The invention concerns an apparatus and a method for the manufacture of a three-dimensional (3D) bioscaffold; a 3D bioscaffold made using said method; and the use of said 3D bioscaffold in the manufacture of an implant to treat injuries such as, but not limited to, meniscal injuries.
The menisci of the knee are two semilunar fibrocartilage discs, located in the knee joint between tibia and femur, improving stability and aiding rotatory movements of the knee, acting as a shock absorber and providing nutrition in the form of synovial fluid to the articular cartilage. In humans meniscal structures are not just found in the knee joint, but are also present in acromioclavicular, sternoclavicular and temporomandibular joints.
The meniscus is typically an avascular structure with the primary blood supply limited to the periphery, the inner part of the meniscus is nourished by the synovial fluid through diffusion. The restricted blood supply hinders the regeneration capacity of the fibro-cartilagenous tissue, resulting in a long and often incomplete healing process, which often requires surgery to remove or replace damaged tissue.
Meniscus lesions are among the most frequent injuries in orthopaedic practice and can be the result of a trauma or twisting of the knee. Athletes, particularly those who play contact sports, are at risk of meniscal tears. However, damage to the meniscus can also occur when tissue is weakened as through age in the elderly.
Current methods for treatment is arthroscopic meniscectomy; a minimally invasive surgical procedure to remove all or part of a damaged meniscus in the knee or, if possible, to repair a meniscus. However, the removal of meniscal tissue results frequently in the progressive development of osteoarthritris, involving degradation of joints, including the articular cartilage and sub-chondral bone. Osteoarthritis, a painful, debilitating condition is the most common form of arthritis. Osteoarthritis is incurable. Treatment options such as physiotherapy and pain medication are known to be effective at early stages or in milder forms of the disease. However, osteoarthritis is a degenerative process and in severe cases surgical procedures such as knee or hip replacement are required to offer some relief for the patient. Osteoarthritis is very common and the leading cause of chronic disability in the United States. Estimates suggest that in 2005 approximately twenty-seven million Americans suffer from osteoarthritis, and one in 2 people will develop osteoarthritis at some stage during their lifetime.
Full or partial meniscectomy has serious drawbacks which have shifted research interest towards the fields of biomaterials and bioengineering. Tissue engineering offers new treatment modalities and reduces side effects such as rejection of the donor organ and dependence of immune suppressive drugs. Creating three-dimensional (3D) bioscaffolds, however, is problematic as cells in culture usually migrate to form a two-dimensional layer and bioscaffolds are required to serve as 3D platforms. Current methods for creating 3D bioscaffolds such as particle leaching, gas forming, 3D printing or fused deposition modelling produce 3D structures, but they suffer from poor control of inner structure or resolution.
WO2012/054195 discloses a bio-printer for depositing cells and support material and so forming a construct with a defined geometry. Using this method the applicants fabricated multi-layered vascular tubes. WO2013/040087 discloses a platform for engineered, bioscaffold-free implantable tissues and organs and methods of making the same. The applicants disclose the fabrication of skeletal muscle tissue which can be maintained in culture.
Although tissue engineering methods have developed substantively, current techniques for the repair of meniscus tears or replacement of whole menisci by a tissue-engineered construct using bioscaffolding technologies such as synthetic polymers, hydrogels, ECM components, or tissue-derived materials, even with cell augmentation techniques have yet to yield sustained, reliable long-term results. The ideal meniscus construct is required to excel criteria such as mechanics (loading and lubrication), bioactivity (maintenance of cell phenotype, lack of immunogenicity, host tissue integration) and logistics (supply of artificial grown menisci, practical surgical implantation).
