The present invention relates to 2-substituted pyrimidines of the formula I
in which the indices and the substituents are as defined below:
R1 is C1-C8-alkyl, C2-C8-alkenyl, C2-C8-alkynyl, C3-C6-cycloalkyl, C3-C6-halocycloalkyl, di-C1-C8-alkylamino, C1-C8-alkylamino, where R1 for its part may be partially or fully halogenated or may carry one to four groups R2:
R2 is cyano, C1-C6-alkyl, C3-C6-cycloalkyl, C4-C6-cycloalkenyl, hydroxyl, C1-C6-alkoxy, C2-C8-alkenyloxy, C2-C8-alkynyloxy, C3-C6-cycloalkyloxy, C4-C6-cycloalkenyloxy, C1-C6-alkylthio, —C(═O)-A, —C(═O)—O-A, —C(═O)—N(A′)A, C(A′)(═N-OA), N(A′)A, N(A′)-C(═O)-A, N(A″)—C(═O)—N(A′)A, S(═O)m-A, S(═O)m—O-A or S(═O)m—N(A′)A or phenyl, where the phenyl moiety may carry one to three radicals selected from the group consisting of: halogen, C1-C6-alkyl, C2-C6-alkenyl, C2-C6-alkynyl, C3-C6-cycloalkyl, C1-C6-haloalkyl, C1-C6-alkoxy, cyano, nitro, —C(═O)-A, —C(═O)—O-A, —C(═O)—N(A′)A, C(A′)(═N-OA), N(A′)A; or —CH2—Si(C1-C6-alkyl)2;
R3 is halogen, cyano, azido, C1-C4-alkyl, C2-C4-alkenyl, C2-C4-alkynyl, C3-C6-cycloalkyl, C1-C4-alkoxy, C3-C4-alkenyloxy, C3-C4-alkynyloxy, C1-C6-alkylthio, di(C1-C6-alkyl)amino or C1-C6-alkylamino, where the alkyl, alkenyl and alkynyl radicals of R3 may be substituted by halogen, cyano, nitro, C1-C2-alkoxy or C1-C4-alkoxycarbonyl;
R4 is a five- or six-membered saturated, partially unsaturated or aromatic mono- or bicyclic heterocycle which comprises one to four heteroatoms from the group consisting of O, N and S which for its part may be partially or fully halogenated or may carry one to four groups Ru:
Ru is cyano, C1-C8-alkyl, C2-C8-alkenyl, C2-C8-alkynyl, C1-C6-alkoxy, C3-C6-cycloalkyl, C2-C8-alkenyloxy, C2-C8-alkynyloxy, C4-C6-cycloalkenyl, C3-C6-cycloalkyloxy, C4-C6-cycloalkenyloxy, —C(═O)-A, —C(═O)—O-A, —C(═O)—N(A′)A, C(A′)(═N-OA), N(A′)A, N(A′)-C(═O)-A, N(A″)—C(═O)—N(A′)A, S(═O)m-A, S(═O)m—O-A or S(═O)m—N(A′)A, where m, A, A′, A″ are as defined above;
Ra, Rb, Rc independently of one another are hydrogen, C1-C6-alkyl, C2-C6-alkenyl, C2-C6-alkynyl, C3-C6-cycloalkyl or C4-C6-cycloalkenyl;
Rb′ has the same meanings as Rb, except for hydrogen;
Rz has the same meanings as Ra and may additionally be —CO—Ra;
where the aliphatic or alicyclic groups of the radical definitions of Ra, Rb, Rc or Rz for their part may be partially or fully halogenated or may carry one to four groups Rw:
Rw is halogen, cyano, C1-C8-alkyl, C2-C10-alkenyl, C2-C10-alkynyl, C1-C6-alkoxy, C2-C10-alkenyloxy, C2-C10-alkynyloxy, C3-C6-cycloalkyl, C3-C6-cycloalkenyl, C3-C6-cycloalkoxy, C3-C6-cycloalkenyloxy, and where two of the radicals Ra, Rb, Rc or Rz together with the atoms, to which they are attached, may form a five- or six-membered saturated, partially unsaturated or aromatic heterocycle which comprises one to four heteroatoms from the group consisting of O, N and S;
{circle around (B)} is a five- or six-membered hetaryl which comprises 1 to 3 heteroatoms selected from the group consisting of O, N and S or is phenyl;
n is an integer from 1 to 5;
L is halogen, cyano, cyanato (OCN), C1-C8-alkyl, C2-C8-alkenyl, C2-C8-alkynyl, C1-C6-alkoxy, C2-C8-alkenyloxy, C2-C8-alkynyloxy, C3-C6-cycloalkyl, C4-C6-cycloalkenyl, C3-C6-cycloalkyloxy, C4-C6-cycloalkenyloxy, nitro, —C(═O)-A, —C(═O)—O-A, —C(═O)—N(A′)A, —C(═S)—N(A′)A, C(A′)(═N-OA), N(A′)A, N(A′)-C(═O)-A, N(A″)—C(═O)—N(A′)A, S(═O)m-A, S(═O)m—O-A or S(═O)m—N(A′)A,
m is 0, 1 or 2;
A, A′, A″ independently of one another are hydrogen, C1-C6-alkyl, C2-C6-alkenyl, C2-C6-alkynyl, C3-C8-cycloalkyl, C3-C8-cycloalkenyl, phenyl, where the organic radicals may be partially or fully halogenated or may be substituted by nitro, cyanato, cyano or C1-C4-alkoxy; or A and A′ together with the atoms to which they are attached are a five- or six-membered saturated, partially unsaturated or aromatic heterocycle which comprises one to four heteroatoms from the group consisting of O, N and S;
where the aliphatic groups of the radical definitions of L for their part may be partially or fully halogenated or may carry one to four groups RL:
RL is cyano, C1-C6-alkoxy, C3-C6-cycloalkyl, C2-C8-alkenyloxy, C2-C8-alkynyloxy, C4-C6-cycloalkenyl, C3-C6-cycloalkyloxy, C4-C6-cycloalkenyloxy, —C(═O)-A, —C(═O)—O-A, —C(═O)—N(A′)A, C(A′)(═N-OA), N(A′)A, N(A′)-C(═O)-A, N(A″)—C(═O)—N(A′)A, S(═O)m-A, S(═O)m—O-A or S(═O)m—N(A′)A.
2-Substituted pyrimidines having fungicidal action are already known from the literature (EP-A 407899, WO-A 02/074753 and WO-A 03/043993).
However, the activity of the abovementioned pyrimidines is in many cases unsatisfactory. Accordingly, it was an object of the present invention to provide further compounds having fungicidal action.
We have found that this object is achieved by the 2-substituted pyrimidines I defined at the outset. Moreover, we have found processes for their preparation and compositions comprising them for controlling harmful fungi and their use for this purpose.
The compounds of the formula I can be obtained by different routes.
The compounds described can be prepared, for example, from appropriately substituted phenylmalonates 2. These are known or obtainable analogously to the known substances.
Using thiourea (3) and a methylating agent or using S-methylisothiourea, the phenylmalonates 2 can be converted into the dihydroxypyrimidine derivatives 4 (see Scheme 1). Suitable methylating agents are, for example, methyl iodide, methyl bromide or dimethyl sulfate.
It is possible to employ a solvent which is inert under the reaction conditions and in which the reactants are sufficiently soluble. The reaction temperature can be between −20° C. and 150° C. and is preferably between 0° C. and 100° C.
The dihydroxypyrimidines 4 obtainable in this manner can then be chlorinated using customary methods to give the dichloropyrimidines 5. The use of phosphorus oxychloride, if appropriate with addition of an amine such as diethylaniline, an amine hydrochloride or dimethylformamide, has been found to be particularly suitable. Usually, it is advantageous to carry out the reaction at elevated temperature to increase the conversion rate.
Dichloropyrimidines 5 can then be substituted further by different routes. It has been found that, frequently, the regioselectivity depends to an unexpected degree on the chosen co-reactants and reaction conditions. In the route shown in Scheme 1, the alcohol is attached nucleophilicly in the 2 or 4-position.
The thiolate group (C1-C6-alkylthio) in the 2-position of the compound 6 is oxidized to the C1-C6-alkylsulfonyl (C1-C6-alkylS[═O]2—) group of the compound 7 and thus converted into a leaving group for further exchange reactions. Hydrogen peroxide or peracids of organic carboxylic acids have been found to be particularly suitable oxidizing agents. However, the oxidation can also be carried out using, for example, selenium dioxide.
For introducing a heterocyclic radical R4 into the 2-position of the compound 7 it is possible to use the heterocycle (such as, for example, pyrazole or triazole) directly, depending on its nucleophilicity. In these cases, an auxiliary base is usually employed. It is also possible to introduce heterocyclic substituents via palladium- or nickel-catalyzed reactions. In these cases, the heterocycle carries a suitable organometallic leaving group.
According to Scheme 2 it is possible to introduce, for example, cyanides (nitriles) into the 6-position of the compound 7 which can then be reacted further by known methods to give, for example, amides, amidoximes or amidines. Amidoximes 9 or 10, for example, can be prepared from the nitrites 8 and hydroxylamine or O-alkylated hydroxylamines.
What was said above also applies, for example, to the preparation of compounds in which R3 is an alkyl group. As illustrated in more detail above, such an alkyl group (R3) can be prepared using organometallic compounds of the formula (R3)n-Mn where M is as defined above. If R3 is a cyano group or an alkoxy substituent, the radical R3 can be introduced by reaction with alkali metal cyanides and alkali metal alkoxides, respectively.
In the definitions of the symbols given in the formulae above, collective terms were used which are generally representative for the following substituents:
halogen: fluorine, chlorine, bromine and iodine;
alkyl and the alkyl moieties of, for example, alkoxy, alkylamino, alkoxycarbonyl: saturated straight-chain or branched hydrocarbon radicals having 1 to 4, 6 or 8 carbon atoms, for example C1-C6-alkyl, such as methyl, ethyl, propyl, 1-methylethyl, butyl, 1-methylpropyl, 2-methylpropyl, 1,1-dimethylethyl, pentyl, 1-methylbutyl, 2-methylbutyl, 3-methylbutyl, 2,2-dimethylpropyl, 1-ethylpropyl, hexyl, 1,1-dimethylpropyl, 1,2-dimethylpropyl, 1-methylpentyl, 2-methylpentyl, 3-methylpentyl, 4-methylpentyl, 1,1-dimethylbutyl, 1,2-dimethylbutyl, 1,3-dimethylbutyl, 2,2-dimethylbutyl, 2,3-dimethylbutyl, 3,3-dimethylbutyl, 1-ethylbutyl, 2-ethylbutyl, 1,1,2-trimethylpropyl, 1,2,2-trimethylpropyl, 1-ethyl-1-methylpropyl and 1-ethyl-2-methylpropyl;
haloalkyl: straight-chain or branched alkyl groups having 1 to 4, 6 or 8 carbon atoms (as mentioned above), where in these groups some or all of the hydrogen atoms may be replaced by halogen atoms as mentioned above, for example C1-C2-haloalkyl, such as chloromethyl, bromomethyl, dichloromethyl, trichloromethyl, fluoromethyl, difluoromethyl, trifluoromethyl, chlorofluoromethyl, dichlorofluoromethyl, chlorodifluoromethyl, 1-chloroethyl, 1-bromoethyl, 1-fluoroethyl, 2-fluoroethyl, 2,2-difluoroethyl, 2,2,2-trifluoroethyl, 2-chloro-2-fluoroethyl, 2-chloro-2,2-difluoroethyl, 2,2-dichloro-2-fluoroethyl, 2,2,2-trichloroethyl, pentafluoroethyl or 1,1,1-trifluoroprop-2-yl;
alkenyl: unsaturated straight-chain or branched hydrocarbon radicals having 2 to 4, 6 or 8 carbon atoms and a double bond in any position, for example C2-C6-alkenyl, such as ethenyl, 1-propenyl, 2-propenyl, 1-methylethenyl, 1-butenyl, 2-butenyl, 3-butenyl, 1-methyl-1-propenyl, 2-methyl-1-propenyl, 1-methyl-2-propenyl, 2-methyl-2-propenyl, 1-pentenyl, 2-pentenyl, 3-pentenyl, 4-pentenyl, 1-methyl-1-butenyl, 2-methyl-1-butenyl, 3-methyl-1-butenyl, 1-methyl-2-butenyl, 2-methyl-2-butenyl, 3-methyl-2-butenyl, 1-methyl-3-butenyl, 2-methyl-3-butenyl, 3-methyl-3-butenyl, 1,1-dimethyl-2-propenyl, 1,2-dimethyl-1-propenyl, 1,2-dimethyl-2-propenyl, 1-ethyl-1-propenyl, 1-ethyl-2-propenyl, 1-hexenyl, 2-hexenyl, 3-hexenyl, 4-hexenyl, 5-hexenyl, 1-methyl-1-pentenyl, 2-methyl-1-pentenyl, 3-methyl-1-pentenyl, 4-methyl-1-pentenyl, 1-methyl-2-pentenyl, 2-methyl-2-pentenyl, 3-methyl-2-pentenyl, 4-methyl-2-pentenyl, 1-methyl-3-pentenyl, 2-methyl-3-pentenyl, 3-methyl-3-pentenyl, 4-methyl-3-pentenyl, 1-methyl-4-pentenyl, 2-methyl-4-pentenyl, 3-methyl-4-pentenyl, 4-methyl-4-pentenyl, 1,1-dimethyl-2-butenyl, 1,1-dimethyl-3-butenyl, 1,2-dimethyl-1-butenyl, 1,2-dimethyl-2-butenyl, 1,2-dimethyl-3-butenyl, 1,3-dimethyl-1-butenyl, 1,3-dimethyl-2-butenyl, 1,3-dimethyl-3-butenyl, 2,2-dimethyl-3-butenyl, 2,3-dimethyl-1-butenyl, 2,3-dimethyl-2-butenyl, 2,3-dimethyl-3-butenyl, 3,3-dimethyl-1-butenyl, 3,3-dimethyl-2-butenyl, 1-ethyl-1-butenyl, 1-ethyl-2-butenyl, 1-ethyl-3-butenyl, 2-ethyl-1-butenyl, 2-ethyl-2-butenyl, 2-ethyl-3-butenyl, 1,1,2-trimethyl-2-propenyl, 1-ethyl-1-methyl-2-propenyl, 1-ethyl-2-methyl-1-propenyl and 1-ethyl-2-methyl-2-propenyl;
alkadienyl: unsaturated straight-chain or branched hydrocarbon radicals having 4 to 8 carbon atoms and two double bonds in any position;
haloalkenyl: unsaturated straight-chain or branched hydrocarbon radicals having 2 to 8 carbon atoms and a double bond in any position (as mentioned above), where in these groups some or all of the hydrogen atoms may be replaced by halogen atoms as mentioned above, in particular by fluorine, chlorine and bromine;
alkynyl: straight-chain or branched hydrocarbon groups having 2 to 8 carbon atoms and a triple bond in any position, for example C2-C6-alkynyl, such as ethynyl, 1-propynyl, 2-propynyl, 1-butynyl, 2-butynyl, 3-butynyl, 1-methyl-2-propynyl, 1-pentynyl, 2-pentynyl, 3-pentynyl, 4-pentynyl, 1-methyl-2-butynyl, 1-methyl-3-butynyl, 2-methyl-3-butynyl, 3-methyl-1-butynyl, 1,1-dimethyl-2-propynyl, 1-ethyl-2-propynyl, 1-hexynyl, 2-hexynyl, 3-hexynyl, 4-hexynyl, 5-hexynyl, 1-methyl-2-pentynyl, 1-methyl-3-pentynyl, 1-methyl-4-pentynyl, 2-methyl-3-pentynyl, 2-methyl-4-pentynyl, 3-methyl-1-pentynyl, 3-methyl-4-pentynyl, 4-methyl-1-pentynyl, 4-methyl-2-pentynyl, 1,1-dimethyl-2-butynyl, 1,1-dimethyl-3-butynyl, 1,2-dimethyl-3-butynyl, 2,2-dimethyl-3-butynyl, 3,3-dimethyl-1-butynyl, 1-ethyl-2-butynyl, 1-ethyl-3-butynyl, 2-ethyl-3-butynyl and 1-ethyl-1-methyl-2-propynyl;
cycloalkyl: mono- or bicyclic saturated hydrocarbon groups having 3 to 6 carbon ring members, for example C3-C6-cycloalkyl such as cyclopropyl, cyclobutyl, cyclopentyl, cyclohexyl;
five- or six-membered saturated, partially unsaturated or aromatic heterocycle which comprises one to four heteroatoms from the group consisting of O, N and S, where the heterocycle in question may be attached via carbon or nitrogen:
The scope of the present invention includes the (R) and (S) isomers and the racemates of compounds of the formula I having chiral centers.
