I. Field of the Invention
The present invention relates to medical devices and methods generally aimed at surgical implants. In particular, the disclosed system and associated methods are related to a manner of creating surgical implants via embroidery.
II. Discussion of the Prior Art
Embroidered structures are created on substrates. Some substrates are designed to stay in place with the embroidered structure while other substrates are removed at the end of the embroidery process. All of the embroidered structures discussed below are created on removable substrates, specifically ones removed through processes of dissolution.
On a dissolvable substrate, a plurality of parallel, stationary backing threads are placed and secured on one surface of a dissolvable substrate, called the backing surface. On the opposing surface of the substrate, called the stitching surface, is a plurality of stitching threads with one-to-one correspondence to the backing threads. Stitching may be done between one pair of threads at a time or in simultaneous multiplicity, as is described below.
The plurality of stitching threads from the stitching surface are passed through openings created in the dissolvable substrate by the passing of each individual thread to the backing surface. Each stitching thread is then looped over its corresponding backing thread, in essence picking up the backing thread, forming a lock stitch. Once each stitching thread has picked up its corresponding backing thread, the plurality of stitching threads are passed from the backing surface to the stitching surface through the openings in the dissolvable substrate created during the passage to the backing surface. The lock stitches prevent the stitching threads from completely pulling back out of the openings created in the dissolvable substrate. The plurality of stitching threads is then moved to a new stitching site and the process repeats until all the backing threads are joined by lock stitches to the corresponding stitching threads, creating a plurality of thread pairs.
A plurality of thread pairs may be enclosed by one or more pluralities of enclosing thread pairs. To enclose a plurality of thread pairs, a plurality of enclosing backing threads are placed and secured on the backing surface of a dissolvable substrate already holding at least one plurality of thread pairs, such that the plurality of enclosing backing threads covers the previously stitched plurality of backing threads. A plurality of enclosing backing threads is usually not parallel with the previous plurality of backing and stitching threads. A plurality of enclosing stitching threads, with one-to-one correspondence to the plurality of enclosing backing threads, are then stitched to the plurality of enclosing backing threads by the stitching process described above.
When the enclosing backing threads are all joined to the enclosing stitching threads by lock stitches, a plurality of enclosing thread pairs has been formed. This process may be repeated by stitching even more pluralities of enclosing thread pairs over all the previously stitched thread pairs, such that the first plurality is enclosed by the second plurality, which is enclosed by a third plurality, which is enclosed by a fourth plurality, etc. This process produces stable embroidered structures which do not unstitch into a pile of threads when the dissolvable substrate is removed.
The process of dissolvable substrate removal is dependent upon the composition of the dissolvable substrate material. Substrate materials are chosen such that the dissolution process which removes the dissolvable substrate will minimally, if at all, affect the physical properties of the remaining embroidered structure. The embroidered structure remains intact despite the removal of the dissolvable substrate because each stitching thread is stitched to its corresponding backing thread and vice versa. The backing thread is enclosed in one or more pluralities of enclosing thread pairs, which provides structural support. The result of the stitching is the creation of a generally two dimensional embroidered structure. There are, however, applications where it would be advantageous to have a generally three-dimensional embroidered structure rather than a generally two-dimensional embroidered structure, but the processes by which three-dimensional embroidered structures may be formed have been complicated and not conducive to cost effective and repeatable mass production.
The first type of process for creating three-dimensional embroidered structures has been to build up the structural shape of the embroidered structure with layer upon layer of embroidered thread. The drawbacks to this technique are that it makes the embroidered structure thicker where the building up had been done. The building up only yields block-type structures and does not allow for the embroidering of curvatures.
A second process of manufacturing three-dimensional embroidered structures takes two or more generally flat embroidered structures and stitches them together such that they form a three-dimensional structure. While preserving the uniform thickness of the embroidered structures lost by the layering technique above and allowing for the simplicity of embroidering each flat section in two-dimensions, this process requires several stitching steps, that would typically be performed manually, which must be done three-dimensionally after the embroidering of the sections is completed. This process is costly, with repeatability concerns where the final results and dimensions will be subject to the skill and dexterity of the individual who performs the stitching.
