The inventions disclosed herein generally belong to the field of textiles. In particular, they pertain to an innovative method and device for manufacturing novel 3D fabric objects.
A large number of 3D fabric forming processes have been developed in the past 50 years, especially for producing textile reinforcements for manufacturing composite materials. A 3D fabric is defined as a single-fabric system (i.e. not stitched sheets/layers of fabrics), the constituent yarns/tows of which are supposed to be disposed in a three mutually perpendicular planes relationship. Accordingly, a 3D fabric can be produced using one or more sets of yarns.
Most methods aim to essentially arrange and integrate three sets of yarns/tows orthogonally, i.e. in XYZ (i.e. length, width and thickness) directions. Some methods additionally incorporate additional yarns in bias directions relative to fabric-length direction (whereby such 3D fabrics comprise five sets of yarns). Technically all such methods can be classified as 3D-weaving (U.S. Pat. Nos. 6,186,185 and 6,338,367) and non-woven “noobing” (EP 0236500, U.S. Pat. No. 5,465,760, WO 9803712, U.S. Pat. Nos. 6,315,007, 5,353,844, FR 2227748, U.S. Pat. Nos. 5,343,897, 5,449,025, 5,435,352, 5,327,621, 5,270,094, 4,336,296, 3,834,424, 5,137,058, SE 9500309, U.S. Pat. Nos. 5,242,768, 3,818,951, 5,085,252, 3,955,602, 4,518,640, 5,465,760, 5,270,094, 4,872,323etc.) types, as established by Khokar [1-3].
The main technical difference between the 3D-weaving and non-woven “noobing” processes resides in the fundamental technical fact that the shedding operation is foremost and indispensable for technical realization of the weaving process and woven (interlaced) material. Accordingly, the 3D-weaving process is technically realizable by employing only the dual-directional shedding operation (U.S. Pat. Nos. 6,186,185 and 6,338,367) to create sheds in fabric's thickness and width directions (compared with the conventional 2D-weaving process wherein the mono-directional shedding operation is employed to realize the process by creating a shed in only the fabric's width direction). It may be noted that exploitation of conventional 2D-weaving process for producing a 3D fabric does not make it the 3D-weaving process. This is because the 2D-weaving process remains identical whether producing 2D fabric or 3D fabric and both these types are composed of a set of warps interlacing with a set of wefts. In comparison, the 3D fabric produced by the 3D-weaving process is composed of a set of warps interlacing with two sets of mutually perpendicular wefts—one interlacing in fabric's thickness direction and the other in fabric's width direction. The non-woven noobing process, on the other hand, is realized without involving any shedding operation. As a consequence, the 3D fabrics producible by the 3D-weaving and the non-woven noobing processes respectively have the characteristic interlaced (woven) and non-interlaced (noobed) structures. However, this fundamental difference has been overlooked in the past and without any technical basis the noobing process was assumed and misrepresented as 3D-weaving until they were technically described, clarified and characterized by Khokar [1-3].
It is relevant here to give details in brief of the noobing process which is unique in that it produces only 3D fabrics. Unlike other fabric-forming processes the noobing process can neither produce 2D fabrics (such as woven, braided and knitted sheet fabrics) nor 2.5D fabrics (such as pile, plush and terry fabrics). The noobing process essentially involves binding a set of stacked unidirectional yarns (X), the orientation of which is usually in fabric's length direction, using two other sets of binding yarns (Y) and (Z). Each of these sets of binding yarns is oriented in the stacked unidirectional yarns' width direction (Y) and thickness direction (Z). The structural integrity of the 3D fabric is realized by cyclically binding the set of unidirectional yarns (X) with binding yarns (Y) and (Z). The binding yarns of the sets (Y) and (Z) connect with their respective directions' opposite exterior yarns of the stacked unidirectional yarns (X). The created bindings therefore occur at the surfaces/exteriors of the produced 3D fabric. The yarns of the sets (X), (Y) and (Z) occur linearly, or straight, between their respective directions' opposite surfaces of the produced 3D fabric. In another variant of noobing process, sets of yarns oriented in fabric's length (X), width (Y) and two bias (+/−β) directions are stacked and then bound by using another set of yarns (Z) which are oriented in the stacked yarns' thickness direction. Inclusion of the two sets of bias yarns (+/−β), which lie between the two longitudinal edges of the 3D fabric at an angle other than 90° with respect to the longitudinal edges, is done to improve the mechanical performance of the 3D fabric to meet application demands. As can be noted now, binding of one (uniaxial) or more (multiaxial) directionally oriented sets of stacked yarns is indispensable to the noobing process whereby the noobing process stands technically differentiated from the weaving, knitting, braiding and all known non-woven processes.
Accordingly, the former process type is referred to as the uniaxial noobing process and the latter is called the multiaxial noobing process (which is commercially employed to produce the so-called multiaxial non-crimp fabrics). The 3D fabrics produced by both these process types are henceforth respectively called uniaxial noobed fabric and multiaxial noobed fabric. Both these types of noobed fabrics are fundamentally a 3D fabric because they invariably comprise three and five sets of yarns (X, Y, Z in former and X, Y, Z and +/−β in latter) respectively, which are disposed in a three mutually perpendicular planes relationship. In either case, the longitudinal direction yarns (X) are supplied individually and bound into the 3D fabric directly. As all the constituent yarns of both the noobed fabric types occur linearly, i.e. without interlacing, intertwining and, interlooping, the structural integrity of the noobed fabrics comes from the bindings at its surfaces. Clearly, because noobed fabrics are technically different from woven, braided and knitted fabrics, the noobing process is also therefore technically unlike weaving, knitting, braiding and all known non-woven processes.
It is therefore an object of the present invention to provide a new type of noobed 3D fabric which at least alleviates the above-discussed problems of the prior art. This object is obtained by means of a 3D fabric and a method and apparatus for producing such a fabric, as defined in the appended claims.
According to a first aspect of the present invention, there is provided a method for producing a 3D fabric comprising the steps of:
laying first yarn in consecutive turns or convolutions in a first direction to form a zigzag or sinuous formation in a first plane, and in a plurality of superposed layers in parallel to said first plane;
laying second yarns in a second direction which is different from said first direction, whereby said second yarns at least partly extend between said superposed layers of first yarn, said second yarns thereby being arranged obliquely or parallel to the first plane of the first yarn;
laying, before or after the laying of the second yarns, third yarns in a third direction which is different from said first and second direction, whereby said third yarns at least partly extend between the turns or convolutions of said zigzag or sinuous formations of the first yarn, said third yarns thereby being arranged obliquely or essentially orthogonal to the first plane of the first yarn; and
sequentially repeating the steps of laying second yarns, at least partly between said superposed layers of first yarn, and laying third yarns, at least partly in between said zigzag or sinuous formations of the first yarn.
The second yarns are preferably laid between said superposed layers of first yarn, thereby being arranged parallel to the first plane of the first yarn.
The third yarns are preferably laid between the turns or convolutions of said zigzag or sinuous formations of the superposed layers of the first yarn, and thereby being essentially orthogonal to the first plane of the first yarn.
Additionally or alternatively, at least one of the second and third yarns may extend obliquely in relation to the first plane.
The method further preferably comprises the step of applying a pressure to compress at least some of the laid yarns during or in between said sequential repetitions.
The repeated laying of the second yarns preferably occurs without cutting the second yarns, whereby the second yarns are folded to present integrated turns or convolutions for the laid second yarns.
The repeated laying of the third yarns preferably occurs without cutting the third yarns, whereby the third yarns are folded to present integrated turns or convolutions for the laid third yarns.
The first laying of the second yarns between said superposed layers of first yarns and of the third yarns in between said zigzag or sinuous formations of the first yarns are preferably made centrally in the superposed layers of first yarns, and wherein the sequential repetition of the steps of laying second yarns between said superposed layers of first yarns and laying third yarns in between said zigzag or sinuous formations of the first yarns are made on both sides of the first laid second and third yarns, thereby producing the 3D fabric from the middle and outwards.
The sequential repetition of the steps of laying second yarns between said superposed layers of first yarns and laying third yarns in between said zigzag or sinuous formations of the first yarns are preferably made simultaneously on both sides of the first laid second and third yarns, respectively.
The turns or convolutions of each of the sequentially laid second yarns are preferably laid in a common plane, and preferably a common plane being parallel to the first plane.
The turns or convolutions of each of the sequentially laid third yarns are preferably laid in a common plane, and preferably a common plane being orthogonal to the first plane.
The turns or convolutions of each of the sequentially laid second and/or third yarns may alternatively be laid in at least two different planes.
The method further preferably comprises the step of laying additional binding yarns in the fabric, said additional binding yarn being laid in a direction which is non-parallel to each of the first, second and third yarns, for formation of a multiaxial 3D fabric.
During production at least one of the laid first, second and third yarns are preferably continuously maintained in tensioned condition.
The step of applying a pressure to compress the laid yarns during or in between the sequential repetitions preferably comprises bunching or converging some of the first yarns by applying lateral pressure from four sides of the laid first yarns encircling the axial direction of the first yarns.
Additionally or alternatively, the step of applying a pressure to compress the laid yarns during or in between the sequential repetitions may comprise applying a pressure to compress at least some of the laid yarns in a direction essentially corresponding to the axial direction of the first yarn.
The first yarns are preferably laid in one of the fabrics length direction, width direction and thickness direction.
At least some of the turns or convolutions of the yarns in at least one direction may have different lengths.
The step of sequentially repeating the steps of laying second yarns and laying third yarns may be made so that one layer of second yarns and one layer of third yarns are repeatedly laid after each other in an alternating fashion.
The step of sequentially repeating the steps of laying second yarns and laying third yarns may be made so that more than one layer of second yarns and/or more than one layer of third yarns are laid immediately following each other, whereby the layers are laid in a semi-alternating fashion.
According to another aspect of the present invention, there is provided an apparatus for producing a 3D fabric comprising:
two sets of holders arranged spaced apart from each other, the holders being arranged to hold a first yarn laid in consecutive turns or convolutions in a first direction to form a zigzag or sinuous formation in a first plane, and in a plurality of superposed layers in parallel to said first plane;
a set of first yarn carriers moveable along paths at least partly between said superposed layers of first yarns for laying of second yarns along said paths in a second direction which is different from said first direction, said second yarns thereby being arranged obliquely or parallel to the first plane of the first yarns; and
a set of second yarn carriers moveable along paths in a third direction which is different from said first and second direction, said paths at least partly extending between the turns or convolutions of said zigzag or sinuous formations of the first yarns for laying of third yarns along said paths, said third yarns thereby being arranged obliquely or essentially orthogonal to the first plane of the first yarns.
The first yarn carriers are preferably moveable along paths between said superposed layers of first yarn, the paths thereby being arranged parallel to the first plane of the first yarn.
The second yarn carriers are preferably moveable along paths between the turns or convolutions of said zigzag or sinuous formations of the superposed layers of the first yarn, and the paths thereby being essentially orthogonal to the first plane of the first yarn.
Additionally or alternatively, at least one of the first and second yarn carriers may be moveable along paths extending obliquely in relation to the first plane.
The apparatus further preferably comprises a yarn packing device, comprising packing elements being moveable towards each other to apply a pressure to compress at least some of the laid yarns, wherein said packing elements are moveable in a direction essentially corresponding to the axial direction of the first yarn.