Hereinbelow, the embodiments of the invention are described in more detail.
With a view to the intended use of the pyrimidines of the formula I, particular preference is given to the following meanings of the substituents, in each case on their own or in combination:
Preference is given to compounds I in which R1 is C1-C6-alkyl, C1-C6-haloalkyl, C2-C6-alkenyl, C2-C6-alkynyl or C3-C6-cycloalkyl.
Especially preferred are compounds I in which R1 is C1-C6-haloalkyl, C2-C6-alkenyl or C1-C6-alkyl branched in the α-position. In addition, preference is given to compounds I in which R1 is C1-C4-haloalkyl.
Particularly preferred are compounds I in which Y=O and R1 is ethyl, propyl, isopropyl, 1,2-dimethylpropyl, 1,2,2-trimethylpropyl, 1-methyl-2,2,2-trifluoroethyl or 2,2,2-trifluoroethyl.
Preference is furthermore given to those compounds I in which Y=S and R1 is methyl, ethyl, propyl, isopropyl, 1,2-dimethylpropyl, 1,2,2-trimethylpropyl, 1-methyl-2,2,2-trifluoroethyl or 2,2,2-trifluoroethyl.
Particularly preferred are also compounds I in which R3 is C1-C4-alkyl which may be substituted by halogen.
Moreover, particular preference is given to compounds I in which R3 is halogen, cyano, C1-C4-alkyl or C1-C4-alkoxy.
Especially preferred are compounds I in which R3 is methyl, cyano, methoxy or, in particular, chlorine.
Preference is furthermore given to compounds I in which R4 is pyrrole, pyrazole, imidazole, 1,2,3-triazole, 1,2,4-triazole, tetrazole, oxazole, isoxazole, 1,3,4-oxadiazole, furan, thiophene, thiazole, isothiazole, pyridine, pyrimidine, pyrazine, pyridazine, 1,2,3-triazine, 1,2,4-triazine, 1-pyridin(1,2,-dihydro)-2-one or 1-pyrrolidone, where the heterocycle may be attached to the pyrimidine ring via C or N and may carry up to three substituents Ru. This preference applies both in combination with the broad definition of Ru given in claim 1 and with the narrower definition of Ru below: halogen, cyano, C1-C8-alkyl, C1-C8-haloalkyl, C1-C6-alkoxy, —C(═O)-A, —C(═O)—O-A, —C(═O)—N(A′)A, C(A′)(═N-OA), N(A′)A, N(A′)-C(═O)-A.
Particularly preferred are compounds I in which R4 is 1-pyrazolyl, 1-[1,2,4]triazolyl, 2-thiazolyl, 2-pyridinyl, 2-pyrimidinyl, 3-pyridazinyl, 1-pyridin(1,2-dihydro)-2-onyl or 1-pyrrolidonyl. This preference applies both in combination with the broad definition of Ru given in claim 1 and with the narrower definition of Ru below: halogen, cyano, C1-C8-alkyl, C1-C8-haloalkyl, C1-C6-alkoxy, —C(═O)-A, —C(═O)—O-A, —C(═O)—N(A′)A, C(A′)(═N-OA), N(A′)A, N(A′)-C(═O)-A.
Preference is furthermore given to compounds I in which R4 is pyrazolyl or [1,2,4]triazolyl.
Especially preferred are compounds I in which R4 is 2-pyrimidinyl. This preference applies both in combination with the broad definition of Ru given in claim 1 and with the narrower definition of Ru below: halogen, cyano, C1-C8-alkyl, C1-C8-haloalkyl, C1-C6-alkoxy, —C(═O)-A, —C(═O)—O-A, —C(═O)—N(A′)A, C(A′)(═N-OA), N(A′)A, N(A′)-C(═O)-A.
Preference is also given to compounds I in which R4 is cyano, C(═O)NRzRb, C(═NORa)NRzRb, C(═NORb)Ra, C(═N—NRzRb)Ra or CRaRb—NRzRc, ON(═CRaRb), NRa(C(═O)Rb), NRa(C(═O)ORb), NRa(N═CRcRb) or NRz—ORa.
Moreover, preference is given to compounds I in which R4 is C(=Z)ORa, C(=Z)NRzRb or C(=Z)Ra and Z is O, NRa or NORa.
Especially preferred are compounds I in which R4 is C(═O)NRzRb or C(═N—OCH3)NRzRb.
Preference is furthermore given to compounds I in which R4 is C(═NH)NRzRb and Rz is an acyl substituent: —CO—Ra.
Especially preferred are pyrimidines I where the substituents L (L1 to L5) are as defined below:
Moreover, preference is given to pyrimidines I in which the group B substituted by Ln is
in which # is the point of attachment to the pyrimidine skeleton and
L2,L4 independently of one another are hydrogen, CH3 or fluorine;
L3 is hydrogen, fluorine, chlorine, bromine, cyano, CH3, SCH3, OCH3, SO2CH3, CO—NH2, CO—NHCH3, CO—NHC2H5, CO—N(CH3)2, NH—C(═O)CH3, N(CH3)—C(═O)CH3 or COOCH3 and
Preference is furthermore given to 2-substituted pyrimidines of the formula I′
where
Preference is furthermore given to 2-substituted pyrimidines of the formula I′
where
Particular preference is also given to 2-substituted pyrimidines of the formula I″
where
Particular preference is also given to 2-substituted pyrimidines of the formula I″
where
In particular with a view to their use, preference is given to compounds I compiled in the tables below. Moreover, the groups mentioned for a substituent in the tables are per se, independently of the combination in which they are mentioned, a particularly preferred embodiment of the substituent in question.
Compounds of the formulae Ia, Ib, Ic, Id, Ie, If, Ig, Ih, Ii, Ij, Ik, Il, Im, In, Io, Ip, Iq, Ir, Is, It, Iu, Iv, Iw and Ix in which Ln is 2-fluoro,6-chloro, R3 is methyl and YR1 for each compound corresponds to one row of Table A
Compounds of the formulae Ia, Ib, Ic, Id, Ie, If, Ig, Ih, Ii, Ij, Ik, Il, Im, In, Io, Ip, Iq, Ir, Is, It, Iu, Iv, Iw and Ix in which Ln is 2,6-difluoro, R3 is methyl and YR1 for each compound corresponds to one row of Table A
Compounds of the formulae Ia, Ib, Ic, Id, Ie, If, Ig, Ih, Ii, Ij, Ik, Il, Im, In, Io, Ip, Iq, Ir, Is, It, Iu, Iv, Iw and Ix in which Ln is 2,6-dichloro, R3 is methyl and YR1 for each compound corresponds to one row of Table A
Compounds of the formulae Ia, Ib, Ic, Id, Ie, If, Ig, Ih, Ii, Ij, Ik, Il, Im, In, Io, Ip, Iq, Ir, Is, It, Iu, Iv, Iw and Ix in which Ln is 2-fluoro,6-methyl, R3 is methyl and YR1 for each compound corresponds to one row of Table A
Compounds of the formulae Ia, Ib, Ic, Id, Ie, If, Ig, Ih, Ii, Ij, Ik, Il, Im, In, Io, Ip, Iq, Ir, Is, It, Iu, Iv, Iw and Ix in which Ln is 2,4,6-trifluoro, R3 is methyl and YR1 for each compound corresponds to one row of Table A
Compounds of the formulae Ia, Ib, Ic, Id, Ie, If, Ig, Ih, Ii, Ij, Ik, Il, Im, In, Io, Ip, Iq, Ir, Is, It, Iu, Iv, Iw and Ix in which Ln is 2-methyl,4-fluoro, R3 is methyl and YR1 for each compound corresponds to one row of Table A
Compounds of the formulae Ia, Ib, Ic, Id, Ie, If, Ig, Ih, Ii, Ij, Ik, Il, Im, In, Io, Ip, Iq, Ir, Is, It, Iu, Iv, Iw and Ix in which Ln is 2-fluoro,4-methoxycarbonyl, R3 is methyl and YR1 for each compound corresponds to one row of Table A
Compounds of the formulae Ia, Ib, Ic, Id, Ie, If, Ig, Ih, Ii, Ij, Ik, Il, Im, In, Io, Ip, Iq, Ir, Is, It, Iu, Iv, Iw and Ix in which Ln is 2-fluoro,4-CN, R3 is methyl and YR1 for each compound corresponds to one row of Table A
Compounds of the formulae Ia, Ib, Ic, Id, Ie, If, Ig, Ih, Ii, Ij, Ik, Il, Im, In, Io, Ip, Iq, Ir, Is, It, Iu, Iv, Iw and Ix in which Ln is 2,4,5-trifluoro, R3 is methyl and YR1 for each compound corresponds to one row of Table A
Compounds of the formulae Ia, Ib, Ic, Id, Ie, If, Ig, Ih, Ii, Ij, Ik, Il, Im, In, Io, Ip, Iq, Ir, Is, It, Iu, Iv, Iw and Ix in which Ln is 2,4-dichloro, R3 is methyl and YR1 for each compound corresponds to one row of Table A
Compounds of the formulae Ia, Ib, Ic, Id, Ie, If, Ig, Ih, Ii, Ij, Ik, Il, Im, In, Io, Ip, Iq, Ir, Is, It, Iu, Iv, Iw and Ix in which Ln is 2-chloro, R3 is methyl and YR1 for each compound corresponds to one row of Table A
Compounds of the formulae Ia, Ib, Ic, Id, Ie, If, Ig, Ih, Ii, Ij, Ik, Il, Im, In, Io, Ip, Iq, Ir, Is, It, Iu, Iv, Iw and Ix in which Ln is 2-fluoro, R3 is methyl and YR1 for each compound corresponds to one row of Table A
Compounds of the formulae Ia, Ib, Ic, Id, Ie, If, Ig, Ih, Ii, Ij, Ik, Il, Im, In, Io, Ip, Iq, Ir, Is, It, Iu, Iv, Iw and Ix in which Ln is 2,4-difluoro, R3 is methyl and YR1 for each compound corresponds to one row of Table A
Compounds of the formulae Ia, Ib, Ic, Id, Ie, If, Ig, Ih, Ii, Ij, Ik, Il, Im, In, Io, Ip, Iq, Ir, Is, It, Iu, Iv, Iw and Ix in which Ln is 2-fluoro-4-chloro, R3 is methyl and YR1 for each compound corresponds to one row of Table A
Compounds of the formulae Ia, Ib, Ic, Id, Ie, If, Ig, Ih, Ii, Ij, Ik, Il, Im, In, Io, Ip, Iq, Ir, Is, It, Iu, Iv, Iw and Ix in which Ln is 2-chloro-4-fluoro, R3 is methyl and YR1 for each compound corresponds to one row of Table A
Compounds of the formulae Ia, Ib, Ic, Id, Ie, If, Ig, Ih, Ii, Ij, Ik, Il, Im, In, Io, Ip, Iq, Ir, Is, It, Iu, Iv, Iw and Ix in which Ln is 2,3-difluoro, R3 is methyl and YR1 for each compound corresponds to one row of Table A
Compounds of the formulae Ia, Ib, Ic, Id, Ie, If, Ig, Ih, Ii, Ij, Ik, Il, Im, In, Io, Ip, Iq, Ir, Is, It, Iu, Iv, Iw and Ix in which Ln is 2,5-difluoro, R3 is methyl and YR1 for each compound corresponds to one row of Table A
Compounds of the formulae. Ia, Ib, Ic, Id, Ie, If, Ig, Ih, Ii, Ij, Ik, Il, Im, In, Io, Ip, Iq, Ir, Is, It, Iu, Iv, Iw and Ix in which Ln is 2,3,4-trifluoro, R3 is methyl and YR1 for each compound corresponds to one row of Table A
Compounds of the formulae Ia, Ib, Ic, Id, Ie, If, Ig, Ih, Ii, Ij, Ik, Il, Im, In, Io, Ip, Iq, Ir, Is, It, Iu, Iv, Iw and Ix in which Ln is 2-methyl, R3 is methyl and YR1 for each compound corresponds to one row of Table A
Compounds of the formulae Ia, Ib, Ic, Id, Ie, If, Ig, Ih, Ii, Ij, Ik, Il, Im, In, Io, Ip, Iq, Ir, Is, It, Iu, Iv, Iw and Ix in which Ln is 2,4-dimethyl, R3 is methyl and YR1 for each compound corresponds to one row of Table A