Biodegradable polymeric bioscaffolds have been widely used in tissue engineering as a platform for cell proliferation and subsequent tissue regeneration. Conventional micro-extrusion methods for 3D bioscaffold fabrication are, however, limited by their low resolution. Electro-spinning, a form of electro-hydrodynamic printing, is an attractive method to use due to its ability to fabricate high resolution bioscaffolds at the nanometer/micrometer scale level. With the assistance of an electric field between the nozzle and collector (
In this study, we have developed an alternative electro-hydrodynamic jet printing (termed herein E-jetting) technique and employed it to fabricate 3D biodegradable polyester bioscaffolds, such as polycaprolactone (PCL) bioscaffolds, with the desired filament orientation and pore size. Results showed that solidified filaments were achieved at concentration >70% w/v and uniform filaments of diameter 20 μm were produced via the E-jetting technique, moreover, X-ray diffraction (XRD) and attenuated total reflectance fourier transform infrared (FTIR) spectroscopic analyses revealed that there were no physicochemical changes towards the biodegradable polyester, PCL. Bioscaffolds with a pore size of 450 μm and porosity level of 92%, were achieved. Further, a preliminary in-vitro study illustrated that live chondrocytes were attaching on the outer and inner surfaces of collagen-coated E-jetted PCL bioscaffolds. E-jetted bioscaffolds increased chondrocytes extra cellular matrix (ECM) secretion, and the newly-formed matrices from chondrocytes contributed significantly to the mechanical strength of the bioscaffolds. All these results show that E-jetting is an alternative bioscaffold fabrication technique, which has the capability to construct 3D bioscaffolds with aligned filaments and large pore sizes for tissue engineering applications.
According to a first aspect of the invention there is provided an apparatus for manufacturing a bioscaffold comprising: a positive pressure reservoir which, in use contains a polyester solution, and which is further in fluid communication with a nozzle from which said solution exits; a stage positioned adjacent said nozzle and adapted for movement along three axes X, Y and Z with respect to said nozzle and which, in use, supports a substrate on which said solution is deposited; and a voltage supply for creating an electric field between said nozzle and said stage or said substrate whereby solution exiting said nozzle flows as a continuous filament.
In a preferred embodiment of the invention said polyester solution is either biodegradable or non-biodegradable. Moreover, said polyester solution may comprise a natural polymeric material such as, but not limited to, collagen.
In a further preferred embodiment of the invention said reservoir is maintained at a positive pressure of between 0-400 kPa and most ideally between 150-250 kPa including all 1 kPa intervals there between, more ideally still a positive pressure of 200 kPa is used when operating the apparatus. Ideally, the pressure is maintained at a constant level when the bioscaffold is being manufactured. In a preferred embodiment said reservoir also includes a negative pressure device for exerting a negative pressure for use in instances where the polymer solution is to be retracted. More preferably said positive or negative pressure device is provided by a pneumatic arrangement, as is known by those skilled in the art.
In yet a further preferred embodiment of the invention said nozzle has an internal diameter between 80-510 μm and most ideally between 100-300 μm including all 1 μm intervals there between, more ideally still an internal diameter of either 500 μm or 200 μm is used when operating the apparatus.
In yet a further preferred embodiment of the invention the stage is positioned below said nozzle. Moreover, ideally the stage is positioned close to said nozzle i.e. at a distance between 1-10 mm including all 1 mm intervals there between, ideally at 2 mm. Further, ideally the stage is adapted to move along three axes X, Y and Z whilst said nozzle remains still. Alternatively, said nozzle is adapted to move along three axes X, Y and Z whilst said stage remains still. Alternatively, again, said stage is adapted to move along at least one of said three axes X, Y and Z and said nozzle is adapted to move along the remaining of said three axes X, Y and Z.
Reference herein to axes X, Y and Z is to left/right, backwards/forwards and up/down.
Preferably said stage is provided with either, or both, positioning members and securing members. The positioning members enable a substrate placed upon said stage to be positioned having regard to said nozzle and, ideally, the start position of said nozzle, and the securing members ensure, once positioned, the substrate is held in place during the bioscaffold fabrication process.
More preferably still said voltage supply enables a user to apply a voltage of between 0-20 Kv and most ideally between 1.5-5 kv including all 0.1 kv intervals there between, more ideally still a voltage of 2.2 kv is applied when operating the apparatus.
