial layer on top of this active region. A conductive layer is deposited and patterned to create an anchored gate and releasing this gate by a process allowing the etching of the sacrificial layer selectively to the other materials but degrading the dielectric layer.
This application is based on, and claims domestic priority benefits under 35 U.S.C. §119(e) from, Provisional Application No. 60/861,731, filed Nov. 30, 2006, the entire content of which is hereby incorporated by reference.
Number | Date | Country | |
---|---|---|---|
60861731 | Nov 2006 | US |