Compounds of the formulae Ia, Ib, Ic, Id, Ie, If, Ig, Ih, Ii, Ij, Ik, Il, Im, In, Io, Ip, Iq, Ir, Is, It, Iu, Iv, Iw and Ix in which Ln is 2-methyl-4-chloro, R3 is methyl and YR1 for each compound corresponds to one row of Table A
Compounds of the formulae Ia, Ib, Ic, Id, Ie, If, Ig, Ih, Ii, Ij, Ik, Il, Im, In, Io, Ip, Iq, Ir, Is, It, Iu, Iv, Iw and Ix in which Ln is 2-fluoro-4-methyl, R3 is methyl and YR1 for each compound corresponds to one row of Table A
Compounds of the formulae Ia, Ib, Ic, Id, Ie, If, Ig, Ih, Ii, Ij, Ik, Il, Im, In, Io, Ip, Iq, Ir, Is, It, Iu, Iv, Iw and Ix in which Ln is 2,6-dimethyl, R3 is methyl and YR1 for each compound corresponds to one row of Table A
Compounds of the formulae Ia, Ib, Ic, Id, Ie, If, Ig, Ih, Ii, Ij, Ik, Il, Im, In, Io, Ip, Iq, Ir, Is, It, Iu, Iv, Iw and Ix in which Ln is 2,4,6-trimethyl, R3 is methyl and YR1 for each compound corresponds to one row of Table A
Compounds of the formulae Ia, Ib, Ic, Id, Ie, If, Ig, Ih, Ii, Ij, Ik, Il, Im, In, Io, Ip, Iq, Ir, Is, It, Iu, Iv, Iw and Ix in which Ln is 2,6-difluoro-4-cyano, R3 is methyl and YR1 for each compound corresponds to one row of Table A
Compounds of the formulae Ia, Ib, Ic, Id, Ie, If, Ig, Ih, Ii, Ij, Ik, Il, Im, In, Io, Ip, Iq, Ir, Is, It, Iu, Iv, Iw and Ix in which Ln is 2,6-difluoro-4-methyl, R3 is methyl and YR1 for each compound corresponds to one row of Table A
Compounds of the formulae Ia, Ib, Ic, Id, Ie, If, Ig, Ih, Ii, Ij, Ik, Il, Im, In, Io, Ip, Iq, Ir, Is, It, Iu, Iv, Iw and Ix in which Ln is 2,6-difluoro-4-methoxycarbonyl, R3 is methyl and YR1 for each compound corresponds to one row of Table A
Compounds of the formulae Ia, Ib, Ic, Id, Ie, If, Ig, Ih, Ii, Ij, Ik, Il, Im, In, Io, Ip, Iq, Ir, Is, It, Iu, Iv, Iw and Ix in which Ln is 2-chloro,4-methoxy, R3 is methyl and YR1 for each compound corresponds to one row of Table A
Compounds of the formulae Ia, Ib, Ic, Id, Ie, If, Ig, Ih, Ii, Ij, Ik, Il, Im, In, Io, Ip, Iq, Ir, Is, It, Iu, Iv, Iw and Ix in which Ln is 2-chloro,4-methyl, R3 is methyl and YR1 for each compound corresponds to one row of Table A
Compounds of the formulae Ia, Ib, Ic, Id, Ie, If, Ig, Ih, Ii, Ij, Ik, Il, Im, In, Io, Ip, Iq, Ir, Is, It, Iu, Iv, Iw and Ix in which Ln is 2-chloro,4-methoxycarbonyl, R3 is methyl and YR1 for each compound corresponds to one row of Table A
Compounds of the formulae Ia, Ib, Ic, Id, Ie, If, Ig, Ih, Ii, Ij, Ik, Il, Im, In, Io, Ip, Iq, Ir, Is, It, Iu, Iv, Iw and Ix in which Ln is 2-chloro,4-bromo, R3 is methyl and YR1 for each compound corresponds to one row of Table A
Compounds of the formulae Ia, Ib, Ic, Id, Ie, If, Ig, Ih, Ii, Ij, Ik, Il, Im, In, Io, Ip, Iq, Ir, Is, It, Iu, Iv, Iw and Ix in which Ln is 2-chloro,4-cyano, R3 is methyl and YR1 for each compound corresponds to one row of Table A
Compounds of the formulae Ia, Ib, Ic, Id, Ie, If, Ig, Ih, Ii, Ij, Ik, Il, Im, In, Io, Ip, Iq, Ir, Is, It, Iu, Iv, Iw and Ix in which Ln is 2,6-difluoro,4-methoxy, R3 is methyl and YR1 for each compound corresponds to one row of Table A
Compounds of the formulae Ia, Ib, Ic, Id, Ie, If, Ig, Ih, Ii, Ij, Ik, Il, Im, In, Io, Ip, Iq, Ir, Is, It, Iu, Iv, Iw and Ix in which Ln is 2-fluoro,3-methyl, R3 is methyl and YR1 for each compound corresponds to one row of Table A
Compounds of the formulae Ia, Ib, Ic, Id, Ie, If, Ig, Ih, Ii, Ij, Ik, Il, Im, In, Io, Ip, Iq, Ir, Is, It, Iu, Iv, Iw and Ix in which Ln is 2,5-dimethyl, R3 is methyl and YR1 for each compound corresponds to one row of Table A
Compounds of the formulae Ia, Ib, Ic, Id, Ie, If, Ig, Ih, Ii, Ij, Ik, Il, Im, In, Io, Ip, Iq, Ir, Is, It, Iu, Iv, Iw and Ix in which Ln is 2-methyl,4-cyano, R3 is methyl and YR1 for each compound corresponds to one row of Table A
Compounds of the formulae Ia, Ib, Ic, Id, Ie, If, Ig, Ih, Ii, Ij, Ik, Il, Im, In, Io, Ip, Iq, Ir, Is, It, Iu, Iv, Iw and Ix in which Ln is 2-methyl,4-bromo, R3 is methyl and YR1 for each compound corresponds to one row of Table A
Compounds of the formulae Ia, Ib, Ic, Id, Ie, If, Ig, Ih, Ii, Ij, Ik, Il, Im, In, Io, Ip, Iq, Ir, Is, It, Iu, Iv, Iw and Ix in which Ln is 2-methyl,5-fluoro, R3 is methyl and YR1 for each compound corresponds to one row of Table A
Compounds of the formulae Ia, Ib, Ic, Id, Ie, If, Ig, Ih, Ii, Ij, Ik, Il, Im, In, Io, Ip, Iq, Ir, Is, It, Iu, Iv, Iw and Ix in which Ln is 2-methyl,4-methoxy, R3 is methyl and YR1 for each compound corresponds to one row of Table A
Compounds of the formulae Ia, Ib, Ic, Id, Ie, If, Ig, Ih, Ii, Ij, Ik, Il, Im, In, Io, Ip, Iq, Ir, Is, It, Iu, Iv, Iw and Ix in which Ln is 2-methyl,4-methoxycarbonyl, R3 is methyl and YR1 for each compound corresponds to one row of Table A
Compounds of the formulae Ia, Ib, Ic, Id, Ie, If, Ig, Ih, Ii, Ij, Ik, Il, Im, In, Io, Ip, Iq, Ir, Is, It, Iu, Iv, Iw and Ix in which Ln is 2,5-dimethyl,4-bromo, R3 Methyl and YR1 for each compound corresponds to one row of Table A
Compounds of the formulae Ia, Ib, Ic, Id, Ie, If, Ig, Ih, ii, Ij, Ik, Il, Im, In, Io, Ip, Iq, Ir, Is, It, Iu, Iv, Iw and Ix in which Ln is 2-fluoro,4-bromo, R3 is methyl and YR1 for each compound corresponds to one row of Table A
Compounds of the formulae Ia, Ib, Ic, Id, Ie, If, Ig, Ih, Ii, Ij, Ik, Il, Im, In, Io, Ip, Iq, Ir, Is, It, Iu, Iv, Iw and Ix in which Ln is 2-fluoro,4-methoxy, R1 is methyl and YR1 for each compound corresponds to one row of Table A
Compounds of the formulae Ia, Ib, Ic, Id, Ie, If, Ig, Ih, Ii, Ij, Ik, Il, Im, In, Io, Ip, Iq, Ir, Is, It, Iu, Iv, Iw and Ix in which Ln is 2-fluoro,5-methyl, R3 is methyl and YR1 for each compound corresponds to one row of Table A
Compounds of the formulae Ia, Ib, Ic, Id, Ie, If, Ig, Ih, Ii, Ij, Ik, Il, Im, In, Io, Ip, Iq, Ir, Is, It, Iu, Iv, Iw and Ix in which Ln is pentafluoro, R3 is methyl and YR1 for each compound corresponds to one row of Table A
Compounds of the formulae Ia, Ib, Ic, Id, Ie, If, Ig, Ih, Ii, Ij, Ik, Il, Im, In, Io, Ip, Iq, Ir, Is, It, Iu, Iv, Iw and Ix in which Ln is 2-fluoro,6-chloro, R3 is chloro and YR1 for each compound corresponds to one row of Table A
Compounds of the formulae Ia, Ib, Ic, Id, Ie, If, Ig, Ih, Ii, Ij, Ik, Il, Im, In, Io, Ip, Iq, Ir, Is, It, Iu, Iv, Iw and Ix in which Ln is 2,6-difluoro, R3 is chloro and YR1 for each compound corresponds to one row of Table A
Compounds of the formulae Ia, Ib, Ic, Id, Ie, If, Ig, Ih, Ii, Ij, Ik, Il, Im, In, Io, Ip, Iq, Ir, Is, It, Iu, Iv, Iw and Ix in which Ln is 2,6-dichloro, R3 is chloro and YR1 for each compound corresponds to one row of Table A
Compounds of the formulae Ia, Ib, Ic, Id, Ie, If, Ig, Ih, Ii, Ij, Ik, Il, Im, In, Io, Ip, Iq, Ir, Is, It, Iu, Iv, Iw and Ix in which Ln is 2-fluoro,6-methyl, R3 is chloro and YR1 for each compound corresponds to one row of Table A
Compounds of the formulae Ia, Ib, Ic, Id, Ie, If, Ig, Ih, Ii, Ij, Ik, Il, Im, In, Io, Ip, Iq, Ir, Is, It, Iu, Iv, Iw and Ix in which Ln is 2,4,6-trifluoro, R3 is chloro and YR1 for each compound corresponds to one row of Table A
Compounds of the formulae Ia, Ib, Ic, Id, Ie, If, Ig, Ih, Ii, Ij, Ik, Il, Im, In, Io, Ip, Iq, Ir, Is, It, Iu, Iv, Iw and Ix in which Ln is 2-methyl,4-fluoro, R3 is chloro and YR1 for each compound corresponds to one row of Table A
Compounds of the formulae Ia, Ib, Ic, Id, Ie, If, Ig, Ih, Ii, Ij, Ik, Il, Im, In, Io, Ip, Iq, Ir, Is, It, Iu, Iv, Iw and Ix in which Ln is 2-fluoro,4-methoxycarbonyl, R3 is chloro and YR1 for each compound corresponds to one row of Table A
Compounds of the formulae Ia, Ib, Ic, Id, Ie, If, Ig, Ih, Ii, Ij, Ik, Il, Im, In, Io, Ip, Iq, Ir, Is, It, Iu, Iv, Iw and Ix in which Ln is 2-fluoro,4-CN, R3 is chloro and YR1 for each compound corresponds to one row of Table A
Compounds of the formulae Ia, Ib, Ic, Id, Ie, If, Ig, Ih, Ii, Ij, Ik, Il, Im, In, Io, Ip, Iq, Ir, Is, It, Iu, Iv, Iw and Ix in which Ln is 2,4,5-trifluoro, R3 is chloro and YR1 for each compound corresponds to one row of Table A
Compounds of the formulae Ia, Ib, Ic, Id, Ie, If, Ig, Ih, Ii, Ij, Ik, Il, Im, In, Io, Ip, Iq, Ir, Is, It, Iu, Iv, Iw and Ix in which Ln is 2,4-dichloro, R3 is chloro and YR1 for each compound corresponds to one row of Table A
Compounds of the formulae Ia, Ib, Ic, Id, Ie, If, Ig, Ih, Ii, Ij, Ik, Il, Im, In, Io, Ip, Iq, Ir, Is, It, Iu, Iv, Iw and Ix in which Ln is 2-chloro, R3 is chloro and YR1 for each compound corresponds to one row of Table A
Compounds of the formulae Ia, Ib, Ic, Id, Ie, If, Ig, Ih, Ii, Ij, Ik, Il, Im, In, Io, Ip, Iq, Ir, Is, It, Iu, Iv, Iw and Ix in which Ln is 2-fluoro, R3 is chloro and YR1 for each compound corresponds to one row of Table A
Compounds of the formulae Ia, Ib, Ic, Id, Ie, If, Ig, Ih, Ii, Ij, Ik, Il, Im, In, Io, Ip, Iq, Ir, Is, It, Iu, Iv, Iw and Ix in which Ln is 2,4-difluoro, R3 is chloro and YR1 for each compound corresponds to one row of Table A
Compounds of the formulae Ia, Ib, Ic, Id, Ie, If, Ig, Ih, Ii, Ij, Ik, Il, Im, In, Io, Ip, Iq, Ir, Is, It, Iu, Iv, Iw and Ix in which Ln is 2-fluoro-4-chloro, R3 is chloro and YR1 for each compound corresponds to one row of Table A
Compounds of the formulae Ia, Ib, Ic, Id, Ie, If, Ig, Ih, Ii, Ij, Ik, Il, Im, In, Io, Ip, Iq, Ir, Is, It, Iu, Iv, Iw and Ix in which Ln is 2-chloro-4-fluoro, R3 is chloro and YR1 for each compound corresponds to one row of Table A
