3-dimensional mat systems with integrated aggregate (1) are the basis for a microreinforced high performance concrete. The material performance as high load capacity, durability, energy absorption, impact resistance, electrical and thermal conductivity, density against fluids, high plasticity and crack control can be adjusted precisely by variation of the mesh width and by positioning and variation of the type and size of aggregate (1). The composite material will be produced by slurry infiltration in a 3-dimensional mat system, performing as sieve and micro-reinforcement. The precise positioning of the aggregate (1) allows a defined regulation of the material stiffness in the tension and the compression zone of the member by variation of size and specific gravity of the aggregate. Consequently the deflection, the flow of internal forces and the crack propagation of the concrete member can be controlled as well as the adjustment of weight from extreme lightweight to heavyweight structures. The deformation of the 3-dimensional mat system in combination with a monolithic splicing of the mats allows a simplified sectional system (
Specification
The invention relates to a microreinforced high performance concrete for the manufacture of structural and impervious members following claim N°1. The structural system is a composite material consisting of a 3-dimensional reinforcing and sieving mat system bonded in concrete. The aggregate can be precisely positioned horizontally and vertically in the member by variation of the mesh width of the single layers (2). The sieving effect by the variation of the mesh width in vertical direction guarantees a positioning of aggregate by size.
The material of the single layers (2) is variable, but preferably metallic or plastic. The optimization of cement bonded materials is guaranteed by the precise positioning of aggregate over the member cross section and by the adjustment of the desired material performance. The combination of the positioning and the variation of aggregate (1) with the load capacity of the 3-dimensional mat system (2) allow structural members with high performance in flexible rotation, abrasion resistance, impact resistance, durability, load capacity, ductility, crack control and fire resistance.
Conventional concrete members will be manufactured with a constant grain size distribution over the cross section of structural members (slabs, walls, girders etc.). The attempt of positioning of the aggregate (1) in different layers already fails during the compaction by vibration. The result is a random distribution of the aggregate (1) over the cross section and a large scattering of the material performance. A stress-strain curve of a loaded beam has in contradiction of theoretical assumptions no consistency of the cross sections. The strain curve of the compression zone and the tension zone are different (see FIG. 6). The strain in the tension zone of the member is larger than in the compression zone. Conventional concrete members have no positioning and variation of the aggregate size and therefore only a more or less constant stiffness (large stiffness) over the cross section. Consequently the members tend to crack by a small strain. The cracks of reinforced concrete members can only be minimized to w=0.20 mm. The minimum crack width of 0.20 mm doesn't satisfy the requirements of impervious overlays [Lit.1]. In addition reinforced concrete members have a required concrete cover of the reinforcement of at least 25 mm. Consequently the load cannot be taken by the overall cross section of the member and the dead load of the member increases.
The intention of the invention is the variation and precise positioning of the aggregate (1) over the cross section of a member in order to produce a defined grain size distribution, i.e. for stiffness control. A large stiffness in the compression zone of the member will be achieved by positioning coarse aggregate (1) and a small stiffness in the tension zone will be produced by crushed and fine aggregate (1). For example, for a high-strength concrete (100 MPa) the stiffness can be adjusted from 20,000 MPa (fine grain=2 mm) to 50,000 MPa (coarse grain=32 mm) by positioning the aggregate (1). The large stiffness in the compression zone of a member results in a better load dispersion and a higher load capacity up to the failure strain of a compression member. The small stiffness in the tension zone allows a maximization of the failure strain, so that crack propagation can be avoided even during large torsion, rotation and bending loads until failure. This effect ensures durability and density and consequently a long term behavior of the composite material. In addition the fine aggregate (1) improves the bonding between concrete and rebar. In general, high load capacity in combination with plasticity and crack minimization in a structural member can be achieved by variation of the material stiffness over the cross section.
The development of a specified 3-dimensional mat system, consisting of single layers (2) of micro meshes, is the foundation for positioning and variation of aggregate (1) either in the horizontal or in the vertical cross section. By the exact positioning of aggregate (1) in combination with a 3-dimensional mat system the desired material performance relating to high load capacity, high density, durability, ductility, impact resistance, torsion, rotation, crack control, thermal and electric conductivity, energy absorption etc. can be adjusted precisely. In addition the inconsistency of performance in conventional concrete can be reduced to a minimum.