A third known process creates a single, generally two-dimensional embroidered structure which may be folded such that the edge or edges of the structure meet and may be stitched together, again typically by a manual process, to form a three-dimensional structure. However, this process suffers from the same post-embroidering stitching steps in three-dimensions as the second process, and thus suffers from the same drawbacks.
The present invention is intended to deal with these and other limitations of creating three-dimensional embroidered structures cost effectively and repeatably.
According to the present invention, there is provided a manufacturing process performed on a two-dimensional substrate which produces three-dimensional embroidered structures which may be produced in a cost effective, repeatable manner.
The two-dimensional substrate upon which the embroidery is to be manufactured is tensioned throughout the manufacturing process. Load bearing threads are laid down under tension on the substrate, further tensioning the substrate such that tension gradients are present and different positions on the substrate will be under different amounts of tension. A backing mesh in the general shape of a hexagon or other generally polygonal or non-polygonal shape is then manufactured over the load bearing threads on the substrate. The backing mesh may be manufactured using customary techniques of embroidery, or any other process which results in the backing mesh having qualities similar to those of normally embroidered structures. The effect of the load bearing threads and backing mesh being embroidered on the substrate, and the different tensions at different points on the substrate, cause the load bearing threads to be relationally shorter than the threads forming the backing mesh. When the substrate upon which the embroidered structure was manufactured is removed from the embroidered structure, the load bearing threads and backing mesh are no longer being externally tensioned, allowing the load bearing threads and backing mesh to relax. The relationally shorter load bearing threads relax more than the relationally longer backing mesh, and this difference in magnitude of relaxation results in the load bearing threads drawing the backing mesh inward, forcing the backing mesh into a three-dimensional shape having varying three-dimensional properties.
Many advantages of the present invention will be apparent to those skilled in the art with a reading of this specification in conjunction with the attached drawings, wherein like reference numerals are applied to like elements and wherein:
a is a plan view of the load bearing threads and backing mesh of the embroidered structure according to an alternative embodiment of the present invention for single level application;
b is a plan view of the load bearing threads and backing mesh of the embroidered structure according to an alternative embodiment of the present invention for a multi-level application;
a is a plan view of the load bearing threads and backing mesh of the embroidered structure according to an alternative embodiment of the present invention for a single level application;
b is a plan view of the load bearing threads and backing mesh of the embroidered structure according to an alternative embodiment of the present invention for a multi-level application;
a is a plan view of the load bearing threads and backing mesh of the embroidered structure according to an alternative embodiment of the present invention for a single level application;
b is a plan view of the load bearing threads and backing mesh of the embroidered structure according to an alternative embodiment of the present invention for a multi-level application; and
An illustrative embodiment of the invention is described below. In the interest of clarity, not all features of an actual implementation are described in this specification. It will of course be appreciated that in the development of any such actual embodiment, numerous implementation-specific decisions must be made to achieve the developers' specific goals, such as compliance with system-related and business-related constraints, which will vary from one implementation to another. Moreover, it will be appreciated that such a development effort might be complex and time-consuming, but would nevertheless be a routine undertaking for those of ordinary skill in the art having the benefit of this disclosure. The process of creating three-dimensional embroidered structures through differential tensioning of a two-dimensional substrate upon which the embroidered structure is manufactured disclosed herein boasts a variety of inventive features and components that warrant patent protection, both individually and in combination.
One exemplary embodiment of the present invention as shown in
a-b illustrate an alternative embodiment of the present invention which may, by way of example only, be used as an anterior cervical plate to prevent egress of a cervical implant post-implantation. The embroidered structure 10 of the present invention serves as a buttress to keep the cervical implant inside the disc space after the cervical implant has been placed. The embodiment of
b illustrates the embodiment of the present invention as shown in
a-b illustrate another alternative embodiment of the present invention which, by way of example only, may be used as an anterior cervical plate to prevent egress of a cervical implant post-implantation. The embodiment drawn in
b illustrates the embodiment of the present invention as drawn in
a-b illustrate yet another alternative embodiment of the present invention which, by way of example only, may be used as an anterior cervical plate to prevent egress of a cervical implant post-implantation. The embodiment drawn in
The second and third thread paths 24, 26 encircle at least two eyelets 16 that are located diagonally opposite of each other on the backing mesh 14. Each of the second and third thread paths 24, 26 bisects the rectangular backing mesh 14 between two vertices. Further, each of the second and third thread paths 24, 26 bisects the other individual thread path 24, 26.