Compounds of the formulae Ia, Ib, Ic, Id, Ie, If, Ig, Ih, Ii, Ij, Ik, Il, Im, In, Io, Ip, Iq, Ir, Is, It, Iu, Iv, Iw and Ix in which Ln is 2,3-difluoro, R3 is chloro and YR1 for each compound corresponds to one row of Table A
Compounds of the formulae Ia, Ib, Ic, Id, Ie, If, Ig, Ih, Ii, Ij, Ik, Il, Im, In, Io, Ip, Iq, Ir, Is, It, Iu, Iv, Iw and Ix in which Ln is 2,5-difluoro, R3 is chloro and YR1 for each compound corresponds to one row of Table A
Compounds of the formulae Ia, Ib, Ic, Id, Ie, If, Ig, Ih, Ii, Ij, Ik, Il, Im, In, Io, Ip, Iq, Ir, Is, It, Iu, Iv, Iw and Ix in which Ln is 2,3,4-trifluoro, R3 is chloro and YR1 for each compound corresponds to one row of Table A
Compounds of the formulae Ia, Ib, Ic, Id, Ie, If, Ig, Ih, Ii, Ij, Ik, Il, Im, In, Io, Ip, Iq, Ir, Is, It, Iu, Iv, Iw and Ix in which Ln is 2-methyl, R3 is chloro and YR1 for each compound corresponds to one row of Table A
Compounds of the formulae Ia, Ib, Ic, Id, Ie, If, Ig, Ih, Ii, Ij, Ik, Il, Im, In, Io, Ip, Iq, Ir, Is, It, Iu, Iv, Iw and Ix in which Ln is 2,4-dimethyl, R3 is chloro and YR1 for each compound corresponds to one row of Table A
Compounds of the formulae Ia, Ib, Ic, Id, Ie, If, Ig, Ih, Ii, Ij, Ik, Il, Im, In, Io, Ip, Iq, Ir, Is, It, Iu, Iv, Iw and Ix in which Ln is 2-methyl-4-chloro, R3 is chloro and YR1 for each compound corresponds to one row of Table A
Compounds of the formulae Ia, Ib, Ic, Id, Ie, If, Ig, Ih, Ii, Ij, Ik, Il, Im, In, Io, Ip, Iq, Ir, Is, It, Iu, Iv, Iw and Ix in which Ln is 2-fluoro-4-methyl, R1 is chloro and YR1 for each compound corresponds to one row of Table A
Compounds of the formulae Ia, Ib, Ic, Id, Ie, If, Ig, Ih, Ii, Ij, Ik, Il, Im, In, Io, Ip, Iq, Ir, Is, It, Iu, Iv, Iw and Ix in which Ln is 2,6-dimethyl, R3 is chloro and YR1 for each compound corresponds to one row of Table A
Compounds of the formulae Ia, Ib, Ic, Id, Ie, If, Ig, Ih, Ii, Ij, Ik, Il, Im, In, Io, Ip, Iq, Ir, Is, It, Iu, Iv, Iw and Ix in which Ln is 2,4,6-trimethyl, R3 is chloro and YR1 for each compound corresponds to one row of Table A
Compounds of the formulae Ia, Ib, Ic, Id, Ie, If, Ig, Ih, Ii, Ij, Ik, Il, Im, In, Io, Ip, Iq, Ir, Is, It, Iu, Iv, Iw and Ix in which Ln is 2,6-difluoro-4-cyano, R3 is chloro and YR1 for each compound corresponds to one row of Table A
Compounds of the formulae Ia, Ib, Ic, Id, Ie, If, Ig, Ih, Ii, Ij, Ik, Il, Im, In, Io, Ip, Iq, Ir, Is, It, Iu, Iv, Iw and Ix in which Ln is 2,6-difluoro-4-methyl, R3 is chloro and YR1 for each compound corresponds to one row of Table A
Compounds of the formulae Ia, Ib, Ic, Id, Ie, If, Ig, Ih, Ii, Ij, Ik, Il, Im, In, Io, Ip, Iq, Ir, Is, It, Iu, Iv, Iw and Ix in which Ln is 2,6-difluoro-4-methoxycarbonyl, R3 is chloro and YR1 for each compound corresponds to one row of Table A
Compounds of the formulae Ia, Ib, Ic, Id, Ie, If, Ig, Ih, Ii, Ij, Ik, Il, Im, In, Io, Ip, Iq, Ir, Is, It, Iu, Iv, Iw and Ix in which Ln is 2-chloro,4-methoxy, R3 is chloro and YR1 for each compound corresponds to one row of Table A
Compounds of the formulae Ia, Ib, Ic, Id, Ie, If, Ig, Ih, Ii, Ij, Ik, Il, Im, In, Io, Ip, Iq, Ir, Is, It, Iu, Iv, Iw and Ix in which Ln is 2-chloro,4-methyl, R3 is chloro and YR1 for each compound corresponds to one row of Table A
Compounds of the formulae Ia, Ib, Ic, Id, Ie, If, Ig, Ih, Ii, Ij, Ik, Il, Im, In, Io, Ip, Iq, Ir, Is, It, Iu, Iv, Iw and Ix in which Ln is 2-chloro,4-methoxycarbonyl, R3 is chloro and YR1 for each compound corresponds to one row of Table A
Compounds of the formulae Ia, Ib, Ic, Id, Ie, If, Ig, Ih, Ii, Ij, Ik, Il, Im, In, Io, Ip, Iq, Ir, Is, It, Iu, Iv, Iw and Ix in which Ln is 2-chloro,4-bromo, R3 is chloro and YR1 for each compound corresponds to one row of Table A
Compounds of the formulae Ia, Ib, Ic, Id, Ie, If, Ig, Ih, Ii, Ij, Ik, Il, Im, In, Io, Ip, Iq, Ir, Is, It, Iu, Iv, Iw and Ix in which Ln is 2-chloro,4-cyano, R3 is chloro and YR1 for each compound corresponds to one row of Table A
Compounds of the formulae Ia, Ib, Ic, Id, Ie, If, Ig, Ih, Ii, Ij, Ik, Il, Im, In, Io, Ip, Iq, Ir, Is, It, Iu, Iv, Iw and Ix in which Ln is 2,6-difluoro,4-methoxy, R3 is chloro and YR1 for each compound corresponds to one row of Table A
Compounds of the formulae Ia, Ib, Ic, Id, Ie, If, Ig, Ih, Ii, Ij, Ik, Il, Im, In, Io, Ip, Iq, Ir, Is, It, Iu, Iv, Iw and Ix in which Ln is 2-fluoro,3-methyl, R3 is chloro and YR1 for each compound corresponds to one row of Table A
Compounds of the formulae Ia, Ib, Ic, Id, Ie, If, Ig, Ih, Ii, Ij, Ik, Il, Im, In, Io, Ip, Iq, Ir, Is, It, Iu, Iv, Iw and Ix in which Ln is 2,5-dimethyl, R3 is chloro and YR1 for each compound corresponds to one row of Table A
Compounds of the formulae Ia, Ib, Ic, Id, Ie, If, Ig, Ih, Ii, Ij, Ik, Il, Im, In, Io, Ip, Iq, Ir, Is, It, Iu, Iv, Iw and Ix in which Ln is 2-methyl,4-cyano, R3 is chloro and YR1 for each compound corresponds to one row of Table A
Compounds of the formulae Ia, Ib, Ic, Id, Ie, If, Ig, Ih, Ii, Ij, Ik, Il, Im, In, Io, Ip, Iq, Ir, Is, It, Iu, Iv, Iw and Ix in which Ln is 2-methyl,4-bromo, R3 is chloro and YR1 for each compound corresponds to one row of Table A
Compounds of the formulae Ia, Ib, Ic, Id, Ie, If, Ig, Ih, Ii, Ij, Ik, Il, Im, In, Io, Ip, Iq, Ir, Is, It, Iu, Iv, Iw and Ix in which Ln is 2-methyl,5-fluoro, R3 is chloro and YR1 for each compound corresponds to one row of Table A
Compounds of the formulae Ia, Ib, Ic, Id, Ie, If, Ig, Ih, Ii, Ij, Ik, Il, Im, In, Io, Ip, Iq, Ir, Is, It, Iu, Iv, Iw and Ix in which Ln is 2-methyl,4-methoxy, R3 is chloro and YR1 for each compound corresponds to one row of Table A
Compounds of the formulae Ia, Ib, Ic, Id, Ie, If, Ig, Ih, Ii, Ij, Ik, Il, Im, In, Io, Ip, Iq, Ir, Is, It, Iu, Iv, Iw and Ix in which Ln is 2-methyl,4-methoxycarbonyl, R3 is chloro and YR1 for each compound corresponds to one row of Table A
Compounds of the formulae Ia, Ib, Ic, Id, Ie, If, Ig, Ih, Ii, Ij, Ik, Il, Im, In, Io, Ip, Iq, Ir, Is, It, Iu, Iv, Iw and Ix in which Ln is 2,5-dimethyl,4-bromo, R3 is chloro and YR1 for each compound corresponds to one row of Table A
Compounds of the formulae Ia, Ib, Ic, Id, Ie, If, Ig, Ih, Ii, Ij, Ik, Il, Im, In, Io, Ip, Iq, Ir, Is, It, Iu, Iv, Iw and Ix in which Ln is 2-fluoro,4-bromo, R3 is chloro and YR1 for each compound corresponds to one row of Table A
Compounds of the formulae Ia, Ib, Ic, Id, Ie, If, Ig, Ih, Ii, Ij, Ik, Il, Im, In, Io, Ip, Iq, Ir, Is, It, Iu, Iv, Iw and Ix in which Ln is 2-fluoro,4-methoxy, R3 is chloro and YR1 for each compound corresponds to one row of Table A
Compounds of the formulae Ia, Ib, Ic, Id, Ie, If, Ig, Ih, Ii, Ij, Ik, Il, Im, In, Io, Ip, Iq, Ir, Is, It, Iu, Iv, Iw and Ix in which Ln is 2-fluoro,5-methyl, R3 is chloro and YR1 for each compound corresponds to one row of Table A
Compounds of the formulae Ia, Ib, Ic, Id, Ie, If, Ig, Ih, Ii, Ij, Ik, Il, Im, In, Io, Ip, Iq, Ir, Is, It, Iu, Iv, Iw and Ix in which L is pentafluoro, R3 is chloro and YR1 for each compound corresponds to one row of Table A
Compounds of the formulae Ia, Ib, Ic, Id, Ie, If, Ig, Ih, Ii, Ij, Ik, Il, Im, In, Io, Ip, Iq, Ir, Is, It, Iu, Iv, Iw and Ix in which Ln is 2-fluoro,6-chloro, R3 is methoxy and YR1 for each compound corresponds to one row of Table A
Compounds of the formulae Ia, Ib, Ic, Id, Ie, If, Ig, Ih, Ii, Ij, Ik, Il, Im, In, Io, Ip, Iq, Ir, Is, It, Iu, Iv, Iw and Ix in which Ln is 2,6-difluoro, R3 is methoxy and YR1 for each compound corresponds to one row of Table A
Compounds of the formulae Ia, Ib, Ic, Id, Ie, If, Ig, Ih, Ii, Ij, Ik, Il, Im, In, Io, Ip, Iq, Ir, Is, It, Iu, Iv, Iw and Ix in which Ln is 2,6-dichloro, R3 is methoxy and YR1 for each compound corresponds to one row of Table A
Compounds of the formulae Ia, Ib, Ic, Id, Ie, If, Ig, Ih, Ii, Ij, Ik, Il, Im, In, Io, Ip, Iq, Ir, Is, It, Iu, Iv, Iw and Ix in which Ln is 2-fluoro,6-methyl, R3 is methoxy and YR1 for each compound corresponds to one row of Table A
Compounds of the formulae Ia, Ib, Ic, Id, Ie, If, Ig, Ih, Ii, Ij, Ik, Il, Im, In, Io, Ip, Iq, Ir, Is, It, Iu, Iv, Iw and Ix in which Ln is 2,4,6-trifluoro, R3 is methoxy and YR1 for each compound corresponds to one row of Table A
Compounds of the formulae Ia, Ib, Ic, Id, Ie, If, Ig, Ih, Ii, Ij, Ik, Il, Im, In, Io, Ip, Iq, Ir, Is, It, Iu, Iv, Iw and Ix in which Ln is 2-methyl,4-fluoro, R3 is methoxy and YR1 for each compound corresponds to one row of Table A
Compounds of the formulae Ia, Ib, Ic, Id, Ie, If, Ig, Ih, Ii, Ij, Ik, Il, Im, In, Io, Ip, Iq, Ir, Is, It, Iu, Iv, Iw and Ix in which Ln is 2-fluoro,4-methoxycarbonyl, R3 is methoxy and YR1 for each compound corresponds to one row of Table A
Compounds of the formulae Ia, Ib, Ic, Id, Ie, If, Ig, Ih, Ii, Ij, Ik, Il, Im, In, Io, Ip, Iq, Ir, Is, It, Iu, Iv, Iw and Ix in which Ln is 2-fluoro,4-CN, R3 is methoxy and YR1 for each compound corresponds to one row of Table A
Compounds of the formulae Ia, Ib, Ic, Id, Ie, If, Ig, Ih, Ii, Ij, Ik, Il, Im, In, Io, Ip, Iq, Ir, Is, It, Iu, Iv, Iw and Ix in which Ln is 2,4,5-trifluoro, R3 is methoxy and YR1 for each compound corresponds to one row of Table A
