The present disclosure applies to the field of structured-light projection for capture of 3D image information.
Structured-light systems capture the image of a special light pattern, which is projected on an object. Three-dimensional properties of the object are computed from this image. In such systems, LED or VCSEL projectors, especially emitting light in the near-infrared (NIR) spectrum, and CMOS image sensor (CIS) modules are typically employed. Short exposure times and strong illumination levels may be required to avoid motion artefacts or adverse effects of background light.
The light pattern can be created by the VCSEL structure or by a mask in the optical path, and a lens can serve to direct the light over the field of view. Considerations of eye safety may limit the maximal duration of the illumination. Strong light pulses emitted during short exposure times generate a structured light pattern that is sufficiently distinct even in the presence of bright background light.
The projected light pattern is captured by an image sensor. A global shutter image sensor is typically used, because it is favourable for capturing entire light patterns produced by short illumination, in particular on moving objects. All pixels are exposed at the same time, and the image is subsequently read out. Global shutter pixels are more complex to manufacture due to extra process steps required to manufacture the in-pixel memory element(s). Global shutter pixels also have a smaller saturation level for the same pixel size, and are typically larger in size than rolling shutter pixels due to the required in-pixel memory element(s). So a suitable rolling shutter solution will be preferable.
When a rolling shutter is used, the illumination may be continuous during the entire readout time, but it requires high power consumption. Considerations of eye safety may essentially restrict the maximum light intensity, and this is a drawback if bright objects are to be illuminated or bright background light is present.
The light emission may instead be pulsed in such a manner that illumination is effected after a global or rolling reset at a moment when all pixels are sensitive. In this case the projection of the light pattern can be increased to high power, so that the light pattern remains easily detectable even on a bright object. The only limitation is the output power of the light source. When a rolling shutter is used, the pixels are also exposed to the light in the intervals between the light pulses, and this can create artefacts if a further light source emitting at the wavelength of the light pulses is present. The first pixel rows that are read out are exposed during a shorter time interval than the pixel rows that are read out at a later time, and this may cause a gradient in the image.
The definitions as described above also apply to the following description unless stated otherwise.
The term “frame” will be used in the sense of “one image of the set of still images that constitute a sequence of images like a film or video”. 3D means three-dimensional, as usual.
The 3D camera system comprises an array of addressable light sources, which is configured for an activation of the light sources individually or in groups, an image sensor comprising a two-dimensional array of pixels, which are configured for the detection of a predefined light pattern, and a rolling shutter of the image sensor. The array of addressable light sources is configured for a consecutive activation of the light sources according to the predefined light pattern or part of the predefined light pattern, and the rolling shutter is configured to expose areas of the image sensor in accordance with the activation of the light sources, so that the pixels in an exposed area are illuminated by the activated light sources.
In an embodiment of the 3D camera system the array of addressable light sources is configured for an activation of the light sources in groups comprising rows of the array.
In a further embodiment the array of addressable light sources is configured for an activation of each of the light sources individually.
A further embodiment comprises a mask or projection lens providing the predefined light pattern.
In a further embodiment the predefined light pattern is provided by encoding the consecutive activation of the light sources.
In a further embodiment the predefined light pattern is temporary and varied by encoding the consecutive activation of the light sources.
In a further embodiment the array of addressable light sources is configured to generate a portion of the predefined light pattern, and a diffractive optical element is configured to generate the predefined light pattern by replicating the portion of the predefined light pattern generated by the array of addressable light sources. Such an array of addressable light sources may especially be a linear array of addressable light sources, which may especially comprise individually addressable light sources.
In a further embodiment the light sources emit light in the near-infrared spectrum.
In a further embodiment, the synchronized illumination is used in conjunction with 2 synchronized CMOS image sensors and used in an active stereovision 3D system.
The following is a more detailed description of examples of the 3D camera system in conjunction with the appended figures.
The light sources 3 may be any suitable light emitting devices, especially vertical-cavity surface-emitting lasers (VCSELs) or light-emitting diodes (LEDs). An array of VCSELs is especially suitable and can be realized with pitches of typically 10 μm, for instance.