In a preferred apparatus of the invention said reservoir contains a biodegradable polyester solution such as Polycaprolactone (PCL), however, other biodegradable polyester solutions may be used such as poly(ethylene oxide), polyglycolide, poly(L-lactic acid), or poly(lactide-co-glycolide). Ideally said biodegradable polyester is dissolved in organic solution, preferably, at a concentration of between 30-80% w/v. Most typically concentrations greater than 40% are preferred, and most typically greater than 50% or 60%. Ideally, concentrations greater than 65% are preferred and, in increasing order of preference, 66%, 67%, 68%, 69%, 70%, 71%, 72%, 73%, 74%, 75%, 76%, 77%, 78%, 79%, and 80% w/v.
Ideally the organic solvent is acetic acid but other solvents such as formic acid, chloroform, dimethylformamide, methanol, or hexafluoroisopropanol can be used.
In one preferred use of the invention, said substrate is moved with respect to said nozzle in a back and forth manner whereby a first layer of said solution is deposited. Then said substrate is moved with respect to said nozzle away from same whereby the distance between said nozzle and said substrate is increased after which said substrate is moved with respect to said nozzle again in a back and forth manner whereby a second layer of said solution is deposited. Typically, layering of first and second layers is repeated until a desired depth of bioscaffold is produced. Those skilled in the art will appreciate that the precise movement of said substrate with respect to said nozzle can be automatically controlled so that 3D bioscaffolds of various sizes and shapes can be produced.
In yet a further preferred embodiment of the invention, said apparatus comprises a temperature control device whereby the temperature of the deposited or spun polyester can be controlled.
Accordingly, the apparatus of the invention further comprises a computer readable medium having computer executable instructions for performing the layering method comprising a program stored on a computer readable medium and adapted to be executed by a processor wherein said program performs the following functions:
In a preferred method of the invention step b) further involves rotating said substrate with respect to said nozzle before performing step c). Ideally the degree of rotation is 90° but it may be any selected degree of rotation having regard to the structure of the biological material that the bioscaffold is being designed to mimic. For example the bioscaffold can be designed to mimic menisci, osteochondral tissue, tendons, ligaments or dentin.
In yet a further preferred method of the invention said back and forth movement may be along a straight or curved or zig-zaging or undulating line. Once again, the nature of the back and forth movement is selected having regard to the structure of the biological material that the bioscaffold is being designed to mimic.
For example, in one embodiment of the invention, a bioscaffold for use to treat meniscal injuries is manufactured and the fabrication scheme for printing the meniscal bioscaffold is illustrated in
According to a further aspect of the invention there is provided a data carrier comprising a program for executing the layering method of the invention.
According to a second aspect of the invention there is provided a method for manufacturing a bioscaffold comprising:
In a preferred method of the invention said substrate is moved with respect to said nozzle in a back and forth manner whereby a first layer of said solution is deposited.
In yet a further preferred method of the invention said substrate is moved with respect to said nozzle away from same whereby the distance between said nozzle and said substrate is increased.
In yet a more preferred method of the invention after said substrate is moved away said nozzle it is moved again in a back and forth manner whereby a second layer of said solution is deposited.
In a preferred method of the invention after the deposition of said first layer and either before or after the movement of said nozzle away from said substrate, said substrate is further rotated with respect to said nozzle, then said second layer is deposited. Ideally the degree of rotation is 90° but it may be any selected degree of rotation having regard to the structure of the biological material that the bioscaffold is being designed to mimic.
In yet a further preferred method of the invention said back and forth movement may be along a straight or curved or zig-zaging or undulating line. Once again, the nature of the back and forth movement is selected having regard to the structure of the biological material that the bioscaffold is being designed to mimic.
In a preferred method of the invention said layering of first and second layers is repeated until a desired depth of bioscaffold is produced. Those skilled in the art will appreciate that the precise movement of said substrate with respect to said nozzle can be automatically controlled so that 3D bioscaffolds of various sizes and shapes can be produced.
According to a further aspect of the invention there is provided a 3D bioscaffold comprising: a plurality of filamentous layers made from a polyester wherein the diameter of said filaments is between 3-50 μm including all 1 μm intervals there between, and the thickness of the bioscaffold is between 200-5000 μm including all 1 μm intervals there between.
