The present invention relates to a storage medium carrying meta-tracks of N (N>1) bit-rows, two adjacent meta-tracks being separated by a guard band of at least one bit-row referred to as guard band bit-row.
The present invention also relates to a device for reading a storage medium that carries meta-tracks of N (N>1) bit-rows, two adjacent meta-tracks being separated by a guard band of at least one bit-row referred to as guard band bit-row.
The present invention applies to two-dimensional optical storage for example two-dimensional Blu-Ray discs.
The principles of two-dimensional optical storage are presented in the article “Two-Dimensional Optical Storage” by M. J. Coene, Optical Data Storage May 11-14, 2003 Hyatt Regency Vancouver, BC Canada. As explained in this article, the format of 2D disc is based on a broad spiral consisting of a number of parallel bit-rows that are aligned with each other in the radial direction in such a way that a 2D close-packed lattice results. The lattice can have various forms. However hexagonal lattices provide a higher packing fraction. A guard band of one empty bit-row is located between adjacent turns of the broad spiral.
The channel bits that are written on the disc are of the land type (bit “0”) or of the pit-type (bit “1”). A physical bit-cell in the lattice is associated with each bit. The bit-cell for a land-bit is a uniform flat area at land-level. A pit-bit is realized via mastering a pit-hole centered in the bit-cell.
Parallel read-out is realized by using a single laser source that passes through a diffraction grating which produces an array of laser spots that scans the full width of the broad spiral. The light from each laser spot is diffracted by the 2D pattern on the disc and is detected on a multi-partitioned photodetector which generates a number of high frequency signal waveforms. This set of waveforms is used as the input for the 2D signal processing.
The signal processing path from the photo detector to the detected bits comprises: analog-to-digital conversion, pre-filtering, signal alignment, equalization, sample rate conversion and eventually bit detection. As can be seen from
The present invention proposes improvements for a two-dimensional optical storage of the type described in this article.
A storage medium according to the invention is defined in claims 1 to 3. A device according to the invention for reading a storage medium is defined in claims 4 to 8.
According to the invention non-content information is stored in the guard band separating two meta-tracks (that is two 360° turns of the broad spiral). This non-content information comprises clock data and/or control data that are needed for controlling reading/writing operations from/onto the storage medium. For instance control data comprise: speed control data for controlling the rotation speed of the storage medium, sector marks for defining sectors on the storage medium, address information for navigation through the content, digital right management information, etc. . . .
Preferably, the signal carried in the guard band shall remain relatively regular. The clock data is a regular high-frequency pattern. In order that the regularity of the signal carried in the guard band is not damaged, and to facilitate the discrimination of the control data from the content data carried by the meta-tracks, the control data are preferably low-frequency data. When both clock data and control data are stored in the guard band, the clock data are modulated with the control data for example the clock data are phase modulated or amplitude modulated.
A device according to the invention for reading such a storage medium comprises:
The number of light spots generated by the optical unit depends on the implementation. If only N light spots are used, the non-content information carried by the guard band is derived from the Nth reflected light spot (generally referred to as read-out light spot). Alternatively an extra light spot can be used for reading the guard band bit-row. For design simplicity, it may be preferred to add more than one extra light spot. In such a case, the reflected light spot(s) above the N+1 necessary reflected light spots is/are not needed for implementing the invention.
The structure of the processing means depends on the nature of the non-content information carried in the guard band.
When the non-content information comprise clock data, the processing means comprise:
The analog-to-digital converter is controlled by a local clock so that the digital signals that are generated by the analog-to-digital converter are to be phase-corrected by the sample rate converter. In this embodiment, the sample rate converter is controlled by a clock correction signal generated by a phase-locked loop circuit from the clock data carried in the guard band.
The frequency of the clock data (referred to as pilot frequency in the following of the description) in the guard band may be equal to the local clock frequency. However this is not required. When the pilot frequency is different from the local clock frequency, the phase-locked loop circuit makes a frequency adaptation. Advantageously the pilot frequency is chosen equal to the highest possible frequency that occurs in the system (which depends on the form of the lattice) but shall remain lower than the cut-off frequency of the optical unit.