The apparatus further preferably comprises a yarn converging device, comprising at least one pair of converging elements being moveable towards each other to apply a pressure to compress at least some of the laid yarns, wherein said converging elements are moveable in a direction essentially corresponding to the axial direction of the second and/or third yarns.
There may be provided two sets of first yarn carriers and two sets of second yarn carriers, the two sets being simultaneously operable on different sides of the fabric, thereby enabling production from the middle and outwards.
Each carrier of the set of first yarn carriers and/or the set of second yarn carriers may be arranged to be moved along different paths when being traversed back and through in relation to the first yarn, said paths all occurring in a common plane.
Additionally or alternatively, each carrier of the set of first yarn carriers and/or the set of second yarn carriers may be arranged to be moved along different paths when being traversed back and through in relation to the first yarn, said paths occurring in at least two different planes.
The apparatus preferably further comprises a set of third yarn carriers, for laying additional binding yarn in a direction which is non-parallel to each of the first, second and third yarns, for formation of a multiaxial 3D fabric.
The apparatus preferably further comprises a loop binding device arranged to bind loops of the first yarns, thereby creating closed end surfaces of the fabric.
Each set of holders are preferably arranged on a supporting structure, the two supporting structures being arranged to face each other. The holders preferably comprise hooks arranged on stems, wherein each stem is connected to one of the supporting structures. The hooks may be separable from the stems. The stems are further preferably arranged to allow passage of yarn carriers between them.
At least one of the supporting structures is preferably moveable in relation to the other supporting structure. The at least one moveable supporting structure may be moveable in a direction to and away from the other support structure. Additionally or alternatively, the at least one moveable supporting structure may be tiltable or rotatable in relation to the other support structure.
It is further preferred that at least one of the support structures is provided with extended slot openings, through which laying of yarn is enabled.
The apparatus further preferably comprises a yarn laying device, arranged to be moveable to lay the first yarn in a zigzag or sinuous formation between the two sets of holders.
The carriers of at least one of the first and second yarn carriers are preferably formed as narrow spools.
The carriers of at least one of the first and second yarn carriers are further preferably moved by positive control.
The holders of the two spaced apart set of holders are preferably arranged to hold the first yarn laid in consecutive turns or convolutions to form loops with curved ends.
According to still another aspect of the invention, there is provided a 3D fabric comprising:
at least one first yarn laid in essentially parallel turns or convolutions in a first direction and in a first plane, and in a plurality of superposed layers in parallel to said first plane, wherein adjacent turns or convolutions are either connected to each other, or cut apart at the ends;
second yarns laid in a second direction which is different from said first direction, whereby said second yarns at least partly extend between said superposed layers of first yarn, said second yarns being arranged obliquely or parallel to the first plane of the first yarn, each of said second yarns being a continuous string arranged in consecutive turns or convolutions to form a zigzag or sinuous formation; and
third yarns laid in a third direction which is different from said first and second directions, whereby said third yarns at least partly extend between the turns or convolutions of the first yarn and in between the turns or convolutions of said zigzag or sinuous formation of the second yarns, said third yarns thereby being arranged obliquely or essentially orthogonal to the first plane of the first yarn, each of said third yarns being a continuous string arranged in consecutive turns or convolutions to form a zigzag or sinuous formation;
wherein a majority of the turns or convolutions of the third yarns are laid so that at least two turns or convolutions of the first yarn in each layer are provided between each pair of adjacent turns or convolutions in each of the third yarns.
The second yarns are preferably laid between said superposed layers of first yarn, thereby being arranged parallel to the first plane of the first yarn.
The third yarns are preferably laid between the turns or convolutions of said zigzag or sinuous formations of the superposed layers of the first yarn, and thereby being essentially orthogonal to the first plane of the first yarn.
Additionally or alternatively, at least one of the second and third yarns may extend obliquely in relation to the first plane.
At least one first yarn is preferably laid as a continuous string in consecutive turns or convolutions to form a zigzag or sinuous formation in a first plane, and in a plurality of superposed layers in parallel to said first plane.
The 3D fabric further preferably comprises additional second yarn laid below or on top of the superposed layers of first yarns, whereby said additional second yarn is enclosed by the third yarns.
The 3D fabric preferably further comprises additional third yarn laid beside the columns formed by the second yarn, whereby said additional third yarn is enclosed by the second yarns.
At least one of the first, second and third yarns are preferably being maintained in a pre-tension or pre-stressed state.
All surfaces of the fabric are preferably closed surfaces.
The turns or convolutions of each of the second yarns may be laid in a common plane, said plane preferably being parallel to the first plane.
Additionally or alternatively, the turns or convolutions of each of the third yarns may be laid in a common plane, said plane preferably being orthogonal to the first plane.
Additionally or alternatively, at least some of the turns or convolutions of each of the second and/or third yarns may be laid in at least two different planes.
The 3D fabric further preferably comprises additional binding yarns in the fabric, said additional binding yarns being laid in at least one direction which is non-parallel to each of the first, second and third yarns, thereby providing a multiaxial 3D fabric.
The orientation of first yarns may be in one of the fabrics length direction, width direction and thickness direction.
The first yarn(s) may be of a first material, and wherein at least one of the second and third yarns of a second material, said second material being different from said first material.
In one embodiment, the first yarn(s) is of a first material, the second yarns are of a second material, and the third yarns are of a third material, wherein said first, second and third material are different from each other.
At least one of the first yarn(s), second yarns and third yarns preferably have consecutive turns or convolutions being of different lengths.
The 3D fabric may exhibit different transmission properties in different directions, the property being related to at least one of: thermal conductivity, electrical conductivity, sound conductivity, light conductivity and magnetic conductivity.
The 3D fabric may exhibit different mechanical properties in different directions, the property being related to at least one of: compressive, tensile, bending, twisting and shearing properties.
The 3D fabric may have different abrading or wearing properties exhibited in different areas or sections of the fabric.
Two of the edges of at least one of the surfaces may be non-parallel.
Additionally or alternatively, at least two oppositely arranged surfaces of the fabric may be non-parallel.
At least one surface of the fabric may be curved.
The yarns in the fabric may be laid in such a way that at least one of a recess, slot, taper, hole or projection is formed in the fabric.
The fabric may comprise carriers of a dischargeable chemical formulation to function as either a crack sealant or indicator of damage in composite material and injury mitigation material.
The fabric may comprise a medical formulation, said medical formulation being at least one of: a healing agent, an anti-bacterial agent, a germicidal agent, a bodily discharge agent, a fluid neutralizing agent, an absorbing agent, a blood coagulation agent, a time dependent agent and a pressure dependent agent.
At least some of the yarns may be fusible, stretchable or malleable, to render the fabric to either be split-resistant, conform to or retain a certain shape or form a composite material.
At least some of the yarns may occur in a non-linear path about its longitudinal axis.
At least two adjacent surfaces may be non-orthogonal.
According to still another aspect of the present invention, there is provided a composite material comprising a 3D fabric of the above-discussed type.
According to still another aspect of the present invention, there is provided an injury mitigation protective material comprising a 3D fabric of the above-discussed type.
The inventions disclosed herein uniquely reside in the fields of both uniaxial and multiaxial noobing processes and corresponding noobed fabrics and fabric-objects.
On the basis of the foregoing technicalities the inventions disclosed herein technically relate to noobing process and noobed fabrics, both uniaxial and multiaxial types, which are herewith commonly referred to as 3D fabrics or noobed fabrics or 3D fabric objects. For ease of explaining and describing the various aspects of the inventions, a 3D fabric as used in the context of this application is hereby not limited to being only of a traditional continuous-length form but it is also considered and represented as a 3D fabric object in the form of a cuboid because 3D fabric objects can be produced in limitless forms/shapes. Accordingly, the inventions disclosed herein are neither limited to continuous-length 3D fabric and cuboid form of 3D fabric object, nor to production of only 3D fabric object of cuboid form.
Further, it may be noted that the term yarn(s) is representatively used to express a number of fibres, either of continuous or discontinuous types and either mono or multi filament types, that are either twisted or non-twisted. Such yarn/s also include and represent tows, blended yarns, flat yarns, fibrous tapes, sheathed fibre bundles, strands, twines, co-mingled yarns, prepreg tows etc.
The zigzag or sinusoidal laid yarns have certain bends/turns/convolutions which form the loops. In the context of the present application, the terms bend/turn/convolution is used to indicate one leg of such loops, whereby a full loop, going forth and back, comprises two bends, turns or convolutions. Thus, one bend, turn or convolution is e.g. formed each time a yarn carrier is traversed a manufacturing path in one direction.
Mere arrangement of yarns/tows in XYZ directions, and also additionally in bias directions, as taught by the existing methods are now considered to be inadequate for engineering the mechanical properties or mechanical performance of composite materials, particularly those required for primary load bearing applications. For producing high performance composite materials it is becoming increasingly necessary now to have a 3D fabric of required defined dimensions and shapes comprising at least yarns/tows of one of the required directions X, Y, and Z being inherently maintained in tension, i.e. in pre-stressed or pre-tensioned condition, so that the properties of the constituent fibres get highly/fully exploited and that during matrix impregnation process these yarns/tows do not lose their linearity under impregnation forces (buckling) and thereby cause improper fibre displacement and orientations, improper distribution of fibres and matrix and hence degradation of the properties of the final composite materials.
The existing 3D fabrics do not have/provide any built-in mechanism to assuredly maintain linearity of constituent yarns/tows of any direction. This is because presently there is no process available that enables production of a 3D fabric with its constituent yarns of any direction remaining/existing in a pre-tensioned condition. As a consequence of a 3D fabric not comprising yarns that exist in tension, the linearity of constituent yarns/tows gets disturbed and misaligned due to buckling under matrix impregnation pressure whereby matrix-rich and fibre-rich regions are created and the mechanical properties of the produced composite materials tend to become relatively lower. Such composite materials are not well-suited particularly for manufacturing primary load bearing components/products.
A 3D fabric having inherently pre-stressed or pre-tensioned yarns/tows is also needed in applications that are required to bear quickly high energy impacts, such as those arising from ballistic hit and blast wave. Otherwise, the yarns/tows will have to first generate sufficient tension within the fabric (for example through yarn-to-yarn friction which necessitates some slippage of yarns and hence fabric's buckling) before being able to absorb/take the impact's load. A high energy impact situation demands an equally quick response from the 3D fabric for not only absorbing energy but also the shock associated with it as the shock can at times prove more lethal/fatal than the impact itself. A 3D fabric without its yarns/tows inherently being in pre-tension would be obviously relatively less effective compared with the one that has its yarns always in a tensioned state. Applications for 3D fabrics incorporating yarns/tows that are inherently in a pre-tensioned state include impact injury mitigation protective wears, wall panels and coverings for vehicles, as well as explosive disposal mitigation sheets/covers, besides strengthening new and heritage buildings, bridges etc. Composite materials incorporating a 3D fabric composed of yarns/tows that exist inherently pre-stressed or pre-tensioned would also perform well in said high energy impact applications as also in the fields of transportation (aerospace, aeronautical, automotive, shipping etc.), sports equipment, medical, industrial engineering etc.
