I. Field of the Invention
The present invention relates generally to a package for an item. More particularly, the present invention relates to a package specifically designed to isolate from contamination materials used in the manufacture of electronic semiconductor components and circuits. Such packages are particularly well suited for substrates, wafers, memory disks, photomasks, flat panel displays, liquid crystal displays, and the like.
II. Description of the Prior Art
Various containers have been used for centuries to transport items from one place to another. Such containers have, for example, been used to provide a way to confine items in a space for efficient storage. Such containers also provide an easy way of handling items. Another important function provided by packages and containers is protection.
Substrates used in the manufacture of semiconductor circuits, rigid memory disks, photomasks, liquid crystal displays, and flat panel displays can be extremely sensitive. Effective steps must be taken to protect such items from damage by moisture, particles, static electricity, or the like. Steps must also be taken to protect the articles from damage caused by vibration and shock within the package. Similarly, steps must be taken to prevent outgassing and the generation of particles which will occur if the items stored in the package scrape, rub, or impact various surfaces within the package.
This combination of problems makes designing a suitable package very difficult. Such problems are only compounded by the environment in which such packages are typically used.
Suitable packaging for use in connection with the storage and transport of wafers, memory disks, photomasks, liquid crystal display panels and flat panel displays tend to be very expensive. It is highly desirable that such packaging be reusable and have durable construction. Also, such packaging must be capable of being readily and thoroughly cleaned. Finally, when the package is used in connection with the manufacture of semiconductors, it must be readily adaptable for use with robotic handling and automated manufacturing equipment.
Empak, Inc., has made a number of suitable packages in the past for use in the processing and transport of such items. Examples of such packages are shown in U.S. Pat. No. 5,273,159 and U.S. Pat. No. 5,423,422. While such package designs have proven to be highly effective in conjunction with smaller items, the designs, for a variety of reasons, are not suitable for storage and transport of items having outside dimensions in the range of 300 mm or more.
Suitable containers for use with wafers, photomasks, memory disks, liquid crystal display panels and flat panel displays must meet several important design criteria. They must be light weight to make manual and robotic handling tasks easier. The internal volume of the container should be minimized to reduce storage space requirement and increase storage density. The height of the container should be minimized to allow for improved stacking of the containers. The amount of polymer surface area surrounding the items during transport and storage should be minimized to reduce inorganic and organic contaminants as well as the negative affects of outgassing of the polymer.
Containers built in accordance with the present invention meet the design criteria set forth above. Such containers also provide several other unique advantages. First, tolerance build-up is minimized by means of locating the container about item center lines, thereby increasing the positional accuracy of the items stored in such containers. This enhances effective insertion and removal of the items from the container using robotic equipment. Second, the containers reduce the risk of damage caused by static electricity. This is achieved in one preferred embodiment by providing a conductive path to ground from static dissipative internal item supports to the container's external kinematic coupling plate which is used to position the container on various pieces of equipment. Third, the containers of the present invention are designed to be wet-cleaned with or without disassembly. Fourth, since the containers of the present invention can have an integral design which does not require a separate carrier, the containers can remain associated with a specific lot of items. This enables workers in the factory to better track a lot and, therefore, reduces the chance of processing errors. Fifth, the integral design, by eliminating the need for a separate cassette, minimizes the number of packaging components required to be kept in inventory and the space such components take up. Sixth, the integral design eliminates the need to accurately position a removable cassette in the container and lock it in place. Finally, the integral design can be manufactured using fewer and smaller parts, thereby reducing manufacturing costs.
It is therefore an object of the present invention to provide an isolation container which will provide protection against contamination by particles or moisture.
Another object of the present invention to provide a container which protects the items stored therein from damage due to shock and vibration and from damage due to the item scraping, rubbing, or impacting various surfaces of the container.
A further object of the invention is to provide such a container which is reusable and easily cleaned.
Still another object of the invention is to provide such a container which has interior structures which are not susceptible to wear or generation of particles which could contaminate the contents of the package.
Yet another object of the invention is to provide such a container which is highly effective when used in conjunction with automated processing or handling equipment.
Still another object of the invention is to provide a structure which can easily be handled, manipulated and transported by humans.
These and other objects are accomplished by providing a container having a shell with an opening for insertion and removal of the items, a door designed to effectively seal the opening, a plurality of item-retaining structures within the shell which securely hold the items and retain them in spaced apart relation from each other, a kinematic coupler plate to assist in aligning the container with the port of equipment used to process the items in a factory, and ergonomically designed handles which can be effectively used either manually or through robotic means. In order to reduce contamination by particles inside the container, the item supports are made of a high-temperature resistant, conductive material. The item supports are also grounded to the exterior of the container as described in detail below. The entire container is structured to maximize the support and protection offered to the items, maximize ease of handling, and reduce, to the extent possible, the height and weight of the container.