Storing clock data in the guard band is a very simple and efficient way of enabling recovery of the bit clock rate, especially in 2D storage systems where the intersymbol interference between bit-rows of the meta-track is so high that using the traditional zero-crossing clock recovery method would lead to very complex signal processing.
When the non-content information comprise control data in addition to clock data, the processing means further comprise a second detection circuit for receiving said clock correction signal and deriving therefrom a sequence of bits that corresponds to said control data.
When the non-content information comprise control data to the exclusion of clock data, the processing means comprise:
In the absence of clock data in the guard band, the timing information used to control the sample rate converter is extracted from the content data in a classical way. The signal that carries the control data is processed in parallel with the signals that carry the content information through the same circuits.
Storing control data in the guard band is an interesting alternative to track wobbling currently used in some 1D storage systems.
These and other aspects of the invention are further described by reference to the following drawings:
According to the invention a signal that carries non-content information is stored in the guard band Gi during the mastering process of the disc. Said non-content information comprise clock data and/or control data.
The tracks are scanned by a radiation beam 4 that enters the storage medium through a transparent substrate (not represented). Multiple light sources are used for scanning in parallel the N+1 bit-rows composed of the N bit-rows of a meta-track Ti plus the one-bit row of the adjacent guard band Gi. For example, the multiple light source comprises a single laser source and a diffraction grating. The diffraction grating must produce at least N light spots. Preferably the diffraction grating produces at least N+1 light spots, the N+1th light spot being dedicated to the reading of said guard band bit-row.
When N light spots are used, the Nth light spot is used for scanning both the outer bit-row RN and the guard-band bit-row RN+1. In such a case the signal is deteriorated by inter-symbol interference but, as will be described in more details by reference to
The destination of the optional bits sequence QN+1 depends on the nature of the control data. In
The elements represented in dashed-line in
In
The optional pre-filter is used for cleaning up the digital signal DN before it is passed to the phase-locked loop circuit 33. As the clock signal is very well localized in the frequency space, a large part of unwanted signal can be removed by using a band pass filter upstream the phase-locked loop circuit 33. However, it is to be noted that the phase-locked loop circuit in itself is a very efficient band pass filter and therefore using a pre-filter upstream the phase-locked loop circuit is not mandatory.
When only N analog signals are available, the digital signal DN that is used for generating the clock correction signal is deteriorated by inter-symbol interferences (data cross-talk from the neighbor bit-row). However, the phase-locked loop circuit 33 has intrinsic band pass filtering capabilities such that the high frequency data coming from the neighbor bit-row will be filtered out. This is the reason why the performances obtained by using only N analog signals are acceptable.
In
The nature of the decision circuit 39 depends on the type of modulation used to modulate the clock data in the guard band. For example, if the clock data are amplitude modulated with the control data, the second decision circuit 39 is designed to monitor the amplitude of the clock correction signal CC in order to recover the control data. If the clock data are phase modulated with the control data, the second decision circuit 39 is designed to monitor the phase of the clock correction signal CC in order to recover the control data. These examples are not restrictive. Other schemes can be used as well.
In
The schematic diagram of
With respect to the above-described storage medium and device, modifications or improvements may be proposed without departing from the scope of the invention. The invention is thus not limited to the examples provided.
In particular the invention is not limited to the use of a single laser source in association with a diffraction grating. Other types of multiple light sources can be used, for example a laser array, or a fibre optic arrangement.
Use of the verb “comprise” and its conjugation in the text and in the claims doesn't exclude the presence of other means or steps than those listed.
Use of the article “a” for designating an element doesn't exclude the presence of a plurality of such elements.
Number | Date | Country | Kind |
---|---|---|---|
03300241.1 | Dec 2003 | EP | regional |
Filing Document | Filing Date | Country | Kind | 371c Date |
---|---|---|---|---|
PCT/IB04/03915 | 11/22/2004 | WO | 00 | 5/31/2006 |