Apart from the above indicated important drawback of the existing 3D fabrics, they have at least three other inadequacies as well. First, in general, they do not have at least some of the yarns/tows that float with certain linear length on the fabric's surface/s, and in particular, in only certain required area/s, to impart corresponding improved performance and smoother surface. Second, the primary load-bearing axial/longitudinal direction yarns/tows of such 3D fabrics do not integrate in a tensioned state with either the yarns of the thickness direction or the width direction at both fabric-end surfaces. And third, such 3D fabrics do not have variable yarn placements or spacings and/or concentrations, i.e. unequal yarn distribution in a given zone, for engineering selective and varying performance in a 3D fabric. All these drawbacks arise because of the limitations of the available processes.
The corresponding consequences of the above-indicated inadequacies are:
As can be inferred from the presented shortcomings of the available 3D fabrics, the existing methods and devices are practically inefficient and unsuitable for mentioned technical reasons. From economic perspective, the points below amply illustrate why these processes have remained commercially unattractive and unviable for nearly five decades.
Clearly, all these stated shortcomings need to be overcome quickly because use of composite materials in manufacturing all transportation machines is a key to reduce CO2 emissions, and thereby global warming, CO2 related pollution and associated respiratory and other related ailments.
Therefore, a method and device is needed now to produce 3D fabrics without the above-indicated deficiencies and inadequacies. These important requirements are achieved by the inventions disclosed herein.
Accordingly, a novel 3D fabric disclosed herein is characterized by one or more of the following: (i) it comprises at least some yarns/tows of at least one desired direction (length, width, thickness, bias), maintained inherently in tension, i.e. in pre-stressed or pre-tensioned condition, (ii) it incorporates planes of yarns in bias orientations in either fabric's length or width or thickness direction, (iii) it incorporates yarns/tows with varying yarn/tow placements/spacings or concentrations in desired area/s of noobed fabric for manufacturing optimized performance composite materials, (iv) it comprises yarns/tows of different lengths of at least one given direction to directly create a shaped product, (v) comprises at least some yarns/tows floating with certain linear length on at least one of fabric's surfaces in either fabric's length or width or thickness direction or in bias orientations, at least in some desired zones/areas of a surface, for providing increased adhering length to matrix for improving mechanical performance, and (vi) has customized dimensions and shape with either all surfaces integrated or tightly held open-ended axial/longitudinal yarns.
The innovative 3D fabric-forming method for producing the novel 3D fabrics (F) disclosed herein is characterized by incorporation of following main steps, the order of some of them may be suitably varied according to needs: (1) laying a set of yarns/tows in a zigzag arrangement in a tensioned manner, with their foldings/loops held between pre-selected supporting holders of two sets that face each other in a manner that eventually defines closely the customized shape/form and either length or width or thickness of the 3D fabric to be produced, the laid zigzag yarn/tow arrangement being henceforth called a predisposed set of axial yarns/tows (X), or simply axial or first yarns (X); (2) bunching/converging some of the axial yarns (X) at its middle part by pressing laterally, or putting pressure, at the four sides of the laid axial yarns (X) to a predetermined distance to dimensionally confine them to define the required 3D fabric's cross-sectional dimensions, as well as corresponding fibre volume fraction of 3D fabric; (3) laying a first set of binding yarns (Y), or simply second yarns (Y), in tensioned manner, and a second set of binding yarns (Z), or simply third yarns (Z), in a tensioned manner, in mutually dissimilar orientations by entering each set of binding yarns (Y) and (Z) from opposite end sides of the set of axial yarns (X) and preferably incorporating them in a middle part of the set of axial yarns (X) to start subsequent further laying of these sets of binding yarns (Y) and (Z) at either sides of the incorporated binding yarns (Y and Z), preferably alternately, in their respective directions, to produce 3D fabric (F) simultaneously “middle-outwards”, i.e. producing two halves of a 3D fabric simultaneously starting from a middle part of the set of axial yarns (X) and proceeding towards both the end sides; (4) pressing laterally and packing the laid binding yarns of the (Y) and (Z) sets against each other from the directions of respective end sides of the set of axial yarns (X); (5) stop bunching or applying pressure at all four sides of axial yarns (X) and also that on the laid binding yarns (Y) and (Z) from the end sides of the set of axial yarns (X); (6) continuing to lay further the two sets of binding yarns (Y) and (Z) through the set of axial yarns (X) in a manner to fold them to create the respective bound fabric surfaces; (7) repeating steps 2-6 until the two sets of binding yarns (Y) and (Z) producing the two halves of 3D fabric reach close to the respective end sides of the axial yarns (X); (8) initiating integration of the set of axial yarns (X) with either the binding yarns/tows of either the set (Y) or set (Z), or additional yarn/s, for creating the integrated surfaces of the 3D fabric's two end sides, by drawing/passing the individual binding yarns of either the set (Y) or (Z) concerned, or additional yarn/s, through either corresponding rows or columns of the loops of the set of axial yarns (X); (9) cutting the binding yarns of set (Y) or (Z), or additional yarn/s, extending out from the loops of axial yarns (X); (10) clamping the produced 3D fabric (F) at its longitudinal sides to aid release of its end sides from their support holders; (11) disengaging the loops/foldings of axial yarns (X) that are at the end sides of the produced 3D fabric (F) from its supporting holders either without cutting the loops, or by cut-opening the loops of axial yarns (X); and (12) supporting the produced 3D fabric (F) and directly depositing it for packaging.
Certain unique aspects of the described method need to be pointed out here:
While the above indicated procedure relates to production of the uniaxial type 3D fabric, by laying bias-binding yarns (+V and −V) in a manner similar to that described for binding yarns (Y) and (Z), a multiaxial type 3D fabric is producible. Bias-binding yarns (+V and −V), which can also function as the second and third yarns, can be laid, for example in an extension of indicated steps 3 to 7.
Production of the 3D fabric is carried out “middle-outwards” to enable simultaneous production of its two halves. Such a method doubles the production rate without speeding up the process. Hence this method is economically advantageous.
As the production of 3D fabric proceeds middle-outwards along the tensioned axial yarns (X) by bunching/converging them laterally at the time of laying the two sets of binding yarns (Y) and (Z), the set of axial yarns (X) gets tightly packed and bound by both sets of binding yarns (Y) and (Z). As a consequence, the two end sides of the 3D fabric become resistant to unraveling if the loops of the axial yarns (X) are cut off from their support holders and thereby the tension obtaining in axial yarns (X) continues to be maintained. In view of the ability of this novel process to bunch/converge the set of axial yarns (X) for tightly packing and incorporating them in a pre-tensioned condition, the step number 8 indicated in the foregoing is considered optional.
The lateral bunching/converging of the axial yarns (X) and lateral pressing and packing of the laid binding yarns (Y) and (Z) cause lateral compression of the yarns of the three directions. The lateral compressive forces in yarns/tows of any one direction then act in the longitudinal direction of the yarns of the other two sets causing them to stretch longitudinally whereby tension is generated in them. As a consequence, all three sets of yarns (X), (Y) and (Z) remain tensioned in the produced 3D fabric. This is attributed to the mechanical arrangement of the three mutually perpendicular sets of yarns and frictional forces between the tightly packed yarns. The same tensioning mechanism is similarly operating when bias-binding yarns (+V and −V) are incorporated to produce a multiaxial 3D fabric wherein these bias-binding yarns (+V and −V) also exist in a tensioned state.
Accordingly, the novel noobing device for producing 3D fabric (F) comprises the following main arrangements, the order of operations of which may be suitably varied according to requirements: (1) Arrangement to lay the set of axial yarns (X) in a zigzag manner, with their foldings/loops held between pre-selected supporting holders of two sets that face each other in a manner that will eventually define approximately the customized form and length, width and thickness of the 3D fabric to be produced, the laid zigzag yarn arrangement being called a predisposed set of axial/first yarns (X); (2) Arrangement to bunch/converge some of the laid axial yarns (X) at its middle part by pressing laterally, or putting pressure, at the four sides of the laid axial yarns (X) to a predetermined distance to dimensionally confine them to define the required 3D fabric's cross-sectional dimensions, as well as fibre volume fraction of 3D fabric; (3) Arrangement to lay a first set of binding yarns (Y), or second yarns (Y), in a tensioned manner, and a second set of binding yarns (Z), or third yarns (Z), in a tensioned manner, the mutual orientations of which are dissimilar by entering each set of binding yarns (Y) and (Z) from opposite end sides of the set of axial yarns (X) and preferably incorporating them in a middle part of the set of axial yarns (X), to start subsequent further laying of these binding yarns (Y) and (Z) at either sides of the incorporated binding yarns (Y and Z), preferably alternately, in their respective directions, to produce 3D fabric (F) simultaneously “middle-outwards”, i.e. producing two halves of a 3D fabric simultaneously starting from a middle part of the set of axial yarns (X) and proceeding towards both the end sides; (4) Arrangement to press laterally and packing the laid binding yarns of the (Y) and (Z) sets against each other from the directions of respective end sides of the set of axial yarns (X); (5) Arrangement to stop bunching or applying pressure at all four sides of set of yarns and also that on the laid binding yarns (Y) and (Z) from the end sides of the set of axial yarns (X); (6) Arrangement for continuing to lay further the two sets of binding yarns (Y) and (Z) through the set of axial yarns (X) in a manner to fold them to create the respective bound fabric surfaces; (7) Arrangements to perform steps 2-6, to achieve process continuity, until the two sets of binding yarns (Y) and (Z) producing the two halves of 3D fabric reach close to the respective end sides of axial yarns (X); (8) Arrangement to initiate integration of the set of axial yarns (X) with the binding yarns of either the set (Y) or (Z), for creating the surfaces of the surfaces of the 3D fabric's two end sides, by drawing/passing the individual binding yarns of either the set (Y) or (Z) concerned, through either column or row of the loops of the set of axial yarns (X); (9) Arrangement to cut the binding yarns of sets (Y) or (Z) extending out from the loops of axial yarns (X); (10) Arrangement to clamp the produced 3D fabric (F) at its longitudinal sides to aid release of its end sides from their support holders; (11) Arrangement to disengage the foldings/loops of axial yarns (X) that are at the end sides of the produced 3D fabric (F) from its supporting holders either without cutting the loops, or by cut-opening the loops of the axial yarns (X); and (12) Arrangement to support the produced 3D fabric and directly deposit it for packaging.
As shall become obvious later, the indicated innovative method and device are also novel by way of the following one or more main features:
1) They can be devised to lay bias-binding yarns (+V and −V), for example in an extension of indicated steps 3 to 7 to produce multiaxial type 3D fabric.
2) They produce customized 3D fabrics wherein at least one set of yarns remains in tension by the forces generated by the laterally compressed yarns of at least one other set of yarns, such 3D fabric being of either uniaxial or multiaxial or partly of both types (e.g. either (i) a 3D fabric comprising one set of binding (either Y or Z) in one half of 3D fabric and bias-binding yarns (either +V or −V) in other half of 3D fabric, or (ii) a 3D fabric comprising only one set of binding (either Y or Z), or one set of bias-binding yarns (either +V or −V).
3) They produce a 3D fabric comprising at least one set of bias-binding yarns (either +V or −V) oriented in bias direction relative to a pair of opposite surfaces (either top-bottom or left-right or front-back end surfaces) of the 3D fabric.
4) They produce 3D fabric with all surfaces integrated, especially the end surfaces by way of yarns of at least one set of binding (Y or Z)/bias-binding (+V or −V) yarns passing through the corresponding direction's loops of the zigzag laid axial yarns (X).
5) They produce 3D fabrics wherein the axial yarns (X) constituting the 3D fabric is oriented in either the length or the width or the thickness direction of the produced 3D fabric.