Compounds of the formulae Ia, Ib, Ic, Id, Ie, If, Ig, Ih, Ii, Ij, Ik, Il, Im, In, Io, Ip, Iq, Ir, Is, It, Iu, Iv, Iw and Ix in which Ln is 2,4-dichloro, R3 is methoxy and YR1 for each compound corresponds to one row of Table A
Compounds of the formulae Ia, Ib, Ic, Id, Ie, If, Ig, Ih, Ii, Ij, Ik, Il, Im, In, Io, Ip, Iq, Ir, Is, It, Iu, Iv, Iw and Ix in which Ln is 2-chloro, R3 is methoxy and YR1 for each compound corresponds to one row of Table A
Compounds of the formulae Ia, Ib, Ic, Id, Ie, If, Ig, Ih, Ii, Ij, Ik, Il, Im, In, Io, Ip, Iq, Ir, Is, It, Iu, Iv, Iw and Ix in which Ln is 2-fluoro, R3 is methoxy and YR1 for each compound corresponds to one row of Table A
Compounds of the formulae Ia, Ib, Ic, Id, Ie, If, Ig, Ih, Ii, Ij, Ik, Il, Im, In, Io, Ip, Iq, Ir, Is, It, Iu, Iv, Iw and Ix in which Ln is 2,4-difluoro, R3 is methoxy and YR1 for each compound corresponds to one row of Table A
Compounds of the formulae Ia, Ib, Ic, Id, Ie, If, Ig, Ih, Ii, Ij, Ik, Il, Im, In, Io, Ip, Iq, Ir, Is, It, Iu, Iv, Iw and Ix in which Ln is 2-fluoro-4-chloro, R3 is methoxy and YR1 for each compound corresponds to one row of Table A
Compounds of the formulae Ia, Ib, Ic, Id, Ie, If, Ig, Ih, Ii, Ij, Ik, Il, Im, In, Io, Ip, Iq, Ir, Is, It, Iu, Iv, Iw and Ix in which Ln is 2-chloro-4-fluoro, R3 is methoxy and YR1 for each compound corresponds to one row of Table A
Compounds of the formulae Ia, Ib, Ic, Id, Ie, If, Ig, Ih, Ii, Ij, Ik, Il, Im, In, Io, Ip, Iq, Ir, Is, It, Iu, Iv, Iw and Ix in which Ln is 2,3-difluoro, R3 is methoxy and YR1 for each compound corresponds to one row of Table A
Compounds of the formulae Ia, Ib, Ic, Id, Ie, If, Ig, Ih, Ii, Ij, Ik, Il, Im, In, Io, Ip, Iq, Ir, Is, It, Iu, Iv, Iw and Ix in which Ln is 2,5-difluoro, R3 is methoxy and YR1 for each compound corresponds to one row of Table A
Compounds of the formulae Ia, Ib, Ic, Id, Ie, If, Ig, Ih, Ii, Ij, Il, Il, Im, In, Io, Ip, Iq, Ir, Is, It, Iu, Iv, Iw and Ix in which Ln is 2,3,4-trifluoro, R3 is methoxy and YR1 for each compound corresponds to one row of Table A
Compounds of the formulae Ia, Ib, Ic, Id, Ie, If, Ig, Ih, Ii, Ij, Ik, Il, Im, In, Io, Ip, Iq, Ir, Is, It, Iu, Iv, Iw and Ix in which Ln is 2-methyl, R3 is methoxy and YR1 for each compound corresponds to one row of Table A
Compounds of the formulae Ia, Ib, Ic, Id, Ie, If, Ig, Ih, Ii, Ij, Ik, Il, Im, In, Io, Ip, Iq, Ir, Is, It, Iu, Iv, Iw and Ix in which Ln is 2,4-dimethyl, R3 is methoxy and YR1 for each compound corresponds to one row of Table A
Compounds of the formulae Ia, Ib, Ic, Id, Ie, If, Ig, Ih, Ii, Ij, Ik, Il, Im, In, Io, Ip, Iq, Ir, Is, It, Iu, Iv, Iw and Ix in which Ln is 2-methyl-4-chloro, R3 is methoxy and YR1 for each compound corresponds to one row of Table A
Compounds of the formulae Ia, Ib, Ic, Id, Ie, If, Ig, Ih, Ii, Ij, Ik, Il, Im, In, Io, Ip, Iq, Ir, Is, It, Iu, Iv, Iw and Ix in which Ln is 2-fluoro-4-methyl, R3 is methoxy and YR1 for each compound corresponds to one row of Table A
Compounds of the formulae Ia, Ib, Ic, Id, Ie, If, Ig, Ih, Ii, Ij, Ik, Il, Im, In, Io, Ip, Iq, Ir, Is, It, Iu, Iv, Iw and Ix in which Ln is 2,6-dimethyl, R3 is methoxy and YR1 for each compound corresponds to one row of Table A
Compounds of the formulae Ia, Ib, Ic, Id, Ie, If, Ig, Ih, Ii, Ij, Ik, Il, Im, In, Io, Ip, Iq, Ir, Is, It, Iu, Iv, Iw and Ix in which Ln is 2,4,6-trimethyl, R3 is methoxy and YR1 for each compound corresponds to one row of Table A
Compounds of the formulae Ia, Ib, Ic, Id, Ie, If, Ig, Ih, Ii, Ij, Ik, Il, Im, In, Io, Ip, Iq, Ir, Is, It, Iu, Iv, Iw and Ix in which Ln is 2,6-difluoro-4-cyano, R3 is methoxy and YR1 for each compound corresponds to one row of Table A
Compounds of the formulae Ia, Ib, Ic, Id, Ie, If, Ig, Ih, Ii, Ij, Ik, Il, Im, In, Io, Ip, Iq, Ir, Is, It, Iu, Iv, Iw and Ix in which Ln is 2,6-difluoro-4-methyl, R3 is methoxy and YR1 for each compound corresponds to one row of Table A
Compounds of the formulae Ia, Ib, Ic, Id, Ie, If, Ig, Ih, Ii, Ij, Ik, Il, Im, In, Io, Ip, Iq, Ir, Is, It, Iu, Iv, Iw and Ix in which Ln is 2,6-difluoro-4-methoxycarbonyl, R3 is methoxy and YR1 for each compound corresponds to one row of Table A
Compounds of the formulae Ia, Ib, Ic, Id, Ie, If, Ig, Ih, Ii, Ij, Ik, Il, Im, In, Io, Ip, Iq, Ir, Is, It, Iu, Iv, Iw and Ix in which Ln is 2-chloro,4-methoxy, R3 is methoxy and YR1 for each compound corresponds to one row of Table A
Compounds of the formulae Ia, Ib, Ic, Id, Ie, If, Ig, Ih, Ii, Ij, Ik, Il, Im, In, Io, Ip, Iq, Ir, Is, It, Iu, Iv, Iw and Ix in which Ln is 2-chloro,4-methyl, R3 is methoxy and YR1 for each compound corresponds to one row of Table A
Compounds of the formulae Ia, Ib, Ic, Id, Ie, If, Ig, Ih, Ii, Ij, Ik, Il, Im, In, Io, Ip, Iq, Ir, Is, It, Iu, Iv, Iw and Ix in which Ln is 2-chloro,4-methoxycarbonyl, R3 is methoxy and YR1 for each compound corresponds to one row of Table A
Compounds of the formulae Ia, Ib, Ic, Id, Ie, If, Ig, Ih, Ii, Ij, Ik, Il, Im, In, Io, Ip, Iq, Ir, Is, It, Iu, Iv, Iw and Ix in which Ln is 2-chloro,4-methoxy, R3 is methoxy and YR1 for each compound corresponds to one row of Table A
Compounds of the formulae Ia, Ib, Ic, Id, Ie, If, Ig, Ih, Ii, Ij, Ik, Il, Im, In, Io, Ip, Iq, Ir, Is, It, Iu, iv, Iw and Ix in which Ln is 2-chloro,4-cyano, R3 is methoxy and YR1 for each compound corresponds to one row of Table A
Compounds of the formulae Ia, Ib, Ic, Id, Ie, If, Ig, Ih, Ii, Ij, Ik, Il, Im, In, Io, Ip, Iq, Ir, Is, It, Iu, Iv, Iw and Ix in which Ln is 2,6-difluoro,4-methoxy, R3 is methoxy and YR1 for each compound corresponds to one row of Table A
Compounds of the formulae Ia, Ib, Ic, Id, Ie, If, Ig, Ih, Ii, Ij, Ik, Il, Im, In, Io, Ip, Iq, Ir, Is, It, Iu, Iv, Iw and Ix in which Ln is 2-fluoro,3-methyl, R3 is methoxy and YR1 for each compound corresponds to one row of Table A
Compounds of the formulae Ia, Ib, Ic, Id, Ie, If, Ig, Ih, Ii, Ij, Ik, Il, Im, In, Io, Ip, Iq, Ir, Is, It, Iu, Iv, Iw and Ix in which Ln is 2,5-dimethyl, R3 is methoxy and YR1 for each compound corresponds to one row of Table A
Compounds of the formulae Ia, Ib, Ic, Id, Ie, If, Ig, Ih, Ii, Ij, Ik, Il, Im, In, Io, Ip, Iq, Ir, Is, It, Iu, Iv, Iw and Ix in which Ln is 2-methyl,4-cyano, R3 is methoxy and YR1 for each compound corresponds to one row of Table A
Compounds of the formulae Ia, Ib, Ic, Id, Ie, If, Ig, Ih, Ii, Ij, Ik, Il, Im, In, Io, Ip, Iq, Ir, Is, It, Iu, Iv, Iw and Ix in which Ln is 2-methyl,4-bromo, R3 is methoxy and YR1 for each compound corresponds to one row of Table A
Compounds of the formulae Ia, Ib, Ic, Id, Ie, If, Ig, Ih, Ii, Ij, Ik, Il, Im, In, Io, Ip, Iq, Ir, Is, It, Iu, Iv, Iw and Ix in which Ln is 2-methyl,5-fluoro, R3 is methoxy and YR1 for each compound corresponds to one row of Table A
Compounds of the formulae Ia, Ib, Ic, Id, Ie, If, Ig, Ih, Ii, Ij, Ik, Il, Im, In, Io, Ip, Iq, Ir, Is, It, Iu, Iv, Iw and Ix in which Ln is 2-methyl,4-methoxy, R3 is methoxy and YR1 for each compound corresponds to one row of Table A
Compounds of the formulae Ia, Ib, Ic, Id, Ie, If, Ig, Ih, Ii, Ij, Ik, Il, Im, In, Io, Ip, Iq, Ir, Is, It, Iu, Iv, Iw and Ix in which Ln is 2-methyl,4-methoxycarbonyl, R3 is methoxy and YR1, for each compound corresponds to one row of Table A
Compounds of the formulae Ia, Ib, Ic, Id, Ie, If, Ig, Ih, Ii, Ij, Ik, Il, Im, In, Io, Ip, Iq, Ir, Is, It, Iu, Iv, Iw and Ix in which Ln is 2,5-dimethyl,4-bromo, R3 is methoxy and YR1 for each compound corresponds to one row of Table A
Compounds of the formulae Ia, Ib, Ic, Id, Ie, If, Ig, Ih, Ii, Ij, Ik, Il, Im, In, Io, Ip, Iq, Ir, Is, It, Iu, Iv, Iw and Ix in which Ln is 2-fluoro,4-bromo, R3 is methoxy and YR1 for each compound corresponds to one row of Table A
Compounds of the formulae Ia, Ib, Ic, Id, Ie, If, Ig, Ih, Ii, Ij, Ik, Il, Im, In, Io, Ip, Iq, Ir, Is, It, Iu, Iv, Iw and Ix in which Ln is 2-fluoro,4-methoxy, R3 is methoxy and YR1 for each compound corresponds to one row of Table A
Compounds of the formulae Ia, Ib, Ic, Id, Ie, If, Ig, Ih, Ii, Ij, Ik, Il, Im, In, Io, Ip, Iq, Ir, Is, It, Iu, Iv, Iw and Ix in which Ln is 2-fluoro,5-methyl, R3 is methoxy and YR1 for each compound corresponds to one row of Table A
Compounds of the formulae Ia, Ib, Ic, Id, Ie, If, Ig, Ih, Ii, Ij, Ik, Il, Im, In, Io, Ip, Iq, Ir, Is, It, Iu, Iv, Iw and Ix in which Ln is pentafluoro, R3 is methoxy and YR1 for each compound corresponds to one row of Table A
Compounds of the formulae Ia, Ib, Ic, Id, Ie, If, Ig, Ih, Ii, Ij, Ik, Il, Im, In, Io, Ip, Iq, Ir, Is, It, Iu, Iv, Iw and Ix in which Ln is 2-fluoro,6-chloro, R3 is cyano and YR1 for each compound corresponds to one row of Table A
Compounds of the formulae Ia, Ib, Ic, Id, Ie, If, Ig, Ih, Ii, Ij, Ik, Il, Im, In, Io, Ip, Iq, Ir, Is, It, Iu, Iv, Iw and Ix in which Ln is 2,6-difluoro, R3 is cyano and YR1, for each compound corresponds to one row of Table A
Compounds of the formulae Ia, Ib, Ic, Id, Ie, If, Ig, Ih, Ii, Ij, Ik, Il, Im, In, Io, Ip, Iq, Ir, Is, It, Iu, Iv, Iw and Ix in which Ln is 2,6-dichloro, R3 is cyano and YR1 for each compound corresponds to one row of Table A
Compounds of the formulae Ia, Ib, Ic, Id, Ie, If, Ig, Ih, Ii, Ij, Ik, Il, Im, In, Io, Ip, Iq, Ir, Is, It, Iu, Iv, Iw and Ix in which Ln is 2-fluoro,6-methyl, R3 Cyano and YR1 for each compound corresponds to one row of Table A