In a preferred embodiment of the invention said diameter of said filaments is ideally between 3-50 μm, and ideally between 10-30 μm, most preferably 20 μm.
In yet a preferred embodiment of the invention said thickness of said bioscaffold is ideally between 200-5000 μm, and ideally between 300-5000 μm, most preferably greater than 500 μm where menisci is being made. Those skilled in the art will appreciate that the thickness of the bioscaffold will be determined by the nature of the biological material that the bioscaffold is to mimic.
In yet a preferred embodiment of the invention said 3D bioscaffold has a pore size between 100-500 μm, and ideally between 200-500 μm including all 1 μm intervals there between and most preferably of or about 250 μm.
In yet a preferred embodiment of the invention said 3D bioscaffold has a porosity between 70-95% and ideally between 80-95% including all 1% intervals there between and most preferably of or about 90%.
Preferably, the said 3D bioscaffold is sized and shaped in a bespoke manner so as to fill a defined cavity. More ideally still it is sized and shaped for use in meniscus repair. The dimensions of the natural meniscus are shown in Table 1 according to the diagram in
Thus the invention concerns the use of a 3D bioscaffold in the manufacture of an implant to treat injury or disease, particularly but not exclusively meniscal injury. In further embodiments the invention can be used to treat osteochondral, ligament, tendon, dentin, blood vessel and skin damage or disease.
Those skilled in the art will appreciate that the present invention can be used to create biodegradable and biocompatible 3D bioscaffolds including a variety of biomaterials, such as cells and growth factors, and having a complexly sculptured internal microstructure, that is designed to mimic a normal tissue's property.
Besides fabricating complex 3D bioscaffolds, this invention is believed to have utility in the coating and patterning of medical implants, moreover, it can also be used for dissolving drugs in the polymer solution so that when used as an implant the drugs are dispensed within and throughout the bioscaffold and/or medical implant.
The present invention provides the advantages of:
In the claims which follow and in the preceding description of the invention, except where the context requires otherwise due to express language or necessary implication, the word “comprises”, or variations such as “comprises” or “comprising” is used in an inclusive sense i.e. to specify the presence of the stated features but not to preclude the presence or addition of further features in various embodiments of the invention.
All references, including any patent or patent application, cited in this specification are hereby incorporated by reference. No admission is made that any reference constitutes prior art. Further, no admission is made that any of the prior art constitutes part of the common general knowledge in the art.
Preferred features of each aspect of the invention may be as described in connection with any of the other aspects.
Other features of the present invention will become apparent from the following examples. Generally speaking, the invention extends to any novel one, or any novel combination, of the features disclosed in this specification (including the accompanying claims and drawings). Thus, features, integers, characteristics, compounds or chemical moieties described in conjunction with a particular aspect, embodiment or example of the invention are to be understood to be applicable to any other aspect, embodiment or example described herein, unless incompatible therewith.
Moreover, unless stated otherwise, any feature disclosed herein may be replaced by an alternative feature serving the same or a similar purpose.
Throughout the description and claims of this specification, the singular encompasses the plural unless the context otherwise requires. In particular, where the indefinite article is used, the specification is to be understood as contemplating plurality as well as singularity, unless the context requires otherwise.
An embodiment of the present invention will now be described by way of example only with particular reference to the following wherein:
PCL pellets with an average molecular weight of 80 kDa, and acetic acid (99.7% purity) were used in this study. Solutions of various weight volume ratios (w/v, PCL:acetic acid) ranging from 10 to 70%, were prepared by dissolving PCL pellets in acetic acid, and stirred continuously for 4 h to obtain a homogeneous PCL solution. This solution was then used for bioscaffold fabrication. Polished silicon wafers of diameter 100 mm were used as the substrates. These substrates were cleaned using ethanol pad, and left to air-dry prior to usage.