6) They produce 3D fabrics “middle-outwards” whereby the binding (Y or Z)/bias-binding (+V or −V) sets of yarns, at the point where they pass between/through the plane/s of axial yarns (X), exist mutually separated by ‘single’ yarns/tows of the axial yarns (X) and thereafter they are mutually separated by at least a ‘doubled/paired’ yarns of the zigzag axial yarns (X).
7) Depending on the 3D fabric architecture required, they can produce 3D fabrics with at least some of the binding yarns (Y and Z)/bias-binding yarns (+V and −V), which pass between/through the planes in which the axial yarns (X), exist mutually separated by at least a ‘doubled/paired’ zigzag axial yarns (X) and whereby such binding/bias-binding yarns float on the surface/s concerned of the 3D fabric.
8) Depending on the 3D fabric architecture required, they can produce 3D fabrics by incorporating at least some of the binding yarns (Y or Z)/bias-binding yarns (+V or −V) of at least one set in a helical loop path about either corresponding column or row or diagonal column/row of the set of zigzag axial yarns (X), such traversal in helical loop paths progressing towards the respective end sides from the “middle-outwards” point of production.
9) Depending on the 3D fabric architecture required, they can produce 3D fabrics by incorporating at least some binding yarns (Y or Z)/bias-binding yarns (+V or −V), of at least one of the two sets in a manner whereby they traverse at least in some parts/areas of the 3D fabric in a floating manner at an angle relative to the longitudinal orientation of axial yarns (X) to create a partial multiaxial structure at those corresponding parts/areas of surface/s.
10) Depending on the 3D fabric architecture required, they can produce 3D fabrics by incorporating at least some binding yarns (Y or Z)/bias-binding yarns (+V or −V), of at least one of the two sets in a manner whereby they float at least in some parts/areas of the end surfaces of the 3D fabric to create partial multiaxial structure in corresponding parts/areas of at least one of the end surfaces.
11) They produce 3D fabrics comprising either binding yarns (Y and Z) and/or bias-binding yarns (+V and −V), or one set from both these sets, arranged either in an alternating manner or in another desired order, in their respective directions, either entirely or in only certain areas to produce corresponding fabric structure/architecture.
12) They produce 3D fabric comprising axial yarns (X), binding yarns (Y and Z)/bias-binding yarns (+V and −V) in either constant or varying spacing (i.e. density per unit length) to create a 3D fabric with corresponding yarn concentrations, floats and architecture.
13) They produce customized 3D fabric objects wherein at least some yarns of at least one set are laid in relatively different lengths for creating corresponding shape/form of 3D fabric.
These and other features of the novel 3D fabric, and its production method and apparatus, will become clearer from the description which follows next.
The present inventions relating to method of and device for producing customized noobed fabrics, and the fabric products thereof, are illustrated by way of examples wherein:
a-b exemplify respectively the clamp and prong type constructions of the 3D fabric doffing unit.
The noobing method according to present invention comprises a preferred set of operations/steps which are performed by a suitable device and produces customized 3D fabric objects. The working of the noobing method and device according to this invention is described below through an example production of 3D fabric object of cuboid shape of uniaxial type comprising three mutually perpendicular sets of yarns—axial (X), binding (Y) and binding (Z). The multiaxial type 3D fabric object comprising additionally bias-binding yarns (+V and −V) will be described later at relevant places as a person skilled in the art can carry out the process with the provided basic knowledge.
Some of the principal structures producible by the method shall be indicated subsequently as other possible structures will become obvious from these examples to a person skilled in the art. These different principal 3D fabric structures, having certain features in common, are possible because the present method can be commenced using either of the two sets of binding yarns. Depending on which set of binding yarns is first used to start the process, and also if the binding yarns of one of the sets are divided and laid from both ends sides, or some from only one end side, together with the flexibility of laying the binding yarns in different positions and sequences, the production of numerous structures become directly possible. Production of only cuboid form is considered here for simplicity of explaining the spirit of the invention as mentioned earlier.
The relevant main aspects of forming 3D fabric by the noobing process according to the present invention is described below through
Such a manner of producing the 3D fabric may now be referred to as “middle-outwards” because two halves of the 3D fabric is produced simultaneously from its middle towards both the end sides.
In the process described above, certain variations could be made, particularly that relating to which set of binding yarns (Y or Z) is used for commencing the process and in which manner their laying is conducted. Another variation could be to not draw the binding yarns (Z) through the columns of loops of disposed axial yarns (X), especially when the tightly packed fibres constituting the 3D fabric have high friction between them and keep the structure integrated and maintain the disposed axial yarns (X) in tension. Yet another variation could be to include additional binding yarns (either Y or Z or both) that are correspondingly laid at the outer side of the outermost rows (either one of them or both) of disposed axial yarns (X) and/or at the outer side of the outermost columns (either one of them or both) of disposed axial yarns (X). Yet another variation could be to include/lay additional single yarns in zigzag axial yarns (X) to selectively increase the number of fibres in specific areas for achieving certain performance. In any case, 3D fabrics producible by the described process have certain features in common. By way of example, in
These examples amply demonstrate some of constructional/architectural possibilities by the “middle-outwards” and “end-to-end” formations of 3D fabrics. The indicated top view of the self-explanatory sequences of the novel 3D fabric production in
Also, although two adjacent axial yarns (X) are shown to be separated and without binding yarn (Z) in between them at certain places, in practice each looped/folded axial yarn (X) is doubled and therefore will appear as a single yarn. Because the 3D fabric is produced uniquely by bunching axial yarns (X) and laterally compressing binding yarns (Y) and (Z), they get tightly packed and therefore the indicated empty spaces will be practically filled whereby a high fibre volume-fraction 3D fabric is obtained. Also, because of such high packing of fibres there is correspondingly greater increase in fibre-to-fibre friction which keeps the fibres of all three sets locked in their respective orientations and prevents them from getting misaligned, pulled-out etc. Due to their mutually perpendicular orientations and tight packing, the laterally compressed yarns of one direction tend to constantly expand causing the yarns of the other two directions to extend longitudinally whereby the yarns of all three sets remain in a state of mutual tension and a pre-tensioned 3D fabric is realized. It may be pointed out here that a pre-tensioned 3D fabric is realized even if either the looped ends of axial yarns (X) are cut open or the binding yarns of one set are not drawn through the corresponding direction's columns or rows of loops of axial yarns (X). The integrated end sides accord relatively higher tension build-up in the involved sets of yarns, improved load-bearing capacity of bonded end sides, close dimensional tolerances, prevention of fibre disorientations during infiltration, ease of handling and minimizing fibre wastage.
It follows from the above descriptions of the different 3D fabric structures producible by the present method that they have a unique feature in that at least some of two individual adjacent binding yarns of set (Z) which pass through the planes of disposed set of zigzag axial yarns (X), have between them at least a doubled axial yarn (X), which is twice that of the initial constitution of axial yarn (X). This feature of the novel 3D fabric holds good whether the binding yarns (Z) is composed of either same or different number of filaments compared to the constitution of axial yarn (X) or laid in single (such as by traversing binding yarn supply spool) or folded/doubled (such as by using needles that draw and lay binding yarn from a stationary supply spool/bobbin). Accordingly and further, this feature of doubled axial yarn (X) occurring between two individual adjacent binding yarns (Z) is independent of whether the individual binding yarns (Z) entrap the columns concerned of axial yarns (X) directly or indirectly to achieve corresponding types of integration of columns of axial yarns (X), and thereby integration of 3D fabric.
Further, when bias-binding yarns (+V and −V) are used, they also pass through the planes of axial yarns (X), but at an angle which is different from that of binding yarns (Z). Nevertheless, between two individual adjacent bias-binding yarns of a given set (+V or −V), there will be at least a doubled axial yarn (X), which is twice that of the initial constitution of axial yarn (X).
The aspects described above relate to the uniaxial noobing process and uniaxial noobed fabric according to the present invention. A person skilled in the art can realize now that by following the various described aspects of the uniaxial noobing process, additional sets of bias-binding yarns (+V and −V) can be uniquely used whereby they can be laid respectively in two opposite diagonal directions of the disposed set of axial yarns (X). As a consequence, the multiaxial noobing process can be also uniquely performed and a pre-tensioned multiaxial noobed fabric uniquely produced as shown in
Another novelty that needs to be pointed out here is that the noobing process according to the present invention enables the set of axial yarns (X) to be directly incorporated in the orientation of either 3D fabric's length direction (L) or width direction (W) or thickness direction (T) as shown respectively in
The above described novel noobing process, both uniaxial and multiaxial types, are practically realized through an innovative noobing device. In
The noobing device comprises two walls (1a and 1b) the relative positions of which are shown in
Each of the walls (1a and 1b), the relative positions of which are indicated in
The walls (1a and 1b) could be also constructed in a manner wherein a series of parallel open slots (1m) are provided, as indicated in
Further, as shown in
The described construction and arrangement of walls (1a and 1b) is advantageous not only from the simplicity of functional and operational flexibility they accord, but also its manufacture becomes easier and less expensive whereby the benefit of cost savings can be directly passed to, for example, the buyer of a noobing machine and also the noobing machine operator.
Further, a set of hook stems (1c) is supported and held by each of the walls (1a and 1b) such that their hooking ends are free and face each other as shown in
In
Alternative types of hook stem (1c) could be also used. For example, it could be either a single metal wire/plastic monofilament having its fore end bent at an angle to the stem part, or a doubled hairpin-like wire that is bent/folded into a hook to provide a passage for yarn to pass through as mentioned earlier, or a peg-like hooking object attached to the stem, or a wire with a folded ring attached to it etc. Further, the hooking part (1d) and the stem part (1c) can be constructed of either similar or different materials. In any case, the construction of hook stem (1c) has the necessary dimensions and/or suitable shape/profile for its hooking part (1d) to accord smooth bending radius to a yarn for looping or folding safely and spaced-part surfaces, projecting or not, to help create an opening or passage in the looped or folded axial yarn (X).
Hook stems (1c) are preferably of the flexible but inextensible type and have a certain length. The hooking part (1d) of hook stem (1c) projects out from the surface of the supporting walls (1a and 1b). The length of each of the hook stems (1c) projecting from each of the walls (1a and 1b) is preferably individually adjustable to enable production of either 3D fabric's length or width or thickness dimensions, in conjunction with the relative positioning of the walls (1a and 1b). The lengths of each of the hook stems (1c) projecting from each of the walls (1a and 1b) can be either equal or unequal in accordance with the form/shape of the 3D fabric desired to be produced. For example, the relative projecting lengths of hook stems (1c) from a given wall (either 1a or 1b) can be either same or different when producing tapered, stepped, recessed, a curved surface etc. 3D fabric objects. In any case, the 3D fabric is always produced supported between the hooking parts (1d) of two sets of hook stems (1c) that face each other.