The advantages of high performance concrete and of 3-dimensional mat systems, performing as microreinforcement and as a sieve, will be superpositioned. These advantages are described in a publication by the inventor [Lit.2].
i) Composition of the Mat System
See
The type and the strength capacity of the material can be composed arbitrarily (preferably high strength and normal strength steel)
General remark: the material stiffness can be adjusted by all different types of aggregate (1), as different types can be combined.
Specific Gravity of Aggregate (1)
For impervious structures additional density rings might be added if needed, in order to minimize the soaking of the infiltrating liquid (see
Size of Aggregate (1)
a) Beam Members
b) Wall Members with Staggered Arrangement and Variation of the Size of Aggregate (1)
Listing of advantages of the described method compared to the state of the art.
3-dimensional Mat System as Prestressing Element
Using the Prefabricated Mat System for Prestressing of Concrete Members
The difference in existing methods is, that defined single layers of the 3-dimensional mat system can be prestressed especially in extremely thin concrete members. The prestressing allows an increase of the member span and crack-free structure.
Structural System
Restoration, retrofit and damp proofing of existing structures as well the production of new structures with long term behavior are important projects for the future. Besides the economic advantages the improved characteristics of the composite material, like high load bearing capacity, durability, energy absorption, impact resistance, electrical thermal conductivity, density against fluids, high plasticity and crack control open a large spectrum of applications.
Preferred applications of the composite material (mat system+concrete with positioning and variation of aggregate) are abrasive and impervious overlays, blast barriers, precast elements, arbitrary profiles and shapes. The utilization of the thermal conductivity of the 3-dimensional mat system ensures a heatable material. This heating effect can be activated in members or areas, which are supposed to be free of ice and snow. (see table 1.2)
A special monolithic splicing of the 3-dimensional mat system has been developed, which allows structures free of joints. In addition, the deformation of the 3-dimensional mat system in combination with a monolithic splicing of the mats are the foundation for a simplified sectional system (FIG. 5), consisting of standard-, angle- and edge-elements. This simplified system ensures an execution with constant high quality and does not require specialized workers.
In addition, precast members will be part of the application. Based on the flexibility of the 3-dimensional mat system the precast members can be produced in arbitrary shapes (tubes, cylindric tanks and any other typical structural profiles). The prestressing of high loaded thin members allow slim and crack free structures. In addition structures with high energy absorption such as blast barriers, earthquake resistant structures, safes and bunkers, can be created by defined spatial positioning of the aggregate (1).
The material characteristics open up a wide spread field of applications:
Literature
Number | Date | Country | Kind |
---|---|---|---|
178899 | Sep 1999 | CH | national |
This application is a continuation application of International application PCT/IB00/011369 filed Sep. 27, 2000, now abandoned, and published in German on Apr. 5, 2001 (publication No. WO 01/23685), claiming priority of Swiss patent application 1788/99 filed Sep. 27, 1999.
Number | Name | Date | Kind |
---|---|---|---|
553305 | Fordyce | Jan 1896 | A |
1335780 | Barton | Apr 1920 | A |
4578301 | Currie et al. | Mar 1986 | A |
5079890 | Kubik et al. | Jan 1992 | A |
5251414 | Duke | Oct 1993 | A |
Number | Date | Country |
---|---|---|
3406899 | Sep 1999 | AU |
198 08 078 | Sep 1999 | DE |
199 03 304 | Aug 2000 | DE |
2 196 660 | May 1988 | GB |
2 234 276 | Jan 1991 | GB |
2 234 277 | Jan 1991 | GB |
WO 99 42678 | Aug 1999 | WO |
Number | Date | Country | |
---|---|---|---|
20020062619 A1 | May 2002 | US |
Number | Date | Country | |
---|---|---|---|
Parent | PCTIB00/01369 | Sep 2000 | US |
Child | 09965050 | US |