Compounds of the formulae Ia, Ib, Ic, Id, Ie, If, Ig, Ih, Ii, Ij, Ik, Il, Im, In, Io, Ip, Iq, Ir, Is, It, Iu, Iv, Iw and Ix in which Ln is 2,4,6-trifluoro, R3 is cyano and YR1 for each compound corresponds to one row of Table A
Compounds of the formulae Ia, Ib, Ic, Id, Ie, If, Ig, Ih, Ii, Ij, Ik, Il, Im, In, Io, Ip, Iq, Ir, Is, It, Iu, Iv, Iw and Ix in which Ln is 2-methyl,4-fluoro, R3 is cyano and YR1 for each compound corresponds to one row of Table A
Compounds of the formulae Ia, Ib, Ic, Id, Ie, If, Ig, Ih, Ii, Ij, Ik, Il, Im, In, Io, Ip, Iq, Ir, Is, It, Iu, Iv, Iw and Ix in which Ln is 2-fluoro,4-methoxycarbonyl, R3 is cyano and YR1 for each compound corresponds to one row of Table A
Compounds of the formulae Ia, Ib, Ic, Id, Ie, If, Ig, Ih, Ii, Ij, Ik, Il, Im, In, Io, Ip, Iq, Ir, Is, It, Iu, Iv, Iw and Ix in which Ln is 2-fluoro,4-CN, R3 is cyano and YR1 for each compound corresponds to one row of Table A
Compounds of the formulae Ia, Ib, Ic, Id, Ie, If, Ig, Ih, Ii, Ij, Ik, Il, Im, In, Io, Ip, Iq, Ir, Is, It, Iu, Iv, Iw and Ix in which Ln is 2,4,5-trifluoro, R3 is cyano and YR1 for each compound corresponds to one row of Table A
Compounds of the formulae Ia, Ib, Ic, Id, Ie, If, Ig, Ih, Ii, Ij, Ik, Il, Im, In, Io, Ip, Iq, Ir, Is, It, Iu, Iv, Iw and Ix in which Ln is 2,4-dichloro, R3 is cyano and YR1 for each compound corresponds to one row of Table A
Compounds of the formulae Ia, Ib, Ic, Id, Ie, If, Ig, Ih, Ii, Ij, Ik, Il, Im, In, Io, Ip, Iq, Ir, Is, It, Iu, Iv, Iw and Ix in which Ln is 2-chloro, R3 is cyano and YR1 for each compound corresponds to one row of Table A
Compounds of the formulae Ia, Ib, Ic, Id, Ie, If, Ig, Ih, Ii, Ij, Ik, Il, Im, In, Io, Ip, Iq, Ir, Is, It, Iu, Iv, Iw and Ix in which Ln is 2-fluoro, R3 is cyano and YR1 for each compound corresponds to one row of Table A
Compounds of the formulae Ia, Ib, Ic, Id, Ie, If, Ig, Ih, Ii, Ij, Ik, Il, Im, In, Io, Ip, Iq, Ir, Is, It, Iu, Iv, Iw and Ix in which Ln is 2,4-difluoro, R3 is cyano and YR1 for each compound corresponds to one row of Table A
Compounds of the formulae Ia, Ib, Ic, Id, Ie, If, Ig, Ih, Ii, Ij, Ik, Il, Im, In, Io, Ip, Iq, Ir, Is, It, Iu, Iv, Iw and Ix in which Ln is 2-fluoro-4-chloro, R3 is cyano and YR1 for each compound corresponds to one row of Table A
Compounds of the formulae Ia, Ib, Ic, Id, Ie, If, Ig, Ih, Ii, Ij, Ik, Il, Im, In, Io, Ip, Iq, Ir, Is, It, Iu, Iv, Iw and Ix in which Ln is 2-chloro-4-fluoro, R3 is cyano and YR1 for each compound corresponds to one row of Table A
Compounds of the formulae Ia, Ib, Ic, Id, Ie, If, Ig, Ih, Ii, Ij, Ik, Il, Im, In, Io, Ip, Iq, Ir, Is, It, Iu, Iv, Iw and Ix in which Ln is 2,3-difluoro, R3 is cyano and YR1 for each compound corresponds to one row of Table A
Compounds of the formulae Ia, Ib, Ic, Id, Ie, If, Ig, Ih, Ii, Ij, Ik, Il, Im, In, Io, Ip, Iq, Ir, Is, It, Iu, Iv, Iw and Ix in which Ln is 2,5-difluoro, R3 is cyano and YR1 for each compound corresponds to one row of Table A
Compounds of the formulae Ia, Ib, Ic, Id, Ie, If, Ig, Ih, Ii, Ij, Ik, Il, Im, In, Io, Ip, Iq, Ir, Is, It, Iu, Iv, Iw and Ix in which Ln is 2,3,4-trifluoro, R3 is cyano and YR1 for each compound corresponds to one row of Table A
Compounds of the formulae Ia, Ib, Ic, Id, Ie, If, Ig, Ih, Ii, Ij, Ik, Il, Im, In, Io, Ip, Iq, Ir, Is, It, Iu, Iv, Iw and Ix in which Ln is 2-methyl, R3 is cyano and YR1 for each compound corresponds to one row of Table A
Compounds of the formulae Ia, Ib, Ic, Id, Ie, If, Ig, Ih, Ii, Ij, Ik, Il, Im, In, Io, Ip, Iq, Ir, Is, It, Iu, Iv, Iw and Ix in which Ln is 2,4-dimethyl, R3 is cyano and YR1 for each compound corresponds to one row of Table A
Compounds of the formulae Ia, Ib, Ic, Id, Ie, If, Ig, Ih, Ii, Ij, Ik, Il, Im, In, Io, Ip, Iq, Ir, Is, It, Iu, Iv, Iw and Ix in which Ln is 2-methyl-4-chloro, R3 is cyano and YR1 for each compound corresponds to one row of Table A
Compounds of the formulae Ia, Ib, Ic, Id, Ie, If, Ig, Ih, Ii, Ij, Ik, Il, Im, In, Io, Ip, Iq, Ir, Is, It, Iu, Iv, Iw and Ix in which Ln is 2-fluoro-4-methyl, R3 is cyano and YR1 for each compound corresponds to one row of Table A
Compounds of the formulae Ia, Ib, Ic, Id, Ie, If, Ig, Ih, Ii, Ij, Ik, Il, Im, In, Io, Ip, Iq, Ir, Is, It, Iu, Iv, Iw and Ix in which Ln is 2,6-dimethyl, R3 is cyano and YR1 for each compound corresponds to one row of Table A
Compounds of the formulae Ia, Ib, Ic, Id, Ie, If, Ig, Ih, Ii, Ij, Ik, Il, Im, In, Io, Ip, Iq, Ir, Is, It, Iu, Iv, Iw and Ix in which Ln is 2,4,6-trimethyl, R3 is cyano and YR1 for each compound corresponds to one row of Table A
Compounds of the formulae Ia, Ib, Ic, Id, Ie, If, Ig, Ih, Ii, Ij, Ik, Il, Im, In, Io, Ip, Iq, Ir, Is, It, Iu, Iv, Iw and Ix in which Ln is 2,6-difluoro-4-cyano, R3 is cyano and YR1 for each compound corresponds to one row of Table A
Compounds of the formulae Ia, Ib, Ic, Id, Ie, If, Ig, Ih, Ii, Ij, Ik, Il, Im, In, Io, Ip, Iq, Ir, Is, It, Iu, Iv, Iw and Ix in which Ln is 2,6-difluoro-4-methyl, R3 is cyano and YR1 for each compound corresponds to one row of Table A
Compounds of the formulae Ia, Ib, Ic, Id, Ie, If, Ig, Ih, Ii, Ij, Ik, Il, Im, In, Io, Ip, Iq, Ir, Is, It, Iu, Iv, Iw and Ix in which Ln is 2,6-difluoro-4-methoxycarbonyl, R3 is cyano and YR1 for each compound corresponds to one row of Table A
Compounds of the formulae Ia, Ib, Ic, Id, Ie, If, Ig, Ih, Ii, Ij, Ik, Il, Im, In, Io, Ip, Iq, Ir, Is, It, Iu, Iv, Iw and Ix in which Ln is 2-chloro,4-methoxy, R3 is cyano and YR1 for each compound corresponds to one row of Table A
Compounds of the formulae Ia, Ib, Ic, Id, Ie, If, Ig, Ih, Ii, Ij, Ik, Il, Im, In, Io, Ip, Iq, Ir, Is, It, Iu, Iv, Iw and Ix in which Ln is 2-chloro,4-methyl, R3 is cyano and YR1 for each compound corresponds to one row of Table A
Compounds of the formulae Ia, Ib, Ic, Id, Ie, If, Ig, Ih, Ii, Ij, Ik, Il, Im, In, Io, Ip, Iq, Ir, Is, It, Iu, Iv, Iw and Ix in which Ln is 2-Chlor,4-methoxycarbonyl, R3 is cyano and YR1 for each compound corresponds to one row of Table A
Compounds of the formulae Ia, Ib, Ic, Id, Ie, If, Ig, Ih, Ii, Ij, Ik, Il, Im, In, Io, Ip, Iq, Ir, Is, It, Iu, Iv, Iw and Ix in which Ln is 2-chloro,4-bromo, R3 is cyano and YR1 for each compound corresponds to one row of Table A
Compounds of the formulae Ia, Ib, Ic, Id, Ie, If, Ig, Ih, Ii, Ij, Ik, Il, Im, In, Io, Ip, Iq, Ir, Is, It, Iu, Iv, Iw and Ix in which Ln is 2-chloro,4-cyano, R3 is cyano and YR1 for each compound corresponds to one row of Table A
Compounds of the formulae Ia, Ib, Ic, Id, Ie, If, Ig, Ih, Ii, Ij, Ik, Il, Im, In, Io, Ip, Iq, Ir, Is, It, Iu, Iv, Iw and Ix in which Ln is 2,6-difluoro,4-methoxy, R3 is cyano and YR1 for each compound corresponds to one row of Table A
Compounds of the formulae Ia, Ib, Ic, Id, Ie, If, Ig, Ih, Ii, Ij, Ik, Il, Im, In, Io, Ip, Iq, Ir, Is, It, Iu, Iv, Iw and Ix in which Ln is 2-fluoro,3-methyl, R3 is cyano and YR1 for each compound corresponds to one row of Table A
Compounds of the formulae Ia, Ib, Ic, Id, Ie, If, Ig, Ih, Ii, Ij, Ik, Il, Im, In, Io, Ip, Iq, Ir, Is, It, Iu, Iv, Iw and Ix in which Ln is 2,5-dimethyl, R3 is cyano and YR1 for each compound corresponds to one row of Table A
Compounds of the formulae Ia, Ib, Ic, Id, Ie, If, Ig, Ih, Ii, Ij, Ik, Il, Im, In, Io, Ip, Iq, Ir, Is, It, Iu, Iv, Iw and Ix in which Ln is 2-methyl,4-cyano, R3 is cyano and YR1 for each compound corresponds to one row of Table A
Compounds of the formulae Ia, Ib, Ic, Id, Ie, If, Ig, Ih, Ii, Ij, Ik, Il, Im, In, Io, Ip, Iq, Ir, Is, It, Iu, Iv, Iw and Ix in which Ln is 2-methyl,4-bromo, R3 is cyano and YR1 for each compound corresponds to one row of Table A
Compounds of the formulae Ia, Ib, Ic, Id, Ie, If, Ig, Ih, Ii, Ij, Ik, Il, Im, In, Io, Ip, Iq, Ir, Is, It, Iu, Iv, Iw and Ix in which Ln is 2-methyl,5-fluoro, R3 is cyano and YR1 for each compound corresponds to one row of Table A
Compounds of the formulae Ia, Ib, Ic, Id, Ie, If, Ig, Ih, Ii, Ij, Ik, Il, Im, In, Io, Ip, Iq, Ir, Is, It, Iu, Iv, Iw and Ix in which Ln is 2-methyl,4-methoxy, R3 is cyano and YR1 for each compound corresponds to one row of Table A
Compounds of the formulae Ia, Ib, Ic, Id, Ie, If, Ig, Ih, Ii, Ij, Ik, Il, Im, In, Io, Ip, Iq, Ir, Is, It, Iu, Iv, Iw and Ix in which Ln is 2-methyl,4-methoxycarbonyl, R3 is cyano and YR1 for each compound corresponds to one row of Table A
Compounds of the formulae Ia, Ib, Ic, Id, Ie, If, Ig, Ih, Ii, Ij, Ik, Il, Im, In, Io, Ip, Iq, Ir, Is, It, Iu, Iv, Iw and Ix in which Ln is 2,5-dimethyl,4-bromo, R3 is cyano and YR1 for each compound corresponds to one row of Table A
Compounds of the formulae Ia, Ib, Ic, Id, Ie, If, Ig, Ih, Ii, Ij, Ik, Il, Im, In, Io, Ip, Iq, Ir, Is, It, Iu, Iv, Iw and Ix in which Ln is 2-fluoro,4-bromo, R3 is cyano and YR1 for each compound corresponds to one row of Table A
Compounds of the formulae Ia, Ib, Ic, Id, Ie, If, Ig, Ih, Ii, Ij, Ik, Il, Im, In, Io, Ip, Iq, Ir, Is, It, Iu, Iv, Iw and Ix in which Ln is 2-fluoro,4-methoxy, R3 is cyano and YR1 for each compound corresponds to one row of Table A
Compounds of the formulae Ia, Ib, Ic, Id, Ie, If, Ig, Ih, Ii, Ij, Ik, Il, Im, In, Io, Ip, Iq, Ir, Is, It, Iu, Iv, Iw and Ix in which Ln is 2-fluoro,5-methyl, R3 is cyano and YR1 for each compound corresponds to one row of Table A