For producing a 3D fabric with uniform yarn distribution and dimensions, it is preferable that the length of each hook stem (1c) of a given set projecting out from the wall concerned (either 1a or 1b) is kept as long as possible (with respect to particular specifications of a noobing device) so that their hooking parts (1d) can be brought relatively closer to each other while the stem parts (1c), supported at respective walls (1a and 1b), remain spaced-apart and in column (and row) configuration as can be inferred from
Further, depending on the particular construction of the noobing device needed, the segment of hook stem (1c) passing through the walls (1a and 1b) can be either temporarily or permanently fixed to the respective walls (1a and 1b) through suitable arrangements such as adhesive bonding, soldering, welding, screws, mechanical sliding plate locks, magnets, offset plates etc. The hook stems (1c) could be also fixed to the respective walls (1a and 1b) through tensioning arrangements such as suitable springs. While the permanent type fixing is suitable for repeatedly producing one specific shape and dimension of 3D fabrics, the temporary type allows flexibility in increasing-decreasing the projection length of hook stem (1c) and addition-removal of hook stems (1c), for producing 3D fabrics of different forms, shapes and cross-section dimensions as per different requirements.
It will be obvious now to a person skilled in the art that through suitable construction of walls (1a and 1b), and in conjunction with incorporation of a suitable programable means for controlling the selection of hook stems (1c) to either attach-detach them from the respective walls (1a and 1b) or engage-disengage them at will, or as and when required, the set of axial yarns (X) can be correspondingly selected/arranged to produce the desired shaped/formed 3D fabrics directly. Such a programable means for controlling selection of hook stems (1c) is outside of the present invention and hence not described further.
Nonetheless, it can be indicated here that a noobing device can be operable even without incorporation of the particular programable means for controlling selection of hook stems (1c), for example, robotically and manually. The required changes relating to movement of one or more hook stems (1c) can be performed, for example, by sliding the hook stems (1c) correspondingly either towards or away from the 3D fabric under production, moving them out of positions etc. by known mechanical, electrical, magnetic, pneumatic etc. systems which are unnecessary to detail here. For producing a variety of shaped 3D fabrics either the projecting length of hook stem (1c) can be varied during 3D fabric production by moving them axially, or by moving/displacing their hooking parts (1d) laterally/sidewards, or by adding-removing them during 3D fabric production, or by operationalizing them to either engage with new yarns or disengage from held looped axial yarns (X) as and when required during production to obtain 3D fabrics that are, for example, of irregular form/shape, dimensions, varying cross-sectional dimensions, varying cross-sectional shapes etc.
It will be obvious now to a person skilled in the art that the arrangement of hook stems (1c) in the walls (1a and 1b) need not be necessarily as indicated in
The described incorporation and arrangement of hook stems (1c) and the walls (1a and 1b) in the noobing device is advantageous in that they at once eliminate the use of creel and associated setting-up work involved, besides according immense flexibility in producing directly, quickly and efficiently a variety of customized uniaxial and multiaxial types of noobed fabrics on the same noobing device whereby such a noobing process and device becomes obviously commercially attractive.
The noobing device further incorporates a unit (1e) for laying axial yarns (X), as represented in
As can be understood from
To start with, the leading end of yarn (1f) is secured at a suitable place, for example the relevant wall (1a or 1b), by using adhesive tape, tying, knotting, drawing through a hole in the wall (1a and 1b) etc. Preferably yarn (1f) is then continued to be first laid in a zigzag fashion between the lowest row/level of hook stems (1c) as this will make it easier (non-interfering) to lay continuously the yarn in a zigzag manner at the next upper level, and so on, to build as many zigzag stacks of yarn (1f) as may be required to realize approximately the length, width and thickness dimensions concerned of the required set of axial yarns (X) for the to-be-produced 3D fabric. The number of zigzags of the yarn (1f) in a plane depends on the final dimensions and shapes of the customized 3D fabric to be produced. After laying of yarn (1f) is completed, its trailing end is also likewise secured.
Once the yarn (1f) has been laid according to the production requirements of 3D fabric, unit (1e) is either positioned in a stationary manner at a suitable location in the noobing device or preferably moved to another noobing device for laying another set of axial yarns (X) on that noobing device instead of keeping it idle. Unit (1e) can be brought back to first noobing device to lay again yarn (1f) when needed, for example, to add extra axial yarns (X). The additional axial yarn (X) could be laid in either singles or doubled at required places along with the laid zigzag axial yarns (X). Another advantage of moving the unit (1e) between two or more noobing machines, than keeping it stationary/idle at one noobing device, is that free space is created for the other to-be-described operating systems of the noobing device to work relatively simply whereby the noobing device tends to become relatively compact, easy to operate and less expensive.
As can be inferred now, incorporation of unit (1e) uniquely does away with use of creel and thereby drawbacks thereof. Its incorporation as a working organ of the noobing device directly benefits in reducing the setting up time and costs of producing customized uniaxial and multiaxial types of noobed fabrics, besides enabling direct production of shaped and contoured 3D fabrics on the same noobing device. Incorporation of one unit (1e) to service a group of noobing devices, in a suitable sequence, reduces the cost of a noobing device besides rendering the production of 3D fabrics cost-effective.
The noobing device further comprises preferably two directionally-paired sets of binding yarn carriers (2a-2b and 2c-2d), for carrying binding yarns of the sets (Y) and (Z) respectively (as indicated in the insets of
Because the 3D fabric is uniquely produced “middle-outwards” by the innovative noobing process considered herein, a pair of binding yarn carriers (2a-2b and 2c-2d) are employed for laying each binding yarns (Y and Z) in their respective assigned direction (for example, in width and thickness directions). The cyclical laying of these binding yarns (Y and Z) will gradually cause their getting stacked in the fabric's length direction “middle-outwards” (i.e. from middle towards respective end sides) as the fabric builds up during production. Therefore, the time required for producing a given length of 3D fabric gets halved. Further, by having a binding yarn wound partly in two binding yarn carriers the binding yarn carrying capacity of each carrier is further reduced by half. As a consequence, the binding yarn carriers tend to become further smaller, slender and lighter. These features collectively help in speeding up the noobing process.
Depending on the type of construction employed, either one or both flanges of the binding yarn carriers (2a-2b and 2c-2d) are preferably of either solid sheet (with or without ribs) or suitably blanked sheet (such as window, perforated, slotted, spoke-like etc. construction types). All edges of the binding yarn carriers are rounded and smoothened to prevent fibre breakage and fibre pull-out. For similar reasons the internal and external surfaces are preferably flat and polished. Further, the flanges are either circular or polygonal (hexagonal, square and rectangular etc.) or a combination type in shape. Also, the two flanges of the binding yarn carriers (2a-2b and 2c-2d) could be relatively either equal or unequal in their dimensions and either similar or dissimilar in their shapes. Also, preferably the construction of binding yarn carriers is such that either one of the flanges of a binding yarn carrier can be turned relative to the other or their core can be turned relative to either one or both flanges. The overall exterior shape and surface of the binding yarn carriers is such that their transportation through the set of axial yarns (X) will not catch yarns, particularly those of the set of axial yarns (X). Further description of a binding yarn carrier (2a-2d) is unnecessary to detail here as it is outside the scope of present inventions.
The binding yarn carriers (2a-2b and 2c-2d) are preferably moved from one position to opposite, in their respective assigned directions, by passing them through the grid-like arranged stems (1c) that are supporting the disposed set of axial yarns (X). The binding yarn carriers (2a-2b and 2c-2d) are preferably traversed in a positively controlled manner (i.e. they are not thrown or propelled) by corresponding paired sets of transporting members (2e-2f and 2g-2h), as shown in
The transportation of binding yarn carriers (2a-2b and 2c-2d) is actuated by corresponding sets of suitable paired transporting members (2e-2f and 2g-2h) indicated in
The simultaneous transportation of pair of binding yarn carriers “middle-outwards” in each of their respective directions helps to uniquely speed-up the production without increasing the speed of the machine and also reduces the cost of 3D fabrics' production. The possibility of traversing the binding yarns carriers (2a-2b and 2c-2d) in any sequence, and at will, accords high flexibility in producing a wide range of shaped 3D fabrics on the same noobing device. As can be inferred now, the binding yarn carriers (2a-2b and 2c-2d) can be moved between any desired adjacent columns (and rows) of the disposed set of axial yarns (X) whereby the binding yarns can be floated on the 3D fabric's surfaces in suitable directions for improving the mechanical performance and surface smoothness of composite materials as discussed earlier. By such traversal, binding yarns (Y and Z) can be floated on 3D fabric's surface/s in different directions relative an edge of 3D fabric to directly obtain novel partial multiaxial structures.
The noobing device according to the present invention also uniquely allows either the set of binding yarns (Y or Z) to be laid through the set of axial yarns (X) “middle-outwards” by an alternative arrangement wherein a select set of binding yarn carriers is not used. In this novel arrangement the selected set of binding yarns are drawn from externally stationed spools. Such binding yarns are uniquely laid in singles, and not as doubled/hairpin-like when using needles. For example, when producing a wide 3D fabric, the set of binding yarns (Y) can be laid in singles through the horizontal slots (1m) in the walls (1a and 1b) shown in
To lay the binding yarns of a set in singles from a stationary source, preferably a set of suitable tubes or strips with guides or the like is used through which the chosen set of binding yarns, drawn from respective stationary spools, are passed. For every horizontal opening (1m) in the walls (1a and 1b), a corresponding tube/strip is used. The tubes of this set are partly inserted in the horizontal openings (1m). While the binding yarn exit side of the tubes lie facing the 3D fabric production side freely, the binding yarn entry side of the tubes lie at the outer side of the respective walls (1a and 1b) and are suitably fixed to an arrangement, such as a vertical bar connected to a pneumatic cylinder, so that all the tubes/strips can be collectively traversed back and forth in the respective horizontal opening (1m). As the set of tubes/strips is reciprocated, the binding yarns of the corresponding set get individually laid in singles between the rows (and possibly even above and below the rows, if horizontal openings (1m) are provided there) of the set of axial yarns (X). As the sets of vertical and horizontal binding yarns (Y) and (Z) are laid, preferably alternately, as indicated in
A special feature of either described arrangement is that because the 3D fabric is produced simultaneously “middle-outwards” towards the two end sides of the set of axial yarns (X), the fabric's constructional architecture can be made differently at either sides of the middle starting point to advantage. For example, while one half of 3D fabric is produced with one type of yarn spacing arrangement, the other half of the 3D fabric could be produced with entirely different yarn spacing arrangement. Such a 3D fabric with different architectural constructions can be regarded as adequately optimized solution for a given application, i.e. engineered suitably for required performance. Further, it also becomes possible with the described arrangements to produce a 3D fabric, for example with different cross-sectional shapes at two ends and different dimensions at two ends, as mentioned earlier.
A person skilled in the art will realize now that another set of similar binding yarn carriers (2i-2j and 2k-2m) could be similarly advantageously employed for laying the set of bias-binding yarns (+V and −V) in two opposite diagonal or bias directions of the set of axial yarns (X) whereby production of another type of novel multiaxial noobed fabrics could be directly obtained as indicated in
Further, because the 3D fabric is producible “middle-outwards”, the bias-binding yarns (+V and −V) can be included in either one or both the halves of 3D fabric being produced to obtain a further optimized structure. Further, an arrangement similar to the described arrangement for laying the binding yarns (Y) and (Z) can be similarly used to lay the bias-binding yarns (+V and −V) in desired/selected regions of the 3D fabric as shown in
A novel feature of the described arrangement of transporting binding yarn carriers (2e-2f and 2g-2h) is that they can be also used to transport the binding yarn carriers (2a-2b and 2c-2d) to lay bias-binding yarns (+V and −V) as shown in
The noobing device further incorporates a novel dual-acting binding yarn packing arrangement (5a and 5b), the relative top view positions of which are indicated in
The slats of the two sets (5a and 5b) are moved simultaneously from two end sides of the 3D fabric (F) under production, preferably in alternate process cycles, to connect well with the last laid binding yarns tows (either Y or Z or +V or −V) to press/pack them laterally towards each other. As the slats (5a and 5b) simultaneously pack the respective last laid sets of binding yarns (Y) and (Z), and also the bias-binding yarns (+V and −V) when laid, from two opposite end sides of set of axial yarns (X), their dual packing action compresses the laid binding yarns laterally and packs them close to each other tightly to produce the 3D fabric (F) with high fibre volume-fraction.