The rolling shutter 4 allows to expose a selected area of the array of pixels to the light pattern that is projected. An exposed area 4* is indicated in
The array of pixels may especially be controlled by row address logic, which may be integrated in the image sensor 2. The row address logic generates a read pointer 5 and a reset pointer 6. The read pointer 5 is provided to address the row that is to be read out next. The reset pointer 6 is provided to address the row that is to be reset. In
The window formed by the rolling shutter is scrolled over the array of pixels, thus changing the area of the image sensor that is exposed to incident light. The window may especially be scrolled from one lateral boundary of the array of pixels to the opposite lateral boundary, for instance, in particular from top to bottom in
The projected light pattern can be created by a mask 9 in the optical path between the array 1 of addressable light sources 3 and an optional projection lens, for instance, or by the projection lens. The light pattern can instead be created by the array 1 of addressable light sources 3 itself, either through position of the light sources 3 or by means of a two-dimensional addressable array of small light sources. In the latter case, the light sources 3 are addressed in a fashion similar to the addressing scheme of a display or micro-display.
It is not necessary that the pitch of the array 1 of addressable light sources 3 match the pitch of the array of pixels in the image sensor 2. One row of light sources 3 may extend over several rows of pixels, for example. The image sensor 2 may comprise 500 rows of pixels, for instance, while the array 1 of addressable light sources 3 may comprise 50 rows of light sources 3, for instance, so that each row of emitting light sources 3* illuminates 10 rows of pixels during exposure. It may nevertheless be advantageous if the array 1 of addressable light sources 3 covers the same field of view as the image sensor 2.
The operation of the array 1 of addressable light sources 3 and the array of pixels in the image sensor 2 is to be synchronized, so that each of the exposed pixels is illuminated, while pixels that are not exposed are not necessarily illuminated. The light sources 3 have to be active at least during a time period that falls within the time interval during which the pixels are exposed. The time interval during which the pixels are exposed is controlled by the time when the corresponding rows are reset and the time when the corresponding rows are read out (10 rows in the example given above). At each reset and start of exposure of the next row(s) of pixels, a new group of light sources 3 may be activated, so that the group of emitting light sources 3* may change from row to row, or from each set of rows to each set of rows.
In the variants according to
The light pattern may especially be defined on a raster of predefined spots. The raster may especially be the raster on which the light sources 3 are arranged. If at least some of the spots are individualized, which may be effected by assigning numbers or coordinates, for instance, a code of the light pattern can be obtained by assigning one of two alternative designations to each spot, according to the light pattern. A “0” may be assigned to the dark spots, and a “1” to the bright spots, for instance.
For a sequence of consecutive frames, each spot yields a corresponding specific sequence of “bright” and “dark” items according to its successive appearences as a bright or a dark spot within each frame. If the number of frames in the sequence is n, the specific sequence has n items, and the number of different possible sequences is 2n. The array 1 of addressable light sources 3 is suitable for a temporary encoding of the light pattern, which is especially favourable in combination with the rolling-shutter image sensor 2. Thus the light pattern can easily be varied during the operation of the structured-light system.
The 3D camera system with rolling-shutter image sensor has many advantages, in particular if compared with global-shutter image sensors. Rolling-shutter image sensors are easier to manufacture and require fewer process steps. They enable faster image readout and provide higher dynamic range and higher quantum efficiency for near-infrared light. They can more easily be combined with backside illumination or wafer stacking to create smaller dies. The peak power consumption is much smaller, as it is spread over the activated segments of the array of addressable light sources.
This simplifies power supply design for the driving circuit and may result in a smaller, more compact circuit with smaller decoupling capacitances.
The described 3D camera system with rolling-shutter image sensor can be used for a variety of applications, including three-dimensional image detection using structured light or active stereovision. In a structured-light system, the depth is calculated from the deformation of the projected pattern on the objects in the scene. This calculation can be based upon triangulation and geometric placement of the projector and the camera, or upon other principles. In an active stereovision system, the projected pattern provides structure on surfaces in the scene which have no inherent structure (e. g. a white wall). The distance is calculated from the relative position of the two image sensors in the stereovision system.
Number | Date | Country | Kind |
---|---|---|---|
17196836.5 | Oct 2017 | EP | regional |
Filing Document | Filing Date | Country | Kind |
---|---|---|---|
PCT/EP2018/078073 | 10/15/2018 | WO | 00 |