Compounds of the formulae Ia, Ib, Ic, Id, Ie, If, Ig, Ih, Ii, Ij, Ik, Il, Im, In, Io, Ip, Iq, Ir, Is, It, Iu, Iv, Iw and Ix in which Ln is pentafluoro, R3 is cyano and YR1 for each compound corresponds to one row of Table A
Compounds of the formulae Ia, Ib, Ic, Id, Ie, If, Ig, Ih, Ii, Ij, Ik, Il, Im, In, Io, Ip, Iq, Ir, Is, It, Iu, Iv, Iw and Ix in which Ln is 2-chloro-5-fluoro, R3 is chloro and YR1 for each compound corresponds to one row of Table A
The compounds I are suitable as fungicides. They are distinguished through an outstanding effectiveness against a broad spectrum of phytopathogenic fungi, especially from the classes of the Ascomycetes, Deuteromycetes, Oomycetes and Basidiomycetes. Some are systemically effective and they can be used in plant protection as foliar fungicides, as fungicides for seed dressing and as soil fungicides.
They are particularly important in the control of a multitude of fungi on various cultivated plants, such as wheat, rye, barley, oats, rice, maize, grass, bananas, cotton, soya, coffee, sugar cane, vines, fruits and ornamental plants, and vegetables, such as cucumbers, beans, tomatoes, potatoes and cucurbits, and on the seeds of these plants.
They are especially suitable for controlling the following plant diseases:
Alternaria species on fruit and vegetables,
Bipolaris and Drechslera species on cereals, rice and lawns,
Blumeria graminis (powdery mildew) on cereals,
Botrytis cinerea (gray mold) on strawberries, vegetables, ornamental plants and grapevines,
Bremia lactucae on lettuce,
Erysiphe cichoracearum and Sphaerotheca fuliginea on cucurbits,
Fusarium and Verticillium species on various plants,
Mycosphaerella species on cereals, bananas and peanuts,
Peronospora species on cabbage and onion plants,
Phatzopsora pachyrhizi and P. meibomiae on soy
Phytophthora infestans on potatoes and tomatoes,
Phytophthora capsici on peppers,
Plasmopara viticola on grapevines,
Podosphaera leucotricha on apples,
Pseudocercosporella herpotrichoides on wheat and barley,
Pseudoperonospora species on hops and cucumbers,
Puccinia species on cereals,
Pyricularia oryzae on rice,
Pythium aphanidermatum on lawns,
Rhizoctonia species on cotton, rice and lawns,
Septoria tritici and Stagonospora nodorum on wheat,
Uncinula necator on grapevines,
Ustilago species on cereals and sugar cane, and
Venturia species (scab) on apples and pears.
The compounds I are also suitable for controlling harmful fungi, such as Paecilomyces variotii, in the protection of materials (for example wood, paper, paint dispersions, fibers or fabrics) and in the protection of stored products.
In addition, the compounds of the formula I may also be used in crops which tolerate attack by insects or fungi owing to breeding, including genetic engineering methods.
The compounds I are employed by treating the fungi or the plants, seeds, materials or soil to be protected from fungal attack with a fungicidally effective amount of the active compounds. The application can be carried out both before and after the infection of the materials, plants or seeds by the fungi.
The fungicidal compositions generally comprise between 0.1 and 95%, preferably between 0.5 and 90%, by weight of active compound.
When employed in plant protection, the amounts applied are, depending on the kind of effect desired, between 0.01 and 2.0 kg of active compound per ha.
In seed treatment, amounts of active compound of 0.001 to 0.1 g, preferably 0.01 to 0.05 g, per kilogram of seed are generally necessary.
When used in the protection of materials or stored products, the amount of active compound applied depends on the kind of application area and on the desired effect. Amounts customarily applied in the protection of materials are, for example, 0.001 g to 2 kg, preferably 0.005 g to 1 kg, of active compound per cubic meter of treated material.
The compounds I can be converted to the customary formulations, for example solutions, emulsions, suspensions, dusts, powders, pastes and granules. The application form depends on the particular intended use; it should in any case ensure a fine and uniform distribution of the compound according to the invention.
The formulations are prepared in a known manner, for example by extending the active compound with solvents and/or carriers, if desired using emulsifiers and dispersants. Solvents/auxiliaries which are suitable are essentially:
water, aromatic solvents (for example Solvesso products, xylene), paraffins (for example mineral oil fractions), alcohols (for example methanol, butanol, pentanol, benzyl alcohol), ketones (for example cyclohexanone, gamma-butyrolactone), pyrrolidones (NMP, NOP), acetates (glycol diacetate), glycols, fatty acid dimethylamides, fatty acids and fatty acid esters. In principle, solvent mixtures may also be used,
Suitable surfactants are alkali metal, alkaline earth metal and ammonium salts of lignosulfonic acid, naphthalenesulfonic acid, phenolsulfonic acid, dibutylnaphthalenesulfonic acid, alkylarylsulfonates, alkyl sulfates, alkylsulfonates, fatty alcohol sulfates, fatty acids and sulfated fatty alcohol glycol ethers, furthermore condensates of sulfonated naphthalene and naphthalene derivatives with formaldehyde, condensates of naphthalene or of naphthalenesulfonic acid with phenol and formaldehyde, polyoxyethylene octylphenyl ether, ethoxylated isooctylphenol, octylphenol, nonylphenol, alkylphenyl polyglycol ethers, tributylphenyl polyglycol ether, tristearylphenyl polyglycol ether, alkylaryl polyether alcohols, alcohol and fatty alcohol/ethylene oxide condensates, ethoxylated castor oil, polyoxyethylene alkyl ethers, ethoxylated polyoxypropylene, lauryl alcohol polyglycol ether acetal, sorbitol esters, lignosulfite waste liquors and methylcellulose.
Substances which are suitable for the preparation of directly sprayable solutions, emulsions, pastes or oil dispersions are mineral oil fractions of medium to high boiling point, such as kerosene or diesel oil, furthermore coal tar oils and oils of vegetable or animal origin, aliphatic, cyclic and aromatic hydrocarbons, for example toluene, xylene, paraffin, tetrahydronaphthalene, alkylated naphthalenes or their derivatives, methanol, ethanol, propanol, butanol, cyclohexanol, cyclohexanone, isophorone, strongly polar solvents, for example dimethyl sulfoxide, N-methylpyrrolidone and water.
Powders, materials for broadcasting and dustable products can be prepared by mixing or concomitantly grinding the active substances with a solid carrier.
Granules, for example coated granules, impregnated granules and homogeneous granules, can be prepared by binding the active compounds to solid carriers. Examples of solid carriers are mineral earths such as silica gels, silicates, talc, kaolin, attaclay, limestone, lime, chalk, bole, loess, clay, dolomite, diatomaceous earth, calcium sulfate, magnesium sulfate, magnesium oxide, ground synthetic materials, fertilizers, such as, for example, ammonium sulfate, ammonium phosphate, ammonium nitrate, ureas, and products of vegetable origin, such as cereal meal, tree bark meal, wood meal and nutshell meal, cellulose powders and other solid carriers.
In general, the formulations comprise from 0.01 to 95% by weight, preferably from 0.1 to 90% by weight, of the active compound. The active compounds are employed in a purity of from 90% to 100%, preferably 95% to 100% (according to NMR spectrum).
The following are examples of formulations:
1. Products for Dilution with Water
10 parts by weight of a compound according to the invention are dissolved in water or in a water-soluble solvent. As an alternative, wetters or other auxiliaries are added. The active compound dissolves upon dilution with water.
20 parts by weight of a compound according to the invention are dissolved in cyclohexanone with addition of a dispersant, for example polyvinylpyrrolidone. Dilution with water gives a dispersion.
15 parts by weight of a compound according to the invention are dissolved in xylene with addition of calcium dodecylbenzenesulfonate and castor oil ethoxylate (in each case 5% strength). Dilution with water gives an emulsion.
40 parts by weight of a compound according to the invention are dissolved in xylene with addition of calcium dodecylbenzenesulfonate and castor oil ethoxylate (in each case 5% strength). This mixture is introduced into water by means of an emulsifier (Ultraturrax) and made into a homogeneous emulsion. Dilution with water gives an emulsion.
In an agitated ball mill, 20 parts by weight of a compound according to the invention are comminuted with addition of dispersants, wetters and water or an organic solvent to give a fine active compound suspension. Dilution with water gives a stable suspension of the active compound.
50 parts by weight of a compound according to the invention are ground finely with addition of dispersants and wetters and made into water-dispersible or water-soluble granules by means of technical appliances (for example extrusion, spray tower, fluidized bed). Dilution with water gives a stable dispersion or solution of the active compound.