As indicated in the foregoing, these two sets of slats (5a and 5b) are preferably oriented dissimilarly relative to each other, for example one set being oriented 90° relative to the other set, as indicated in
As indicated in
For certain production necessities additional slats can be had over-below the rows of stem hooks (1c) and also beside the outer columns of stem hooks (1c). The dual-acting sets of slats (5a and 5b) are held preferably in a manner whereby they can easily move/slide in their thickness direction, such as through provision of cuts, pair of holes (either circular or some other suitable shape) etc. (5c), so that they can be suitably mounted on correspondingly shaped support rods, bars etc. (5d) as indicated in
The two relatively oriented sets of slats (5a and 5b) are moved from opposite locations, as indicated in
Through this novel dual-acting binding yarn packing arrangement of the sets of slats (5a and 5b) the last laid set of respective binding yarns concerned (either Y or Z or +V or −V) are advantageously packed/pressed laterally towards each other from two end sides of axial yarns (X) simultaneously and packed suitably according to requirement specifications, i.e. the density of binding yarns per unit length of 3D fabric could be varied either uniformly or non-uniformly throughout the noobed fabric (F) in a controlled manner. The described arrangement thus directly influences control on the fibre volume-fraction of the produced 3D fabric. It will be obvious now to a person skilled in the art that through the described dual-action packing arrangement of sets of slats (5a and 5b), a 3D fabric (F) can be produced wherein distribution of binding yarns can be suitably varied in a controlled manner to create optimized fabric structures and different functionalities to suit a given application need.
In an alternative but similar arrangement, the dual-acting packing slats of two sets (5a and 5b) can be positioned in angular orientations, i.e. in bias/diagonal directions, as shown in
The slats of the sets (5a and 5b) can be of either rectangle-like shape or other shapes such as trapezoid, convex/concave, toothed/stepped etc. to help produce directly a 3D fabric with corresponding shapes of either surfaces or body (for example, a 3D fabric with recess, hole, slot etc.). Further, the shape of the leading longitudinal edges (that which will come in contact with and press the binding yarns) of the slats of the two sets (5a and 5b) can be either similar or dissimilar. The edges of slats are round and smooth, and its surfaces flat and even, possibly coated with non-stick coating. The slats could be either ribbed or non-ribbed.
The noobing device further comprises a novel system to bunch/converge the set of axial yarns (X) for uniquely enabling controlled production of 3D fabric with relatively higher fibre volume fraction, well defined cross-sectional shape and precise cross-sectional dimensions. This system essentially comprises two bunching/converging units (6a and 6b), the relative working positions of which are indicated in
Each of the oppositely paired fingers (6c-6d and 6e-6f) of the bunching units (6a and 6b) move towards each other when actuated, called closing action, as indicated in
During closing action, the oppositely paired fingers (6c-6d and 6e-6f) move closer to each other and create an open space between them which closely defines the cross-sectional shape and area of the 3D fabric being produced. The set of axial yarns (X) get laterally bunched and packed from all four directions and get contained within the defined space created by the closing fingers (6c-6d and 6e-6f). The set of axial yarns (X) is thus dimensionally confined in the space created within the paired fingers (6c-6d and 6e-6f). Such bunching of set of axial yarns (X) causes the binding yarns (Y) and (Z), as also the bias-binding yarns (+V and −V) when used, to directly lock within their binding folds the dimensionally confined bunch of axial yarns (X) in predefined positions. The incorporation of oppositely paired fingers (6c-6d and 6e-6f) thus uniquely enables direct production of 3D fabrics with consistent cross-sectional dimensions and shape, as also the fibre volume-fraction. During opening action, as the pressure on the bunched axial yarns (X) ceases, they tend to decompress and move outwardly. Because the set of axial yarns (X) is now contained within the folding binding yarns (Y) and (Z), the lateral expansion of axial yarns (X), together with frictional forces between the all sets of yarns, causes the laid relatively perpendicular laid sets of binding yarns (Y) and (Z) to get stretched longitudinally and thereby get tensioned. As the lateral expansion of set of axial yarns (X) is restricted and contained by the folding binding yarns of the sets (Y) and (Z), throughout the produced length of 3D fabric, the sets of binding yarns (Y) and (Z) are always maintained in a pre-tensioned or pre-stressed condition and hence linear or straight. The bias-binding yarns (+V and −V), when used, similarly remains in a pre-tensioned state. As can be inferred now, the incorporation of bunching units (6a and 6b) in the noobing device uniquely leads to production of 3D fabrics incorporating pre-stressed or pre-tensioned binding yarns (Y) and (Z), and also bias-binding yarns (+V and −V) when used.
As indicated earlier, the bunching units (6a and 6b) are moved “middle-outwards”, step by step, to correspond with the simultaneous production of 3D fabric in two directions.
Because two sets of bunching units (6a and 6b) work independently and function “middle-outwards”, it becomes possible to even directly produce 3D fabric types such as those having same cross-sectional shape but varying dimensions (e.g. pyramid/cone-like), and different cross-sectional shapes (e.g. square at one end side and rectangular at the other end side).
The working of each of the two bunching units (6a and 6b) is preferably in parallel planes so that the oppositely paired fingers (6c-6d and 6e-6f) can bunch the set of axial yarns (X) equally every time to eliminate tension variations in them. Depending on the shape of 3D fabric to be produced, the respective stroke lengths of oppositely paired fingers (6c-6d and 6e-6f) can be suitably controlled to be either constant or varying, such as when producing flat surfaced and contoured surfaced 3D fabrics.
Further, the surfaces of the oppositely paired fingers (6c-6d and 6e-6f) that contact and bunch the set of axial yarns (X) are not sharp and rough. Further, the contact surface of the fingers (6c-6d and 6e-6f) can be had either straight or curved or differently shaped, to aid uniform production of 3D fabric's cross-sectional dimensions and shapes accurately. Also, the relative angle between the oppositely paired fingers (6c-6d and 6e-6f) of either set (6a and 6b) need not be necessarily right angled, as depicted in
To render the noobing device versatile, the bunching units (6a and 6b) is mounted in a manner whereby their positions can be changed as and when desired. Through such an arrangement 3D fabrics of irregular and asymmetric cross-sectional dimensions and shapes could be directly produced on the same noobing device. Whereas the production of 3D fabrics described in the foregoing indicates working of bunching units (6a and 6b) for linear incorporation of set of axial yarns (X), it is possible that the working of bunching units (6a and 6b) can be further exploited to produce a 3D fabric in which the set of axial yarns (X) are incorporated in a non-linear configuration. To exemplify, by having suitable arrangements for altering the stroke lengths of one oppositely paired fingers at every cycle of the process, a 3D fabric could be produced with non-linear set of axial yarns (X), such as sine-curved web of a T profile and asymmetrically offset shapes about the central longitudinal axis. A person skilled in the art will understand now that together with axially turnable walls (1a and 1b) and variable working of bunching units (6a and 6b) a twisting or helix-like 3D fabric could be also produced.
To ensure that the sets of binding yarns (Y) and (Z), as also bias-binding yarns (+V and −V) when used, remain in a pre-tensioned condition, it is preferable that the closing action of oppositely paired fingers (6c-6d and 6e-6f) creates a slightly smaller space between them than the final required cross-sectional dimensions/area of the 3D fabric. This way the compressive forces in the set of axial yarns (X) will cause slight cross-sectional expansion of the 3D fabric to achieve the required dimensions, and thereby stretching and tensioning of the binding yarns (Y) and (Z), as well as bias-binding yarns (+V and −V) when used, as explained earlier. Also, at the same time, a 3D fabric with relatively high fibre volume-fraction will be obtained. A robust/high fibre volume-fraction 3D fabric structure such as this will ensure incorporation of straight or linear fibres during matrix infiltration/impregnation process and thereby improved mechanical properties of the final composite materials can be achieved.
On the lines of the bunching unit (6) described above, In
The noobing device further comprises a novel pair of arrangements (7) for integrating or binding the loops of set of axial yarns (X) at the two end surfaces of the 3D fabric with at least one of the sets of binding yarns (Y) and (Z), or bias-binding yarns (+V and −V) when used, or additional yarns, to create closed end surfaces of the 3D fabric. By binding the loops of axial yarns (X), the compressed binding yarns (Y and Z), as also bias-binding yarns (+V and −V) when used, are prevented from coming out of the axial yarns (X). As a consequence, they exert forces on axial yarns (X) to stretch them longitudinally. The fully bound 3D fabric thus has its constituent set of axial yarns (X) remaining in tension, or pre-tensioned condition as explained earlier. The relative location of each of the arrangements (7), during its non-operational or stand-by phase, as viewed from top, is indicated in
The loops binding arrangement (7) comprises essentially a set of needles (7a), a pair of upper and lower needle holders (7b-7d) for supporting the needles (7a) in required positions and orientation, a driving connector (7c and 7e) for each needle holder (7b and 7d) respectively. The driving connectors (7c and 7e), besides moving the respective holders (7b and 7d) in the direction of fabric when required and retracting them back, also function to turn the holders (7b and 7d), by at least 180°, so that the held needles can be directly correspondingly turned and kept ready for subsequent use. Each of the arrangements (7) also includes a conventional clamping unit to grip either set of binding yarns (Y) or (Z), depending on which set of yarns is to be used in a given machine, and a usual cutting unit (e.g. shears, rolling blades, laser etc.) to cut the binding yarns of sets (Y) and (Z) emanating from their respective binding yarn carriers (2a-2b and 2c-2d). These usual clamping units are not necessary to indicate in
Needles (7a) are preferably of the usual self-threading type whereby a yarn can be urged in its eye without passing the end. The self-threading eye of needle (7a) is preferably of the type that will not catch fibres either internally or externally, either when the needle is moving in contact with fibres or fibre is moving in contact with needle. The tip of the needle is preferably not pointed but rounded to avoid fibre damage. Needles (7a) of suitable length are selected in relation to the thickness of the 3D fabric being produced. The number of needles (7a) required correspond with the number of columns of loops constituting the 3D fabric under production. Alternatively, needles (7a) could be substituted with hairpin-like wires, hooks, other usual textile processing elements etc. Preferably needles (7a) are made of suitable steel when its holders (7b and 7d) are of electromagnet type. Needles (7a) could be also made of a suitable plastic, or even composite material, when its holder is of the mechanical type. The needles (7a) need not necessarily be of the usual cylindrical type; they can be of either some prismatic shapes or entirely different constructions such as part steel and part plastic/other metal.