A better understanding of the invention will be deserved from reading the description of the preferred embodiment set forth below in conjunction with the drawings. While the description and drawings specifically relate to a microenvironment pod for silicon wafers, the invention described is also well suited for other applications, such as the storage and transport of photomasks, rigid memory disks, liquid crystal display panels, flat panel displays, or the like.
As shown in
Side 12 comprises a door frame 6 having a pair of opposing end portions 7 and a pair of side portions 8. Sides 14 and 16 of the exterior shell 10 are defined generally by straight walls extending from the opposite end portions 7 of the door frame 6. Wall 18 extends between walls 14 and 16 and is in the shape of a partial cylinder. The radius of curvature of wall 18 is generally the same as the radius of curvature of the wafer to be stored in the container. Top and bottom walls 20 and 22 complete the shell. Walls 20 and 22 have a generally flat surface 24 and a reinforcement member 26 projecting outwardly from the flat surface 24. Reinforcement member 26 prevents warpage of the container and especially walls 20 and 22. Reinforcement members 26 have four legs 28, 30, 32 and 34. Extending across wall 18 between the two legs 30 is a cross-brace 31. In a similar fashion, cross-brace 33 extends between the two legs 32. Cross-braces 31 and 33 can be used to support the exterior shell 10 on a flat surface if it is positioned so that wall 18 is down.
Also shown in
The kinematic coupling plate 40 is made of a conductive material. It is also designed to include a pair of screw receiving members 49. As explained below, members 49 each receive a screw which is used to electrically couple the kinematic coupling plate 40 to the wafer supports 60 located inside the container. This electrical coupling creates a path by which the wafer supports can be grounded to dissipate any electrical charge on the wafers or wafer supports and, thus, prevent damage to the wafers caused by static electricity.
More specifically, each handle 50 includes a support column 51 which joins the handle 50 to the shell 10 and a wider gripping member 52. The gripping member 52 has an exterior shape which permits it to be comfortably grasped by a human hand. The gripping member 52 also has a recessed channel formed in its end. Channel 53 is generally straight, but includes a notch 54. The channel 53 and notch 54 are present to be engaged by gripping members of a robotic arm. As such, the container is designed for easy, efficient and safe handling by humans or robots.
In the preferred embodiment shown in the drawings, each of the channels 66 is especially formed to retain 300 mm wafers. The back side of each channel is curved in the circumferential direction (e.g. the direction of the circumference of the wafer 80) and in the transverse direction (e.g., the direction across the thickness of the wafer 80). The curvature of the backside of each channel 66 is approximately the same radius of curvature as the outside edge of the 300 mm wafers 80, in both the circumferential and transverse directions. Providing the same radius of curvature along the circumferential direction presents contact between the channel's back side and the edge of the wafer 80 along an arc rather than merely at a point.
Significant advantages are provided by shaping the wafer divider 65 as shown in
An additional benefit of the wafer design, as shown in
In the preferred embodiment, a pair of screws 64 are provided. One of the screws 64 is used to form a conductive path between the wafer support 60 and the conductive kinematic coupling plate 40. The other screw 64 is used to provide a conductive path between wafer support 62 and the kinematic coupling plate 40. This arrangement provides the advantage of grounding the wafer supports 60 and 62 via screws 64 and the kinematic coupling plate 40 so that the wafer supports 60 and 62 have no electrical charge. The walls of the shell 10 are not grounded and have a slightly negative charge which will cause particles in the container to migrate and attach themselves to the walls of the container where they can do no harm to the wafers. So that the screws 64 do not ground the exterior shell 10, it may be desirable to line the bores in the shell 10 through which the screws 64 pass with an insulative material.
To close the access opening 8 of the shell 10, a door 90 is provided. The door 90 is shaped and dimensioned to fit within the door frame 6. When in place, the door engages the door frame 6 to seal the container. Likewise, the outer edge of door frame 6 can be used to form a seal around the access opening 8 between the door frame 6 and the port of a tool used to process semiconductor wafers 80. The risk of contamination is reduced if such a seal is created before the door 90 is opened. When such a seal is created, the door 90 can safely be opened so that the wafers 80 can be withdrawn from the shell 10, through the port and into the tool for processing without substantial risk of contamination. Typically, a plurality of latches (not shown) to hold the door in the closed position will be provided. Also, a flexible gasket or ring can be provided between the door 90 and frame 6 to ensure complete sealing between the door 90 and frame 6.
The door 90 can be provided with a wafer cushion 92. As shown in
The inclusion of such a wafer cushion 92 on the door 90 yields three areas of support for the wafers 80, thereby reducing movement and vibration of the wafers 80 during transport. Supporting the wafers 80 in three areas reduces damage to the wafers due to scraping, rubbing or impacting surfaces within the container. It also limits generation of particles due to such scraping, rubbing or impacting. Finally, means can be provided on the exterior door for kinematically coupling the door 90 to another surface. This can be a series of three grooves (not shown) similar to those shown in kinematic coupling plate 40 which mate with projections on the surface or three projections on the door 90 which mate with grooves on the surface.