b illustrates the embodiment of the present invention as drawn in
The second thread path 24 encircles the lower right and the middle left eyelets 16. The third thread path 26 encircles the lower left and middle right eyelets 16. The second and third thread paths 24, 26 bisect each other. The fourth thread path 28 encircles the middle right and the upper left eyelets 16. The fifth thread path 30 encircles the middle left and upper right eyelets 16. The fourth and fifth thread paths 28, 30 bisect each other.
The tension shaping of a generally two-dimensional embroidered structure into a three-dimensional structure allows for embroidered structures to be manufactured using automated devices such as commercially available embroidery machines, making the production of such embroidered structures cost effective and repeatable, as the production does not require hand stitching. The tension shaped embroidered structures are pulled into three-dimensional shapes and not built up out of extra material. This allows for the tension shaped embroidered structures to be produced in various three-dimensional shapes instead of only generally block shapes. The tension shaped embroidered structures are comparatively thin, retaining their flexibility compared to embroidered structures produced by the building up of additional material.
While the invention is susceptible to various modifications and alternative forms, a specific embodiment thereof has been shown by way of example in the drawings and is herein described in detail. It should be understood, however, that the description herein of a specific embodiment is not intended to limit the invention to the particular form disclosed, but on the contrary, the invention is to cover all modifications, equivalents, and alternatives falling within the spirit and scope of the invention as defined herein.
The present application is a nonprovisional patent application claiming benefit under 35 U.S.C. §119(e) from U.S. Provisional Application Ser. No. 60/881,684, filed on Jan. 22, 2007, the entire contents of which are hereby expressly incorporated by reference into this disclosure as if set forth fully herein.
Number | Name | Date | Kind |
---|---|---|---|
889614 | Johnsen | Jun 1908 | A |
2687703 | Shotsky | Aug 1954 | A |
3183868 | Shotsky | May 1965 | A |
3270696 | Lowenstein | Sep 1966 | A |
3859941 | Krieger | Jan 1975 | A |
3867728 | Stubstad et al. | Feb 1975 | A |
3875595 | Froning | Apr 1975 | A |
4280954 | Yannas et al. | Jul 1981 | A |
4309777 | Patil | Jan 1982 | A |
4349921 | Kuntz | Sep 1982 | A |
4415617 | D'Elia | Nov 1983 | A |
4458678 | Yannas et al. | Jul 1984 | A |
4512038 | Alexander et al. | Apr 1985 | A |
4714469 | Kenna | Dec 1987 | A |
4728329 | Mansat | Mar 1988 | A |
4759766 | Buettner-Janz | Jul 1988 | A |
4759769 | Hedman et al. | Jul 1988 | A |
4772287 | Ray et al. | Sep 1988 | A |
4776851 | Bruchman et al. | Oct 1988 | A |
4790850 | Dunn et al. | Dec 1988 | A |
4863476 | Shepperd | Sep 1989 | A |
4863477 | Monson | Sep 1989 | A |