The pair of needle holders (7b and 7d), designated upper and lower for describing their working here, are preferably of either magnetic or mechanical type. The magnetic type holders (7b and 7d), preferably electromagnetic, are provided with a saw-tooth-like design to hold needles in required fixed spacing, or centre-to-centre distance, at one of its sides as indicated in
A mechanical needle holder (7b and 7d), by way of example, is composed of a set of preferably three stacked plates, each having a series of identical holes or open ended slots at one of the sides and close to the edge facing the 3D fabric. These holes/open ended slots face the fabric under production. All the holes/slots in three plates match at one particular position, the mean position. While the top and bottom plates in the stack are suitably arranged to be unmovable relative to each other, the middle plate can be slid between the top and bottom plates. Thus, a slight displacement of the middle plate from the mean position will cause the needles in the holes/slots to get locked with the top and bottom plates, and they will be held similarly as indicated in
Whichever type of paired needle holders (7b and 7d) is used, it is preferably brought into its active or operational position, from a suitable stand-by position as its operation is required once the laying of binding yarns has reached the respective end sides of the set of axial yarns (X) and further laying of binding yarns is not required. This way needle holders (7b and 7d) will not be in the way to hinder/obstruct the operation of laying the binding yarns (Y and Z) during production of the 3D fabric.
The clamping unit (not shown), used to clamp the set of binding yarns, is preferably one of the usual arrangements used in textile manufacture. The clamping unit is moved from a side direction with its mouth open towards the array of binding yarns that have to be clamped. Once positioned, it clamps between its jaws the set of binding yarns extending between the fabric and the binding yarn carriers (2a-2b and 2c-2d). The binding yarns (Z) are clamped at a suitable position (it must be remembered that the binding yarns are relatively more spaced apart at their carrier side than at the fabric side) by the clamping unit to present them steadily in a tensioned state to the approaching needles (7a) so that the binding yarns of the set (Z) get directly and easily self-threaded into the eyes of the needles (7a). Thus, the clamping unit collectively positions each of the individual yarns of set (Z) for corresponding self-threading into the eyes of needles (7a). Alternatively, the clamping unit could be moved with the clamped binding yarns of the set (Z), in tension, towards the needles (7a) that are already held either in or above the loops of axial yarns (X) by the needle holder concerned (7b or 7d) and urge the binding yarns (Z) to self-thread into the respective eyes of needles (7a).
A representative working sequence of the novel 3D fabric-end binding arrangement (7) is indicated in
To achieve the objective of producing a 3D fabric with closed end surfaces, and its constituent set of axial yarns (X) remaining in tension, the pair of arrangements (7) function in conjunction with the hook stems (1c), the hook part (1d) of which provides clear channels in the looping axial yarns (X). As can be inferred now from the working sequence described above, once the needles (7a) have been threaded with binding yarns of the set (Z) by the clamping unit, these yarns are cut at a suitable point by the yarn cutting unit to free them from the respective binding yarn carriers (2c and 2d). The pairs of upper (7b) and lower (7d) holders, at either end sides of 3D fabric, are moved, preferably simultaneously, towards the respective end sides of the 3D fabric being produced. Each of the holders at the two end sides of 3D fabric are positioned at a point where tips of each of the needles (7a) are directly over and in line with the respective columns of the loops of axial yarns (X), as can be inferred from
As already explained, the compressive forces in the two sets of laid binding yarns (Y) and (Z), which were laterally compressed and packed between the set of axial yarns (X) by slats (5a and 5b) during 3D fabric production, combined with frictional forces between the fibres, tend to collectively exert pressure in respective lateral directions and the set of axial yarns (X) begin to get longitudinally tensioned (because set of axial yarns (X) is in mutual perpendicular orientation to sets of yarns (Y and Z)). This tensioning of set of axial yarns (X) gets further enhanced when the loops of axial yarns (X) are integrated with the corresponding binding yarns (Z) as the laterally expanding/uncompressing binding yarns of sets (Y) and (Z) cannot come outside of the integrated loops. As all the surfaces of the produced 3D fabric are fully bound, the tightly packed laterally expanding/uncompressing yarns of each set causes the yarns of the other two sets to extend longitudinally whereby all sets of yarns (X, Y, Z) always remain in a pre-tensioned state, and thereby also straight or linear during matrix infiltration/impregnation process, and contribute in improving the mechanical properties of the final composite material.
Alternatively, instead of using binding yarns of any set, extra/additional yarns can be used to integrate the loops (either column-wise or row-wise) of axial yarns (X). Since the loops will be locked by the extra yarns, the binding yarns (Y) and (Z), packed in the fabric, cannot come outside of the integrated loops of axial yarns (X) and thereby keep the axial yarns (X) in tension or pre-stressed condition as explained earlier. Such extra yarns can be also used when bias-binding yarns (+V and −V) have been incorporated in the 3D fabric. In any case, whether using either binding yarns (Y) or (Z), or bias-binding yarns (+V) or (−V), or extra yarns for integrating the loops of axial yarns (X), it is not necessary to pass them through all the corresponding loops of axial yarns (X). If required these binding yarns, and also the extra yarns, can be drawn through only select loops of axial yarns (X), in suitable directions, whereby either these binding yarns, or the extra yarns, can be made to directly float on the end surfaces of the 3D fabric to improve the bonding characteristics of the composite materials as discussed earlier.
In another approach, when laying of binding yarns (Y and Z)/bias-binding yarns (+V and −V) have been completed, the needles (7a) could be first directly placed in the corresponding column-wise channelled loops of axial yarns (X) with the eyes of all the needles oriented in the same direction. Subsequently, the clamping unit holding the binding yarns of set (Z), which is cut at a suitable point, is moved towards the needle eyes to directly urge the binding yarns to self-thread into the eyes of the positioned needles. By drawing out the needles from the channel of loops, the binding yarns get laid in the loops and integrate with the loops of axial yarns (X). The extending yarns can be either subsequently cut by the cutting unit or just left like that. In another approach, a robot could be used to bind the loops of axial yarns (X) with either the binding or extra yarns by drawing them through the loops. Alternatively pre-threaded needles could be directly used. The passing of needles through the channelled loops of axial yarns (X) could be also performed either manually or robotically.
Alternatively, an extra yarn, such as thermoplastic, could be laid as the outermost binding yarn, i.e. without passing through the columns of loops. By applying required heat the fusing thermoplastic yarn will seal the ends of 3D fabric. This approach is advantageous when the loops of axial yarns (X) are to be cut open. The fused yarn will restrain the binding yarns of sets (Y) and (Z) from coming out of the axial yarns (X) whereby a pre-tensioned 3D fabric will be produced. Alternatively, by using thermoplastic hooks (1d) on hook stems (1c), they could be fused into the loops and connect them whereby the laid binding yarns are restrained from coming out and thereby a pre-tensioned 3D fabric is obtained. Alternatively, once the laying of binding yarns (Y and Z) is completed, a suitable adhesive can be sprayed on the loops of axial yarns (X) to join them whereby the laid binding yarns are restrained from coming out and thereby a pre-tensioned 3D fabric is obtained.
It may be noted that because of the novel incorporation of bunching units (6a and 6b) in the noobing device and pressing the laid binding yarns against each other from opposite directions by slats (5a and 5b), the set of axial yarns (X) are uniquely held tightly by the sets of binding yarns (Y) and (Z), as also bias-binding yarns (+V and −V) when used. As a consequence, there is high yarn-to-yarn friction between all the involved yarns whereby the compressive forces of the laid sets of binding yarns (Y) and (Z) cause the set of axial yarns (X) to remain uniquely linear in a tensioned state. Therefore, in another alternative arrangement, the loops of the axial yarns (X) need not be integrated with either the binding yarns of the sets (Y) and (Z) or the extra yarns. In this case the loops of axial yarns (X) may be left either as they are or they could be cut with certain length protruding from the end surfaces of the 3D fabric. Whether left as they are or cut, the loop-forming axial yarns (X), due to their corresponding obtaining either bulb-like or shaving brush-like forms, provide some resistance to the laterally expanding binding yarns of the sets (Y) and (Z), as also bias-binding yarns (+V and −V) when used, and thereby prevent them to come outside of the end sides of the set of axial yarns (X), and hence outside of the produced 3D fabric's end surfaces. Such a 3D fabric also comprises pre-tensioned yarns and can be used to produce composite materials that do not require its end surfaces sealed/bonded.
The noobing device further comprises a 3D fabric doffing unit (8), the relative top view stand-by position of which is indicated in
After the production of 3D fabric (F) is completed, the 3D fabric (F) needs to be fully disengaged from the hook stems (1c) before it can be placed in its packaging container. Accordingly, either type of doffing unit (8a) or (8b) is suitably brought into position over the produced 3D fabric (F) by moving arm (8k). Positioning of either unit (8a) or (8b) over 3D fabric (F) depends on which sides/surfaces of 3D fabric (F) can be used conveniently to clamp the 3D fabric (F). Hence, both units (8a) and (8b) are also provided with either a suitable orientating capability or ability to clamp fabric (F) in more than one direction (not shown). Whereas the former type of unit (8a) will clamp the 3D fabric (F) between the jaws (8c and 8d), the latter type (8b) will clamp the 3D fabric (F) between paired prongs, either (8e-8f and 8g-8h) or (8e-8g and 8f-8h). The clamping jaws and prongs are of suitable dimensions and shapes. Suitable jaws/prongs are selected in accordance with the dimensions and shape of the produced 3D fabric, and not limited to the shape shown in
Preferably both types of units (8a) and (8b) are designed to receive clamping jaws (8c-8d)/prongs (8e-8h) from a range of different dimensions and shapes so that they can be interchanged in accordance with the dimensions and shapes of the 3D fabric (F) to be held. For the person skilled in the art, working of both these doffing unit types (8a) and (8b) will be obvious now if one of them is described. Accordingly, working of only the former type (8a) is described in the following. The suitably attached clamping jaws (8c and 8d) are opened in accordance with the dimensions of the 3D fabric's sides to be held and arm (8k) is then lowered and brought over and close to the 3D fabric (F) as indicated in
To disengage the clamped 3D fabric (F) from the hook stems (1c), each of the hinged walls (1a) and (1b) are lightly tilted, either simultaneously or one at a time, and either manually or in an automated manner, towards the produced 3D fabric direction. Because the walls (1a) and (1b) are supported on hinges (9), they can be inclined in a controlled way toward the respective end sides of 3D fabric (F) from the fixed positions of the hinges (9). The controlled manner of inclining walls (1a) and (1b) about hinges (9) pushes the respective hook stems (1c) angularly into the corresponding end sides of 3D fabric (F). The hooking part (1d) slightly push the yarns in contact with it into the 3D fabric whereby the loops of axial yarns (X) loosen up the hooking part (1d). Combined with the flexibility of hook stems (1c), the hooking part (1d) slips out from the respective loops of axial yarns (X) with little assistance, such as light tapping, shaking, vibrating etc. and leaves the yarn threaded by needles (7a) within the loops therein. The produced 3D fabric (F), held by doffing unit (8a), gets completely disengaged now from the hook stems (1c) as shown in
The jaws of doffing unit (8a) when opened, frees the pre-tensioned 3D fabric (F) from its clamping action. A suitable packaging sheet/open container placed under the 3D fabric (F) (not shown) can thus directly receive the pre-tensioned 3D fabric. The deposited pre-tensioned 3D fabric is thus packaged directly by either sheet-wrapping or closing the container employing known packaging techniques. The described manner of depositing the pre-tensioned 3D fabric in its container prevents its contamination, such as that might happen by touch from hands or other sources.