Although the present invention has been illustrated and described with reference to the preferred embodiment thereof, the invention may also be used in conjunction with the transport and storage of liquid crystal displays, flat panel displays, photomasks, rigid memory disks, substrates, and the like. Also, various components of the invention may be constructed so that they are removable and replaceable to extend the life of the container. This is certainly true of the wafer supports 60 and 62 and wafer cushion 92 which can be removed and replaced with supports or cushions more ideally suited for other items to be held in the container. It should be understood, therefore, that the illustrations and descriptions provided herein are not intended to be limiting and that numerous modifications can be made within the scope of this invention and the claims set forth below.
Notice: More than one reissue application has been filed for the reissue of U.S. Pat. No. 5,944,194. The reissue applications are application Ser. No. 11/351,214 (the present application), which is a continuation of application Ser. No. 10/310,069, filed Dec. 4, 2002, now issued as U.S. Reissue Pat. No. RE41,231, which is a continuation of application Ser. No. 09/943,098, filed Aug. 30, 2001, now issued as U.S. Reissue Pat. No. RE38,221, all of which are reissues of U.S. Pat. No. 5,944,194.
Filing Document | Filing Date | Country | Kind | 371c Date |
---|---|---|---|---|
PCT/US95/12516 | 10/13/1995 | WO | 00 | 9/10/1997 |
Publishing Document | Publishing Date | Country | Kind |
---|---|---|---|
WO97/13710 | 4/17/1997 | WO | A |
Number | Name | Date | Kind |
---|---|---|---|
4043451 | Johnson | Aug 1977 | A |
4450960 | Johnson | May 1984 | A |
4520925 | Johnson | Jun 1985 | A |
4557382 | Johnson | Dec 1985 | A |
4593339 | Robinson | Jun 1986 | A |
4721207 | Kikuchi | Jan 1988 | A |
4739882 | Parikh et al. | Apr 1988 | A |
4747488 | Kikuchi | May 1988 | A |
4983548 | Uno et al. | Jan 1991 | A |
5228568 | Ogino et al. | Jul 1993 | A |
5240753 | Tabuchi et al. | Aug 1993 | A |
5253755 | Maenke | Oct 1993 | A |
5255797 | Kos | Oct 1993 | A |
5390811 | Ogino et al. | Feb 1995 | A |
5399398 | Toshimitsu et al. | Mar 1995 | A |
5469963 | Bonora et al. | Nov 1995 | A |
5472086 | Holliday et al. | Dec 1995 | A |
5476176 | Gregerson et al. | Dec 1995 | A |
5482161 | Williams et al. | Jan 1996 | A |
5555981 | Gregerson | Sep 1996 | A |
5584401 | Yoshida | Dec 1996 | A |
5586658 | Nyseth | Dec 1996 | A |
5588531 | Yoshida et al. | Dec 1996 | A |
5711427 | Nyseth | Jan 1998 | A |
5755332 | Holliday et al. | May 1998 | A |
5782362 | Ohori | Jul 1998 | A |
5785186 | Babbs et al. | Jul 1998 | A |
5788082 | Nyseth | Aug 1998 | A |
5821764 | Slocum et al. | Oct 1998 | A |
5915562 | Nyseth et al. | Jun 1999 | A |
5944194 | Gregerson et al. | Aug 1999 | A |
5982182 | Chiu et al. | Nov 1999 | A |
6003674 | Brooks | Dec 1999 | A |
6082540 | Krampotich et al. | Jul 2000 | A |
6104202 | Slocum et al. | Aug 2000 | A |
Number | Date | Country |
---|---|---|
57-113446 | Jul 1982 | JP |
60-173826 | Sep 1985 | JP |
62-033436 | Feb 1987 | JP |
62-87443 | Jun 1987 | JP |
62-99575 | Jun 1987 | JP |
64-37047 | Aug 1987 | JP |
63-49387 | Apr 1988 | JP |
64-013717 | Jan 1989 | JP |
2-31789 | Feb 1990 | JP |
05-218185 | Aug 1993 | JP |
05-254582 | Oct 1993 | JP |
62-83486 | Oct 1994 | JP |
WO 9524348 | Sep 1995 | WO |
Number | Date | Country | |
---|---|---|---|
Parent | 10310069 | Dec 2002 | US |
Child | 08913260 | US | |
Parent | 09943098 | Aug 2001 | US |
Child | 10310069 | US |
Number | Date | Country | |
---|---|---|---|
Parent | 08913260 | Sep 1997 | US |
Child | 11351214 | US |