4880429 | Stone | Nov 1989 | A |
4904260 | Ray et al. | Feb 1990 | A |
4905692 | More | Mar 1990 | A |
4911718 | Lee et al. | Mar 1990 | A |
4917704 | Frey et al. | Apr 1990 | A |
4932969 | Frey et al. | Jun 1990 | A |
4932975 | Main et al. | Jun 1990 | A |
4946377 | Kovach | Aug 1990 | A |
4946378 | Hirayama et al. | Aug 1990 | A |
4955908 | Frey et al. | Sep 1990 | A |
5002576 | Fuhrmann et al. | Mar 1991 | A |
5004474 | Fronk et al. | Apr 1991 | A |
5007926 | Derbyshire | Apr 1991 | A |
5007934 | Stone | Apr 1991 | A |
5047055 | Bao et al. | Sep 1991 | A |
5108438 | Stone | Apr 1992 | A |
5108937 | White | Apr 1992 | A |
5123926 | Pisharodi | Jun 1992 | A |
5171280 | Baumgartner | Dec 1992 | A |
5171281 | Parsons et al. | Dec 1992 | A |
5192322 | Koch et al. | Mar 1993 | A |
5192326 | Bao et al. | Mar 1993 | A |
5246458 | Graham | Sep 1993 | A |
5258043 | Stone | Nov 1993 | A |
5306308 | Gross et al. | Apr 1994 | A |
5306309 | Wagner et al. | Apr 1994 | A |
5383884 | Summers | Jan 1995 | A |
5401269 | Buttner-Janz et al. | Mar 1995 | A |
5443499 | Schmitt | Aug 1995 | A |
5458636 | Brancato | Oct 1995 | A |
5458643 | Oka et al. | Oct 1995 | A |
5507816 | Bullivant | Apr 1996 | A |
5522898 | Bao | Jun 1996 | A |
5534028 | Bao et al. | Jul 1996 | A |
5534030 | Navarro et al. | Jul 1996 | A |
5540688 | Navas | Jul 1996 | A |
5540703 | Barker, Jr. et al. | Jul 1996 | A |
5545229 | Parsons et al. | Aug 1996 | A |
5549679 | Kuslich | Aug 1996 | A |
5562736 | Ray et al. | Oct 1996 | A |
5562738 | Boyd et al. | Oct 1996 | A |
5571189 | Kuslich | Nov 1996 | A |
5609119 | Yeh | Mar 1997 | A |
5645597 | Krapiva | Jul 1997 | A |
5674296 | Bryan et al. | Oct 1997 | A |
5676702 | Ratron | Oct 1997 | A |
5683464 | Wagner et al. | Nov 1997 | A |
5683465 | Shinn et al. | Nov 1997 | A |
5702450 | Bisserie | Dec 1997 | A |
5702454 | Baumgartner | Dec 1997 | A |
5705780 | Bao | Jan 1998 | A |
5716416 | Lin | Feb 1998 | A |
5755796 | Ibo et al. | May 1998 | A |
5794555 | Kwang | Aug 1998 | A |
5800543 | McLeod et al. | Sep 1998 | A |
6093205 | McLeod et al. | Jul 2000 | A |
6110210 | Norton et al. | Aug 2000 | A |
6174330 | Stinson | Jan 2001 | B1 |
6248106 | Ferree | Jun 2001 | B1 |
6283998 | Eaton | Sep 2001 | B1 |
6368326 | Dakin et al. | Apr 2002 | B1 |
6371990 | Ferree | Apr 2002 | B1 |
6416776 | Shamie | Jul 2002 | B1 |
6419704 | Ferree | Jul 2002 | B1 |
6428544 | Ralph et al. | Aug 2002 | B1 |
6447548 | Ralph et al. | Sep 2002 | B1 |
6592625 | Cauthen | Jul 2003 | B2 |
6620196 | Trieu | Sep 2003 | B1 |
6712853 | Kuslich | Mar 2004 | B2 |
6746485 | Zucherman et al. | Jun 2004 | B1 |
6893466 | Trieu | May 2005 | B2 |
6925947 | Lin et al. | Aug 2005 | B2 |
6955689 | Ryan et al. | Oct 2005 | B2 |
7004970 | Cauthen II et al. | Feb 2006 | B2 |
7214225 | Ellis et al. | May 2007 | B2 |
7338531 | Ellis et al. | Mar 2008 | B2 |
7341601 | Eisermann et al. | Mar 2008 | B2 |
7445634 | Trieu | Nov 2008 | B2 |
7588574 | Assell et al. | Sep 2009 | B2 |
7713463 | Reah et al. | May 2010 | B1 |
20010027319 | Ferree | Oct 2001 | A1 |