Alternatively, when the hook stem (1c) being used has attachable-detachable type hook part (1d), then, depending on the constructional design of the hook stem (1c), walls (1a and 1b) can be tilted either towards the 3D fabric or away from the 3D fabric to disengage the hook part (1d) from the stem part (1c). The doffing unit (8a) then moves the 3D fabric out of the noobing device and presents it to a suitable system for subsequent removal of the hook parts (1d) that are attached to its end sides. The 3D fabric freed from hook parts (1d), without getting contaminated, is then placed into its packaging container by the doffing unit (8a).
Working of Noobing Device
A general working outline of the novel noobing device is described below in reference to the foregoing description of the device, which is uniquely suitable for producing both the uniaxial and multiaxial types of specific dimensioned and shaped pre-tensioned 3D fabrics.
To start with, walls (1a and 1b) are set apart by the required distance to produce either the 3D fabric's specified length or width or thickness. A predetermined number of rows and columns of hook stems (1c) are selected for producing the required 3D fabric's corresponding cross-sectional dimensions and shape. First, hook stems (1c) of the lowest row are positioned to receive the yarn (X) from unit (1e), which when set to working, lays yarn (X) in a zigzag formation between the two sets of hooking parts (1d) of hook stems (1c) that face each other creating the first plane of set of axial yarns (X). After yarn (X) is hooked to the last hook stem (1c) of the lowest row, unit (1e) is raised to the next higher row/level of hook stems (1c) and the zigzag laying of yarn (X) continued as before. This zigzag laying of axial yarns (X) is continued by unit (1e) until all the selected hook stems (1c) have been hooked with axial yarn (X). Unit (1e) is then moved to either its standby position or to continue working at another noobing device.
Next, the paired binding yarn carriers (2a-2b) containing the horizontal set of binding yarns (Y) and paired binding carriers (2c-2d) containing the vertical set of binding yarns (Z) are traversed in their respective directions to lay through the open spaces between rows and columns of set of axial yarns (X) from both end sides of axial yarns (X). The laid binding yarns (Y) and (Z) are positioned to a middle part of the disposed set of axial yarns (X) by slats (5a and 5b) from respective end sides. Thereafter the next sequence of laying of paired binding yarns is continued in respective directions to start producing the two halves of 3D fabric simultaneously in “middle-outwards” manner. While the described working relates to production of uniaxial noobed fabric, to produce a multiaxial noobed fabric, bias-binding yarns (+V and −V) are similarly laid in bias or diagonal directions of the fabric cross-section being produced in suitable sequencing using corresponding bias-binding yarn carriers.
Fingers (6a and 6b) of bunching unit (6) are activated at suitable moments to bunch the disposed set of axial yarns (X) by a predetermined distance, or in dimensionally confined space, and close to where the corresponding last binding yarns (Y) and (Z) have been laid. The bunching action is preferably performed after corresponding binding yarns (or bias-binding yarns (+V and −V), when used) of a given direction have been laid to achieve locking of the dimensionally confined axial yarns (X) in the folds of tensioned binding yarns (Y) and (Z).
The paired carriers of the binding yarns of each of the horizontal (Y) and vertical (Z) directions (2a-2b and 2c-2d), as also those carrying bias-binding yarns (+V and −V) when used for producing a multiaxial noobed fabric, are preferably operated simultaneously at both end sides of disposed set of axial yarns (X) during the “middle-outward” production of the 3D fabric. The laid binding yarns (Y) and (Z), as also bias-binding yarns (+V and −V) when used, are laterally pushed and compressed towards the middle of the 3D fabric under production by slats (5a and 5b) from respective end directions.
The indicated operations of laying binding yarns (Y) and (Z), as also bias-binding yarns (+V and −V) when used, compressing and packing them towards each other from the two end sides of set of axial yarns (X) by slats (5a and 5b), and bunching of the set of axial yarns (X) by bunching unit (6) are continually sequentially performed at proper moments of the cycle until one set of the laid binding/bias-binding yarns, at both end sides of axial yarns (X), reaches the looped ends of the set of axial yarns (X). Next, either the binding/bias-binding yarns of the set concerned, or alternatively extra yarns, are drawn into the eyes of corresponding needles (7a), which are suitably positioned. The yarns concerned are then drawn through the corresponding column-wise (or row-wise or diagonal directional) channelled loops of axial yarns (X) at both end sides of 3D fabric by unit (7) for forming the closed/sealed end surfaces of the 3D fabric (F). Alternatively, a thermoplastic yarn is used as the extra binding yarn and fused with the axial and other neighbouring yarns when the loops of axial yarns are not threaded by any yarn and cut-open. Binding/bias-binding yarns extending from the respective carriers are then cut off for tidiness.
The 3D fabric (F) is then held by the doffing unit (8). If needed, slats (5a and 5b) push the last few laid binding/bias-binding yarns lightly to loosen the hook part (1d) of hook stems (1c) from the loops of axial yarns (X). Slats (5a and 5b) are moved back to their respective stand-by positions. Walls (1a and 1b), fixed to the respective hinges (9), are tilted towards the 3D fabric to disengage the hooking parts (1d) of hook stems (1c) from the loops of the set of axial yarns (X). Walls (1a and 1b) are then either tilted away in opposite direction from the produced 3D fabric (F) or moved back from the end sides of the 3D fabric (F) so that the stem hooks (1c) do not interfere with the 3D fabric (F). The jaws of doffing unit (8) are then opened to deposit the produced pre-tensioned 3D fabric (F) in the provided suitable container or placed on a wrapping sheet for packaging.
The produced 3D fabric (F) with all its surfaces integrated thus has all its constituent yarns (X, Y, Z, and +V, −V when used) occurring linearly in their respective directional orientations in a pre-tensioned conditions.
As can be understood now, the described noobing device can produce both uniaxial and multiaxial 3D fabric objects of any desired specific dimensions and shapes directly, flexibly, efficiently, effectively, automatically and economically. Also, the various members of the described noobing device can be operated in desired sequences using suitable programmes.
As can be further understood now, the 3D fabric (F) with integrated surfaces comprises laterally compressed and tightly packed laid sets of axial yarns (X), and laterally compressed and tightly packed laid sets of binding yarns (Y) and (Z). The lateral compressive forces in yarns/tows of any one direction then act in the longitudinal direction of the yarns of the other two sets causing them to stretch longitudinally whereby tension is generated in them. As a consequence, all three sets of yarns (X), (Y) and (Z) remain in tensioned state. As can be understood now, the bias-binding yarns (+V and −V), when used for producing a multiaxial 3D fabric, similarly remain in a tensioned state. The disclosed 3D fabric, whether uniaxial or multiaxial, is thus uniquely a pre-tensioned 3D fabric object.
It will be also noticed that in both uniaxial and multiaxial types of pre-tensioned 3D fabrics (F) the combined length of laterally compressed binding yarns (Y) and (Z) and/or bias-binding yarns (+V and −V) nearly equals the linear length of the set of the longitudinally tensioned axial yarns (X). Similarly, the combined length of laterally compressed axial yarns (X) nearly equals the linear length of longitudinally tensioned binding yarns of sets (Y and Z) (in height/thickness and width directions), and bias-binding yarns (+V and −V) (in diagonal directions).
It would be abundantly apparent now to a person skilled in the art that all fibre types such as natural (cotton, silk, jute, cocoanut, bast, wool, sea weed etc.) and manufactured (polyester, polyamide, acrylic, amide, carbon, glass, aramid, boron, ceramic, metal etc.) can be processed into a 3D fabric object by the described noobing process and noobing device. The described workings of the noobing process and device are only representative and a variety of modifications can be implemented without departing from the spirit of the described inventions. Given below are some examples to illustrate the point and will be obvious now to a person skilled in the art.
A person skilled in the art will understand now that the described noobing device is also unique in another way—there is no fabric take-up involved as the 3D fabric object is directly produced to the required customized dimensions “middle-outwards”.
A person skilled in the art will further understand now that the described noobing method and device, which provides new opportunities to employ and exploit them for producing 3D fabrics, can be modified in different ways. Some of these can be: (a) incorporation of an arrangement that individually feeds specially designed hook stems (1c) to the walls (1a and 1b) in a manner that these hook stems while being fed to the walls (1a and 1b) engage with the presented yarns (1f) and create the set of zigzag axial yarns (X); (b) arranging the axial yarns in a manner whereby circular/cylindrical 3D fabrics are produced by laying one set of binding yarns in circumferential direction and the other set in radial direction; (c) arranging the walls to move mutually relatively in different planes, instead of keeping them either stationary or jointly moving them in same respective planes, to produce 3D fabrics that bend either longitudinally or latitudinally or in both these directions, for example, like a spring; (d) setting up the noobing device in either vertical or horizontal orientations for production of certain 3D fabrics; (e) inclusion of arrangement to either spray a liquid or apply chemical formulation at suitable moments to either the fabric as it is produced or to the fibres involved in producing the fabric; (f) inclusion of an arrangement to place/embed a foreign object, such as thermal/impact/vibration etc. sensors, medicinal capsules, electrical wires, optical fibres, signal emitters etc. in the 3D fabric during production.
It will be clear now to the person skilled in the art that the described noobing method and device are novel and their 3D fabric structures and products are also novel. The method, device and 3D fabric structure can be modified in numerous ways, some of which have been exemplified here, without deviating from the spirit of the indicated different inventions, and not limited by the Claims listed below.
Filing Document | Filing Date | Country | Kind | 371c Date |
---|---|---|---|---|
PCT/EP2012/055240 | 3/23/2012 | WO | 00 | 1/7/2015 |
Publishing Document | Publishing Date | Country | Kind |
---|---|---|---|
WO2013/139401 | 9/26/2013 | WO | A |
Number | Name | Date | Kind |
---|---|---|---|
3095338 | Romanin | Jun 1963 | A |
3818951 | Greenwood | Jun 1974 | A |
3834424 | Fukuta et al. | Sep 1974 | A |
3955602 | King | May 1976 | A |
4336296 | Fukuta et al. | Jun 1982 | A |
4518640 | Wilkens | May 1985 | A |
4872323 | Wunner | Oct 1989 | A |
5085252 | Mohamed et al. | Feb 1992 | A |
5137058 | Anahara | Aug 1992 | A |
5242768 | Nagatsuka et al. | Sep 1993 | A |
5270094 | Anahara et al. | Dec 1993 | A |
5327621 | Yasui et al. | Jul 1994 | A |
5343897 | Sakatani et al. | Sep 1994 | A |
5353844 | Monget et al. | Oct 1994 | A |
5435352 | Yamamoto et al. | Jul 1995 | A |
5449025 | Weinberg | Sep 1995 | A |
5465760 | Mohamed et al. | Nov 1995 | A |
6186185 | Khokar | Feb 2001 | B1 |
6315007 | Mohamed et al. | Nov 2001 | B1 |
6338367 | Khokar | Jan 2002 | B1 |
Number | Date | Country |
---|---|---|
0236500 | Sep 1987 | EP |
2227748 | Nov 1974 | FR |
9500309 | Aug 1996 | SE |
WO-9803712 | Jan 1998 | WO |
Entry |
---|
International Search Report PCT/ISA/210 for International Application No. PCT/EP2012/055240 Dated Apr. 10, 2013. |
Written Opinion of the International Searching Authority PCT/ISA/237 for International Application No. PCT/EP2012/055240 dated Apr. 10, 2013. |
Number | Date | Country | |
---|---|---|---|
20150111457 A1 | Apr 2015 | US |