During the E-jetting process (
By increasing the electrical field, the droplet at the tip of the nozzle was elongated, and thin jet formed until the surface tension of the droplet was overcome. As demonstrated in
The filament's diameter was measured using an atomic force microscope (AFM) (SPM5, Seiko Instruments), at a scanning frequency of 0.1 Hz. Morphology of the E-jetted PCL bioscaffolds was studied using a scanning electron microscope (SEM), operating at an accelerating voltage of 15 kV and current of 10 mA. Crystallinity of the as-received PCL and E-jetted PCL bioscaffolds was determined using X-ray diffraction (XRD). A diffractometer CuKα radiation was used, operating at 40 kV and 30 mA. Data was collected over a 2θ range of 5-50° with a step size of 0.05° and a count time of 20 s. Attenuated total reflectance fourier transform infrared (FTIR) spectroscopic analysis of as-received PCL and E-jetted PCL bioscaffolds was performed over a range of 800-4000 cm−1 at a resolution of 8 cm−1, averaging 64 scans. To obtain the porosity of the E-jetted bioscaffolds, three bioscaffolds of pore size 500 μm were fabricated with 20 layers of filaments printing. All samples were weighed with an electronic balance (±0.1 mg), and the dimensions of the samples were measured with a micrometer (±1 μm). The porosity of the bioscaffolds was then calculated using the following equation:
where Ms and Vs are the mass and volume of the bioscaffold; L, W and H are the length, width and height of the bioscaffold; ρs is the density of bioscaffold; ρPCL (1100 kg/m3) is the density of PCL.
The meniscal bioscaffold was constructed with circumferential PCL/collagen fibers interspersed with radial PCL/collagen fibers, mimicking the internal microstructure of the normal meniscus. The diameter of the fibers was 18.6±2.8 μm, which was comparatively smaller than those fabricated using a micro-extrusion system having a fiber diameter of 100 μm. Fine fibers have been shown to enhance cell attachment and modulate cell signaling pathways, thereby accelerating extracellular matrix production. The pore size of the bioscaffold was 360±35 μm, which was in the desirable range to provide sufficient blood and nutrient transfer within the bioscaffold, though the mechanical strength of the bioscaffold would be compromised.
Porcine chondrocytes were harvested from the knee joint of 1 year pig, and cultured in Dulbecco's modified eagle's medium (DMEM) supplement with 10% fetal bovine serum, 2% L-Glutamine, and 1% penicillin/streptomycin. The cells were incubated at 37° C. with 5% carbon dioxide atmosphere. Medium was changed every 2 days. Cells were detached and re-suspended in DMEM until 70-80% cell confluence was achieved.
Sterilization of the E-jetted bioscaffolds using ultraviolet (UV) light was carried out for 15 min. The bioscaffolds were then immersed in 2 mg/ml solution of dopamine (10 mM Tris buffer, pH 8.5) overnight in the dark, followed by rinsing with ultrapure water to remove the un-attached dopamine. Collagen grafting on the polydopamine-coated PCL bioscaffolds was done with collagen (0.1 M in acetic acid) and incubated overnight in a humid atmosphere at 37° C. The bioscaffolds were washed twice with sterile phosphate buffer saline (PBS) solution to remove un-attached collagen, and left to air-dry in a sterile environment prior to cell seeding. Bioscaffolds were then placed into a 24-well plate, and 50 μl of cell aliquot was seeded at the density of 4×105 cells/cm2. Cells seeded on 24-well polystyrene culture dishes (1×105 cells/cm2) were used as controls. The cell-seeded bioscaffolds and control were kept at 37° C. in an incubator for 4 h for cell attachment before transferring to a new 24-well plate, and 1 ml medium was added. Medium was changed every 2 days during the 8-week cell culturing.
To visualize the population of the live and dead chondrocytes, the bioscaffolds were stained with calcein and ethidium bromide after 3 days of culturing. For cell survival examination, Dulbecco's phosphate buffered saline (DPBS) solution with 2 μmol/l of acetomethoxy derivate of calcein (Calcein-AM) and 2 μmol/l of ethidium homodimer-1 (EthD-1) (LIVE/DEAD Viability/Cytotoxicity Kit, Invitrogen) was used to incubate chondrocytes/bioscaffolds for 1 h. Calcein-AM exhibits green fluorescent in live cells, and EthD-1 presents as red fluorescent in dead cells. The chondrocytes/bioscaffolds were then observed using an inverted epifluorescence microscope.