20020077702 | Castro | Jun 2002 | A1 |
20030074075 | Thomas, Jr. et al. | Apr 2003 | A1 |
20030078579 | Ferree | Apr 2003 | A1 |
20030129257 | Nies et al. | Jul 2003 | A1 |
20030220691 | Songer et al. | Nov 2003 | A1 |
20040039392 | Trieu | Feb 2004 | A1 |
20040078089 | Ellis et al. | Apr 2004 | A1 |
20040113801 | Gustafson et al. | Jun 2004 | A1 |
20040243237 | Unwin et al. | Dec 2004 | A1 |
20050027364 | Kim et al. | Feb 2005 | A1 |
20050119725 | Wang et al. | Jun 2005 | A1 |
20050177240 | Blain | Aug 2005 | A1 |
20050192669 | Zdeblick et al. | Sep 2005 | A1 |
20050228500 | Kim et al. | Oct 2005 | A1 |
20060085080 | Bechgaard et al. | Apr 2006 | A1 |
20060116774 | Jones et al. | Jun 2006 | A1 |
20060179652 | Petersen et al. | Aug 2006 | A1 |
20060200137 | Soboleski et al. | Sep 2006 | A1 |
20060293662 | Boyer, II et al. | Dec 2006 | A1 |
20070055373 | Hudgins et al. | Mar 2007 | A1 |
20070100453 | Parsons et al. | May 2007 | A1 |
20070112428 | Lancial | May 2007 | A1 |
20070204783 | Chong | Sep 2007 | A1 |
Number | Date | Country |
---|---|---|
703123 | Jan 1941 | DE |
383005 | Nov 1989 | DE |
4315757 | Nov 1994 | DE |
0117072 | Jan 1984 | EP |
0192949 | Sep 1986 | EP |
0260970 | Mar 1988 | EP |
0179695 | Mar 1989 | EP |
0314412 | May 1989 | EP |
0328401 | Aug 1989 | EP |
0334045 | Sep 1989 | EP |
0346129 | Dec 1989 | EP |
0346269 | Dec 1989 | EP |
0453393 | Oct 1991 | EP |
0298235 | Dec 1991 | EP |
0459914 | Dec 1991 | EP |
0621017 | Apr 1994 | EP |
0599419 | Jun 1994 | EP |
0621010 | Oct 1994 | EP |
0662309 | Jul 1995 | EP |
0563332 | Aug 1995 | EP |
0820740 | Jan 1996 | EP |
0744162 | Nov 1996 | EP |
0747025 | Dec 1996 | EP |
1318167 | Jun 2003 | EP |
2638349 | May 1988 | FR |
2688691 | Sep 1993 | FR |
2690073 | Oct 1993 | FR |
2696338 | Apr 1994 | FR |
2700810 | Jul 1994 | FR |
2710520 | Apr 1995 | FR |
2710829 | Apr 1995 | FR |
2270264 | Mar 1994 | GB |
2276823 | Oct 1994 | GB |
WO 9011735 | Oct 1990 | WO |
WO 9012551 | Nov 1990 | WO |
WO 9100713 | Jan 1991 | WO |
WO 9103993 | Apr 1991 | WO |
WO 9203988 | Mar 1992 | WO |
WO 9210218 | Jun 1992 | WO |
WO 9210982 | Jul 1992 | WO |
WO 9316664 | Sep 1993 | WO |
WO 9317635 | Sep 1993 | WO |
WO 9519153 | Jul 1995 | WO |
WO 9525487 | Sep 1995 | WO |
WO 9531946 | Nov 1995 | WO |
WO 9611639 | Apr 1996 | WO |
WO 9611642 | Apr 1996 | WO |
WO 9640014 | Dec 1996 | WO |
WO 9720526 | Jun 1997 | WO |
WO 9937242 | Jul 1999 | WO |
WO 0121246 | Mar 2001 | WO |
WO 0130269 | May 2001 | WO |
WO 0211650 | Feb 2002 | WO |
WO 0230306 | Apr 2002 | WO |
WO 0230324 | Apr 2002 | WO |
WO 0306811 | Aug 2003 | WO |
WO 2004002374 | Jan 2004 | WO |
WO 2005004941 | Jan 2005 | WO |
WO 2005092211 | Oct 2005 | WO |
WO 2005092247 | Oct 2005 | WO |
WO 2005092248 | Oct 2005 | WO |
WO 2005133130 | Dec 2006 | WO |
WO 2007012070 | Jan 2007 | WO |
WO 2007020449 | Feb 2007 | WO |
WO 2007067547 | Jun 2007 | WO |
Number | Date | Country | |
---|---|---|---|
20080173223 A1 | Jul 2008 | US |
Number | Date | Country | |
---|---|---|---|
60881684 | Jan 2007 | US |