75 parts by weight of a compound according to the invention are ground in a rotor-stator mill with addition of dispersants, wetters and silica gel. Dilution with water gives a stable dispersion or solution of the active compound.
5 parts by weight of a compound according to the invention are ground finely and mixed intimately with 95% of finely divided kaolin. This gives a dustable product.
0.5 part by weight of a compound according to the invention is ground finely and associated with 95.5% carriers. Current methods are extrusion, spray-drying or the fluidized bed. This gives granules to be applied undiluted.
10 parts by weight of a compound according to the invention are dissolved in an organic solvent, for example xylene. This gives a product to be applied undiluted.
The active compounds can be used as such, in the form of their formulations or of the application forms prepared therefrom, e.g. in the form of directly sprayable solutions, powders, suspensions or dispersions, emulsions, oil dispersions, pastes, dusts, preparations for broadcasting or granules, by spraying, atomizing, dusting, broadcasting or watering. The application forms depend entirely on the intended uses; they should always ensure the finest possible dispersion of the active compounds according to the invention.
Aqueous application forms can be prepared from emulsifiable concentrates, pastes or wettable powders (spray powders, oil dispersions) by addition of water. To prepare emulsions, pastes or oil dispersions, the substances can be homogenized in water, as such or dissolved in an oil or solvent, by means of wetting agents, tackifiers, dispersants or emulsifiers. However, it is also possible to prepare concentrates comprising active substance, wetting agent, tackifier, dispersant or emulsifier and possibly solvent or oil which are suitable for dilution with water.
The concentrations of active compound in the ready-for-use preparations can be varied within relatively wide ranges. In general, they are between 0.0001 and 10%, preferably between 0.01 and 1%.
The active compounds can also be used with great success in the ultra-low volume (ULV) process, it being possible to apply formulations with more than 95% by weight of active compound or even the active compound without additives.
Oils of various types, wetting agents, adjuvants, herbicides, fungicides, other pesticides and bactericides can be added to the active compounds, if appropriate also not until immediately before use (tank mix). These agents can be added to the preparations according to the invention in a weight ratio of 1:10 to 10:1.
The preparations according to the invention can, in the application form as fungicides, also be present together with other active compounds, e.g. with herbicides, insecticides, growth regulators, fungicides or also with fertilizers. On mixing the compounds I or the preparations comprising them in the application form as fungicides with other fungicides, in many cases an expansion of the fungicidal spectrum of activity is obtained.
Accordingly, the present invention also provides a combination of a compound of the formula I and at least one further fungicide, an insecticide and/or herbicide.
The following list of fungicides, with which the compounds according to the invention can be used in conjunction, is intended to illustrate the possible combinations but does not limit them:
Under an atmosphere of nitrogen and at room temperature, 1.18 g (29.5 mmol) of 60% sodium hydride were added with stirring to 80 ml of isopropanol, and the mixture was stirred for 30 min. A solution of 8.0 g (24.6 mmol) 4,6-dichloro-2-methylthio-5-(2,4,6-trifluorophenyl)pyrimidine in 40 ml isopropanol was added dropwise to this mixture, and the mixture was stirred at room temperature overnight. After concentration under reduced pressure at 40° C., 100 ml of water and 150 ml of methylene chloride were added, the pH was adjusted to 8 using 20 ml of ammonium chloride solution, and the organic phase was separated off and extracted twice with in each case 100 ml of methylene chloride. The combined extracts were washed twice with in each case 100 ml of water, dried over sodium sulfate and concentrated under reduced pressure. The crude product was purified by medium pressure chromatography on RP material using acetonitrile/water (70:30). Yield 3.65 g. 1H-NMR (CDCl3) δ=1.27 (d); 2.60 (s); 5.41 (m); 6.75 (t).
At room temperature, 71 mg of sodium tungstate were added to 1.50 g (4.30 mmol) of 4-chloro-6-isopropoxy-2-methylthio-5-(2,4,6-trifluorophenyl)pyrimidine dissolved in 20 ml of glacial acetic acid, and 0.98 g (8.6 mmol) of 30% strength hydrogen peroxide were then added dropwise. The mixture was stirred at room temperature overnight, another 100 mg (0.86 mmol) of 30% strength hydrogen peroxide were added, the mixture was stirred at room temperature for 1 d, added to 100 ml of ice-water and extracted four times with in each case 50 ml of methylene chloride, and the extract was washed twice with in each case 50 ml of sodium bicarbonate solution and once with 50 ml of sodium chloride solution, dried over sodium sulfate and concentrated under reduced pressure. Yield 1.60 g. 1H-NMR (CDCl3) δ=1.33 (d); 3.40 (s); 5.53 (m); 6.82 (t).
At 0-5° C., 74 mg (1.84 mmol) of 60% sodium hydride were added to 125 mg (1.84 mmol) of pyrazole in 8 ml of dimethylformamide, and the mixture as stirred at this temperature for 1 h. Under an atmosphere of nitrogen, this solution was added dropwise over a period of 20 min to a solution of 700 mg (1.84 mmol) of 4-chloro-6-isopropoxy-2-methylsulfonyl-5-(2,4,6-trifluorophenyl)pyrimidine in 6 ml of dimethylformamide, and the mixture was allowed to warm to room temperature and stirred overnight. After concentration under reduced pressure, the residue was taken up in 60 ml of water and 60 ml of methylene chloride, extracted three times with in each case 60 ml of methylene chloride, dried over sodium sulfate and concentrated under reduced pressure. The crude product was purified by silica gel chromatography using cyclohexane/ethyl acetate. Yield 440 mg of a solid of m.p. 106-107° C. 1H-NMR (CDCl3) δ=1.33 (d); 5.56 (m); 6.50 (m); 6.78 (t); 7.85 (m); 8.55 (m).
700 mg (10.8 mmol) of potassium cyanide were added to 2.05 g (5.39 mmol) of 4-chloro-6-isopropoxy-2-methylsulfonyl-5-(2,4,6-trifluorophenyl)pyrimidine in 30 ml of acetonitrile, the mixture was stirred at room temperature for 30 h and concentrated under reduced pressure, the residue was taken up in 20 ml of water and 60 ml of methyl tert-butyl ether, washed twice with in each case 20 ml of water, dried over sodium sulfate and concentrated under reduced pressure. Yield 1.60 g of a solid of m.p. 32° C. 1H-NMR (CDCl3) δ=1.30 (d); 5.45 (m); 6.82 (t).
300 mg (0.92 mmol) of 4-chloro-2-cyano-6-isopropoxy-5-(2,4,6-trifluorophenyl)-pyrimidine, 83 mg (1.20 mmol) of hydroxylamine hydrochloride and 62 mg (0.74 mmol) of sodium bicarbonate in 4.5 ml of ethanol and 1.5 ml of water were stirred at room temperature overnight, and concentrated under reduced pressure, 10 ml of water were added, the mixture was extracted three times with in each case 20 ml methyl tert-butyl ether and the extracts were dried over sodium sulfate and concentrated under reduced pressure. The crude product was purified by silica gel chromatography using cyclohexane/ethyl acetate. Yield 300 mg of a solid of m.p. 151-153° C. 1H-NMR (CDCl3) δ=1.30 (d); 5.50 (m and br.); 6.77 (t).
400 mg (1.11 mmol) of (4-chloro-6-isopropoxy-5-(2,4,6-trifluorophenyl)pyrimidin-2-yl)carbamidoxime and 190 mg (1.33 mmol) of methyl iodide, dissolved in 10 ml of dimethylformamide, were cooled to −20° C., and 150 mg (1.33 mmol) of potassium tert-butoxide were added. The mixture was allowed to warm to room temperature, stirred overnight, added to 40 ml of sodium dihydrogenphosphate solution and extracted four times with in each case 20 ml methyl tert-butyl ether, and the extracts were washed twice with in each case 20 ml of sodium dihydrogenphosphate solution and once with sodium chloride solution, dried over sodium sulfate and concentrated under reduced pressure. The crude product was purified by silica gel chromatography using cyclohexane/ethyl acetate. Yield 140 mg of a solid of m.p. 82-83° C. 1H-NMR (CDCl3) δ=1.30 (d); 4.05 (s); 5.42 (br.); 5.50 (m); 6.77 (t).
Particularly preferred compounds of the present invention are listed in table B.
1H-NMR (CDCl3) δ = 1.30
1H-NMR (CDCl3) δ = 1.66
1H-NMR (CDCl3) δ = 1.30
1H-NMR (CDCl3): δ =
1H-NMR (CDCl3): δ =
1H-NMR (CDCl3): δ =
1H-NMR (CDCl3): δ =
1H-NMR (CDCl3): δ =
1H-NMR (CDCl3): δ =
1H-NMR (CDCl3): δ =
1H-NMR (CDCl3): δ =
1H-NMR (CDCl3): δ =
1H-NMR (CDCl3): δ =
1H-NMR (CDCl3): δ =
1H-NMR (CDCl3): δ =
1H-NMR (CDCl3): δ =
1H-NMR (CDCl3): δ =
1H-NMR (CDCl3): δ =
1H-NMR (CDCl3): δ =
1H-NMR (CDCl3): δ =
1H-NMR (CDCl3): δ =
1H-NMR (CDCl3): δ =
1H-NMR (CDCl3): δ =
1H-NMR (CDCl3): δ =
1H-NMR (CDCl3): δ =
1H-NMR (CDCl3): δ =
1H-NMR (CDCl3): δ =
1H-NMR (CDCl3): δ =
1H-NMR (CDCl3): δ =
1H-NMR (CDCl3): δ =
The fungicidal action of the compounds of the formula I was demonstrated by the following experiments:
The active compounds were prepared separately as a stock solution with 25 mg of active compound which was made up to 10 ml with a mixture of acetone and/or DMSO and the emulsifier Uniperol® EL (wetting agent having emulsifying and dispersing action based on ethoxylated alkylphenols) in a volume ratio solvent/emulsifier of 99 to 1. The solution was then made up to 100 ml with water. This stock solution was diluted to the active compound concentration stated below using the solvent/emulsifier/water mixture described.
Leaves of potted plants of the cultivar “Goldene Königin” were sprayed to runoff point with an aqueous suspension having the concentration of active compounds stated below. The next day, the leaves were inoculated with an aqueous spore suspension of Alternaria solani in 2% biomalt solution having a density of 0.17×106 spores/ml. The plants were then placed in a water-vapor-saturated chamber at temperatures of between 20 and 22° C. After 5 days, the disease on the leaves of the untreated, but infected control plants had developed to such an extent that the infection could be determined visually in %.
The leaf areas which had been treated with an application rate of 250 ppm of compounds 1), 3) or 4) of Table B showed only little infection, whereas the untreated leaf areas were 90% infected.
The plants which had been treated with 250 ppm of the compounds 6), 7), 8), 10), 12), 13), 14), 15), 28), 29), 30), 32), 33), 35), 36), 38), 39), 40), 43), 45), 46), 47), 51), 53), 55), 56) or 57) and with 63 ppm of the compounds 17), 22), 23), 25), 26) or 42), too, showed an infection of at most 20%, whereas the untreated leaf areas were 90% infected.
Bell pepper seedlings of the cultivar “Neusiedler Ideal Elite” were, after 2-3 leaves were well-developed, sprayed to runoff point with an aqueous suspension having the concentration of active compound stated below. The next day, the treated plants were inoculated with a spore suspension of Botrytis cinerea which contained 1.7×106 spores/ml in a 2% strength aqueous biomalt solution. The test plants were then placed in a dark climatized chamber at 22-24° C. and high atmospheric humidity. After 5 days, the extent of the fungal infection on the leaves could be determined visually in %.
The leaf areas which had been treated with an application rate of 250 ppm of compounds 1), 3) or 4) of Table B showed only little infection, whereas the untreated leaf areas were 90% infected.
The plants which had been treated with 250 ppm of the compounds 7), 10), 12), 13), 14), 20), 21), 24), 27), 30), 32), 36), 43), 47), 48), 49), 51), 52), 53), 55), 56), 57), 67), 68), or 69) and 63 ppm of the compounds 16), 17), 22), 23), 25), 26) or 42), too, showed an infection of at most 20%, whereas the untreated leaf areas were 90% infected.
Leaves of potted barley seedlings of the cultivar “Hanna” were sprayed to runoff point with an aqueous suspension having the concentration of active compounds stated below. 24 hours after the spray coating had dried on, the test plants were inoculated with an aqueous spore suspension of Pyrenophora [syn. Drechslera] teres, the net blotch pathogen. The test plants were then placed in a greenhouse at temperatures between 20 and 24° C. and 95 to 100% relative atmospheric humidity. After 6 days, the extent of the development of the disease was determined visually in % infection of the entire leaf area.
The leaf areas which had been treated with an application rate of 250 ppm of compounds 1), 3) or 4) of Table B showed only little infection, whereas the untreated leaf areas were 90% infected.
The plants which had been treated with 250 ppm of the compounds 8), 24), 35), 38), 46), 68), or 69), too, showed an infection of at most 20%, whereas the untreated leaf areas were 90% infected.
Number | Date | Country | Kind |
---|---|---|---|
10 2004 034 197.4 | Jul 2004 | DE | national |
Filing Document | Filing Date | Country | Kind | 371c Date |
---|---|---|---|---|
PCT/EP05/07517 | 7/12/2005 | WO | 00 | 12/28/2006 |