3-D ULTRASOUND VASCULAR BLOOD FLOW MAPPING AND TRACKING

Information

  • Research Project
  • 6209242
  • ApplicationId
    6209242
  • Core Project Number
    R43HL065771
  • Full Project Number
    1R43HL065771-01
  • Serial Number
    65771
  • FOA Number
  • Sub Project Id
  • Project Start Date
    9/18/2000 - 24 years ago
  • Project End Date
    9/17/2001 - 23 years ago
  • Program Officer Name
    SCHERBENSKE, M. JAMES
  • Budget Start Date
    9/18/2000 - 24 years ago
  • Budget End Date
    9/17/2001 - 23 years ago
  • Fiscal Year
    2000
  • Support Year
    1
  • Suffix
  • Award Notice Date
    9/16/2000 - 24 years ago
Organizations

3-D ULTRASOUND VASCULAR BLOOD FLOW MAPPING AND TRACKING

VueSonix Sensors is developing a revolutionary series of low-cost non- invasive vascular 3-D ultrasound blood-flow analysis systems based on four pending U.S. patents. Three-dimensional self-tracking simplifies the task of positioning the ultrasound probe. The sensors will measure vector velocity and/or volume flow, display a 3-D color image of the blood flow in real time, and track and lock onto selected vessels for spectral analysis and unattended monitoring, Applications include carotid stenosis, vascular graft evaluation for cardiac transplant, DVT, and hemodialysis. A computer simulation and a macro-scaled (25:1, 80 kHz) laboratory test validated most aspects of the design, including clutter rejection, array thinning, lobe management, bistatic imaging, and accurate self tracking of a constrained moving fluid. This Phase I SBIR is intended to verify, at medical ultrasound frequencies (1:1, 2 MHz), by using an engineering model and a pulsating Doppler phantom (in vitro) at the Thomas Jefferson University Hospital, that the system can map blood vessels in 3 spatial dimensions in real time, measure vector velocity, and track and maintain lock on a simulated blood vessel. To ensure success, VueSonix has already produced detailed specifications, has designed the engineering model, is negotiating fabrication arrangements, and is presently programming its multiSHARC signal processor. PROPOSED COMMERCIAL APPLICATIONS: Vascular ultrasound applications are currently very time consuming and highly dependent on skilled operators. Phase 2 will result in a clinically tested prototype for a commercial device that will image blood vessels in three dimensions to aid in probe placement and provide three- dimensional vector velocity and volume blood-flow data. In addition, the device will automatically acquire and lock onto selected vessels to facilitate blood flow analysis during medical procedures such as surgery, vein mining, or dialysis.

IC Name
NATIONAL HEART, LUNG, AND BLOOD INSTITUTE
  • Activity
    R43
  • Administering IC
    HL
  • Application Type
    1
  • Direct Cost Amount
  • Indirect Cost Amount
  • Total Cost
    127368
  • Sub Project Total Cost
  • ARRA Funded
  • CFDA Code
    837
  • Ed Inst. Type
  • Funding ICs
    NHLBI:127368\
  • Funding Mechanism
  • Study Section
    ZRG1
  • Study Section Name
    Special Emphasis Panel
  • Organization Name
    VUESONIX SENSORS, INC.
  • Organization Department
  • Organization DUNS
  • Organization City
    MOORESTOWN
  • Organization State
    NJ
  • Organization Country
    UNITED STATES
  • Organization Zip Code
    08057
  • Organization District
    UNITED STATES