The measurement of sulfated glycoaminoglycan (sGAG) production was conducted to examine whether cells were functional and able to produce cartilage-like extracellular matrix (ECM). The cell-seeded bioscaffolds and control were taken out at culture day 7, 14 and 21, washed twice with PBS and digested in 0.5 ml of papain extraction reagent overnight at 65° C. in a water bath. Then, the total sGAG production was determined using the Blyscan kit (Biocolor, UK). The procedures were carried out according to the manufacturer's protocol. Absorbance was measured at 656 nm using the microplate reader.
Tensile test of acellular and cell-laden bioscaffolds at week 2, 4, 6 and 8 was carried out using a table top tensile tester (Instron 3345, Canton, Mass.), at a load cell capacity of 100 N, and samples were extended to failure at a rate of 1 mm/min. Cross-sectional area and gauge length of the bioscaffolds were determined by measuring the width and thickness using a micrometer. Using the cross-sectional area and gauge length, tensile modulus was calculated from the stress-strain curve. Three replicates were measured, and the mean value was calculated.
A t-test was used to determine any significant differences existed between the mean values of the experimental groups. A difference between groups was considered to be significant at p<0.05.
Concentration, here referring to the weight volume ratio of PCL in acetic acid, is critical for the filament formation, and thus bioscaffolds fabrication. In traditional electro-spinning process, the most commonly used PCL solution concentration was 8-12% (Seeram et al. 2005) whilst in E-Jetting process, there was no filament being generated at such a low concentration (<10%) (
It was able to obtain PCL filaments using 30% solution. Repeated printing of 200 layers alternately along the x- and y-axes could also be done. However, after detaching the bioscaffold from the substrate, the sample obtained was only a thin film with thickness of 47±7 μm. All the filaments on the same location tend to merge together, and could not discern clearly from each other. Furthermore, after printing few layers, undesirable auxiliary filaments were generated as shown in
With increasing concentration to 50%, PCL filaments were successfully generated, and the diameter of the resultant filaments was 3.1±0.1 μm, which was measured using an AFM. After printing 200 layers, a thickness of 246±37 μm was achieved, demonstrating an improved performance with increasing concentration. However, the filaments still had a tendency to merge together. From
As presented in
For E-jetting process, quick solidification of the filaments over a very short distance (2 mm) between the nozzle and collector was achieved with increasing PCL concentration up to 70%. Fibrous bioscaffolds were successfully fabricated with multi-layers of specific aligned filaments and controlled pore size of 450±50 μm. Compared with the electro-spun bioscaffolds, E-jetted bioscaffolds could provide sufficient space for nutrient and blood transfer, promoting cell growth within the 3D bioscaffold. It was demonstrated that E-jetting technique had the capability to construct 3D bioscaffolds with desirable pore size and filament orientation.
SEM examination of the E-jetted PCL filament is shown in
As reported in the literature, the pore sizes of electrospun bioscaffolds were relatively small as compared to the size of cells, thus limiting cell penetration into the bioscaffolds (Kidoaki et al. 2005). To evaluate this, a 10-layered bioscaffold was fabricated in this study (
As shown from the XRD patterns (
Characteristic C═O peak at 1723 cm−1, CH2 asymmetric stretching at 2945 cm−1 and symmetric stretching at 2865 cm−1, C—O—C stretching at 1241 cm−1 and C—O stretching at 1170 cm−1, all belonging to PCL were detected in the FTIR spectra for all samples (
After culturing for 3 days, the viability of chondrocytes on the fibrous bioscaffolds was evaluated using live/dead staining. It was observed that there were numerous live chondrocytes (highlighted parts of the image) attaching and spreading on the surfaces of collagen-coated PCL filaments, showing good viability of cells (
Number | Date | Country | Kind |
---|---|---|---|
1315074.3 | Aug 2013 | GB | national |
Filing Document | Filing Date | Country | Kind |
---|---|---|---|
PCT/SG2014/000396 | 8/25/2014 | WO | 00 |